JPH1114027A - Method of controlling combustion of incinerator - Google Patents
Method of controlling combustion of incineratorInfo
- Publication number
- JPH1114027A JPH1114027A JP16422397A JP16422397A JPH1114027A JP H1114027 A JPH1114027 A JP H1114027A JP 16422397 A JP16422397 A JP 16422397A JP 16422397 A JP16422397 A JP 16422397A JP H1114027 A JPH1114027 A JP H1114027A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- incinerator
- concentration
- amount
- combustion air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Incineration Of Waste (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、焼却炉における燃
焼制御方法に関する。The present invention relates to a method for controlling combustion in an incinerator.
【0002】[0002]
【従来の技術】都市ゴミなど定量供給が不可能な燃焼物
を焼却炉に投入した場合、燃焼物の投入量のバラツキ
は、そのまま燃焼ガスの変動や、燃焼ガス中の酸素(O
2 )濃度のバラツキにつながり、ダイオキシン、NOx
等の有害ガスを発生させる原因ともなっていた。特に、
O2 濃度が低下した場合には、一酸化炭素(CO)が多
量に発生し、CO濃度との相関が高いダイオキシンを発
生させる原因ともなっていた。なお、COが発生しない
ように、十分な二次燃焼空気量を吹き込む方法がある
が、O2 濃度を高くすると、O2 濃度との相関が高いN
Oxを発生させる原因となる。2. Description of the Related Art When a burnable material such as municipal waste that cannot be supplied in a fixed amount is introduced into an incinerator, the variation in the amount of the burned material is directly affected by fluctuations in the combustion gas and oxygen (O) in the combustion gas.
2 ) Concentration variation, dioxin, NOx
And other hazardous gases. Especially,
When the O 2 concentration was reduced, a large amount of carbon monoxide (CO) was generated, which was a cause of generating dioxin having a high correlation with the CO concentration. There is a method of injecting a sufficient amount of secondary combustion air so as not to generate CO. However, when the O 2 concentration is increased, the correlation with the O 2 concentration is high.
Ox is generated.
【0003】このようなダイオキシン、NOx等の有害
ガスを抑える制御方式として、従来次のような対策がと
られていた。 1)排ガス分析計によりCO濃度を検出し、二次燃焼空気
量を変化させていた。即ち、CO濃度が高くなった時
に、二次燃焼空気量を増加させて、CO濃度を下げ、C
O濃度が十分低くなった時に、二次燃焼空気量を戻して
いた。Conventionally, the following countermeasures have been taken as a control method for suppressing such harmful gases such as dioxin and NOx. 1) The CO concentration was detected by an exhaust gas analyzer and the amount of secondary combustion air was changed. That is, when the CO concentration increases, the secondary combustion air amount is increased to lower the CO concentration,
When the O concentration became sufficiently low, the secondary combustion air amount was returned.
【0004】2)排ガス分析計によりO2 濃度を検出し、
燃焼空気量を変化させていた。即ち、O2 濃度が高い場
合には燃焼空気量を減少させ、O2 濃度が低い場合には
燃焼空気量を増加させ、O2 濃度を一定に保っていた。[0004] 2) to detect the O 2 concentration by the exhaust gas analyzer,
The amount of combustion air was changed. That is, when the O 2 concentration is high, the amount of combustion air is reduced, and when the O 2 concentration is low, the amount of combustion air is increased to keep the O 2 concentration constant.
【0005】3)炉出口温度、排ガスO2 濃度を検出し、
一次燃焼空気量を変化させていた。即ち、燃焼量が多い
時は、一次燃焼空気量を減少させてガス化速度を抑制
し、燃焼量が少ない時には、一次燃焼空気量を増加させ
てガス化速度を活性化させていた。これにより、燃焼に
よる発生熱量を一定に維持し、燃焼変動を抑えていた。3) The furnace outlet temperature and the exhaust gas O 2 concentration are detected,
The primary combustion air amount was changed. That is, when the combustion amount is large, the primary combustion air amount is reduced to suppress the gasification rate, and when the combustion amount is small, the primary combustion air amount is increased to activate the gasification rate. As a result, the amount of heat generated by the combustion is kept constant, and the fluctuation of the combustion is suppressed.
【0006】また、従来、産プラ等定量供給が不可能で
高カロリーな燃焼物を焼却炉に投入した場合、燃焼物が
素早く短時間でガス化してしまうため、燃焼物の投入量
のバラツキは、蒸気発生量の変動させる原因となってい
た。[0006] Conventionally, when high-calorie combustion products, such as plastics, which cannot be supplied in a fixed amount and are injected into an incinerator, the combustion products are quickly gasified in a short time. , Causing fluctuations in the amount of steam generated.
【0007】このような蒸気発生量の変動を抑える制御
方式として、従来は、蒸気発生量を検出し、流動化空気
量を変化させていた。即ち、蒸気発生量が多い時は、流
動化空気量を減少させてガス化速度を抑制し、蒸気発生
量が少ない時には、流動化空気量を増加させ、ガスか速
度を活性化させていた。これにより、蒸気発生量を一定
に維持していた。Conventionally, as a control method for suppressing such fluctuations in the amount of generated steam, the amount of generated steam is detected and the amount of fluidized air is changed. That is, when the amount of generated steam is large, the amount of fluidized air is reduced to suppress the gasification rate, and when the amount of generated steam is small, the amount of fluidized air is increased to activate the gas or velocity. As a result, the amount of generated steam was kept constant.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
燃焼制御装置によれば、以下に述べる問題点を有する。 1)上記CO濃度(又はO2 濃度)を検出し、二次燃焼空
気量を変化させる制御装置において、CO濃度(又はO
2 濃度)を一定に保つ機能が有効に作用するか否かは、
CO濃度(又はO2 濃度)の検出精度にかかっている。
CO濃度(又はO2 濃度)を検出する手段として、排ガ
ス分析計で行う方法があるが、排ガス分析計は、通常、
排ガスを炉出口にて検出するため、計測地点まで到達す
るのに時間がかかり、時間遅れがある。従って、有効な
制御信号となりえなかった。つまり、従来の排ガス分析
計では、計測したい点からガスを配管で分析計まで導い
て分析しており、実機になると20〜30mもの長さを
引いていた。従って、ガスを取り出してから分析結果を
得るまでに30秒〜1分程度を要していた。However, the conventional combustion control apparatus has the following problems. 1) In the control device that detects the CO concentration (or O 2 concentration) and changes the amount of secondary combustion air, the CO concentration (or O 2 concentration)
2 ) whether the function to keep the concentration constant works effectively
It depends on the detection accuracy of the CO concentration (or the O 2 concentration).
As a means for detecting the CO concentration (or O 2 concentration), there is a method using an exhaust gas analyzer.
Since the exhaust gas is detected at the furnace outlet, it takes time to reach the measurement point, and there is a time delay. Therefore, it could not be a valid control signal. That is, in the conventional exhaust gas analyzer, the gas is guided from the point to be measured to the analyzer through a pipe and analyzed, and the length of the actual apparatus is reduced by 20 to 30 m. Therefore, it took about 30 seconds to 1 minute from obtaining the gas to obtaining the analysis result.
【0009】2)ダイオキシンは炉内のCO濃度との相関
が高く、炉内のCO濃度が上昇すると、ダイオキシンも
高くなる傾向がある。また、NOxは炉内のO2 濃度と
の相関が高く、炉内のO2 濃度が上昇するとNOx も高
くなる傾向がある。したがって、燃焼制御方式におい
て、ダイオキシン、NOx 等の有害ガスを抑制できるか
否かは、炉内O2 濃度、炉内CO濃度の両方をいかに抑
制するかにかかっており、炉出口温度、排ガスO2 濃度
を検出して燃焼変動を抑える従来の制御方式では精度の
高い有害ガス抑制制御ができないという問題があった。2) Dioxin has a high correlation with the CO concentration in the furnace, and as the CO concentration in the furnace increases, the dioxin tends to increase. Further, NOx is high correlation between the O 2 concentration in the furnace, NOx also tends to increase when the O 2 concentration in the furnace increases. Therefore, in the combustion control method, whether or not harmful gases such as dioxin and NOx can be suppressed depends on how to suppress both the O 2 concentration in the furnace and the CO concentration in the furnace, and the furnace outlet temperature and the exhaust gas O 2 (2) The conventional control method for detecting the concentration and suppressing the combustion fluctuation has a problem that the harmful gas suppression control with high accuracy cannot be performed.
【0010】3)産業廃棄物用の流動床炉等では、通常、
流動層部での空気過剰率が1.0以下の状態で運転する
が、単位体積当たりの発生熱量の異なる燃料が投入され
るため、流動層内空気過剰率が大きく変動し、1.1以
上になることがある。図5に流動層内空気過剰率と燃焼
効率の関係を示す。3) In a fluidized-bed furnace for industrial waste, etc., usually,
The operation is performed in a state where the excess air ratio in the fluidized bed portion is 1.0 or less. However, since fuels with different amounts of heat generated per unit volume are charged, the excess air ratio in the fluidized bed greatly varies and is 1.1 or more. It may be. FIG. 5 shows the relationship between the excess air ratio in the fluidized bed and the combustion efficiency.
【0011】流動層内空気過剰率が1.0より小さい場
合には、流動化空気量を増加させると、燃焼効率が良く
なり、温度が上がる。また、流動化空気量を減少させる
と、燃焼効率が悪くなり、温度が下がる。従って、蒸気
発生量が少ない場合に流動化空気流量を上げる必要があ
る。When the excess air ratio in the fluidized bed is less than 1.0, increasing the amount of fluidized air improves combustion efficiency and raises the temperature. Further, when the amount of fluidized air is reduced, the combustion efficiency is deteriorated and the temperature is lowered. Therefore, when the amount of generated steam is small, it is necessary to increase the flow rate of the fluidizing air.
【0012】流動層内空気過剰率が1.1より大きい場
合には、流動化空気量を増加させると、冷却効果で燃焼
効率が悪くなって温度が下がり、流動化空気量を減少さ
せると燃焼効率が良くなり、温度が上がる。従って、蒸
気発生量が少ない場合に流動化空気流量を下げる必要が
ある。When the excess air ratio in the fluidized bed is greater than 1.1, increasing the amount of fluidized air decreases the combustion efficiency due to the cooling effect and lowers the temperature. Efficiency improves, temperature rises. Therefore, when the amount of generated steam is small, it is necessary to reduce the flow rate of the fluidizing air.
【0013】流動層内空気過剰率が1.0から1.1の
場合には、O2 濃度が適正な水準にあり、操作器を変動
させないようにすることが必要である。従って、従来の
ように制御パラメータを固定して、蒸気発生量の偏差を
検出して流動化空気量を変化させる制御方式では、悪い
方向(蒸気発生量の偏差が大きくなる方向)に操作器を
制御する可能性があった。なお、廃棄物の性状によって
は、上記流動層内空気過剰率の適正制御範囲を1.0〜
1.1でなく、0.75〜0.9程度に変更することも
ある。When the excess air ratio in the fluidized bed is 1.0 to 1.1, it is necessary to keep the O 2 concentration at an appropriate level and not to fluctuate the operating device. Therefore, in the conventional control method in which the control parameter is fixed and the deviation of the steam generation amount is detected to change the fluidized air amount, the operating device is operated in a bad direction (in a direction in which the deviation of the steam generation amount increases). There was a possibility to control. In addition, depending on the property of the waste, the appropriate control range of the air excess ratio in the fluidized bed is 1.0 to 1.0.
Instead of 1.1, it may be changed to about 0.75 to 0.9.
【0014】本発明はこうした事情を考慮してなされた
もので、第1に、焼却炉内の一酸化炭素濃度を瞬時に計
測可能な一酸化炭素濃度検出手段と二次燃焼用空気制御
手段を設け、一酸化炭素濃度を時間遅れなく検出し、検
出した一酸化炭素濃度に応じて二次燃焼空気量を変化さ
せることにより、CO濃度を時間遅れなく精度良く検出
し、もってダイオキシン等の有害ガスの発生を抑制可能
な焼却炉における燃焼制御方法を提供することを目的と
する。The present invention has been made in view of such circumstances. First, a carbon monoxide concentration detecting means and a secondary combustion air control means capable of instantaneously measuring the carbon monoxide concentration in an incinerator are provided. Detects the concentration of carbon monoxide without time delay and changes the amount of secondary combustion air according to the detected concentration of carbon monoxide to accurately detect the concentration of CO without time delay, thereby reducing harmful gases such as dioxin. It is an object of the present invention to provide a combustion control method in an incinerator that can suppress the generation of combustion.
【0015】第2に、本発明は、焼却炉内の酸素濃度を
瞬時に計測可能な酸素濃度検出手段と一次燃焼用空気制
御手段とを具備し、酸素濃度を時間遅れなく検出し、検
出した酸素濃度に応じて一次燃焼空気量を変化させるこ
とにより、O2 濃度を時間遅れなく精度良く検出し、も
ってダイオキシン等の有害ガスの発生を抑制可能な焼却
炉における燃焼制御方法を提供することを目的とする。Second, the present invention comprises oxygen concentration detecting means capable of instantaneously measuring the oxygen concentration in the incinerator and primary combustion air control means, and detects and detects the oxygen concentration without time delay. It is an object of the present invention to provide a combustion control method in an incinerator in which the primary combustion air amount is changed in accordance with the oxygen concentration to accurately detect the O 2 concentration without time delay, thereby suppressing the generation of harmful gases such as dioxin. Aim.
【0016】第3に、本発明は、焼却炉内の燃焼部分の
温度を検出する温度検出手段と、焼却炉内の酸素濃度,
一酸化炭素濃度を各々瞬時に計測可能な酸素濃度検出手
段、一酸化炭素濃度検出手段と、一次・二次燃焼用空気
制御手段とを具備し、燃焼状態を時間遅れなく検出し、
検出した燃焼状態信号を用いて炉内温度、炉内酸素濃
度、炉内一酸化炭素濃度を適性値に保つように一次燃焼
空気量と二次燃焼空気量を変化させることにより、炉内
温度、炉内O2 濃度、炉内CO濃度を時間遅れなく精度
良く検出し、もってダイオキシン等の有害ガスの発生を
抑制可能な焼却炉における燃焼制御方法を提供すること
を目的とする。Third, the present invention provides a temperature detecting means for detecting a temperature of a combustion portion in an incinerator, an oxygen concentration in the incinerator,
Equipped with oxygen concentration detecting means capable of instantaneously measuring carbon monoxide concentration, carbon monoxide concentration detecting means, and primary and secondary combustion air control means, and detecting the combustion state without time delay,
By using the detected combustion state signal to change the primary combustion air amount and the secondary combustion air amount so as to maintain the furnace temperature, the furnace oxygen concentration, and the carbon monoxide concentration in the furnace at appropriate values, the furnace temperature, An object of the present invention is to provide a combustion control method in an incinerator that can accurately detect the in-furnace O 2 concentration and the in-furnace CO concentration without time delay and thereby suppress generation of harmful gases such as dioxin.
【0017】第4に、本発明は、焼却炉内の酸素濃度,
一酸化炭素濃度を各々瞬時に計測可能な酸素濃度検出手
段、一酸化炭素濃度検出手段と、焼却炉に連結したボイ
ラの蒸気発生量を検出する検出手段と、一次・二次燃焼
用空気制御手段とを具備し、酸素濃度信号と一酸化炭素
濃度信号により一次燃焼場内の空気過剰率(実際の空気
量/理論空気量)を推定し、この空気過剰率に基づいて
制御パラメータを求め、この制御パラメータを用いて燃
焼用空気量を制御することにより、炉内O2 濃度検出器
の出力、CO濃度検出器の出力に基づいて炉内の燃焼状
態を時間遅れなく正確に検出でき、もって蒸気発生量を
一定に保つことができる焼却炉における燃焼制御方法を
提供することを目的とする。Fourth, the present invention relates to a method for controlling the oxygen concentration in an incinerator,
Oxygen concentration detecting means capable of instantaneously measuring carbon monoxide concentration, carbon monoxide concentration detecting means, detecting means for detecting the amount of steam generated in a boiler connected to an incinerator, and air control means for primary and secondary combustion The excess air ratio (actual air amount / theoretical air amount) in the primary combustion field is estimated based on the oxygen concentration signal and the carbon monoxide concentration signal, and a control parameter is determined based on the excess air ratio. By controlling the amount of combustion air using parameters, the combustion state in the furnace can be accurately detected without time delay based on the output of the O 2 concentration detector in the furnace and the output of the CO concentration detector, thereby generating steam. It is an object of the present invention to provide a combustion control method in an incinerator that can keep the amount constant.
【0018】[0018]
【課題を解決するための手段】本願第1の発明は、投入
された燃焼物を焼却炉下部から送り込む一次燃焼空気に
より一次燃焼場でガス化させ、ガス化した可燃ガスを焼
却炉中段より送られる二次燃焼空気により燃焼させ、炉
内に投入される燃焼物の変動にかかわらず、燃焼による
発生熱量を一定に維持するとともに、ダイオキシン、N
Oxなどの有毒ガスの発生を抑制する焼却炉における燃
焼制御方法において、焼却炉内の一酸化炭素濃度を瞬時
に計測可能な一酸化炭素濃度検出手段と二次燃焼用空気
制御手段とを具備し、一酸化炭素濃度を時間遅れなく検
出し、検出した一酸化炭素濃度に応じて二次燃焼空気量
を変化させることを特徴とする焼却炉における燃焼制御
方法である。According to a first aspect of the present invention, the charged combustion material is gasified in a primary combustion field by primary combustion air sent from a lower portion of an incinerator, and gasified combustible gas is sent from a middle stage of the incinerator. The amount of heat generated by the combustion is kept constant irrespective of the fluctuation of the combustibles introduced into the furnace, and the dioxin, N
A combustion control method in an incinerator for suppressing generation of toxic gas such as Ox, comprising a carbon monoxide concentration detecting means capable of instantaneously measuring a carbon monoxide concentration in the incinerator and a secondary combustion air control means. A method for controlling combustion in an incinerator characterized by detecting the concentration of carbon monoxide without time delay, and changing the amount of secondary combustion air according to the detected concentration of carbon monoxide.
【0019】本願第2の発明は、投入された燃焼物を焼
却炉下部から送り込む一次燃焼空気により一次燃焼場で
ガス化させ、ガス化した可燃ガスを焼却炉中段より送ら
れる二次燃焼空気により燃焼させ、炉内に投入される燃
焼物の変動にかかわらず、燃焼による発生熱量を一定に
維持するとともに、ダイオキシン、NOxなどの有毒ガ
スの発生を抑制する焼却炉における燃焼制御方法におい
て、焼却炉内の酸素濃度を瞬時に計測可能な酸素濃度検
出手段と一次燃焼用空気制御手段とを具備し、酸素濃度
を時間遅れなく検出し、検出した酸素濃度に応じて一次
燃焼空気量を変化させることを特徴とする焼却炉におけ
る燃焼制御方法である。[0019] The second invention of the present application is that gasified combustible gas is converted into gas by a secondary combustion air sent from a middle stage of an incinerator by primary combustion air sent from a lower part of the incinerator, and gasified combustible gas is sent from the lower part of the incinerator. A method for controlling combustion in an incinerator that suppresses the generation of toxic gases such as dioxins and NOx while keeping the amount of heat generated by combustion constant irrespective of fluctuations in the combustibles injected into the furnace. Equipped with oxygen concentration detecting means capable of instantaneously measuring oxygen concentration in the air and primary combustion air control means, detecting the oxygen concentration without time delay, and changing the primary combustion air amount according to the detected oxygen concentration. A combustion control method in an incinerator characterized by the following.
【0020】本願第3の発明は、投入された燃焼物を焼
却炉下部から送り込む一次燃焼空気により一次燃焼場で
ガス化させ、ガス化した可燃ガスを焼却炉中段より送ら
れる二次燃焼空気により燃焼させ、炉内に投入される燃
焼物の変動にかかわらず、燃焼による発生熱量を一定に
維持するとともに、ダイオキシン、NOxなどの有毒ガ
スの発生を抑制する焼却炉における燃焼制御方法におい
て、焼却炉内の燃焼部分の温度を検出する温度検出手段
と、焼却炉内の酸素濃度,一酸化炭素濃度を各々瞬時に
計測可能な酸素濃度検出手段、一酸化炭素濃度検出手段
と、一次・二次燃焼用空気制御手段とを具備し、燃焼状
態を時間遅れなく検出し、検出した燃焼状態信号を用い
て炉内温度、炉内酸素濃度、炉内一酸化炭素濃度を適性
値に保つように一次燃焼空気量と二次燃焼空気量を変化
させることを特徴とする焼却炉における燃焼制御方法で
ある。According to a third invention of the present application, the charged combustion material is gasified in a primary combustion field by primary combustion air sent from a lower portion of the incinerator, and the gasified combustible gas is converted into gas by secondary combustion air sent from a middle stage of the incinerator. A method for controlling combustion in an incinerator that suppresses the generation of toxic gases such as dioxins and NOx while keeping the amount of heat generated by combustion constant irrespective of fluctuations in the combustibles injected into the furnace. Temperature detection means for detecting the temperature of the combustion part in the furnace, oxygen concentration detection means for instantly measuring the oxygen concentration and carbon monoxide concentration in the incinerator, carbon monoxide concentration detection means, and primary and secondary combustion Air temperature control means for detecting the combustion state without time delay and using the detected combustion state signal to maintain the furnace temperature, the furnace oxygen concentration, and the furnace carbon monoxide concentration at appropriate values. A combustion control method in a incinerator, wherein varying the amount of combustion air and secondary combustion air amount.
【0021】本願第4の発明は、投入された燃焼物を焼
却炉下部から送り込む流動化空気により高温流動媒体を
流動化させた一次燃焼場でガス化させ、ガス化した可燃
ガスを焼却炉中段より送られる二次燃焼空気により燃焼
させ、蒸気発生量の偏差に基づいて流動化空気量及び燃
料供給量を制御する焼却炉における燃焼制御方法におい
て、焼却炉内の酸素濃度,一酸化炭素濃度を各々瞬時に
計測可能な酸素濃度検出手段、一酸化炭素濃度検出手段
と、焼却炉に連結したボイラの蒸気発生量を検出する検
出手段と、一次・二次燃焼用空気制御手段とを具備し、
酸素濃度信号と一酸化炭素濃度信号により一次燃焼場内
の空気過剰率(実際の空気量/理論空気量)を推定し、
この空気過剰率に基づいて制御パラメータを求め、この
制御パラメータを用いて燃焼用空気量を制御することを
特徴とする焼却炉における燃焼制御方法である。According to a fourth aspect of the present invention, a high-temperature fluidized medium is gasified in a primary combustion field in which a high-temperature fluidized medium is fluidized by fluidizing air fed from a lower portion of the incinerator, and the combustible gas is converted to a gaseous combustible in a middle stage of the incinerator. Combustion by the secondary combustion air sent from the incinerator, and controlling the amount of fluidized air and the amount of fuel supply based on the deviation of the amount of generated steam, the oxygen concentration and carbon monoxide concentration in the incinerator Each comprising an instantaneously measurable oxygen concentration detecting means, a carbon monoxide concentration detecting means, a detecting means for detecting a steam generation amount of a boiler connected to an incinerator, and a primary / secondary combustion air control means,
The excess air ratio (actual air amount / theoretical air amount) in the primary combustion field is estimated from the oxygen concentration signal and the carbon monoxide concentration signal,
A combustion control method in an incinerator, characterized in that a control parameter is obtained based on the excess air ratio, and the amount of combustion air is controlled using the control parameter.
【0022】本発明において、一酸化炭素濃度検出手段
又は酸素濃度検出手段としては、例えば半導体レーザ検
出器が挙げられる。 [作用]第1の発明に係る焼却炉における燃焼制御方法
では、焼却炉内の一酸化炭素濃度を瞬時に計測可能な一
酸化炭素濃度検出手段例えば半導体レーザ検出器により
焼却炉のCO濃度を時間遅れなく正確に検出できる。こ
の信号を用いて、COの発生を抑制するようにPID演
算等により二次燃焼空気量を算出する。そして、算出し
た二次燃焼空気量になるように二次燃焼空気量制御弁を
動作させる。COの発生を抑制することにより、CO濃
度と相関が高いダイオキシン、NOx等の有害ガスの発
生を抑制することが可能となる。In the present invention, the carbon monoxide concentration detecting means or the oxygen concentration detecting means includes, for example, a semiconductor laser detector. [Action] In the combustion control method in the incinerator according to the first invention, the CO concentration in the incinerator is measured by a carbon monoxide concentration detecting means such as a semiconductor laser detector capable of instantaneously measuring the carbon monoxide concentration in the incinerator. It can be detected accurately without delay. Using this signal, the amount of secondary combustion air is calculated by PID calculation or the like so as to suppress the generation of CO. Then, the secondary combustion air amount control valve is operated so as to have the calculated secondary combustion air amount. By suppressing the generation of CO, it is possible to suppress the generation of harmful gases such as dioxin and NOx, which have a high correlation with the CO concentration.
【0023】第2の発明に係る焼却炉における燃焼制御
方法では、焼却炉内の酸素濃度を瞬時に計測可能な酸素
濃度検出手段例えば半導体レーザ検出器により焼却炉の
O2濃度を時間遅れなく正確に検出できる。この信号を
用いて、O2 濃度を一定に保つようにPID演算などに
より一次燃焼空気量を算出する。そして、算出した一次
燃焼空気量になるように燃焼空気量制御弁を動作させ
る。O2 濃度を一定に保つことにより、ダイオキシン、
NOx等の有害ガスの発生を抑制することができる。In the combustion control method in the incinerator according to the second invention, the O 2 concentration in the incinerator can be accurately measured without time delay by oxygen concentration detecting means capable of instantaneously measuring the oxygen concentration in the incinerator, for example, a semiconductor laser detector. Can be detected. Using this signal, the primary combustion air amount is calculated by PID calculation or the like so as to keep the O 2 concentration constant. Then, the combustion air amount control valve is operated so as to have the calculated primary combustion air amount. By keeping the O 2 concentration constant, dioxin,
Generation of harmful gases such as NOx can be suppressed.
【0024】第3の発明に係る焼却炉における燃焼制御
方法では、炉内温度検出器の出力、炉内O2 濃度検出器
の出力、炉内CO濃度検出器の出力により燃焼状態を時
間送れなく正確に検出できる。この信号を用いて、炉内
温度、炉内O2 濃度、炉内CO濃度を適性値に保つよう
にファジィ演算等により一次燃焼空気量と二次燃焼空気
量を算出する。即ち、炉内温度が高い時又は炉内CO濃
度が高い時は、一次燃焼空気量を減少させ、ガス化速度
を抑制し、炉内CO濃度を下げる。炉内温度が低い時又
は炉内O2 濃度が高い時には、一次燃焼空気量を増加さ
せ、ガス化速度を活発化し、炉内O2 濃度を下げる。算
出した一次燃焼空気量及び二次燃焼空気量になるように
一次燃焼空気量制御弁及び二次燃焼空気量制御弁を動作
させる。炉内温度、炉内O2 濃度、炉内CO濃度を適性
値に保つことにより、ダイオキシン、NOx等の有害ガ
スの発生を抑制することができる。In the combustion control method in the incinerator according to the third invention, the combustion state cannot be sent in time by the output of the in-furnace temperature detector, the output of the in-furnace O 2 concentration detector, and the output of the in-furnace CO concentration detector. Can be detected accurately. Using this signal, the primary combustion air amount and the secondary combustion air amount are calculated by fuzzy calculation or the like so as to maintain the furnace temperature, the furnace O 2 concentration, and the furnace CO concentration at appropriate values. That is, when the furnace temperature is high or the furnace CO concentration is high, the amount of primary combustion air is reduced, the gasification rate is suppressed, and the furnace CO concentration is reduced. When the furnace temperature is low or the furnace O 2 concentration is high, the primary combustion air amount is increased, the gasification rate is increased, and the furnace O 2 concentration is reduced. The primary combustion air amount control valve and the secondary combustion air amount control valve are operated so that the calculated primary combustion air amount and secondary combustion air amount are obtained. By maintaining the furnace temperature, the furnace O 2 concentration, and the furnace CO concentration at appropriate values, generation of harmful gases such as dioxin and NOx can be suppressed.
【0025】第4の発明に係る焼却炉における燃焼制御
方法では、炉内O2 濃度検出器の出力、CO濃度検出器
の出力により炉内の燃焼状態を時間遅れなく正確に検出
できる。この信号を用いて、流動層内空気過剰率を算出
する。そして、この空気過剰率に応じて燃焼制御装置の
制御パラメータを算出する。即ち、流動層内空気過剰率
が1.0より小さい場合には、蒸気発生量が少ない場合
に流動化空気流量を上げる方向のゲインに、流動層内空
気過剰率が1.1より大きい場合には、蒸気発生量が少
ない場合に流動化空気流量を下げる方向のゲインに、流
動層内空気過剰率が1.0から1.1より大きい場合に
は、ゲインを小さくし、操作器を変動させないようにす
る。そして、算出した制御パラメータと蒸気発生量の偏
差より蒸気発生量が設定値になるような流動化空気量を
PID演算等により動作させる。また、算出した流動化
空気量になるように流動化空気量制御弁を動作させる。
従って、流動層内空気過剰率が大きく変動した場合に
も、蒸気発生量を一定に保つことができる。In the combustion control method in the incinerator according to the fourth aspect of the invention, the combustion state in the furnace can be accurately detected without time delay by the output of the in-furnace O 2 concentration detector and the output of the CO concentration detector. The excess air ratio in the fluidized bed is calculated using this signal. Then, control parameters of the combustion control device are calculated according to the excess air ratio. That is, when the excess air ratio in the fluidized bed is smaller than 1.0, the gain in the direction of increasing the fluidized air flow rate is small when the amount of generated steam is small, and when the excess air ratio in the fluidized bed is larger than 1.1. Decreases the gain in the direction of decreasing the fluidized air flow rate when the steam generation amount is small, and decreases the gain when the excess air ratio in the fluidized bed is greater than 1.0 to 1.1, and does not change the operating device. To do. Then, the fluidized air amount such that the steam generation amount becomes a set value based on the deviation between the calculated control parameter and the steam generation amount is operated by PID calculation or the like. Further, the fluidized air amount control valve is operated so as to have the calculated fluidized air amount.
Therefore, even when the excess air ratio in the fluidized bed greatly changes, the amount of generated steam can be kept constant.
【0026】[0026]
【発明の実施の形態】以下、本発明の実施例につて図面
を参照して説明する。 (実施例1)実施例1に係る燃焼制御装置について図1
を参照して詳述する。図中の付番1は焼却炉としての流
動床炉であり、底部に流動層2を、その上にフリーボー
ド3を有した構成となっている。前記流動層2には、一
次燃焼空気量制御弁4を介在させた配管5を介して押込
送風機6が接続されている。Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a combustion control apparatus according to Embodiment 1.
It will be described in detail with reference to FIG. Reference numeral 1 in the figure denotes a fluidized bed furnace as an incinerator, which has a fluidized bed 2 at the bottom and a free board 3 thereon. A forced blower 6 is connected to the fluidized bed 2 via a pipe 5 having a primary combustion air amount control valve 4 interposed therebetween.
【0027】一次燃焼空気量制御弁4と押込送風機6と
を結ぶ前記配管5、フリーボード3間は、二次燃焼用空
気制御手段としての二次燃焼空気量制御弁7を介在させ
た配管8により連結されている。前記フリーボード3の
側壁には、都市ごみ等の燃焼物を流動層2内に投入する
燃焼物供給ホッパ9が設けられている。燃焼物は流動層
2内でガス化され、フリーボード3で燃焼する。Between the pipe 5 connecting the primary combustion air amount control valve 4 and the push-in blower 6 and the free board 3, a pipe 8 having a secondary combustion air amount control valve 7 as air control means for secondary combustion interposed therebetween. Are connected by On the side wall of the free board 3, there is provided a combustion material supply hopper 9 for introducing a combustion material such as municipal waste into the fluidized bed 2. The combustion products are gasified in the fluidized bed 2 and burn on the free board 3.
【0028】前記フリーボード3の上段には、フリーボ
ード3で燃焼して得られた排ガスを冷却するガス冷却器
10、粒子状物を除去する電気集塵機11、排ガスを誘引す
る誘引送風機12、及び排ガスを大気中に放出する煙突13
が順次接続されている。In the upper stage of the free board 3, a gas cooler for cooling the exhaust gas obtained by burning the free board 3
10, an electrostatic precipitator 11 for removing particulate matter, an induction blower 12 for inducing exhaust gas, and a chimney 13 for discharging exhaust gas to the atmosphere.
Are sequentially connected.
【0029】前記フリーボード3の中段には、半導体レ
ーザを利用したCO濃度検出器(半導体レーザ検出器)
14が設けられている。このCO濃度検出器14は、流動床
炉内のCO濃度を瞬時に計測可能な一酸化炭素濃度検出
手段である。前記CO濃度検出器14及び前記二次燃焼空
気量制御弁7には演算器15が接続されている。In the middle of the free board 3, a CO concentration detector (semiconductor laser detector) using a semiconductor laser is provided.
14 are provided. The CO concentration detector 14 is a carbon monoxide concentration detecting means capable of instantaneously measuring the CO concentration in the fluidized-bed furnace. An arithmetic unit 15 is connected to the CO concentration detector 14 and the secondary combustion air amount control valve 7.
【0030】前記燃焼供給ホッパ9には、該ホッパ9に
投入された燃焼物を流動層2内に押し出すスクリュコン
ベア9aが設けられている。このスクリュコンベア9a
はモータ16により駆動する。一方、前記流動床炉1の上
部には、流動床炉内の蒸発量を検出する蒸発量検出器17
が設けられている。前記モータ16と蒸発量検出器17と
は、演算器18を介して電気的に接続されている。The combustion supply hopper 9 is provided with a screw conveyor 9a for extruding the combusted material supplied to the hopper 9 into the fluidized bed 2. This screw conveyor 9a
Are driven by a motor 16. On the other hand, an evaporation detector 17 for detecting the evaporation in the fluidized-bed furnace is provided above the fluidized-bed furnace 1.
Is provided. The motor 16 and the evaporation amount detector 17 are electrically connected via an arithmetic unit 18.
【0031】こうした構成の燃料制御装置の操作は次の
通りである。まず、燃焼物供給ホッパ9から都市ごみ等
の燃焼物を流動床炉1の流動層2内に投入する。投入さ
れた燃焼物は流動層2内でガス化され、フリーボード3
で燃焼する。そして、その排ガスは、ガス冷却器10で冷
却され、電気集塵機11で粒子状物を除去され、誘引送風
機12により誘引され、煙突13より大気中に放出される。
CO濃度検出器14の出力X1は、演算器15に入力され
る。演算器15はPID演算等によりCOの発生を抑制す
るように二次燃焼空気量Y1を算出する。即ち、CO濃
度が高い時は二次燃焼空気量を増加させ、CO濃度を下
げる。そして、演算器15で算出された二次燃焼空気量Y
1を二次燃焼空気量制御弁7に出力する。二次燃焼空気
量制御弁7は、設定された二次燃焼空気流量Y1になる
ように弁開度を調節する。同時に、一次燃焼空気量制御
弁4は、二次燃焼空気量が変化しても予め設定されてい
る一次燃焼空気流量になるように弁開度を調節する。ま
た、蒸発量検出器17の出力X2は演算器18に入力され
る。この演算器18は蒸発量検出器17の蒸発量に基づいて
スクリュコンベア9aの回転数即ち燃料供給量を変える
べく、信号Y2を出力する。ここで、蒸発量が低い時は
燃料供給量を多くし、逆に蒸発量が高い時は燃料供給量
を少なくする。以上の操作により、COの発生を抑制
し、ダイオキシン、NOx等の有害ガスを抑制する。The operation of the fuel control device having such a configuration is as follows. First, combustion products such as municipal solid waste are put into the fluidized bed 2 of the fluidized bed furnace 1 from the combustion product supply hopper 9. The input combustion material is gasified in the fluidized bed 2 and the free board 3
Combustion. Then, the exhaust gas is cooled by the gas cooler 10, the particulate matter is removed by the electric precipitator 11, attracted by the induction blower 12, and discharged from the chimney 13 into the atmosphere.
The output X1 of the CO concentration detector 14 is input to the calculator 15. The calculator 15 calculates the secondary combustion air amount Y1 so as to suppress the generation of CO by PID calculation or the like. That is, when the CO concentration is high, the secondary combustion air amount is increased and the CO concentration is decreased. Then, the secondary combustion air amount Y calculated by the arithmetic unit 15
1 is output to the secondary combustion air amount control valve 7. The secondary combustion air amount control valve 7 adjusts the valve opening so that the set secondary combustion air flow rate Y1 is obtained. At the same time, the primary combustion air amount control valve 4 adjusts the valve opening so that the primary combustion air flow rate is set in advance even if the secondary combustion air amount changes. The output X2 of the evaporation amount detector 17 is input to the calculator 18. The calculator 18 outputs a signal Y2 in order to change the rotation speed of the screw conveyor 9a, that is, the fuel supply amount, based on the evaporation amount of the evaporation amount detector 17. Here, when the evaporation amount is low, the fuel supply amount is increased, and when the evaporation amount is high, the fuel supply amount is decreased. By the above operation, generation of CO is suppressed, and harmful gases such as dioxin and NOx are suppressed.
【0032】このように、実施例1によれば、フリーボ
ード3の中段に半導体レーザを利用したCO濃度検出器
14を設けるとともに、二次燃焼空気量制御弁7を設け、
流動床炉1内のCO濃度を時間遅れなく検出し、検出し
たCO濃度に応じて二次燃焼空気量を変化させる構成と
なっているため、炉内に投入された燃焼物の量及び質の
変動等炉内の燃焼状態を乱す要因が発生しても、CO濃
度を時間遅れなく検出し、COの発生を抑制するように
二次燃焼空気量を変化させることにより、CO濃度と相
関が高いダイオキシン、NOx等の有害ガスを抑制でき
る。As described above, according to the first embodiment, the CO concentration detector using the semiconductor laser is provided in the middle stage of the free board 3.
14 and the secondary combustion air amount control valve 7 are provided,
Since the configuration is such that the CO concentration in the fluidized-bed furnace 1 is detected without a time delay and the amount of secondary combustion air is changed in accordance with the detected CO concentration, the amount and quality of the combustibles introduced into the furnace are reduced. Even if factors that disturb the combustion state inside the furnace such as fluctuations occur, the CO concentration is detected without time delay, and the secondary combustion air amount is changed so as to suppress the generation of CO, so that the correlation with the CO concentration is high. Harmful gases such as dioxin and NOx can be suppressed.
【0033】なお、実施例1では、1台の押込送風機で
一次燃焼空気量制御弁,二次燃焼空気量制御弁を夫々介
して流動床炉の流動層、フリーボードヘ送風する場合に
ついて述べたが、2台の押込送風機を一次燃焼空気量制
御弁,二次燃焼空気量制御弁用に別々に設置してもよ
い。In the first embodiment, a case is described in which a single blower blows air to a fluidized bed of a fluidized bed furnace and a free board through a primary combustion air amount control valve and a secondary combustion air amount control valve, respectively. However, two push blowers may be separately provided for the primary combustion air amount control valve and the secondary combustion air amount control valve.
【0034】(実施例2)実施例2に係る燃焼制御装置
について図2を参照して詳述する。但し、図1と同部材
は同符号を付して説明を省略する。図中の付番21は、フ
リーボード3の中段に設けられた、半導体レーザを利用
したO2 濃度検出器である。該O2 濃度検出器14は、流
動床炉内のO2 濃度を瞬時に計測可能なO2 濃度検出手
段である。また、付番22は燃焼用空気制御手段としての
燃焼空気量制御弁であり、流動床炉1の流動層2と押込
送風機6を接続する配管5の途中に介装されている。前
記O2 濃度検出器21と燃焼空気量制御弁22は、演算器15
を介して接続されている。前記燃焼空気量制御弁22に対
し流動層2寄りの配管5、流動床炉1のフリーボード3
間は配管23によって接続されている。Embodiment 2 A combustion control device according to Embodiment 2 will be described in detail with reference to FIG. However, the same members as those in FIG. Reference numeral 21 in the figure denotes an O 2 concentration detector using a semiconductor laser provided at the middle stage of the free board 3. The O 2 concentration detector 14 is an O 2 concentration detecting means capable of instantaneously measuring the O 2 concentration in the fluidized bed furnace. Reference numeral 22 denotes a combustion air amount control valve as combustion air control means, which is provided in the middle of the pipe 5 connecting the fluidized bed 2 of the fluidized bed furnace 1 and the forced blower 6. The O 2 concentration detector 21 and the combustion air amount control valve 22 are
Connected through. The pipe 5 near the fluidized bed 2 with respect to the combustion air amount control valve 22 and the free board 3 of the fluidized bed furnace 1
The spaces are connected by a pipe 23.
【0035】こうした構成の燃焼制御装置の操作は次の
通りである。まず、燃焼物供給ホッパ9から都市ごみ等
の燃焼物を流動床炉1の流動層2内に投入する。投入さ
れた燃焼物は、流動層2内でガス化され、フリーボード
3で燃焼する。そして、その排ガスは、ガス冷却器10で
冷却され、電気集塵機11で粒子状物を除去され、誘引送
風機12により誘引され、煙突13より大気中に放出され
る。O2 濃度検出器21の出力X1は、演算器15に入力さ
れる。演算器15はPID演算等によりO2 濃度を一定に
保つように燃焼空気量Y1を算出する。即ち、O2 濃度
が高い時は燃焼空気量を減少させてO2 濃度を下げ、O
2 濃度が低い時は燃焼空気量を増加させてO2 濃度を上
げる。そして、演算器15で算出された燃焼空気量Y1を
燃焼空気量制御弁22に出力する。燃焼空気量制御弁22
は、設定された燃焼空気流量Y1になるように弁開度を
調節する。以上の操作により、O2 濃度を一定に保ち、
ダイオキシン,NOx等の有害ガスを抑制する。The operation of the combustion control device having such a configuration is as follows. First, combustion products such as municipal solid waste are put into the fluidized bed 2 of the fluidized bed furnace 1 from the combustion product supply hopper 9. The injected combustion material is gasified in the fluidized bed 2 and burns on the free board 3. Then, the exhaust gas is cooled by the gas cooler 10, the particulate matter is removed by the electric precipitator 11, attracted by the induction blower 12, and discharged from the chimney 13 into the atmosphere. The output X1 of the O 2 concentration detector 21 is input to the calculator 15. Calculator 15 calculates the quantity of combustion air Y1 to maintain a constant O 2 concentration by the PID calculation or the like. That is, when the O 2 concentration is high, the amount of combustion air is reduced to lower the O 2 concentration,
2 When the concentration is low, the amount of combustion air is increased to increase the O 2 concentration. Then, the combustion air amount Y1 calculated by the calculator 15 is output to the combustion air amount control valve 22. Combustion air amount control valve 22
Adjusts the valve opening degree so as to reach the set combustion air flow rate Y1. By the above operation, O 2 concentration is kept constant,
Suppresses harmful gases such as dioxin and NOx.
【0036】このように、実施例2によれば、フリーボ
ード3の中段に半導体レーザを利用したO2 濃度検出器
21を設けるとともに、燃焼空気量制御弁22を設け、O2
濃度を時間遅れなく検出し、検出したO2 濃度に応じて
二次燃焼空気量を変化させる構成となっているため、炉
内に投入された燃焼物の量及び質の変動等炉内の燃焼状
態を乱す要因が発生しても、O2 濃度を時間遅れなく検
出し、O2 の発生を抑制するように燃焼空気量を変化さ
せることにより、O2 濃度と相関が高いダイオキシン、
NOx等の有害ガスを抑制することが可能となる。As described above, according to the second embodiment, the O 2 concentration detector using the semiconductor laser is provided in the middle stage of the free board 3.
Provided with a 21, provided combustion air amount control valve 22, O 2
Since the concentration is detected without time delay and the amount of secondary combustion air is changed according to the detected O 2 concentration, combustion in the furnace such as fluctuations in the quantity and quality of the combustion substances charged into the furnace Even if a factor that disturbs the state occurs, by detecting the O 2 concentration without time delay and changing the combustion air amount so as to suppress the generation of O 2 , dioxin having a high correlation with the O 2 concentration,
It is possible to suppress harmful gases such as NOx.
【0037】(実施例3)実施例3に係る燃焼制御装置
について図3を参照して詳述する。但し、図1、図2と
同部材は同符号を付して説明を省略する。図中の付番31
は流動床炉1内の燃焼部分の温度を検出するCCDカメ
ラ等の温度検出器であり、流動床炉1のフリーボード3
の上部に設けられている。前記温度検出器31は、前記演
算器15と電気的に接続されている。また、演算器15と前
記一次燃焼空気制御弁4も電気的に接続されている。Embodiment 3 A combustion control device according to Embodiment 3 will be described in detail with reference to FIG. However, the same members as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. Numbering 31 in the figure
Reference numeral denotes a temperature detector such as a CCD camera for detecting the temperature of a combustion portion in the fluidized-bed furnace 1.
It is provided on the upper part. The temperature detector 31 is electrically connected to the calculator 15. The computing unit 15 and the primary combustion air control valve 4 are also electrically connected.
【0038】こうした構成の燃焼制御装置の操作は次の
通りである。まず、燃焼物供給ホッパ9から都市ごみ等
の燃焼物を流動床炉1の流動層2内に投入する。投入さ
れた燃焼物は、流動層2内でガス化され、フリーボード
3で燃焼する。そして、その排ガスは、ガス冷却器10で
冷却され、電気集塵機11で粒子状物を除去され、誘引送
風機12により誘引され、煙突13より大気中に放出され
る。温度検出器31の出力X1、O2 濃度検出器21の出力
X3、CO濃度検出器14の出力X4は、演算器15に入力
される。演算器15はファジィ演算等により炉内の燃焼状
態が最適になるように一次燃焼空気量Y1と二次燃焼空
気量Y3を算出する。即ち、炉内温度が高い時又は炉内
CO濃度が高い時は、一次燃焼空気量を減少させガス化
速度を抑制し、炉内CO濃度を下げる。炉内温度が低い
時又は炉内O2 濃度が高い時には、一次燃焼空気量を増
加させてガス化速度を活発化し、炉内O2 濃度を上げ
る。そして、演算器15で算出された一次燃焼空気量Y1
を一次燃焼空気流量制御弁4に出力する。一次燃焼空気
流量制御弁4は、設定された一次燃焼空気流量Y1にな
るように弁開度を調節する。また、演算器15で算出され
た二次燃焼空気流量Y3を二次燃焼空気流量制御弁7に
出力する。二次燃焼空気流量制御弁7は、設定された二
次燃焼空気流量Y3になるように弁開度を調節する。以
上の操作により、炉内温度、炉内O2 濃度、炉内CO濃
度を適性値に保ち、ダイオキシン,NOx等の有害ガス
を抑制する。The operation of the combustion control device having such a configuration is as follows. First, combustion products such as municipal solid waste are put into the fluidized bed 2 of the fluidized bed furnace 1 from the combustion product supply hopper 9. The injected combustion material is gasified in the fluidized bed 2 and burns on the free board 3. Then, the exhaust gas is cooled by the gas cooler 10, the particulate matter is removed by the electric precipitator 11, attracted by the induction blower 12, and discharged from the chimney 13 into the atmosphere. Output X4 output X3, CO concentration detector 14 outputs X1, O 2 concentration detector 21 of the temperature detector 31 is input to the arithmetic unit 15. The computing unit 15 calculates the primary combustion air amount Y1 and the secondary combustion air amount Y3 so as to optimize the combustion state in the furnace by fuzzy operation or the like. That is, when the furnace temperature is high or the furnace CO concentration is high, the amount of primary combustion air is reduced, the gasification rate is suppressed, and the furnace CO concentration is reduced. When the furnace temperature is low or the furnace O 2 concentration is high, the primary combustion air amount is increased to increase the gasification rate and increase the furnace O 2 concentration. Then, the primary combustion air amount Y1 calculated by the arithmetic unit 15
Is output to the primary combustion air flow control valve 4. The primary combustion air flow control valve 4 adjusts the valve opening so that the set primary combustion air flow rate Y1 is obtained. The secondary combustion air flow rate Y3 calculated by the calculator 15 is output to the secondary combustion air flow control valve 7. The secondary combustion air flow control valve 7 adjusts the valve opening so that the set secondary combustion air flow rate Y3 is obtained. By the above operation, the furnace temperature, the furnace O 2 concentration, and the furnace CO concentration are kept at appropriate values, and harmful gases such as dioxin and NOx are suppressed.
【0039】このように実施例3によれば、フリーボー
ド3の中段に半導体レーザを利用したCO濃度検出器1
4、O2 濃度検出器21を設けるとともに、フリーボード
3の上部に流動床炉1内の燃焼部分の温度を検出する温
度検出器31を設け、燃焼状態を時間遅れなく検出し、検
出した燃焼状態信号を用いて炉内温度、炉内O2 濃度、
炉内CO濃度を適性値に保つように一次燃焼空気量と二
次燃焼空気量を変化させる構成となっているため、炉内
に投入された燃焼物の量及び質の変動等炉内の燃焼状態
を乱す要因が発生しても、ダイオキシン、NOx等の有
害ガスを抑制することが可能となる。As described above, according to the third embodiment, the CO concentration detector 1 using a semiconductor laser is provided in the middle stage of the free board 3.
4. An O 2 concentration detector 21 is provided, and a temperature detector 31 for detecting a temperature of a combustion portion in the fluidized-bed furnace 1 is provided above the free board 3 to detect a combustion state without a time delay and detect the detected combustion. Furnace temperature, furnace O 2 concentration,
Since the primary combustion air amount and the secondary combustion air amount are changed so as to keep the CO concentration in the furnace at an appropriate value, combustion in the furnace such as fluctuations in the amount and quality of combustibles introduced into the furnace Even if a factor that disturbs the state occurs, harmful gases such as dioxin and NOx can be suppressed.
【0040】なお、実施例3では、1台の押込送風機で
一次燃焼空気量制御弁,二次燃焼空気量制御弁を夫々介
して流動床炉の流動層、フリーボードヘ送風する場合に
ついて述べたが、2台の押込送風機を一次燃焼空気量制
御弁,二次燃焼空気量制御弁用に別々に設置してもよ
い。In the third embodiment, a case is described in which a single blower blows air to a fluidized bed of a fluidized bed furnace and a free board through a primary combustion air amount control valve and a secondary combustion air amount control valve, respectively. However, two push blowers may be separately provided for the primary combustion air amount control valve and the secondary combustion air amount control valve.
【0041】(実施例4)実施例4に係る燃焼制御装置
について図4を参照して詳述する。図中の付番41は焼却
炉としての流動床炉であり、底部に流動層42を、その上
にフリーボード43を有した構成となっている。前記流動
層42には、一次燃焼用空気制御手段としての流動化空気
量制御弁44を介在させた配管45を介して押込送風機46が
接続されている。(Embodiment 4) A combustion control apparatus according to Embodiment 4 will be described in detail with reference to FIG. Reference numeral 41 in the figure denotes a fluidized bed furnace as an incinerator, which has a fluidized bed 42 at the bottom and a free board 43 thereon. A push blower 46 is connected to the fluidized bed 42 via a pipe 45 having a fluidized air amount control valve 44 as primary combustion air control means.
【0042】流動化空気量制御弁44と押込送風機46とを
結ぶ前記配管45、フリーボード43間は、二次燃焼用空気
制御手段としての二次燃焼空気量制御弁47を介在させた
配管48により連結されている。前記フリーボード43の側
壁には、都市ごみ等の燃焼物を流動層42内に投入する燃
焼物供給ホッパ49が設けられている。燃焼物は、燃焼物
供給ホッパ49の近くに取り付けられたモータ50によりス
クリュコンベア49aを駆動して流動層42内に送られた
後、ここでガス化され、フリーボード43で燃焼する。Between the pipe 45 connecting the fluidized air quantity control valve 44 and the push-in blower 46 and the free board 43, a pipe 48 interposed with a secondary combustion air quantity control valve 47 serving as secondary combustion air control means. Are connected by On the side wall of the free board 43, a combustion material supply hopper 49 for supplying a combustion material such as municipal waste into the fluidized bed 42 is provided. The combustion products are driven into a fluidized bed 42 by driving a screw conveyor 49 a by a motor 50 attached near a combustion product supply hopper 49, and are then gasified here and burned by a free board 43.
【0043】前記フリーボード43の上段には、蒸発量検
出器51を備えたボイラ52、フリーボード43で燃焼して得
られた排ガスを冷却するガス冷却器53、粒子状物を除去
する電気集塵機54、排ガスを誘引する誘引送風機55、及
び排ガスを大気中に放出する煙突56が順次接続されてい
る。前記蒸発量検出器51、二次燃焼空気量制御弁47、モ
ータ50、及び流動化空気量制御弁44は、各々演算器57に
電気的に接続されている。Above the free board 43, a boiler 52 provided with an evaporation detector 51, a gas cooler 53 for cooling the exhaust gas obtained by burning the free board 43, and an electric precipitator for removing particulate matter 54, an induction blower 55 for inducing exhaust gas, and a chimney 56 for discharging exhaust gas to the atmosphere are sequentially connected. The evaporation amount detector 51, the secondary combustion air amount control valve 47, the motor 50, and the fluidized air amount control valve 44 are each electrically connected to a computing unit 57.
【0044】前記フリーボード43の中段には、半導体レ
ーザを利用したCO濃度検出器(半導体レーザ検出器)
58、半導体レーザを利用したO2 濃度検出器59が各々設
けられている。これらのこのCO濃度検出器58、O2 濃
度検出器59は、各々流動床炉内のCO濃度を瞬時に計測
可能な一酸化炭素濃度検出手段、流動床炉内のO2 濃度
を瞬時に計測可能な酸素濃度検出手段である。前記CO
濃度検出器58及びO2濃度検出器59は、各々流動層内空
気過剰率推定器60に接続されている。この流動層内空気
過剰率推定器60には制御パラメータ演算器61が電気的に
接続され、該制御パラメータ演算器61は前記演算器57に
電気的に接続されている。In the middle of the free board 43, a CO concentration detector (semiconductor laser detector) using a semiconductor laser is provided.
58, an O 2 concentration detector 59 using a semiconductor laser is provided. These CO concentration detector 58 and O 2 concentration detector 59 are respectively a carbon monoxide concentration detecting means capable of instantaneously measuring the CO concentration in the fluidized bed furnace, and an O 2 concentration in the fluidized bed furnace instantly. It is a possible oxygen concentration detecting means. The CO
The concentration detector 58 and the O 2 concentration detector 59 are each connected to a fluidized air excess ratio estimator 60. A control parameter calculator 61 is electrically connected to the fluidized air excess ratio estimator 60, and the control parameter calculator 61 is electrically connected to the calculator 57.
【0045】こうした構成の燃焼制御装置の操作は次の
通りである。 1)まず、燃焼物供給ホッパ49から都市ごみ等の燃焼物を
流動床炉41の流動層42内に投入する。投入された燃焼物
は、流動層42内でガス化され、フリーボード43で燃焼す
る。そして、燃焼により熱せられた空気を用い、ボイラ
52を熱し、発電を行う。排ガスは、ガス冷却器53で冷却
され、電気集塵機54で粒子状物を除去され、誘引送風機
55により誘引され、煙突56より大気中に放出される。前
記ボイラ52に設けられた蒸発量検出器51からは蒸発量の
出力信号X1を演算器57に送っている。また、O2 濃度
検出器59の出力X2、CO濃度検出器58の出力X3は、
流動層内空気過剰率推定器60に入力される。流動層内空
気過剰率推定器60により推定された流動層内空気過剰率
X4は、制御パラメータ演算器61に入力される。制御パ
ラメータ演算器61は、入力された流動層内空気過剰率X
4に基づいて演算器57の制御パラメータを決定する。The operation of the combustion control device having such a configuration is as follows. 1) First, combustion products such as municipal solid waste are supplied from a combustion product supply hopper 49 into the fluidized bed 42 of the fluidized bed furnace 41. The input combustion material is gasified in the fluidized bed 42 and burns on the free board 43. The boiler uses air heated by combustion.
Heat 52 to generate electricity. The exhaust gas is cooled by a gas cooler 53, and particulate matter is removed by an electric precipitator 54.
Attracted by 55 and released into the atmosphere from chimney 56. The evaporation amount detector 51 provided in the boiler 52 sends an output signal X1 of the evaporation amount to a calculator 57. The output X2 of the O 2 concentration detector 59 and the output X3 of the CO concentration detector 58 are:
It is input to the fluidized air excess ratio estimator 60. The excess air ratio X4 in the fluidized bed estimated by the excess air ratio estimator 60 in the fluidized bed is input to the control parameter calculator 61. The control parameter calculator 61 calculates the input air excess ratio X in the fluidized bed.
Then, the control parameters of the computing unit 57 are determined based on (4).
【0046】2)即ち、流動層内空気過剰率が1.0より
小さい場合には、蒸気発生量が少ない場合に流動化空気
流量を上げる方向のゲインに、流動層内空気過剰率が
1.1より大きい場合には、炉内空気過剰率が1.0か
ら1.1の場合には、ゲインを小さくし、操作器を変動
させないようにする。2) That is, when the excess air ratio in the fluidized bed is smaller than 1.0, the excess air ratio in the fluidized bed is 1. When the ratio is larger than 1, when the excess air ratio in the furnace is 1.0 to 1.1, the gain is reduced so that the operating device is not fluctuated.
【0047】3)前記演算器57は、算出した制御パラメー
タX5に従い、PID演算などにより炉内の燃焼状態が
最適になるように流動か空気量Y1と二次燃焼空気量Y
2を算出する。即ち、流動層内空気過剰率が高く、蒸気
発生量が多い時は、流動化空気量を増加させ、炉内を冷
却させる。流動層内空気過剰率が高く、蒸気発生量が少
ない時は、流動化空気量を減少させ、炉内を温める。一
方、炉内空気過剰率が低く、蒸気発生量が多い時は、流
動化空気量を減少させ、ガス化速度を抑制し、発生熱量
を下げる。流動層内空気過剰率が低く、蒸気発生量が少
ない時は、流動化空気量を増加させ、ガス化速度を活発
化し、発生熱量を上げる。3) According to the calculated control parameter X5, the calculator 57 calculates the flow or air amount Y1 and the secondary combustion air amount Y such that the combustion state in the furnace is optimized by PID calculation or the like.
2 is calculated. That is, when the excess air ratio in the fluidized bed is high and the amount of generated steam is large, the amount of fluidized air is increased to cool the inside of the furnace. When the excess air ratio in the fluidized bed is high and the amount of generated steam is small, the amount of fluidized air is reduced and the furnace is heated. On the other hand, when the excess air ratio in the furnace is low and the amount of generated steam is large, the amount of fluidized air is reduced, the gasification rate is suppressed, and the amount of generated heat is reduced. When the excess air ratio in the fluidized bed is low and the amount of generated steam is small, the amount of fluidized air is increased, the gasification rate is increased, and the amount of generated heat is increased.
【0048】4)前記演算器57で算出された流動化空気量
Y1を流動化空気量制御弁44に出力する。流動化空気量
制御弁44は、設定された流動化空気流量Y1になるよう
に弁開度を調節する。また、演算器57で算出された二次
燃焼空気量Y2を二次燃焼空気量制御弁47に出力する。
二次燃焼空気量制御弁47は、設定された二次燃焼空気流
量Y2になるように弁開度を調節する。4) The fluidized air amount Y1 calculated by the calculator 57 is output to the fluidized air amount control valve 44. The fluidizing air amount control valve 44 adjusts the valve opening so that the fluidizing air flow rate Y1 is set. The secondary combustion air amount Y2 calculated by the calculator 57 is output to the secondary combustion air amount control valve 47.
The secondary combustion air amount control valve 47 adjusts the valve opening so that the set secondary combustion air flow rate Y2 is obtained.
【0049】このように実施例4によれば、炉内のO2
濃度、CO濃度を瞬時に検出するO2 濃度検出器59、C
O濃度検出器58を各々流動床炉41の中段に設けるととも
に、ボイラ52の蒸気発生量を検出する蒸発量検出器51、
流動化空気量制御弁44、二次燃焼空気量制御弁47を各々
所定の位置に設け、酸素濃度信号と一酸化炭素濃度信号
により一次燃焼場内の空気過剰率(実際の空気量/理論
空気量)を推定し、この空気過剰率に基づいて制御パラ
メータを求め、この制御パラメータを用いて燃焼用空気
量を制御する構成となっている。従って、炉内に投入さ
れる燃焼物の量及び質の変動等炉内の燃焼状態を乱す要
因が発生しても、炉内O2 濃度、炉内CO濃度より流動
層内空気過剰率を推定し、推定した流動層内空気過剰率
に基づいて制御器のパラメータを変更し、変更したパラ
メータを用いて流動化空気量を制御することにより、蒸
気発生量を安定化させることができる。本発明の方法
は、ストーカ燃焼炉等にも適用ができる。As described above, according to the fourth embodiment, O 2 in the furnace
O 2 concentration detector 59 for detecting the concentration, the CO concentration instantaneously, C
An O concentration detector 58 is provided at the middle stage of the fluidized bed furnace 41, and an evaporation detector 51 for detecting the amount of steam generated in the boiler 52,
A fluidized air amount control valve 44 and a secondary combustion air amount control valve 47 are provided at predetermined positions, respectively, and an excess air ratio (actual air amount / theoretical air amount) in the primary combustion field is obtained by an oxygen concentration signal and a carbon monoxide concentration signal. ) Is estimated, a control parameter is obtained based on the excess air ratio, and the combustion air amount is controlled using the control parameter. Thus, other factors disturbing the quantity and quality combustion conditions such as variations furnace combustion product to be introduced into the furnace is generated, furnace O 2 concentration, estimated fluidized bed the excess air ratio of the furnace in a CO concentration Then, the parameters of the controller are changed based on the estimated excess air ratio in the fluidized bed, and the fluidized air amount is controlled using the changed parameters, whereby the steam generation amount can be stabilized. The method of the present invention can also be applied to a stoker combustion furnace or the like.
【0050】なお、実施例4では、1台の押込送風機で
流動化空気量制御弁,二次燃焼空気量制御弁を夫々介し
て流動床炉の流動層、フリーボードヘ送風する場合につ
いて述べたが、2台の押込送風機を流動化空気量制御
弁,二次燃焼空気量制御弁用に別々に設置してもよい。In the fourth embodiment, a case is described in which a single blower blows air to a fluidized bed of a fluidized bed furnace and a free board through a fluidized air amount control valve and a secondary combustion air amount control valve, respectively. However, two push blowers may be separately installed for the fluidized air amount control valve and the secondary combustion air amount control valve.
【0051】[0051]
【発明の効果】以上詳述したように、本願第1の発明に
よれば、炉内の一酸化炭素濃度を瞬時に計測可能な一酸
化炭素濃度検出手段と二次燃焼用空気制御手段を具備
し、一酸化炭素濃度を時間遅れなく検出し、検出した一
酸化炭素濃度に応じて二次燃焼空気量を変化させること
により、CO濃度を時間遅れなく精度良く検出し、もっ
てダイオキシン、NOx等の有害ガスの発生を抑制可能
な焼却炉における燃焼制御方法を提供できる。As described above in detail, according to the first aspect of the present invention, a carbon monoxide concentration detecting means capable of instantaneously measuring the carbon monoxide concentration in a furnace and a secondary combustion air control means are provided. Then, by detecting the carbon monoxide concentration without time delay, and by changing the amount of the secondary combustion air in accordance with the detected carbon monoxide concentration, the CO concentration can be accurately detected without time delay, and thus dioxin, NOx, etc. A combustion control method in an incinerator that can suppress generation of harmful gas can be provided.
【0052】第2の発明によれば、炉内の酸素濃度を瞬
時に計測可能な酸素濃度検出手段と一次燃焼用空気制御
手段とを具備し、酸素濃度を時間遅れなく検出し、検出
した酸素濃度に応じて一次燃焼空気量を変化させること
により、O2 濃度を時間遅れなく精度良く検出し、もっ
てダイオキシン、NOx等の有害ガスの発生を抑制可能
な焼却炉における燃焼制御方法を提供できる。According to the second aspect of the invention, there is provided an oxygen concentration detecting means capable of instantaneously measuring the oxygen concentration in the furnace and an air control means for primary combustion, and the oxygen concentration is detected without a time delay. By changing the amount of primary combustion air in accordance with the concentration, it is possible to provide a combustion control method in an incinerator that can accurately detect the O 2 concentration without time delay and thereby suppress the generation of harmful gases such as dioxin and NOx.
【0053】第3の発明によれば、炉内の燃焼部分の温
度を検出する温度検出手段と、炉内の酸素濃度,一酸化
炭素濃度を各々瞬時に計測可能な酸素濃度検出手段、一
酸化炭素濃度検出手段と、一次・二次燃焼用空気制御手
段とを具備し、燃焼状態を時間遅れなく検出し、検出し
た燃焼状態信号を用いて炉内温度、炉内酸素濃度、炉内
一酸化炭素濃度を適性値に保つように一次燃焼空気量と
二次燃焼空気量を変化させることにより、炉内温度、炉
内O2 濃度、炉内CO濃度を時間遅れなく精度良く検出
し、もってダイオキシン、NOx等の有害ガスの発生を
抑制可能な焼却炉における燃焼制御方法を提供できる。According to the third aspect of the present invention, the temperature detecting means for detecting the temperature of the combustion portion in the furnace, the oxygen concentration detecting means capable of instantaneously measuring the oxygen concentration and the carbon monoxide concentration in the furnace, Equipped with carbon concentration detection means and primary and secondary combustion air control means, detects the combustion state without time delay, and uses the detected combustion state signal to determine the furnace temperature, furnace oxygen concentration, furnace monoxide. by changing the primary combustion air amount so as to maintain the concentration of carbon aptitude value and the secondary combustion air amount, furnace temperature, furnace O 2 concentration, and accurately detecting without delay furnace CO concentration time, it has been dioxin It is possible to provide a combustion control method in an incinerator that can suppress generation of harmful gases such as NOx and NOx.
【0054】第4の発明は、炉内の酸素濃度,一酸化炭
素濃度を各々瞬時に計測可能な酸素濃度検出手段、一酸
化炭素濃度検出手段と、焼却炉に連結したボイラの蒸気
発生量を検出する検出手段と、一次・二次燃焼用空気制
御手段とを具備し、酸素濃度信号と一酸化炭素濃度信号
により一次燃焼場内の空気過剰率(実際の空気量/理論
空気量)を推定し、この空気過剰率に基づいて制御パラ
メータを求め、この制御パラメータを用いて燃焼用空気
量を制御することにより、炉内O2 濃度検出器の出力、
CO濃度検出器の出力に基づいて炉内の燃焼状態を時間
遅れなく正確に検出でき、もって蒸気発生量を一定に保
つことができる焼却炉における燃焼制御方法を提供でき
る。According to a fourth aspect of the present invention, an oxygen concentration detecting means and a carbon monoxide concentration detecting means capable of instantaneously measuring the oxygen concentration and the carbon monoxide concentration in the furnace, and the steam generation amount of the boiler connected to the incinerator. It comprises a detecting means for detecting and an air control means for primary and secondary combustion, and estimates an excess air ratio (actual air amount / theoretical air amount) in the primary combustion field based on the oxygen concentration signal and the carbon monoxide concentration signal. By obtaining a control parameter based on the excess air ratio and controlling the amount of combustion air using the control parameter, the output of the in-furnace O 2 concentration detector,
It is possible to provide a combustion control method in an incinerator in which the combustion state in the furnace can be accurately detected without time delay based on the output of the CO concentration detector, and the steam generation amount can be kept constant.
【図1】本発明の実施例1に係る燃焼炉における燃焼制
御方法の説明図。FIG. 1 is an explanatory diagram of a combustion control method in a combustion furnace according to a first embodiment of the present invention.
【図2】本発明の実施例2に係る燃焼炉における燃焼制
御方法の説明図。FIG. 2 is an explanatory diagram of a combustion control method in a combustion furnace according to Embodiment 2 of the present invention.
【図3】本発明の実施例3に係る燃焼炉における燃焼制
御方法の説明図。FIG. 3 is an explanatory diagram of a combustion control method in a combustion furnace according to Embodiment 3 of the present invention.
【図4】本発明の実施例4に係る燃焼炉における燃焼制
御方法の説明図。FIG. 4 is an explanatory diagram of a combustion control method in a combustion furnace according to Embodiment 4 of the present invention.
【図5】実施例4に係る燃焼制御方法における空気過剰
率と燃焼効率との関係を示す特性図。FIG. 5 is a characteristic diagram showing a relationship between an excess air ratio and combustion efficiency in a combustion control method according to a fourth embodiment.
1、41…流動床炉、 2、42…流動層、 3、43…フリーボード、 4…一次燃焼空気量制御弁、 6、46…押込送風機、 7、47…二次燃焼空気量制御弁、 9、49…燃料供給ホッパ、 9a、49a…スクリュコンベア、 10、53…ガス冷却器、 11、54…電気集塵機、 12、55…誘引送風機、 14、58…CO濃度検出器、 15、18、57…演算器、 17、51…蒸発量検出器、 21、59…O2 濃度検出器、 31…温度検出器、 52…ボイラ、 60…流動層内空気過剰率推定器、 61…制御パラメータ演算器。1, 41: fluidized bed furnace, 2, 42: fluidized bed, 3, 43: free board, 4: primary combustion air amount control valve, 6, 46: push-in blower, 7, 47: secondary combustion air amount control valve, 9, 49 ... fuel supply hopper, 9a, 49a ... screw conveyor, 10, 53 ... gas cooler, 11, 54 ... electric dust collector, 12, 55 ... induction blower, 14, 58 ... CO concentration detector, 15, 18, 57 ... calculator, 17,51 ... evaporation amount detector, 21,59 ... O 2 concentration detector, 31 ... temperature detector, 52 ... boiler, 60 ... fluidized bed the excess air ratio estimator, 61 ... control parameter calculation vessel.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 敏 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 ──────────────────────────────────────────────────の Continued from the front page (72) Inventor Satoshi Okuno 12 Nishikicho, Naka-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Heavy Industries, Ltd.
Claims (6)
込む一次燃焼空気により一次燃焼場でガス化させ、ガス
化した可燃ガスを焼却炉中段より送られる二次燃焼空気
により燃焼させ、炉内に投入される燃焼物の変動にかか
わらず、燃焼による発生熱量を一定に維持するととも
に、ダイオキシン、NOxなどの有毒ガスの発生を抑制
する焼却炉における燃焼制御方法において、 焼却炉内の一酸化炭素濃度を瞬時に計測可能な一酸化炭
素濃度検出手段と二次燃焼用空気制御手段とを具備し、
一酸化炭素濃度を時間遅れなく検出し、検出した一酸化
炭素濃度に応じて二次燃焼空気量を変化させることを特
徴とする焼却炉における燃焼制御方法。1. The charged combustion material is gasified in a primary combustion field by primary combustion air sent from a lower part of the incinerator, and the gasified combustible gas is burned by secondary combustion air sent from a middle stage of the incinerator. A method of controlling combustion in an incinerator that suppresses the generation of toxic gases such as dioxin and NOx while maintaining the amount of heat generated by combustion irrespective of the fluctuation of the combustion material injected into the incinerator. Equipped with carbon monoxide concentration detection means and secondary combustion air control means capable of instantaneously measuring the concentration,
A combustion control method in an incinerator, characterized by detecting the concentration of carbon monoxide without a time delay, and changing the amount of secondary combustion air according to the detected concentration of carbon monoxide.
込む一次燃焼空気により一次燃焼場でガス化させ、ガス
化した可燃ガスを焼却炉中段より送られる二次燃焼空気
により燃焼させ、炉内に投入される燃焼物の変動にかか
わらず、燃焼による発生熱量を一定に維持するととも
に、ダイオキシン、NOxなどの有毒ガスの発生を抑制
する焼却炉における燃焼制御方法において、 焼却炉内の酸素濃度を瞬時に計測可能な酸素濃度検出手
段と一次燃焼用空気制御手段とを具備し、酸素濃度を時
間遅れなく検出し、検出した酸素濃度に応じて一次燃焼
空気量を変化させることを特徴とする焼却炉における燃
焼制御方法。2. The charged combustion material is gasified in a primary combustion field by primary combustion air sent from a lower part of the incinerator, and the gasified combustible gas is burned by secondary combustion air sent from a middle stage of the incinerator. Irrespective of the fluctuation of the combustion material injected into the incinerator, the amount of heat generated by the combustion is kept constant and the combustion control method in the incinerator that suppresses the generation of toxic gas such as dioxin and NOx. Incineration characterized by comprising oxygen concentration detecting means and primary combustion air control means capable of instantaneously measuring, detecting the oxygen concentration without time delay, and changing the primary combustion air amount according to the detected oxygen concentration. Combustion control method in furnace.
込む一次燃焼空気により一次燃焼場でガス化させ、ガス
化した可燃ガスを焼却炉中段より送られる二次燃焼空気
により燃焼させ、炉内に投入される燃焼物の変動にかか
わらず、燃焼による発生熱量を一定に維持するととも
に、ダイオキシン、NOxなどの有毒ガスの発生を抑制
する焼却炉における燃焼制御方法において、 焼却炉内の燃焼部分の温度を検出する温度検出手段と、
焼却炉内の酸素濃度,一酸化炭素濃度を各々瞬時に計測
可能な酸素濃度検出手段、一酸化炭素濃度検出手段と、
一次・二次燃焼用空気制御手段とを具備し、燃焼状態を
時間遅れなく検出し、検出した燃焼状態信号を用いて炉
内温度、炉内酸素濃度、炉内一酸化炭素濃度を適性値に
保つように一次燃焼空気量と二次燃焼空気量を変化させ
ることを特徴とする焼却炉における燃焼制御方法。3. The charged combustion material is gasified in a primary combustion field by primary combustion air sent from a lower portion of the incinerator, and the gasified combustible gas is burned by secondary combustion air sent from a middle stage of the incinerator. In the combustion control method in an incinerator, which keeps the calorific value of combustion constant and suppresses the generation of toxic gas such as dioxin and NOx, regardless of the fluctuation of the combustibles injected into the incinerator, Temperature detecting means for detecting a temperature,
Oxygen concentration detecting means and carbon monoxide concentration detecting means capable of instantaneously measuring each of the oxygen concentration and the carbon monoxide concentration in the incinerator;
Equipped with primary and secondary combustion air control means, detects the combustion state without time delay, and uses the detected combustion state signal to set the furnace temperature, furnace oxygen concentration, and furnace carbon monoxide concentration to appropriate values. A combustion control method in an incinerator, wherein the amount of primary combustion air and the amount of secondary combustion air are changed so as to keep them.
込む流動化空気により高温流動媒体を流動化させた一次
燃焼場でガス化させ、ガス化した可燃ガスを焼却炉中段
より送られる二次燃焼空気により燃焼させ、蒸気発生量
の偏差に基づいて流動化空気量及び燃料供給量を制御す
る焼却炉における燃焼制御方法において、 焼却炉内の酸素濃度,一酸化炭素濃度を各々瞬時に計測
可能な酸素濃度検出手段、一酸化炭素濃度検出手段と、
焼却炉に連結したボイラの蒸気発生量を検出する検出手
段と、一次・二次燃焼用空気制御手段とを具備し、酸素
濃度信号と一酸化炭素濃度信号により一次燃焼場内の空
気過剰率(実際の空気量/理論空気量)を推定し、この
空気過剰率に基づいて制御パラメータを求め、この制御
パラメータを用いて燃焼用空気量を制御することを特徴
とする焼却炉における燃焼制御方法。4. A gasified combustible gas is sent from a middle stage of the incinerator by gasifying gas in a primary combustion field in which a high-temperature fluidized medium is fluidized by fluidizing air fed from a lower portion of the incinerator. Combustion by combustion air, the combustion control method in an incinerator that controls the amount of fluidized air and the amount of fuel supply based on the deviation of the amount of generated steam. The oxygen concentration and carbon monoxide concentration in the incinerator can be measured instantaneously. Oxygen concentration detecting means, carbon monoxide concentration detecting means,
It has detection means for detecting the amount of steam generated from the boiler connected to the incinerator, and air control means for primary and secondary combustion, and the excess air ratio in the primary combustion field (actually based on the oxygen concentration signal and the carbon monoxide concentration signal). The combustion control method in an incinerator characterized by estimating the air amount / theoretical air amount), obtaining a control parameter based on the excess air ratio, and controlling the combustion air amount using the control parameter.
検出器であることを特徴とする請求項1、請求項3、請
求項4記載の焼却炉における燃焼制御方法。5. The combustion control method in an incinerator according to claim 1, wherein the carbon monoxide concentration detecting means is a semiconductor laser detector.
であることを特徴とする請求項2、請求項3、請求項4
記載の焼却炉における燃焼制御方法。6. An apparatus according to claim 2, wherein said oxygen concentration detecting means is a semiconductor laser detector.
A combustion control method in the incinerator according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16422397A JPH1114027A (en) | 1997-06-20 | 1997-06-20 | Method of controlling combustion of incinerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16422397A JPH1114027A (en) | 1997-06-20 | 1997-06-20 | Method of controlling combustion of incinerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1114027A true JPH1114027A (en) | 1999-01-22 |
Family
ID=15789020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16422397A Withdrawn JPH1114027A (en) | 1997-06-20 | 1997-06-20 | Method of controlling combustion of incinerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1114027A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003511643A (en) * | 1999-10-04 | 2003-03-25 | ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー | Control systems for incineration plants, eg garbage incineration plants |
JP2006046954A (en) * | 2004-07-30 | 2006-02-16 | Takuma Co Ltd | Sampling method, measuring method and suppression method of trace amount of harmful substance |
CN102297433A (en) * | 2011-05-31 | 2011-12-28 | 福建省丰泉环保控股有限公司 | Method for removing dioxin from fume of garbage incinerator |
-
1997
- 1997-06-20 JP JP16422397A patent/JPH1114027A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003511643A (en) * | 1999-10-04 | 2003-03-25 | ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー | Control systems for incineration plants, eg garbage incineration plants |
JP4698909B2 (en) * | 1999-10-04 | 2011-06-08 | ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー | Control system for incineration plants, for example garbage incineration plants |
JP2006046954A (en) * | 2004-07-30 | 2006-02-16 | Takuma Co Ltd | Sampling method, measuring method and suppression method of trace amount of harmful substance |
JP4514543B2 (en) * | 2004-07-30 | 2010-07-28 | 株式会社タクマ | Device for measuring and suppressing harmful trace substances |
CN102297433A (en) * | 2011-05-31 | 2011-12-28 | 福建省丰泉环保控股有限公司 | Method for removing dioxin from fume of garbage incinerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6927127B2 (en) | Waste incinerator method | |
EP1726876B1 (en) | Improved method of combusting solid waste | |
JP4292126B2 (en) | Combustion information monitoring and control system for stoker-type waste incinerator | |
EP0358760B1 (en) | Combustion control method for fluidized bed incinerator | |
US5020451A (en) | Fluidized-bed combustion furnace | |
JP2010216990A (en) | Device and method for measurement of moisture percentage in waste | |
JPH1114027A (en) | Method of controlling combustion of incinerator | |
JP2955431B2 (en) | Incinerator combustion control device | |
JP6973246B2 (en) | Waste incinerator method | |
JP5767486B2 (en) | Heat recovery plant and operation control method thereof | |
JP3902454B2 (en) | Combustion control method and waste treatment apparatus | |
JP2009150626A (en) | Combustion control system for combustion furnace and its combustion control method | |
JPH05272732A (en) | Method of controlling combustion in waste incinerator | |
JPH11325427A (en) | Combustion control method in combustion furnace and the combustion furnace | |
JP2000046323A (en) | Method for controlling combustion in combustion furnace and apparatus for controlling combustion | |
JP2005308362A (en) | Combustion control method for waste incinerator and waste incinerator | |
JP2003287213A (en) | Burning control device for garbage incinerator | |
JP2006125759A (en) | Operation control device for incinerator | |
JP2762054B2 (en) | Combustion control method for fluidized bed incinerator | |
JP2003302025A (en) | Refuse gasification melting system | |
JPH1182958A (en) | Incinerator and method for controlling operation of incinerator | |
JP2001289401A (en) | Method and apparatus for vapor flow rate control in incinerator | |
JPH08233241A (en) | Trash character-detecting method for trash incineration furnace | |
JP2000274638A (en) | Burning method and apparatus for combustion furnace waste incinerator | |
JP2004132648A (en) | Combustion control method and combustion control device for gasification melting furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040907 |