[go: up one dir, main page]

JP2000274638A - Burning method and apparatus for combustion furnace waste incinerator - Google Patents

Burning method and apparatus for combustion furnace waste incinerator

Info

Publication number
JP2000274638A
JP2000274638A JP11083850A JP8385099A JP2000274638A JP 2000274638 A JP2000274638 A JP 2000274638A JP 11083850 A JP11083850 A JP 11083850A JP 8385099 A JP8385099 A JP 8385099A JP 2000274638 A JP2000274638 A JP 2000274638A
Authority
JP
Japan
Prior art keywords
value
exhaust gas
fuel
gas temperature
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11083850A
Other languages
Japanese (ja)
Other versions
JP3716128B2 (en
Inventor
Masataka Abe
正孝 安部
Shigeaki Nakamura
成章 中村
Masaharu Kira
雅治 吉良
Hirohiko Orita
寛彦 折田
Yasuhiro Takatsudo
康弘 高津戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08385099A priority Critical patent/JP3716128B2/en
Publication of JP2000274638A publication Critical patent/JP2000274638A/en
Application granted granted Critical
Publication of JP3716128B2 publication Critical patent/JP3716128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for burning capable of stabilizing a steam flow rate of a boiler and stabilizing combustion of a fuel by controlling a fuel supply amount of a combustion furnace waste incinerating furnace. SOLUTION: In the combustion furnace having a heat recovering unit for thermally recovering from an exhaust gas obtained by burning a fuel to generate steam, a reference value of an exhaust gas temperature obtained by considering a delay of a time change of a stream flow side of the unit to a time change of the exhaust gas temperature from a measured value of a steam flow rate generated from the unit is obtained, and the fuel is controlled by a comparison of the measured value of the exhaust gas temperature with the reference value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物、石炭等の
固体燃料、石油等の液体燃料、可燃性ガス等の気体燃料
を燃焼させる燃焼炉に係り、特に該燃料の燃焼により生
成される排ガスから熱回収をして蒸気を発生させる熱回
収器の蒸気流量を安定化させ、該燃料の燃焼を安定化さ
せる燃焼炉の燃焼方法及び燃焼装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion furnace for burning solid fuel such as waste, coal or the like, liquid fuel such as petroleum, or gaseous fuel such as a combustible gas, and more particularly to a combustion furnace produced by burning the fuel. The present invention relates to a combustion method and a combustion apparatus for a combustion furnace for stabilizing a steam flow rate of a heat recovery unit that generates heat by recovering heat from exhaust gas and stabilizing combustion of the fuel.

【0002】[0002]

【従来の技術】廃棄物、石炭等の固体燃料、石油等の液
体燃料、可燃性ガス等の気体燃料を燃焼させる燃焼炉で
は、該燃料の燃焼により生じた排ガスの熱エネルギーを
回収するためボイラなどの熱回収器を備え、該熱回収器
で発生した蒸気をタービンで発電する場合が多く、該熱
回収器において安定した蒸気流量を得る事が望まれてい
る。
2. Description of the Related Art In a combustion furnace for burning solid fuel such as waste, coal or the like, liquid fuel such as petroleum, or gaseous fuel such as a flammable gas, a boiler is used to recover thermal energy of exhaust gas generated by combustion of the fuel. In many cases, a steam is generated by the turbine using the heat recovery device, and it is desired to obtain a stable steam flow rate in the heat recovery device.

【0003】従来技術として、特に都市ゴミ又は産業廃
棄物等を燃料とする燃焼炉を代表例として、そ廃棄物燃
焼炉の概略構成を図10に示す。燃焼炉廃棄物焼却炉1
において、該燃料は燃料供給口2から燃料押込装置3に
より燃焼室15に押し込まれ、燃焼室15の内部に設け
られた火格子4上で乾燥、燃焼、おき燃焼され灰とな
り、該灰は灰排出口5より炉外に排出される。前記燃料
の供給量は、燃料押込装置3の押し込み運動と、火格子
4を構成する可動段を往復運動させる火格子摺動装置1
4の往復運動により増減される。火格子4上で燃料が燃
焼することにより生じた排ガスの熱エネルギーを回収す
るボイラ7が、燃焼室15の下流に位置する排ガス通路
12に設置されている。ボイラ7は、排ガスをボイラ水
と熱交換させる熱交換器7bと、ボイラ水から蒸気を発
生させる蒸気発生器7aを有している。蒸気発生器7a
で発生した蒸気は、図示してないタービンにより発電を
する等に利用される。前記排ガスは排ガス処理装置13
にて有害物質が除去された後、煙突16より排気され
る。
[0003] As a prior art, a combustion furnace using municipal waste or industrial waste as a fuel is a typical example, and a schematic configuration of the waste combustion furnace is shown in FIG. Combustion furnace waste incinerator 1
In the above, the fuel is pushed into the combustion chamber 15 from the fuel supply port 2 by the fuel pushing device 3, and is dried, burned, and ignited on the grate 4 provided inside the combustion chamber 15 to become ash, and the ash becomes ash. It is discharged out of the furnace from the discharge port 5. The supply amount of the fuel is determined by the pushing movement of the fuel pushing device 3 and the grate sliding device 1 for reciprocating the movable stage constituting the grate 4.
4 reciprocating movement. A boiler 7 for recovering thermal energy of exhaust gas generated by burning fuel on the grate 4 is provided in an exhaust gas passage 12 located downstream of a combustion chamber 15. The boiler 7 has a heat exchanger 7b for exchanging heat of the exhaust gas with boiler water and a steam generator 7a for generating steam from the boiler water. Steam generator 7a
The steam generated in is used for, for example, generating power using a turbine (not shown). The exhaust gas is an exhaust gas treatment device 13
After the harmful substances are removed by the exhaust gas, the exhaust gas is exhausted from the chimney 16.

【0004】ボイラ7において、安定した蒸気流量を得
るために、ボイラ7の蒸気出口部に設置された蒸気流量
計11の測定値と目標値の偏差に基づき、前記燃料の供
給量の制御が行われている。即ち、ボイラ7の蒸気流量
が所定の目標値を上回る場合、燃料供給を止め、該蒸気
流量が所定の目標値を下回る場合、燃料供給を開始す
る。この場合、排ガス通路12に設けられた熱交換器7
bにおいて排ガスの熱がボイラ水に伝えられ蒸気流量の
変化に現れるまでに時間遅れがあり、該時間遅れが蒸気
流量の変動をもたらし安定した蒸気流量を得ることが難
しいとの問題があった。そこで、発明者の知見によれ
ば、非接触式温度センサ6によりリアルタイムで測定し
た排ガス温度と、ボイラ7の蒸気流量計11により測定
した蒸気流量を用いて、燃焼炉1廃棄物燃焼炉の燃料供
給量を制御する着想がある。
In the boiler 7, in order to obtain a stable steam flow rate, the fuel supply amount is controlled based on a deviation between a measured value of a steam flow meter 11 installed at a steam outlet of the boiler 7 and a target value. Have been done. That is, when the steam flow rate of the boiler 7 exceeds the predetermined target value, the fuel supply is stopped, and when the steam flow rate falls below the predetermined target value, the fuel supply is started. In this case, the heat exchanger 7 provided in the exhaust gas passage 12
In (b), there is a time delay before the heat of the exhaust gas is transmitted to the boiler water and appears in a change in the steam flow rate, and the time delay causes a change in the steam flow rate, which makes it difficult to obtain a stable steam flow rate. Therefore, according to the knowledge of the inventor, using the exhaust gas temperature measured in real time by the non-contact type temperature sensor 6 and the steam flow rate measured by the steam flow meter 11 of the boiler 7, the fuel of the combustion furnace 1 waste combustion furnace is used. There is an idea to control the supply.

【0005】[0005]

【発明が解決しようとする課題】前記の非接触式温度セ
ンサによりリアルタイムで測定した排ガス温度と、ボイ
ラの蒸気流量計により測定した蒸気流量を用いて、燃焼
炉廃棄物燃焼炉の燃料供給量を制御して、安定した蒸気
流量を得る着想はあったが、その具体的手段が完成して
いないとの問題があった。さらに、近年、環境対策とし
てダイオキシン及びNOxの発生低減のために燃料の燃
焼を安定化させる必要性も高まっている。
Using the exhaust gas temperature measured in real time by the non-contact type temperature sensor and the steam flow rate measured by the steam flow meter of the boiler, the fuel supply amount of the combustion furnace waste combustion furnace is determined. Although there was an idea to obtain a stable steam flow rate by controlling, there was a problem that the concrete means was not completed. Further, in recent years, there has been an increasing need to stabilize fuel combustion for reducing the generation of dioxins and NOx as an environmental measure.

【0006】本発明は、上記問題点の少なくとも一つを
解決するためになされたもので、燃料の燃焼により生成
した排ガスから熱回収をするボイラなどの熱回収器で発
生した蒸気流量の測定値から、排ガス温度の時間変化に
対する前記熱回収器の蒸気流量の時間変化の遅れを加味
した排ガス温度の基準値を求め、該基準値と排ガス温度
の測定値との比較で燃料を制御する燃焼方法及び燃焼装
置の提供を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve at least one of the above-mentioned problems, and it is an object of the present invention to measure a measured value of a steam flow rate generated by a heat recovery unit such as a boiler for recovering heat from exhaust gas generated by fuel combustion. A combustion method for obtaining a reference value of the exhaust gas temperature in consideration of the time change of the steam flow rate of the heat recovery unit with respect to the time change of the exhaust gas temperature, and controlling the fuel by comparing the reference value and the measured value of the exhaust gas temperature. And a combustion device.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明は、燃料の燃焼により生成した
排ガスから熱回収をして蒸気を発生させる熱回収器を有
する燃焼炉において、前記熱回収器で発生した蒸気流量
の測定値から、排ガス温度の時間変化に対する熱回収器
の蒸気流量の時間変化の遅れを加味した排ガス温度の基
準値を求め、該基準値と排ガス温度の測定値との比較で
燃料を制御する事を特徴とする。
According to one aspect of the present invention, there is provided a combustion furnace having a heat recovery unit that recovers heat from exhaust gas generated by fuel combustion to generate steam. From the measured value of the steam flow rate generated in the heat recovery unit, a reference value of the exhaust gas temperature taking into account the time change of the steam flow rate of the heat recovery unit with respect to the time change of the exhaust gas temperature is determined, and the reference value and the exhaust gas temperature are calculated. The feature is to control the fuel by comparing with the measured value.

【0008】請求項2記載の発明は、請求項1記載の基
準値を、前記熱回収器で発生した蒸気流量の測定値と所
定の設定値の偏差にゲインを乗じた値に、排ガス温度の
測定値の時間平均値を加えることにより求め、排ガス温
度の測定値と前記基準値の偏差を用いて前記燃料の供給
量を制御する事を特徴とする。
According to a second aspect of the present invention, the reference value of the first aspect is multiplied by a gain obtained by multiplying a gain obtained by multiplying a deviation between a measured value of the steam flow generated by the heat recovery unit and a predetermined set value by a gain. It is characterized in that it is obtained by adding a time average value of the measured values, and the supply amount of the fuel is controlled using a deviation between the measured value of the exhaust gas temperature and the reference value.

【0009】請求項3記載の発明は、請求項1又は2記
載の燃料供給量の制御において、排ガス温度の測定値と
前記基準値の偏差の時間平均値が所定の判断値と比較し
て大きな値から小さな値に遷移した場合は燃料供給量を
増やし、該偏差の時間平均値が所定の判断値と比較して
小さな値から大きな値に遷移した場合は燃料供給量を減
らす事を特徴とする。
According to a third aspect of the present invention, in the control of the fuel supply amount according to the first or second aspect, a time average value of a deviation between the measured value of the exhaust gas temperature and the reference value is larger than a predetermined judgment value. The fuel supply amount is increased when the value changes from a small value to a small value, and the fuel supply amount is reduced when the time average of the deviation changes from a small value to a large value as compared with a predetermined judgment value. .

【0010】請求項4記載の発明は、請求項1乃至3記
載の発明をより効果的に実施するために、前記燃料供給
量の制御において、排ガス温度の測定値と前記基準値の
偏差が、所定の第1上限値以上となり更に大きな第2上
限値以上となった場合に、該偏差と比較すべき上限判断
値を第2上限値とし、所定の時間経過後に該上限判断値
を第2上限値から第1上限値まで徐々に戻す事を特徴と
する。
According to a fourth aspect of the present invention, in order to more effectively implement the first to third aspects of the present invention, in the control of the fuel supply amount, the deviation between the measured value of the exhaust gas temperature and the reference value is When the difference is equal to or more than the predetermined first upper limit value and equal to or more than the second upper limit value, the upper limit judgment value to be compared with the deviation is set to the second upper limit value, and after a predetermined time elapses, the upper limit judgment value is set to the second upper limit value. It is characterized by gradually returning from the value to the first upper limit.

【0011】請求項5の発明は、請求項1乃至4記載の
発明をより効果的に実施するために、前記燃料供給量の
制御において、排ガス温度の測定値と前記基準値の偏差
が、所定の第1下限値以下となり更に小さな第2下限値
以下となった場合に、燃料供給量を減らす事を特徴とす
る。
According to a fifth aspect of the present invention, in order to more effectively implement the first to fourth aspects of the present invention, in the control of the fuel supply amount, the deviation between the measured value of the exhaust gas temperature and the reference value is a predetermined value. The fuel supply amount is reduced when the value becomes equal to or less than the first lower limit and becomes equal to or less than the second lower limit.

【0012】請求項6の発明は、請求項1乃至5記載の
発明において、燃料を燃料供給口から炉内に押し込む燃
料押込装置と、該押し込まれた燃料を燃焼させる火格子
と、該火格子を構成する可動段を往復運動させる火格子
摺動装置とを備えた燃焼炉廃棄物焼却炉において、前記
燃料供給量を増やす場合は、前記燃料押込装置の押し込
み運動又は前記火格子摺動装置の往復運動の少なくとも
一方の速度を増加させ、前記燃料供給量を減らす場合
は、前記燃料押込装置の押し込み運動又は前記火格子摺
動装置の往復運度の少なくとも一方の速度を減少させる
事により前記燃料供給量の増減を制御する事を特徴とす
る。
According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, there is provided a fuel pushing device for pushing a fuel into a furnace from a fuel supply port, a grate for burning the pushed fuel, and the grate. In a combustion furnace waste incinerator provided with a grate sliding device that reciprocates a movable stage that constitutes, when the fuel supply amount is increased, the pushing motion of the fuel pushing device or the grate sliding device When increasing at least one speed of the reciprocating motion and decreasing the fuel supply amount, the fuel is reduced by reducing at least one speed of the pushing motion of the fuel pushing device or the reciprocating mobility of the grate sliding device. It is characterized by controlling the increase and decrease of the supply amount.

【0013】請求項7の発明は、燃料の燃焼により生成
した排ガスから熱回収をして蒸気を発生させる熱回収器
を有する燃焼炉において、前記熱回収器の蒸気流量を測
定する蒸気流量計と、排ガス温度を測定する温度センサ
と、前記蒸気流量計の測定値から、排ガス温度の時間変
化に対する蒸気流量の時間変化の遅れを加味した排ガス
温度の基準値を求め、該基準値と排ガス温度の測定値と
の比較で燃料を制御する制御装置とを備えた事を特徴と
する。
According to a seventh aspect of the present invention, there is provided a combustion furnace having a heat recovery unit for recovering heat from exhaust gas generated by fuel combustion and generating steam, wherein a steam flow meter for measuring a steam flow rate of the heat recovery unit is provided. A temperature sensor for measuring the exhaust gas temperature, from the measured value of the steam flow meter, to obtain a reference value of the exhaust gas temperature taking into account the time change of the steam flow with respect to the time change of the exhaust gas temperature, the reference value and the exhaust gas temperature And a control device for controlling the fuel by comparing the measured value with the measured value.

【0014】請求項8の発明は、請求項7記載の発明に
おいて、前記燃料供給制御装置が、前記温度センサの測
定値の時間平均をする温度時間平均処理器と、前記蒸気
流量計の測定値と所定の設定値の偏差にゲインを乗じた
値を前記温度時間平均処理器の出力値に加えた値を基準
値とし、前記温度センサの測定値と前記基準値の偏差を
求め、該偏差と所定の判断値の大きさを比較する上下限
比較器と、該上下限比較器の出力値を用いて前記燃料の
供給量を制御する制御装置とを備えた事を特徴とする。
According to an eighth aspect of the present invention, in the invention of the seventh aspect, the fuel supply control device averages the temperature of the temperature sensor over time, And a value obtained by multiplying a deviation of a predetermined set value by a gain to an output value of the temperature-time averaging processor is set as a reference value, and a deviation between the measured value of the temperature sensor and the reference value is obtained. An upper and lower limit comparator for comparing the magnitude of a predetermined judgment value, and a control device for controlling the fuel supply amount using an output value of the upper and lower limit comparator are provided.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を、図
1ないし図6に示す実施例に基づいて説明する。ただ
し、この実施例に記載されている構成部品の寸法、形
状、その相対的位置等は特に特定的な記載がない限り
は、この発明の範囲をそれに限定する趣旨ではなく、単
なる説明にすぎない。なお図11の従来例と同一部材に
ついては同一符号を使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the embodiments shown in FIGS. However, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative, unless otherwise specified. . The same members as those in the conventional example shown in FIG.

【0016】図1は本発明の実施形態の一つである燃焼
供給制御装置10における制御回路の概略構成を示す。
温度センサは、燃料の燃焼により生成した排ガスの温度
を測定するために、燃焼室15の下流に位置する排ガス
通路12に設けられる。リアルタイムで測定した排ガス
温度を用いてボイラ7などの熱回収器の蒸気流量を制御
するため、前記温度センサは好ましくはボイラ7などの
熱回収器の近傍に設けられる。排ガス温度をリアルタイ
ムで測定するために、温度センサは赤外線放射温度計を
代表例とする非接触温度センサ6が好ましい。排ガス中
にすすや煤塵が多く計測窓が汚れやすい場合は非接触温
度センサ6として音響式ガス温度計を用いる。タービン
などで利用される蒸気を安定させるために、蒸気流量計
11はボイラ7などの熱回収器の好ましくは蒸気出口部
に設置され、タービンで利用される蒸気とほぼ同じ条件
の蒸気流量を測定する。非接触式温度センサ6と蒸気流
量計11は、燃焼供給制御装置10に電気的に接続され
ている。燃焼供給制御装置10は、燃料押込装置3を駆
動する油圧シリンダなどの燃料押込装置用駆動部8と、
火格子摺動装置14を駆動する油圧シリンダなどの火格
子摺動装置用駆動部9に電気的に接続されている。
FIG. 1 shows a schematic configuration of a control circuit in a combustion supply control device 10 according to one embodiment of the present invention.
The temperature sensor is provided in the exhaust gas passage 12 located downstream of the combustion chamber 15 in order to measure the temperature of the exhaust gas generated by the combustion of the fuel. In order to control the steam flow rate of the heat recovery unit such as the boiler 7 using the exhaust gas temperature measured in real time, the temperature sensor is preferably provided near the heat recovery unit such as the boiler 7. In order to measure the exhaust gas temperature in real time, the temperature sensor is preferably a non-contact temperature sensor 6 typified by an infrared radiation thermometer. When the measurement window is easily contaminated with soot and dust in the exhaust gas, an acoustic gas thermometer is used as the non-contact temperature sensor 6. In order to stabilize the steam used in the turbine, etc., the steam flow meter 11 is installed at a steam outlet of a heat recovery unit such as the boiler 7, and measures the steam flow rate under almost the same conditions as the steam used in the turbine. I do. The non-contact type temperature sensor 6 and the steam flow meter 11 are electrically connected to the combustion supply control device 10. The combustion supply control device 10 includes a fuel pushing device driving unit 8 such as a hydraulic cylinder that drives the fuel pushing device 3;
The grate sliding device 14 is electrically connected to a grate sliding device driving unit 9 such as a hydraulic cylinder that drives the grate sliding device 14.

【0017】燃焼供給制御装置10における制御方法を
具体的に示す。蒸気流量計11で測定した蒸気流量とあ
らかじめ入力された蒸気流量の設定値との偏差にゲイン
(利得)を乗じた値に、非接触式温度センサ6により測
定した排ガス温度を温度時間平均処理器21により時間
平均した値を加えて排ガス温度の基準値を算出する。こ
こで、ゲインの値は、排ガス温度と蒸気流量の単位換算
及び排ガス温度の時間変化に対するボイラ7における蒸
気流量の時間変化の遅れを考慮して決められる。また、
非接触式温度センサ6によりリアルタイムで測定した排
ガス温度を温度時間平均処理器21で時間平均する時間
は、排ガス温度の時間変化に対するボイラ7における蒸
気流量の時間変化の遅れなどを考慮して決めるが、代表
的には非接触式温度センサ6の測定直前10分間程度で
ある。非接触式温度センサ6によりリアルタイムで測定
した排ガス温度と該排ガス温度の測定時刻で算出した前
記基準値との偏差を、偏差時間平均処理器22により時
間平均して上下限比較器23に入力する。排ガス温度と
前記基準値の偏差は、時間平均しないで直接上下限比較
器23に入力する場合もある。上下限比較器23では、
偏差時間平均処理器22の出力値とあらかじめ入力した
所定の判断値とを比較し、その結果を用いて燃料供給量
を制御する。排ガス温度は非接触温度センサ6によりリ
アルタイムで測定できるため、非接触温度センサ6で測
定した排ガス温度と蒸気流量計11で測定したボイラの
蒸気流量の両者を用いて燃料供給量を制御する場合の方
が、該蒸気流量のみを用いて燃料供給量を制御する場合
より、時間遅れなく燃料供給量を制御でき、その結果と
して、該排ガス温度及び蒸気流量が安定化できる。
A control method in the combustion supply control device 10 will be specifically described. The exhaust gas temperature measured by the non-contact type temperature sensor 6 is multiplied by a value obtained by multiplying the difference between the steam flow rate measured by the steam flow meter 11 and the preset steam flow rate set value by a gain. The reference value of the exhaust gas temperature is calculated by adding the time averaged value according to 21. Here, the value of the gain is determined in consideration of the unit conversion of the exhaust gas temperature and the steam flow rate and the delay of the time change of the steam flow rate in the boiler 7 with respect to the time change of the exhaust gas temperature. Also,
The time in which the temperature of the exhaust gas measured in real time by the non-contact type temperature sensor 6 is averaged by the temperature-time averaging processor 21 is determined in consideration of the delay of the time change of the steam flow rate in the boiler 7 with respect to the time change of the exhaust gas temperature. Typically, it is about 10 minutes immediately before the measurement by the non-contact type temperature sensor 6. The deviation between the exhaust gas temperature measured in real time by the non-contact type temperature sensor 6 and the reference value calculated at the measurement time of the exhaust gas temperature is time-averaged by the deviation time averaging processor 22 and input to the upper and lower limit comparator 23. . The deviation between the exhaust gas temperature and the reference value may be directly input to the upper and lower limit comparator 23 without time averaging. In the upper and lower limit comparator 23,
The output value of the deviation time averaging processor 22 is compared with a predetermined judgment value input in advance, and the result is used to control the fuel supply amount. Since the exhaust gas temperature can be measured in real time by the non-contact temperature sensor 6, the fuel supply amount is controlled using both the exhaust gas temperature measured by the non-contact temperature sensor 6 and the steam flow rate of the boiler measured by the steam flow meter 11. As compared with the case where the fuel supply amount is controlled using only the steam flow rate, the fuel supply amount can be controlled without time delay, and as a result, the exhaust gas temperature and the steam flow rate can be stabilized.

【0018】さらに具体的な制御方法を図2から図5に
示す。図2に示すように、偏差時間平均処理器22の出
力値が所定の判断値と比較して大きな値から小さな値に
遷移した場合は燃料供給量を増やし(制御信号ON)、
偏差時間平均処理器22の出力値が所定の判断値と比較
して小さな値から大きな値に遷移した場合は燃料供給量
を減らす(制御信号OFF)ような制御信号を燃料押込
装置用駆動部8と火格子摺動装置用駆動部9へ送る。偏
差時間平均処理器22の出力値は、排ガス温度の時間変
化に対するボイラ7などの熱回収器の蒸気流量の時間変
化の遅れを加味した排ガス温度の基準値と、リアルタイ
ムで測定した排ガス温度の偏差である。従って、偏差時
間平均処理器22の出力が下がり始め所定の判断値以下
となれば燃料供給量を増やすため、実質的に排ガス温度
の下降を抑制できる。逆に偏差時間平均処理器22の出
力が上がり始め所定の判断値以上となれば燃料供給量を
減らすため、実質的に排ガス温度の上昇を抑制できる。
即ち、排ガス温度が安定化できる。さらに、排ガス温度
は蒸気流量と密接な関係がある事及び偏差時間平均処理
器22の出力は排ガス温度の時間変化に対するボイラ7
の蒸気流量の時間変化の遅れを加味した排ガス温度の基
準値とリアルタイムの排ガス温度との偏差であり排ガス
温度そのものの値ではない事などの理由により、偏差時
間平均処理器22の出力値を用いて燃料供給量を制御す
る事により、ボイラ7の蒸気流量も安定化できる。
FIGS. 2 to 5 show more specific control methods. As shown in FIG. 2, when the output value of the deviation time averaging processor 22 changes from a large value to a small value as compared with a predetermined judgment value, the fuel supply amount is increased (control signal ON),
When the output value of the deviation time averaging processor 22 changes from a small value to a large value as compared with a predetermined judgment value, a control signal for reducing the fuel supply amount (control signal OFF) is sent to the fuel pushing device driving unit 8. To the drive unit 9 for the grate sliding device. The output value of the deviation time averaging processor 22 is a deviation of the exhaust gas temperature measured in real time from the reference value of the exhaust gas temperature in consideration of the time change of the steam flow rate of the heat recovery unit such as the boiler 7 with respect to the time change of the exhaust gas temperature. It is. Therefore, when the output of the deviation time averaging processor 22 starts to decrease and becomes equal to or less than a predetermined judgment value, the fuel supply amount is increased, so that a decrease in the exhaust gas temperature can be substantially suppressed. Conversely, if the output of the deviation time averaging processor 22 starts to rise and becomes equal to or higher than a predetermined judgment value, the fuel supply amount is reduced, so that the rise in exhaust gas temperature can be substantially suppressed.
That is, the exhaust gas temperature can be stabilized. Further, the exhaust gas temperature is closely related to the steam flow rate, and the output of the deviation time averaging processor 22 is a function of the boiler 7 with respect to the time change of the exhaust gas temperature.
The output value of the deviation time averaging processor 22 is used because the deviation between the reference value of the exhaust gas temperature and the real-time exhaust gas temperature taking into account the delay of the time change of the steam flow rate is not the value of the exhaust gas temperature itself. By controlling the fuel supply amount in this way, the steam flow rate of the boiler 7 can also be stabilized.

【0019】一方、前述の通り偏差時間平均処理器22
の出力値が上昇している場合は、該出力値を下降させる
ように燃料供給量を減らすが、燃料供給量を減らし過ぎ
ると、該出力値が下降に転じた場合に燃焼させるべき十
分な燃料が不足する状態になる。そこで、偏差時間平均
処理器22の出力値が、所定の第1上限値より更に大き
な第2上限値以上となった場合に、図3に示すように偏
差時間平均処理器22の出力値と比較すべき上限判断値
を第2上限値と置き換え、所定時間経過後に前記比較す
べき上限判断値を第2上限値から第1上限値まで徐々に
戻す。これにより、偏差時間平均処理器22の出力値が
下がり始めた場合に、前記比較すべき上限判断値が第1
上限値より大きな第2上限値になっているため、前記比
較すべき上限判断値が第1上限値の場合より時間的に早
い時点で燃料供給量を増やす制御信号(制御信号ON)
とすることができ、燃料押込装置用駆動部8と火格子摺
動装置用駆動部9を先行させて動作させる事が可能で、
偏差時間平均処理器22の出力値の下降を時間的に早い
時点で抑制できる。これにより、燃料供給量を先行して
増やす制御ができるため、燃料供給量が不足する状態が
避けられる。
On the other hand, as described above, the deviation time averaging processor 22
If the output value is increasing, the fuel supply amount is reduced so as to decrease the output value.However, if the fuel supply amount is reduced too much, there is sufficient fuel to be burned when the output value starts to decrease. Is in shortage. Therefore, when the output value of the deviation time averaging processor 22 becomes equal to or more than a second upper limit that is larger than the predetermined first upper limit, the output value of the deviation time averaging processor 22 is compared with the output value of the deviation time averaging processor 22 as shown in FIG. The upper limit judgment value to be replaced is replaced with a second upper limit value, and after a lapse of a predetermined time, the upper limit judgment value to be compared is gradually returned from the second upper limit value to the first upper limit value. Thereby, when the output value of the deviation time averaging processor 22 starts to decrease, the upper limit judgment value to be compared is set to the first upper limit judgment value.
Since the second upper limit is larger than the upper limit, the control signal (control signal ON) for increasing the fuel supply amount at a time earlier than the case where the upper limit judgment value to be compared is the first upper limit.
It is possible to operate the drive unit 8 for the fuel pushing device and the drive unit 9 for the grate sliding device in advance.
A decrease in the output value of the deviation time averaging processor 22 can be suppressed at an earlier point in time. As a result, the fuel supply amount can be controlled to be increased in advance, so that a shortage of the fuel supply amount can be avoided.

【0020】さらに、偏差時間平均処理器22の出力値
が下降している状態では、該出力値を上昇するように燃
料供給量を増やすが、燃料供給量を増やし過ぎると、燃
焼室15における火格子4上のごみ燃焼領域が燃料で埋
まってしまい却って燃焼を妨げる現象が起きる。そこ
で、図4に示すように偏差時間処理器22の出力値が、
所定の第1下限値より更に小さな第2下限値以下となっ
た場合に、偏差時間平均処理器22の出力値と比較すべ
き下限判断値を第2下限値より更に小さい第3下限値と
置き換え、所定時間経過後に前記下限判断値を第3下限
値から第1下限値まで徐々に戻す。これにより、前記比
較すべき下限判断値を第2下限値より更に小さい第3下
限値に置き換えた時点で、偏差時間平均処理器22の出
力値が前記比較すべき下限判断値より大きな値となり燃
料供給量を減らす制御信号(制御信号OFF)となる。
即ち、偏差時間平均処理器22の出力値が、第3下限値
となる前に、第2下限値以下となった時点で燃料供給量
を先行して減らす事ができ、燃料を過剰に増やす制御を
回避して、燃焼室15における火格子4上の燃焼領域が
燃料で埋まってしまう事態を避ける事ができる。以上を
まとめた制御フロー図を図5に示す。
Further, when the output value of the deviation time averaging processor 22 is falling, the fuel supply amount is increased so as to increase the output value. A phenomenon occurs in which the refuse combustion area on the grid 4 is buried with fuel and, on the contrary, hinders combustion. Therefore, as shown in FIG. 4, the output value of the deviation time processor 22 is
When the value becomes equal to or less than a second lower limit smaller than the first lower limit, the lower limit judgment value to be compared with the output value of the deviation time averaging processor 22 is replaced with a third lower limit smaller than the second lower limit. After a lapse of a predetermined time, the lower limit judgment value is gradually returned from the third lower limit to the first lower limit. Thus, when the lower limit judgment value to be compared is replaced with the third lower limit value smaller than the second lower limit value, the output value of the deviation time averaging processor 22 becomes a value larger than the lower limit judgment value to be compared, and This is a control signal (control signal OFF) for reducing the supply amount.
That is, when the output value of the deviation time averaging processor 22 becomes equal to or less than the second lower limit before the output value becomes the third lower limit, the fuel supply amount can be reduced in advance, and the control for excessively increasing the fuel is performed. Can be avoided, and the situation where the combustion area on the grate 4 in the combustion chamber 15 is filled with fuel can be avoided. FIG. 5 shows a control flow diagram summarizing the above.

【0021】前記燃料供給量の増減の制御は、燃料供給
量を増やす場合は、燃料押込装置3の押し込み運動又は
火格子摺動装置14の往復運動の少なくとも一方の速度
を増加させるように、それぞれの運動に対応する燃料押
込装置用駆動部8又は火格子摺動装置用駆動部9を駆動
させる。逆に、燃料供給量を減らす場合は、燃料押込装
置3の押し込み運動又は火格子摺動装置14の往復運動
の少なくとも一方の速度を減少させるように、それぞれ
の運動に対応する燃料押込装置用駆動部8又は火格子摺
動装置用駆動部9を駆動させる。燃料押込装置3の押し
込み運動と火格子摺動装置14の往復運動の速度を制御
して、燃料供給量の増減を制御しているため、燃焼炉1
のごみ燃焼領域におけるごみの量を均一に分布すること
ができ、燃焼を安定させることができる。
The control of the increase or decrease of the fuel supply amount is such that when increasing the fuel supply amount, at least one of the pushing movement of the fuel pushing device 3 and the reciprocating movement of the grate sliding device 14 is increased. The driving unit 8 for the fuel pushing device or the driving unit 9 for the grate sliding device corresponding to the movement of the grate is driven. Conversely, when the fuel supply amount is reduced, the driving of the fuel pushing device corresponding to each movement is performed so as to decrease the speed of at least one of the pushing motion of the fuel pushing device 3 or the reciprocating motion of the grate sliding device 14. The driving unit 9 or the driving unit 9 for the grate sliding device is driven. Since the speed of the pushing motion of the fuel pushing device 3 and the reciprocating motion of the grate sliding device 14 is controlled to control the increase and decrease of the fuel supply amount, the combustion furnace 1
The amount of waste in the waste combustion region can be evenly distributed, and the combustion can be stabilized.

【0022】非接触式温度センサ6(ここでは赤外線放
射温度計を用いた)により測定した排ガス温度及びボイ
ラ7の蒸気流量計11により測定した蒸気流量を、従来
技術及び本発明の燃焼方法と燃焼装置を用いて燃料供給
量を制御した場合それぞれについて図6及び図7に示
す。従来技術の燃焼方法及び燃焼装置より、前記本発明
による燃焼方法及び燃焼装置を採用した方が、排ガス温
度及びボイラ7の蒸気流量ともに安定化できている。
The exhaust gas temperature measured by the non-contact type temperature sensor 6 (here, an infrared radiation thermometer is used) and the steam flow rate measured by the steam flow meter 11 of the boiler 7 are compared with the combustion method and combustion method of the prior art and the present invention. FIGS. 6 and 7 show the case where the fuel supply amount is controlled using the apparatus. Employing the combustion method and the combustion apparatus according to the present invention can stabilize both the exhaust gas temperature and the steam flow rate of the boiler 7 as compared with the conventional combustion method and the combustion apparatus.

【0023】さらに、排ガス用煙突16入り口部におけ
る酸素(O)濃度、一酸化炭素(CO)濃度、窒素酸
化物(NOx)濃度を、従来技術及び本発明による燃焼
方法と燃焼装置を用いて燃料供給量を制御した場合廃棄
物それぞれについて図8及び図9に示す。従来技術の燃
焼方法及び燃焼装置より、前記本発明による燃焼方法及
び燃焼装置を採用した方が、燃焼が安定して、ダイオキ
シンの代替指標となる排ガスの煙突16入り口部におけ
るCO濃度の絶対値及び変動幅が小さくなっている。さ
らに、排ガスの煙突16入り口部におけるO濃度の変
動幅並びにNOx濃度の絶対値及び変動幅も小さくなっ
ている。
Further, the concentration of oxygen (O 2 ), the concentration of carbon monoxide (CO), and the concentration of nitrogen oxide (NOx) at the entrance of the chimney 16 for exhaust gas were measured using the combustion method and the combustion apparatus according to the prior art and the present invention. FIGS. 8 and 9 show the respective wastes when the fuel supply amount is controlled. The combustion method and the combustion apparatus according to the present invention are more stable than the prior art combustion method and the combustion apparatus, and the combustion is stable, and the absolute value of the CO concentration at the entrance of the chimney 16 of the exhaust gas serving as a substitute index of dioxin and The fluctuation range is small. Further, the absolute value and the variation ranges of well NOx concentration of O 2 concentration in the 16 inlet portion chimney exhaust gas also is small.

【0024】[0024]

【発明の効果】以上詳述したように、請求項1、2、
3、7及び8記載の発明によれば、非接触温度計により
リアルタイムで測定した排ガス温度と蒸気流量計により
測定したボイラの蒸気流量を用いて燃料供給量を制御し
ているため、時間遅れなく燃料供給量を制御でき、その
結果として、該排ガス温度及び蒸気流量が安定化でき
る。即ち、燃焼が安定化でき、ダイオキシンの代替指標
となる排ガスの煙突入り口部におけるCO濃度の絶対値
及び変動幅が小さくできる。さらに、排ガスの煙突入り
口部におけるO濃度の変動幅並びにNOx濃度の絶対
値及び変動幅も小さくできる。
As described in detail above, claims 1 and 2,
According to the inventions described in 3, 7, and 8, since the fuel supply amount is controlled using the exhaust gas temperature measured in real time by the non-contact thermometer and the steam flow rate of the boiler measured by the steam flow meter, there is no time delay. The fuel supply amount can be controlled, and as a result, the exhaust gas temperature and the steam flow rate can be stabilized. That is, the combustion can be stabilized, and the absolute value and the fluctuation range of the CO concentration at the chimney entrance of the exhaust gas, which is a substitute index for dioxin, can be reduced. Further, the fluctuation range of the O 2 concentration and the absolute value and the fluctuation range of the NOx concentration at the chimney entrance of the exhaust gas can be reduced.

【0025】また、請求項4記載の発明によれば、請求
項1乃至3記載の発明の効果に加えて、燃料供給量を先
行して増やす制御ができるため、燃料供給量が不足する
状態が避けられる。
According to the fourth aspect of the invention, in addition to the effects of the first to third aspects of the invention, the fuel supply amount can be controlled to be increased in advance, so that the fuel supply amount becomes insufficient. can avoid.

【0026】また、請求項5記載の発明によれば、請求
項1乃至4記載のいずれかの発明の効果に加えて、燃料
供給量を先行して減らす事で、燃料を過剰に増やす制御
を回避して、燃焼炉の燃焼領域が燃料で埋まってしまう
事態を避ける事ができる。
According to the fifth aspect of the present invention, in addition to the effect of any one of the first to fourth aspects of the present invention, the control of increasing the fuel excessively by reducing the fuel supply amount in advance. By avoiding this, it is possible to avoid a situation where the combustion area of the combustion furnace is filled with fuel.

【0027】また、請求項6乃至8のいずれかに記載の
発明によれば、請求項1乃至5記載のいずれかの発明の
効果に加えて、燃料押込装置の押し込み運動と火格子摺
動装置の往復運動の速度を制御して、燃料供給量の増減
を制御しているため、燃焼炉のごみ燃焼領域におけるご
みの量を均一に分布することができ、燃焼を安定させる
ことができる。
According to the invention described in any one of claims 6 to 8, in addition to the effect of any one of the inventions described in claims 1 to 5, the pushing motion of the fuel pushing device and the grate sliding device are performed. By controlling the speed of the reciprocating motion of the refuse, the increase and decrease of the fuel supply amount are controlled, so that the amount of waste in the refuse combustion region of the combustion furnace can be uniformly distributed, and the combustion can be stabilized.

【0028】さらに、請求項7又は8記載の発明によれ
ば、非接触式温度センサにより排ガス温度の検出を時間
遅れなく行い、燃料押込装置の押し込み運動と火格子摺
動装置の往復運動を適切に制御し、ごみの投入過少及び
投入過多も制限してるため、燃焼が安定化できる。
Further, according to the present invention, the temperature of the exhaust gas is detected by the non-contact type temperature sensor without time delay, and the pushing motion of the fuel pushing device and the reciprocating motion of the grate sliding device are appropriately performed. , And the amount of waste is too small and too large, so that combustion can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例を示す燃焼装置におけ
る制御回路の概略構成図である。
FIG. 1 is a schematic configuration diagram of a control circuit in a combustion device showing an example of an embodiment of the present invention.

【図2】本発明の実施形態の一例を示す具体的な制御方
法の説明図である。
FIG. 2 is an explanatory diagram of a specific control method showing an example of an embodiment of the present invention.

【図3】本発明の実施形態の一例を示す具体的な制御方
法(上限判断値)の説明図である。
FIG. 3 is an explanatory diagram of a specific control method (upper limit judgment value) showing an example of an embodiment of the present invention.

【図4】本発明の実施形態の一例を示す具体的な制御方
法(下限判断値)の説明図である。
FIG. 4 is an explanatory diagram of a specific control method (lower limit judgment value) showing an example of an embodiment of the present invention.

【図5】本発明の実施形態の一例を示す具体的な制御フ
ロー図である。
FIG. 5 is a specific control flowchart showing an example of an embodiment of the present invention.

【図6】従来技術による燃焼方法及び燃焼装置を採用し
た燃焼炉廃棄物焼却炉の排ガス温度及びボイラの蒸気流
量の時間変化を示す図である。
FIG. 6 is a diagram showing a time change of an exhaust gas temperature and a steam flow rate of a boiler in a combustion furnace waste incinerator employing a combustion method and a combustion apparatus according to a conventional technique.

【図7】本発明の燃焼方法及び燃焼装置を採用した燃焼
炉廃棄物焼却炉の排ガス温度及びボイラの蒸気流量の時
間変化を示す図である。
FIG. 7 is a diagram showing changes over time of the exhaust gas temperature and the steam flow rate of a boiler in a combustion furnace waste incinerator employing the combustion method and the combustion apparatus of the present invention.

【図8】従来技術の燃焼方法及び燃焼装置を採用した燃
焼炉廃棄物焼却炉の排ガス用煙突入り口部における酸素
(O)濃度、一酸化炭素(CO)濃度、窒素酸化物
(NOx)濃度の時間変化を示す図である。
FIG. 8 shows an oxygen (O 2 ) concentration, a carbon monoxide (CO) concentration, and a nitrogen oxide (NOx) concentration at an inlet of an exhaust gas stack of a combustion furnace waste incinerator employing a combustion method and a combustion apparatus according to a conventional technique. FIG. 6 is a diagram showing a time change of the data.

【図9】本発明の燃焼方法及び燃焼装置を採用した燃焼
炉廃棄物焼却炉の排ガス用煙突入り口部における酸素
(O)濃度、一酸化炭素(CO)濃度、窒素酸化物
(NOx)濃度の時間変化を示す図である。
FIG. 9 shows an oxygen (O 2 ) concentration, a carbon monoxide (CO) concentration, and a nitrogen oxide (NOx) concentration at an inlet of an exhaust gas stack of a combustion furnace waste incinerator employing the combustion method and the combustion apparatus according to the present invention. FIG. 6 is a diagram showing a time change of the data.

【図10】従来の燃焼炉の説明図である。FIG. 10 is an explanatory view of a conventional combustion furnace.

【符号の説明】[Explanation of symbols]

1 燃焼炉廃棄物焼却炉 3 燃料押込装置 4 火格子 7 ボイラ 8 燃料押込装置用駆動部 9 火格子摺動装置用駆動部 10 燃料供給制御装置 11 蒸気流量計 12 排ガス通路 14 火格子摺動装置 21 温度時間平均処理器 22 偏差時間平均処理器 23 上下限比較器 DESCRIPTION OF REFERENCE NUMERALS 1 combustion furnace waste incinerator 3 fuel pushing device 4 grate 7 boiler 8 drive unit for fuel pushing device 9 drive unit for grate sliding device 10 fuel supply control device 11 steam flow meter 12 exhaust gas passage 14 grate sliding device 21 Temperature time average processor 22 Deviation time average processor 23 Upper / lower limit comparator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 折田 寛彦 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社横浜研究所内 (72)発明者 高津戸 康弘 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社横浜研究所内 Fターム(参考) 3K065 AA01 AB01 AC01 AC20 BA03 JA05 JA18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirohiko Orita 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory (72) Inventor Yasuhiro Takatsudo 1-8-8 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Address 1 Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory F-term (reference) 3K065 AA01 AB01 AC01 AC20 BA03 JA05 JA18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】燃料の燃焼により生成した排ガスから熱回
収をして蒸気を発生させる熱回収器を有する燃焼炉にお
いて、 前記熱回収器で発生した蒸気流量の測定値から、排ガス
温度の時間変化に対する熱回収器の蒸気流量の時間変化
の遅れを加味した排ガス温度の基準値を求め、該基準値
と排ガス温度の測定値との比較で燃料を制御する事を特
徴とする燃焼炉の燃焼方法。
1. A combustion furnace having a heat recovery unit for recovering heat from exhaust gas generated by combustion of a fuel to generate steam, wherein a time change of exhaust gas temperature is measured from a measured value of a steam flow rate generated by the heat recovery unit. A reference value of the exhaust gas temperature taking into account the delay of the time change of the steam flow rate of the heat recovery unit with respect to the temperature, and controlling the fuel by comparing the reference value with the measured value of the exhaust gas temperature. .
【請求項2】前記基準値を、前記熱回収器で発生した蒸
気流量の測定値と所定の設定値の偏差にゲインを乗じた
値に、排ガス温度の測定値の時間平均値を加えることに
より求め、 排ガス温度の測定値と前記基準値の偏差を用いて前記燃
料の供給量を制御する事を特徴とする請求項1記載の燃
焼炉廃棄物焼却炉の燃焼方法。
2. The method according to claim 1, wherein the reference value is obtained by adding a time average value of the measured value of the exhaust gas temperature to a value obtained by multiplying a gain by a deviation between a measured value of a steam flow generated by the heat recovery unit and a predetermined set value. The method according to claim 1, wherein the amount of the supplied fuel is controlled using a deviation between the measured value of the exhaust gas temperature and the reference value.
【請求項3】前記燃料供給量の制御において、排ガス温
度の測定値と前記基準値の偏差の時間平均値が所定の判
断値と比較して大きな値から小さな値に遷移した場合は
燃料供給量を増やし、該偏差の時間平均値が所定の判断
値と比較して小さな値から大きな値に遷移した場合は燃
料供給量を減らす事を特徴とする請求項1又は2記載の
燃焼炉廃棄物焼却炉の燃焼方法。
3. The fuel supply amount control method according to claim 1, wherein the time average value of the deviation between the measured value of the exhaust gas temperature and the reference value changes from a large value to a small value as compared with a predetermined judgment value. 3. The combustion furnace waste incineration according to claim 1, wherein the fuel supply amount is reduced when the time average value of the deviation changes from a small value to a large value as compared with a predetermined judgment value. Furnace combustion method.
【請求項4】前記燃料供給量の制御において、排ガス温
度の測定値と前記基準値の偏差が、所定の第1上限値以
上となり更に大きな第2上限値以上となった場合に、該
偏差と比較すべき上限判断値を第2上限値とし、所定の
時間経過後に該上限判断値を第2上限値から第1上限値
まで徐々に戻す事を特徴とする請求項1乃至3のいずれ
かに記載の燃焼炉廃棄物焼却炉の燃焼方法。
4. In the control of the fuel supply amount, when a deviation between the measured value of the exhaust gas temperature and the reference value is equal to or more than a predetermined first upper limit and is equal to or more than a second upper limit, the deviation is determined. The upper limit judgment value to be compared is set to a second upper limit value, and after a predetermined time has elapsed, the upper limit judgment value is gradually returned from the second upper limit value to the first upper limit value. The combustion method of the combustion furnace waste incinerator according to the above.
【請求項5】前記燃料供給量の制御において、排ガス温
度の測定値と前記基準値の偏差が、所定の第1下限値以
下となり更に小さな第2下限値以下となった場合に、燃
料供給量を減らす事を特徴とする請求項1乃至4のいず
れかに記載の燃焼炉廃棄物焼却炉の燃焼方法。
5. The fuel supply amount control method according to claim 1, wherein when the deviation between the measured value of the exhaust gas temperature and the reference value becomes equal to or less than a predetermined first lower limit and equal to or smaller than a second lower limit, the fuel supply amount is reduced. The method for burning a waste incinerator of a combustion furnace waste according to any one of claims 1 to 4, wherein:
【請求項6】燃料を燃料供給口から炉内に押し込む燃料
押込装置と、該押し込まれた燃料を燃焼させる火格子
と、該火格子を構成する可動段を往復運動させる火格子
摺動装置とを備えた燃焼炉廃棄物焼却炉において、 前記燃料供給量を増やす場合は、前記燃料押込装置の押
し込み運動又は前記火格子摺動装置の往復運動の少なく
とも一方の速度を増加させ、前記燃料供給量を減らす場
合は、前記燃料押込装置の押し込み運動又は前記火格子
摺動装置の往復運度の少なくとも一方の速度を減少させ
る事により前記燃料供給量の増減を制御する事を特徴と
する請求項1乃至5いずれかに記載の燃焼炉廃棄物焼却
炉の燃焼方法。
6. A fuel pushing device for pushing a fuel from a fuel supply port into a furnace, a grate for burning the pushed fuel, and a grate sliding device for reciprocating a movable stage constituting the grate. In the combustion furnace waste incinerator provided with, when increasing the fuel supply amount, the speed of at least one of the pushing motion of the fuel pushing device or the reciprocating motion of the grate sliding device is increased, and the fuel supply amount is increased. 2. The fuel supply amount according to claim 1, wherein when the fuel supply amount is reduced, at least one of a pushing movement of the fuel pushing device and a reciprocating mobility of the grate sliding device is reduced. The combustion method for a combustion furnace waste incinerator according to any one of claims 1 to 5.
【請求項7】燃料の燃焼により生成した排ガスから熱回
収をして蒸気を発生させる熱回収器を有する燃焼炉にお
いて、 前記熱回収器の蒸気流量を測定する蒸気流量計と、 排ガス温度を測定する温度センサと、 前記蒸気流量計の測定値から、排ガス温度の時間変化に
対する蒸気流量の時間変化の遅れを加味した排ガス温度
の基準値を求め、該基準値と排ガス温度の測定値との比
較で燃料を制御する燃料供給制御装置とを備えた事を特
徴とする燃焼炉廃棄物焼却炉の燃焼装置。
7. A combustion furnace having a heat recovery unit for recovering heat from exhaust gas generated by fuel combustion to generate steam, a steam flow meter for measuring a steam flow rate of the heat recovery unit, and measuring an exhaust gas temperature. A temperature sensor to measure, from the measured value of the steam flow meter, to obtain a reference value of the exhaust gas temperature taking into account the delay of the time change of the steam flow with respect to the time change of the exhaust gas temperature, and compare the reference value and the measured value of the exhaust gas temperature And a fuel supply control device for controlling the fuel in the combustion furnace.
【請求項8】前記燃料供給制御装置が、 前記温度センサの測定値の時間平均をする温度時間平均
処理器と、 前記蒸気流量計の測定値と所定の設定値の偏差にゲイン
を乗じた値を前記温度時間平均処理器の出力値に加えた
値を基準値とし、前記温度センサの測定値と前記基準値
の偏差を求め、該偏差と所定の判断値の大きさを比較す
る上下限比較器と、 該上下限比較器の出力値を用いて前記燃料の供給量を制
御する制御装置とを備えた事を特徴とする請求項7記載
の燃焼炉廃棄物焼却炉の燃焼装置。
8. A temperature-time averaging processor for averaging the measured values of the temperature sensor over time, a value obtained by multiplying a deviation between a measured value of the steam flow meter and a predetermined set value by a gain. Is used as a reference value, a deviation between the measured value of the temperature sensor and the reference value is determined, and an upper and lower limit comparison is performed to compare the deviation with a predetermined judgment value. 8. The combustion device for a waste incinerator of a combustion furnace waste according to claim 7, further comprising a fuel cell, and a control device for controlling the fuel supply amount using an output value of the upper and lower limit comparator.
JP08385099A 1999-03-26 1999-03-26 Combustion method and combustion apparatus for combustion furnace waste incinerator Expired - Lifetime JP3716128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08385099A JP3716128B2 (en) 1999-03-26 1999-03-26 Combustion method and combustion apparatus for combustion furnace waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08385099A JP3716128B2 (en) 1999-03-26 1999-03-26 Combustion method and combustion apparatus for combustion furnace waste incinerator

Publications (2)

Publication Number Publication Date
JP2000274638A true JP2000274638A (en) 2000-10-03
JP3716128B2 JP3716128B2 (en) 2005-11-16

Family

ID=13814186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08385099A Expired - Lifetime JP3716128B2 (en) 1999-03-26 1999-03-26 Combustion method and combustion apparatus for combustion furnace waste incinerator

Country Status (1)

Country Link
JP (1) JP3716128B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002175A (en) * 2008-06-23 2010-01-07 Von Roll Umwelttechnik Ag Method for feeding material into boiler of refuse incineration facility
US8763540B2 (en) 2008-06-23 2014-07-01 Hitachi Zosen Inova Ag Method for injecting a substance into a boiler of a waste incineration plant
JP2020008248A (en) * 2018-07-11 2020-01-16 日鉄エンジニアリング株式会社 Stoker type waste power generation system and stabilization method of waste power generation amount of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002175A (en) * 2008-06-23 2010-01-07 Von Roll Umwelttechnik Ag Method for feeding material into boiler of refuse incineration facility
US8763540B2 (en) 2008-06-23 2014-07-01 Hitachi Zosen Inova Ag Method for injecting a substance into a boiler of a waste incineration plant
JP2020008248A (en) * 2018-07-11 2020-01-16 日鉄エンジニアリング株式会社 Stoker type waste power generation system and stabilization method of waste power generation amount of the same
JP7178814B2 (en) 2018-07-11 2022-11-28 日鉄エンジニアリング株式会社 Stoker type waste power generation system and method for stabilizing waste power generation amount

Also Published As

Publication number Publication date
JP3716128B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP6927127B2 (en) Waste incinerator method
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP2019178848A (en) Waste incinerator and waste incineration method
JP2000274638A (en) Burning method and apparatus for combustion furnace waste incinerator
JP6973246B2 (en) Waste incinerator method
JP6624451B2 (en) Waste treatment furnace equipment
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2012167836A (en) Heat recovery plant and operation control method therefor
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP2000046323A (en) Method for controlling combustion in combustion furnace and apparatus for controlling combustion
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP2002147732A (en) Garbage incinerator
JP3963925B2 (en) Secondary combustion method and apparatus in incineration system
JP2003302025A (en) Refuse gasification melting system
JP2003302026A (en) Waste pyrolysis apparatus and control method thereof
JPH1114027A (en) Method of controlling combustion of incinerator
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JP3607058B2 (en) Incinerator and operation control method for incinerator
JP2006125759A (en) Operation control device for incinerator
JP3750379B2 (en) Waste gasification and melting treatment system
JP2000266324A (en) Waste pyrolysis equipment
JPH1047634A (en) Combustion control device of garbage incinerator
JP2733201B2 (en) Garbage incineration equipment
JP3315036B2 (en) Combustion control device of garbage incinerator
JPH0960828A (en) Boiler of incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050624

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term