[go: up one dir, main page]

JPH11121215A - Manufacture of rare-earth magnetic powder - Google Patents

Manufacture of rare-earth magnetic powder

Info

Publication number
JPH11121215A
JPH11121215A JP9282351A JP28235197A JPH11121215A JP H11121215 A JPH11121215 A JP H11121215A JP 9282351 A JP9282351 A JP 9282351A JP 28235197 A JP28235197 A JP 28235197A JP H11121215 A JPH11121215 A JP H11121215A
Authority
JP
Japan
Prior art keywords
powder
phase
rare earth
rαfe100
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9282351A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
飛世  正博
Hiroshi Okajima
弘 岡島
Katsunori Iwasaki
克典 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9282351A priority Critical patent/JPH11121215A/en
Publication of JPH11121215A publication Critical patent/JPH11121215A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the magnetic characteristics by suppressing the formation of the magnetic-characteristic obstructing phase such as α Fe in mother alloy provided for nitriding, enhancing the content rate of the minute grain diameter in R3 (Fe, M, and B)29 Ny phase or R3 (Pe and M)29 Ny phase, and sharpening the distribution of particle diameter of the mother alloy provided for nitriding. SOLUTION: Alloy melted liquid, the composition components of which is RαFe100-(α+β+γ)MβBγ(R is one kind or two or more kinds of any of rare- earth elements including Y, M is one kind or two or more kinds of any of Al, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta and W, 5<=α<=18, 1<=β<=50 and 0.1<=γ<=5) is cast into a cast body having the plate thickness in the range of 0.03-10 nm by a strip cast method. Then, the body is crushed after the body has been made to be the powder body, and nitriding is performed. The isotropic magnetic material powder, wherein R3 (Fe, M and B)29 Ny is included as the main phase, and the composition of the components is RαFe100-(α+β+γ+$δ) MβBγNδ (5<=α<=18, 1<=β<=50, 0.1<=γ<=5 and 4<=δ<=30), can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はストリップキャスト
法を用いたR−Fe−M−N系、R−Fe−M−B−N
系磁石粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-MN system using a strip casting method, and an R-Fe-MBN.
The present invention relates to a method for producing a system magnet powder.

【0002】[0002]

【従来の技術】従来より、等方性希土類ボンド磁石用磁
粉として超急冷したNd-Fe-B系磁粉が多用されてい
るが、キュリー温度が300℃前後と低く、固有保磁力
(以後iHcと記す。)の温度係数(η)が大きいため
に高温での使用が制限されてきた。最近、Sm2Fe17
化合物が窒素を吸蔵することによりNd2Fe14B化合
物よりも160℃も高い470℃というキュリー温度を示すと
ともに、その異方性磁界もNd2Fe14B化合物の異方
性磁界(75kOe)を大きく上回る260kOeになることが報
告されてボンド磁石用磁粉として工業化が検討されてい
る。Sm2Fe17の窒化物Sm2Fe17xはガス窒化法
等で作製されるが、Sm2Fe17x磁粉は粒径を数μm
にしないと5kOe以上の高いiHcが得られないととも
に、この粒径の磁粉は容易に酸化して磁石特性を劣化さ
せ、かつ発火の危険性を伴うので現在のところ実用化が
困難である。この数μmのSm2Fe17x磁粉はボンド
磁石に成形する際、成形体密度を上げることができず高
エネルギー積の希土類ボンド磁石を得られないことや、
成形性が非常に悪く作業効率を著しく低下させるという
問題を有している。また、メカニカルアロイング法など
の特殊な製造方法で高いiHcが得られることが報告さ
れているが、この方法は実験室規模の少量生産に適する
ものの、コストパーフォーマンスが劣り量産に至ってい
ない。さらに、Sm2Fe17x窒化物以外にもTbCu
7型の結晶構造を有したSmFe7合金を超急冷法で作製
し、その後窒化することによってSm2Fe7xなる等
方性の超急冷磁石粉末を作製することが特開平8−31
6018に開示されているが、この合金は平衡状態では
存在しない準安定相であるために高精度の急冷速度制御
技術を要し、生産上の課題を残している。
2. Description of the Related Art Conventionally, ultra-quenched Nd-Fe-B-based magnetic powder has been frequently used as magnetic powder for isotropic rare earth bonded magnets, but its Curie temperature is as low as about 300 ° C. ), The use at high temperatures has been limited. Recently, Sm 2 Fe 17
Together they show a Curie temperature of 160 ° C. is high 470 ° C. than Nd 2 Fe 14 B compound by a compound to absorb nitrogen, the anisotropic magnetic field (75kOe) of the anisotropic magnetic field also Nd 2 Fe 14 B compound It is reported to be 260 kOe, which is much higher, and industrialization as a magnetic powder for bonded magnets is being studied. Although nitride Sm 2 Fe 17 N x of Sm 2 Fe 17 is produced by a gas nitriding method or the like, Sm 2 Fe 17 N x magnetic powder number and particle size μm
Otherwise, a high iHc of 5 kOe or more cannot be obtained, and magnetic particles of this particle size are easily oxidized, deteriorating the magnet characteristics, and are accompanied by the danger of ignition. When the Sm 2 Fe 17 N x magnetic powder of several μm is formed into a bonded magnet, the density of the formed body cannot be increased and a rare-earth bonded magnet having a high energy product cannot be obtained.
There is a problem that the moldability is very poor and the working efficiency is significantly reduced. Although it has been reported that high iHc can be obtained by a special manufacturing method such as a mechanical alloying method, this method is suitable for small-scale production on a laboratory scale, but its cost performance is inferior and has not led to mass production. Further, besides Sm 2 Fe 17 N x nitride, TbCu
Japanese Patent Application Laid-Open No. 8-31 discloses a method of producing an SmFe 7 alloy having a 7- type crystal structure by a super-quenching method and then nitriding to produce an isotropic ultra-quenched magnet powder of Sm 2 Fe 7 N x.
Although disclosed in No. 6018, since this alloy is a metastable phase that does not exist in an equilibrium state, it requires high-precision quenching rate control technology, and has a problem in production.

【0003】最近報告されたR3(Fe,M)29合金も
その窒化物R3(Fe,M)29yが一軸磁気異方性を示
すことから永久磁石材料として有望であることが示唆さ
れている。この合金系のSm3(Fe,Ti)29y合金
をボールミルで平均粒径15μmまで微粉砕することに
よって保磁力を高められることがBo-Ping Hu et al.
(J.Phys.:Condens.Matter 6(1994)L197-L200)によって
報告されている。しかし、このものも平均粒径が15μ
mと小さいため成形体密度の不足や成形性が悪い等の理
由でボンド磁石用磁粉として実用化することは難しい。
The recently reported R 3 (Fe, M) 29 alloy is also promising as a permanent magnet material because its nitride R 3 (Fe, M) 29 N y exhibits uniaxial magnetic anisotropy. Have been. Bo-Ping Hu et al. Found that the coercive force can be increased by finely pulverizing this alloy-based Sm 3 (Fe, Ti) 29 Ny alloy with a ball mill to an average particle size of 15 μm.
(J. Phys .: Condens. Matter 6 (1994) L197-L200). However, this also has an average particle size of 15 μm.
It is difficult to put it into practical use as a magnetic powder for bonded magnets because of the small molded body density and poor moldability due to the small m.

【0004】また、特開平8-111305ではこのR3
(Fe,M)29合金を用いてNまたはCを導入すること
により10〜200μmの粉末で高い保磁力が得られることが
開示され、R3(Fe,M)29母合金を作製した後にア
ンモニアガスあるいはメタンガスを用いて窒化処理を行
っているが、窒化処理に供する母合金は従来の鋳造法
(高周波溶解法)を用いて作製しており、その後1150℃
以下で均質化処理を行うことを提案している。しかし、
本発明者らの検討によれば、上記合金の従来の鋳造体に
はαFe等の軟磁性相の析出が顕著に見られ、このもの
を用いて最終的に得られる窒化物磁石粉末粒子にαFe
等が残存し、磁気特性を低下させていることがわかっ
た。さらに、従来の鋳造体に析出したαFeを母合金に
再固溶させるため上記の1150℃以下での均質化処理を行
うと母合金のR3(Fe,M)29相の結晶粒径の粗大化
を招き、このものを窒化して得られたR3(Fe,M)
29y相の磁気特性が劣化するという問題がある。
In Japanese Patent Application Laid-Open No. Hei 8-111305, this R 3
(Fe, M) high coercivity in powder 10~200μm by introducing N or C with a 29 alloy is disclosed to be obtained, ammonia after producing the R 3 (Fe, M) 29 master alloy Although nitriding is performed using gas or methane gas, the mother alloy to be subjected to nitriding is manufactured using the conventional casting method (high-frequency melting method), and then 1150 ° C.
It is proposed below to perform a homogenization process. But,
According to the study of the present inventors, precipitation of a soft magnetic phase such as αFe is remarkably observed in a conventional casting of the above alloy, and αFe is added to a nitride magnet powder particle finally obtained by using this.
It has been found that these properties remain and lower the magnetic properties. Further, when the above-mentioned homogenization treatment at 1150 ° C. or less is performed to re-dissolve αFe precipitated in the conventional casting into the mother alloy, the crystal grain size of the R 3 (Fe, M) 29 phase of the mother alloy becomes large. R 3 (Fe, M) obtained by nitriding this
There is a problem that the magnetic characteristics of the 29 Ny phase are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】上記従来の問題を踏ま
えて、本発明の課題は、窒化に供する母合金において窒
化処理により磁石主相を構成し得ないαFe等の磁気特
性阻害相の生成を抑制するとともにR3(Fe,M,
B)29相またはR3(Fe,M)29相の結晶粒径の粗大
化を抑えることにより微細な結晶粒径を有したR3(F
e,M,B)29y相またはR3(Fe,M)29y相の
含有率を高め、かつ窒化に供する母合金粉末の粒径分布
をシャープなものとして各粉末粒子に略均一な窒化物を
形成せしめ良好な磁気特性が得られるようにした希土類
磁石粉末の製造方法を提供することである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, an object of the present invention is to form a magnetic property-inhibiting phase such as αFe which cannot form a magnet main phase by a nitriding treatment in a mother alloy to be subjected to nitriding. And R 3 (Fe, M,
B) R 3 (F) having a fine grain size by suppressing coarsening of the grain size of the 29 phase or the R 3 (Fe, M) 29 phase
e, M, B) 29 Ny phase or R 3 (Fe, M) 29 Ny phase is increased, and the particle size distribution of the master alloy powder to be subjected to nitriding is sharpened to be substantially uniform in each powder particle. It is an object of the present invention to provide a method for producing a rare earth magnet powder in which an excellent nitride is formed so that good magnetic properties can be obtained.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、成
分組成がRαFe100-(α+β+γ)MβBγ(RはYを含
めた希土類元素のいずれか1種または2種以上であり、
MはAl、Ti、V、Cr、Mn、Cu、Ga、Zr、
Nb、Mo、Hf、Ta、Wのいずれか1種または2種
以上、α、β、γは原子百分率で下記の範囲にある。)
の合金溶湯をストリップキャスト法により板厚0.03〜10
mmの鋳造体に鋳造後、粉砕して粉体となした後窒化する
ことにより、R3(Fe,M,B)29yを主相として含
み、成分組成がRαFe100-(α+β+γ+δ)MβBγN
δ(α、β、γ、δは原子百分率で下記の範囲にあ
る。)である等方性の磁石材料粉末を得ることを特徴と
する希土類磁石粉末の製造方法である。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 本発明により、得られたR−Fe−M−B−N系合金の
鋳造体においてαFe等の軟磁性相の析出が抑えられ、
窒化に供する母合金粉末の粒径分布をシャープにするこ
とができる。
That is, according to the present invention, there is provided a composition comprising RαFe100- (α + β + γ) MβBγ (where R is one or more of rare earth elements including Y,
M is Al, Ti, V, Cr, Mn, Cu, Ga, Zr,
Any one or more of Nb, Mo, Hf, Ta, and W, α, β, and γ are in the following ranges in atomic percentage. )
0.03 to 10 of the molten alloy by strip casting
After casting the castings of mm, by nitriding after without a powder by crushing, wherein R 3 (Fe, M, B ) the 29 N y as a main phase, component composition is RαFe100- (α + β + γ + δ) MβBγN
A method for producing a rare earth magnet powder, characterized by obtaining an isotropic magnet material powder having δ (α, β, γ, and δ are in the following range in atomic percentage). 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 54 4 ≦ δ ≦ 30 According to the present invention, a soft magnetic phase such as αFe in the cast of the R-Fe-MBN-based alloy obtained according to the present invention. Precipitation is suppressed,
The particle size distribution of the mother alloy powder to be subjected to nitriding can be sharpened.

【0007】また、本発明は、成分組成がRαFe100-
(α+β)Mβ(RはYを含めた希土類元素のいずれか1
種または2種以上であり、MはAl、Ti、V、Cr、
Mn、Cu、Ga、Zr、Nb、Mo、Hf、Ta、W
のいずれか1種または2種以上、α、βは原子百分率で
下記の範囲にある。)の合金溶湯をストリップキャスト
法により板厚0.03〜10mmの鋳造体に鋳造後、粉砕して粉
体となした後窒化することにより、R3(Fe,M)29
yを主相として含み、成分組成がRαFe100-(α+β
+δ)MβNδ(α、β、δは原子百分率で下記の範囲
にある。)である等方性の磁石材料粉末を得ることを特
徴とする希土類磁石粉末の製造方法である。 5≦α≦18 1≦β≦50 4≦δ≦30 本発明により、得られたR−Fe−M−N系合金の鋳造
体においてαFe等の軟磁性相の析出が抑えられるとと
もに、窒化に供する母合金粉末の粒径分布をシャープに
することができる。
Further, according to the present invention, the component composition is RαFe100-
(α + β) Mβ (R is any one of the rare earth elements including Y
M or Al, Ti, V, Cr,
Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W
Α or β is in the following range in atomic percentage. ) Is cast into a casting having a thickness of 0.03 to 10 mm by strip casting, crushed into powder, and then nitrided to obtain R 3 (Fe, M) 29
Include N y as a main phase, component composition is RαFe100- (α + β
+ Δ) MβNδ (α, β, and δ are in the following range in atomic percentages): a method for producing a rare earth magnet powder, characterized by obtaining an isotropic magnet material powder. 5 ≦ α ≦ 18 1 ≦ β ≦ 504 4 ≦ δ ≦ 30 According to the present invention, precipitation of a soft magnetic phase such as αFe can be suppressed in the obtained R-Fe-MN-based alloy casting, and nitriding can be prevented. The particle size distribution of the provided mother alloy powder can be sharpened.

【0008】本発明においてはストリップキャスト法に
より鋳造した鋳造体を真空中または不活性ガス雰囲気中
に1000〜1200℃×0.5〜48時間加熱保持する均質化処理
を行った後、水素処理により母合金のR3(Fe,M,
B)29相またはR3(Fe,M)29相を微細化し、窒化
することが好ましい。このように処理することにより、
αFe等の生成を抑え、磁石特性に有効に寄与する均一
な窒化物を形成しているとともに微細結晶のR3(F
e,M,B)29y相またはR3(Fe,M)29y相を
有した希土類磁石粉末を得ることができる。
In the present invention, the cast body cast by the strip cast method is subjected to a homogenization treatment in which the cast body is heated and maintained in a vacuum or an inert gas atmosphere at a temperature of 1000 to 1200 ° C. for 0.5 to 48 hours, and then subjected to hydrogen treatment. R 3 (Fe, M,
B) It is preferable to make the 29 phase or the R 3 (Fe, M) 29 phase finer and nitride it. By processing in this way,
It suppresses the formation of αFe and the like, forms a uniform nitride that effectively contributes to the magnet properties, and has a fine crystal R 3 (F
(e, M, B) 29 Ny phase or R 3 (Fe, M) 29 Ny phase can be obtained as a rare earth magnet powder.

【0009】上記希土類元素RとしてはY、La、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb、Luのいずれか1種または2種
以上を含めばよく、ミッシュメタルやジジム等の2種以
上の希土類元素の混合物を用いてもよい。好ましい希土
類元素RとしてはY、Ce、Pr、Nd、Sm、Gd、
Dy、Erのいずれか1種または2種以上であり、さら
に好ましくはY、Ce、Pr、Nd、Smのいずれか1
種または2種以上であり、特に好ましいのはSmであ
る。さらに、R成分の50原子%以上好ましくは70%
以上をSmとすることにより、際立って高いiHcが得
られる。ここで、希土類元素Rは工業的生産により入手
可能な純度でよく、製造上混入が避けられないO、H、
C、Al、Si、Na、Mg、Ca等の不純物元素が含
有されていてもよい。本発明による希土類磁石材料はR
成分を5〜18原子%含有する。R成分が5原子%未満
になると鉄成分を多く含む軟磁性相の析出を促進してi
Hcが低下し、18原子%を越えると非磁性のRリッチ
化合物が析出して飽和磁束密度を低下させる。さらに好
ましいR成分範囲は6〜12原子%である。
The rare earth element R may be Y, La, C
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
At least one of o, Er, Tm, Yb, and Lu may be included, and a mixture of two or more rare earth elements such as misch metal and dymium may be used. Preferred rare earth elements R include Y, Ce, Pr, Nd, Sm, Gd,
Any one or more of Dy and Er, and more preferably any one of Y, Ce, Pr, Nd and Sm
Species or a combination of two or more, and particularly preferred is Sm. Furthermore, 50 atomic% or more, preferably 70% of the R component
By setting the above to Sm, a remarkably high iHc can be obtained. Here, the rare-earth element R may have a purity that can be obtained by industrial production, and O, H,
Impurity elements such as C, Al, Si, Na, Mg, and Ca may be contained. The rare earth magnet material according to the present invention has R
Contains 5 to 18 atomic% of a component. When the R component is less than 5 atomic%, the precipitation of a soft magnetic phase containing a large amount of iron component is promoted and i
When Hc decreases and exceeds 18 atomic%, a nonmagnetic R-rich compound precipitates and lowers the saturation magnetic flux density. A more preferable range of the R component is 6 to 12 atomic%.

【0010】本発明による希土類磁石材料はFeを50
原子%以上含有することが好ましい。Feが50%未満
では磁化が小さくなり好ましくない。
The rare earth magnet material according to the present invention contains 50 Fe.
It is preferable to contain at least atomic%. If Fe is less than 50%, the magnetization becomes small, which is not preferable.

【0011】上記M元素はR3(Fe,M,B)29相ま
たはR3(Fe,M)29相を安定させ、窒化処理後の磁
石主相の含有率を高める作用を有している。M元素の添
加量はM元素の種類毎に異なるが、M元素のいずれでも
50原子%を越えて添加すると結晶構造がThMn12
に変化しiHcが非常に小さくなり、1原子%未満では
Th2Zn17型を有した軟磁性相の存在比率が増大し相
対的にR3(Fe,M,B)29y相またはR3(Fe,
M)29y相の含有率が低下する。よってM元素の好ま
しい添加量は1〜50原子%である。好ましいM元素は
Ti、Mn、Cr、Zr、Vのいずれか1種または2種
以上である。
The element M has the effect of stabilizing the R 3 (Fe, M, B) 29 phase or the R 3 (Fe, M) 29 phase and increasing the content of the magnet main phase after nitriding. . The addition amount of the M element varies depending on the type of the M element. However, if the addition of any of the M elements exceeds 50 atomic%, the crystal structure changes to a ThMn 12 type, iHc becomes very small, and if less than 1 atomic%, the Th becomes less. The abundance ratio of the soft magnetic phase having the 2 Zn 17 type increases, and the relative proportion of the R 3 (Fe, M, B) 29 Ny phase or R 3 (Fe,
M) The content of the 29 Ny phase decreases. Therefore, the preferable addition amount of the element M is 1 to 50 atomic%. Preferred M elements are any one or more of Ti, Mn, Cr, Zr and V.

【0012】R3(Fe,M,B)29相またはR3(F
e,M)29相に導入される窒素Nは4〜30原子%とす
ることが好ましい。窒素Nが4原子%未満では磁化が低
くなるとともに、30原子%を越えると保磁力を向上さ
せることが困難である。より好ましい窒素Nの含有量は
10〜20原子%である。
R 3 (Fe, M, B) 29 phase or R 3 (F
e, M) The nitrogen N introduced into the 29 phase is preferably 4 to 30 atomic%. If the nitrogen N is less than 4 at%, the magnetization is low, and if it exceeds 30 at%, it is difficult to improve the coercive force. More preferably, the content of nitrogen N is 10 to 20 atomic%.

【0013】本発明による希土類磁石材料は、Bを0.
1〜5原子%含有することが好ましい。Bが0.1原子
%未満または5原子%を超えると窒化処理時においてR
3(Fe,M,B)29y相の生成が不安定となる。
In the rare earth magnet material according to the present invention, B is set to 0.1.
It is preferable to contain 1 to 5 atomic%. If B is less than 0.1 at.% Or more than 5 at.
3 (Fe, M, B) 29 N y phase generation becomes unstable.

【0014】本発明による希土類磁石材料において、F
eの0.01〜30原子%をCoおよび/またはNiで
置換することが好ましい。Coおよび/またはNiの導
入によりキュリー温度が上昇し、iHcの温度係数
(η)が向上する。Coおよび/またはNiによるFe
置換量のより好ましい範囲は1〜20原子%である。置
換量が30原子%を越えると飽和磁束密度およびiHc
の低下を招来するとともに、1原子%未満ではCo/お
よびまたはNiの添加効果が認められない。
In the rare earth magnet material according to the present invention, F
It is preferable to replace 0.01 to 30 atomic% of e with Co and / or Ni. The Curie temperature rises by introducing Co and / or Ni, and the temperature coefficient (η) of iHc improves. Fe by Co and / or Ni
A more preferable range of the substitution amount is 1 to 20 atomic%. If the substitution amount exceeds 30 atomic%, the saturation magnetic flux density and iHc
When the content is less than 1 atomic%, the effect of adding Co and / or Ni is not recognized.

【0015】本発明による希土類磁石材料粉末の平均粒
径は20〜500μmとすることが好ましい。20μm
未満では酸化による品質劣化が顕著となり、500μm
を超えると均一にR−Fe−M−B−N系窒化物、R−
Fe−M−N系窒化物が形成されない不具合を招来す
る。より好ましい粉末の平均粒径は30〜400μmで
ある。本発明において、窒化物磁石主相の結晶粒径範囲
を0.05〜1.0μmとすることが好ましい。0.0
5μm未満のものの工業化は実質的に困難であり、1.
0μmを越えるとiHcが顕著に低下する。よい好まし
い結晶粒径範囲は0.1〜0.5μmである。
The average particle size of the rare earth magnet material powder according to the present invention is preferably 20 to 500 μm. 20 μm
If it is less than 500 μm, quality deterioration due to oxidation becomes remarkable.
Is exceeded, the R-Fe-MBN-based nitride, R-
This causes a problem that the Fe-M-N-based nitride is not formed. The more preferable average particle diameter of the powder is 30 to 400 μm. In the present invention, it is preferable that the crystal grain size range of the nitride magnet main phase is 0.05 to 1.0 μm. 0.0
Industrialization of materials having a size of less than 5 μm is substantially difficult.
If it exceeds 0 μm, iHc is significantly reduced. A preferred range of the crystal grain size is 0.1 to 0.5 μm.

【0016】本発明によれば、希土類磁石材料における
3(Fe,M,B)29y相の含有率を面積率で60%
以上好ましくは75%以上とすることができる。また、
本発明によれば、希土類磁石材料におけるR3(Fe,
M)29y相の含有率を面積率で50%以上好ましくは
60%以上とすることができる。上記面積率向上がiH
cの向上に密接に関連している。
According to the present invention, the content of the R 3 (Fe, M, B) 29 Ny phase in the rare earth magnet material is set to 60% in area ratio.
It is preferably at least 75%. Also,
According to the present invention, R 3 (Fe,
M) The content of the 29 Ny phase can be 50% or more, preferably 60% or more in terms of area ratio. The above area ratio improvement is iH
It is closely related to the improvement of c.

【0017】本発明において、窒化処理を行う前に、必
要に応じて母合金粉末の粉砕、分級を行い粉末の粒径分
布を適宜調整することが均一な窒化処理を行うために好
ましい。また、本発明では公知の窒化手段(例えば、ガ
ス窒化法、プラズマ窒化法、イオン窒化法、塩浴窒化法
等。)を採用可能である。実用的なガス窒化法の適用例
を説明すると、2〜10atmのN2ガスまたはH2ガスが1〜95
モル%で残部がN2ガスからなる混合ガスまたはNH3ガス
が1〜50モル%で残部がH2ガスからなる混合ガス中に本
発明による母合金の塊または粉末をおいて400〜600℃×
0.1〜30時間保持することにより、本発明による希土類
磁石粉末が得られる。
In the present invention, it is preferable to appropriately adjust the particle size distribution of the mother alloy powder by pulverizing and classifying the powder as necessary before performing the nitriding treatment in order to perform a uniform nitriding treatment. In the present invention, known nitriding means (for example, gas nitriding, plasma nitriding, ion nitriding, salt bath nitriding, etc.) can be adopted. To explain an application example of a practical gas nitriding method, 2 to 10 atm of N 2 gas or H 2 gas is 1 to 95 atm.
The mass or powder of the master alloy according to the present invention is placed in a mixed gas consisting of 1 mol% and the balance consisting of N 2 gas or a mixture gas consisting of 1 to 50 mol% of NH 3 gas and the balance consisting of H 2 gas. ×
By holding for 0.1 to 30 hours, the rare earth magnet powder according to the present invention is obtained.

【0018】[0018]

【発明の実施の形態】本発明によれば、単ロ−ルあるい
は双ロ−ル方式等のストリップキャスト法により、αF
eの析出が抑えられた状態の鋳造体が得られ、この鋳造
体を用いることにより後工程の均質化処理、水素処理を
経て粉砕を行ったときに母合金粉末の粒径分布が急峻で
かつ母合金結晶を微細化することができ、引き続き行う
窒化処理により磁気特性を発現する窒化物主相を非常に
高い含有率で粉末粒子内にほぼ均一に形成したものを得
ることができる。以下、本発明を実施例により説明する
がこれら実施例により本発明が限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, αF is obtained by a strip cast method such as a single roll or twin roll system.
A cast body in which precipitation of e is suppressed is obtained, and by using this cast body, the particle size distribution of the mother alloy powder is sharp when the pulverization is performed through homogenization treatment and hydrogen treatment in a later step, and The mother alloy crystal can be made finer, and a nitride main phase exhibiting magnetic properties can be formed with a very high content in the powder particles substantially uniformly by a subsequent nitriding treatment. Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0019】(実施例1〜7)純度99.9%のSm、
Fe、Ti、Bを用いて表1の窒化物磁石粉末に対応し
た母合金組成に配合後、アルゴンガス雰囲気下の高周波
溶解炉で溶解した合金溶湯を直径300mmの銅製ロー
ル2本を設置した双ロール式ストリップキャスターを用
いて、板厚2mmの薄片状鋳造片を得た。この鋳造片の
X線回折をCu−Kα線を用いて行ったところ回折ピー
クはR3(Fe,M,B)29相として指数付けができる
こと、すなわちαFe等の軟磁性相の回折ピークは認め
られなかった。このSm-Fe-Ti−B系磁性粉を1a
tmの水素ガス中、800℃で1時間加熱保持し、さら
に水素分圧5×10-2Torrにて800℃×1時間保
持し、脱水素処理を行い粉末化した。次に前記粉体を1
atmの窒素ガス中に450℃×5時間保持した後冷却
した。続いてArガス気流中で400℃×0.5時間の
アニールを行った。こうして得られた実施例1〜7のS
m-Fe-Ti−B−N系窒化物磁石粉末について、組
成、粉末の平均粒径(dp)、磁石主相の平均結晶粒径
(dc)および面積率、25℃における飽和磁化の強さ
(σ)とiHc、25〜100℃におけるiHcの温度
係数(η)を測定した結果を表1に示す。dpは日本電
子(株)製の粒度分布測定装置(ヘロス・ロードス)で測
定した。面積率は、各実施例の粉末を各々用いて光学顕
微鏡観察用試料を作成し、それら各試料について倍率1
000倍の光学顕微鏡写真を撮影し、各々の写真をNIRE
CO社製画像処理装置(商品名LUZEX2)に設けてあるスキ
ャナーで読み込み画像処理して求めたものであり、観察
された各々の全視野の組織における磁石主相の面積率を
示している。dcは上記観察用試料の任意断面を顕微鏡
観察して、R3(Fe,M,B)29相において任意に選
んだ40個の結晶粒の各最大粒径を測定し、加算平均し
た値である。
(Examples 1 to 7) Sm having a purity of 99.9%,
After mixing Fe, Ti, and B into a mother alloy composition corresponding to the nitride magnet powder shown in Table 1, the molten alloy melted in a high-frequency melting furnace under an argon gas atmosphere was installed on two copper rolls having a diameter of 300 mm. A flaky cast piece having a plate thickness of 2 mm was obtained using a roll-type strip caster. When X-ray diffraction of this cast piece was performed using Cu-Kα ray, the diffraction peak could be indexed as R 3 (Fe, M, B) 29 phase, that is, the diffraction peak of soft magnetic phase such as αFe was recognized. I couldn't. This Sm-Fe-Ti-B based magnetic powder is 1a
It was heated and maintained at 800 ° C. for 1 hour in a hydrogen gas of tm, and further maintained at 800 ° C. for 1 hour at a hydrogen partial pressure of 5 × 10 −2 Torr to perform dehydrogenation treatment to obtain a powder. Next, add the powder
The sample was kept in a nitrogen gas of atm at 450 ° C. × 5 hours and then cooled. Subsequently, annealing was performed at 400 ° C. for 0.5 hour in an Ar gas stream. S of Examples 1 to 7 thus obtained
About m-Fe-Ti-BN nitride magnet powder, composition, average particle size (dp) of powder, average crystal grain size (dc) and area ratio of magnet main phase, intensity of saturation magnetization at 25 ° C Table 1 shows the results of measuring (σ) and iHc and the temperature coefficient (η) of iHc at 25 to 100 ° C. dp was measured with a particle size distribution analyzer (Heros Rhodes) manufactured by JEOL Ltd. The area ratio was determined by preparing samples for optical microscope observation using the powders of the respective examples, and applying a magnification of 1 to each sample.
Photograph the optical microscope at a magnification of 000x and use NIRE
It is obtained by reading and image processing with a scanner provided in an image processing apparatus (trade name LUZEX2) manufactured by CO Company, and shows the area ratio of the main phase of the magnet in the observed tissues in all fields of view. dc is a value obtained by observing an arbitrary cross section of the above observation sample with a microscope, measuring the maximum particle size of each of 40 crystal grains arbitrarily selected in the R 3 (Fe, M, B) 29 phase, and averaging. is there.

【0020】(比較例1〜7)純度99.9%のSm、
Fe、Ti、Bを用いて表1の窒化物磁石粉末に対応し
た母合金組成に配合後、アルゴンガス雰囲気下の高周波
溶解炉で溶解した合金溶湯を、50mmx100mmx
150mmの鋳型に鋳込んで作製した鋳造塊を約30m
m角以下に破断し1150℃x50時間の均一化処理を
行った。次に実施例1と同じ条件で水素中加熱および脱
水素処理を行った後、窒化処理を行い比較例1〜7の窒
化物磁石粉末を得た。以後は実施例1〜7と同様にして
組成、粉末の平均粒径(dp)、磁石主相の平均結晶粒
径(dc)および面積率、25℃における飽和磁化の強
さ(σ)およびiHc、25〜100℃におけるiHc
の温度係数(η)を測定した結果を表1に示す。
(Comparative Examples 1 to 7) Sm having a purity of 99.9%,
After mixing Fe, Ti, and B into a mother alloy composition corresponding to the nitride magnet powder in Table 1, the alloy melt melted in a high-frequency melting furnace under an argon gas atmosphere was subjected to 50 mm × 100 mm ×
Casting mass produced by casting into a 150 mm mold is about 30 m
The film was broken to an m-square or less and subjected to a homogenization treatment at 1150 ° C. × 50 hours. Next, after performing heating and dehydrogenation treatment in hydrogen under the same conditions as in Example 1, nitriding treatment was performed to obtain nitride magnet powders of Comparative Examples 1 to 7. Thereafter, in the same manner as in Examples 1 to 7, the composition, the average particle diameter (dp) of the powder, the average crystal particle diameter (dc) and the area ratio of the magnet main phase, the intensity (σ) of the saturation magnetization at 25 ° C., and iHc IHc at 25-100 ° C
Table 1 shows the results of measuring the temperature coefficient (η) of

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例8〜11)表2の窒化物磁石粉末
に対応した母合金組成とし、双ロール式ストリップキャ
スターを用いて板厚9mmの薄片状鋳造片を得た以外は
実施例1と同様にして表2に示す実施例8〜11の窒化
物磁石粉末を得た。この鋳造片のX線回折をCu−Kα
線を用いて行ったところ回折ピークはR3(Fe,M)
29相として指数付けができること、すなわちαFe等の
軟磁性相の回折ピークは認められなかった。こうして得
られた実施例8〜11のSm-Fe-Ti−N系窒化物磁
石粉末はいずれもdc=0.6μm、磁石主相の面積率
は60%以上であり、組成、粉末粒径分布とdp、25
℃における角形比(Hk/iHc)と飽和磁化の強さ(σ)、i
Hcを測定した結果を表2に示す。ここでHkは磁化曲線
の第2象限において磁化が残留磁化(印加外部磁界=0
のときの磁化の値)の90%になるときの磁界の強さと
した。
(Examples 8 to 11) The same procedure as in Example 1 was carried out except that a mother alloy composition corresponding to the nitride magnet powder shown in Table 2 was used, and a flaky cast piece having a thickness of 9 mm was obtained using a twin-roll strip caster. Similarly, nitride magnet powders of Examples 8 to 11 shown in Table 2 were obtained. X-ray diffraction of this cast piece was determined by Cu-Kα
The diffraction peak was R 3 (Fe, M).
Indexing was possible as 29 phases, that is, no diffraction peak of a soft magnetic phase such as αFe was observed. The Sm-Fe-Ti-N-based nitride magnet powders of Examples 8 to 11 thus obtained each had dc = 0.6 µm, the area ratio of the magnet main phase was 60% or more, and the composition and powder particle size distribution. And dp, 25
Squareness ratio (Hk / iHc) at ℃ and saturation magnetization intensity (σ), i
Table 2 shows the results of measuring Hc. Here, Hk is such that the magnetization is the remanent magnetization (applied external magnetic field = 0) in the second quadrant of the magnetization curve.
The value of the magnetic field is 90% of the value of the magnetization at the time of (1).

【0023】(比較例8〜11)純度99.9%のS
m、Fe、Ti、Bを用いて表2の窒化物磁石粉末に対
応した母合金組成に配合後、アルゴンガス雰囲気下の高
周波溶解炉で溶解した合金溶湯を、50mmx100m
mx150mmの鋳型に鋳込んで作製した鋳造塊を約3
0mm角以下に破断し1150℃x50時間の均一化処
理を行った。次に実施例1と同じ条件で水素中加熱およ
び脱水素処理を行った後、窒化処理を行い、比較例8〜
11の窒化物磁石粉末(いずれもdcは1μmを越えて
おり、磁石主相の面積率は49%である。)を得た。以
後は実施例8〜11と同様にして評価した結果を表2に
示す。
(Comparative Examples 8 to 11) S having a purity of 99.9%
m, Fe, Ti, and B were blended into a mother alloy composition corresponding to the nitride magnet powder in Table 2 and then melted in a high-frequency melting furnace under an argon gas atmosphere to obtain a 50 mm × 100 m
Approximately 3 ingots cast by casting into a mx150mm mold
It was fractured to 0 mm square or less, and a homogenization treatment at 1150 ° C. × 50 hours was performed. Next, after performing heating and dehydrogenation treatment in hydrogen under the same conditions as in Example 1, nitriding treatment was performed.
As a result, 11 nitride magnet powders (each having a dc exceeding 1 μm and an area ratio of the magnet main phase being 49%) were obtained. Thereafter, the results of evaluation in the same manner as in Examples 8 to 11 are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表1、表2の結果から、ストリップキャス
ト材を用いることにより、磁石主相の面積率が高く、微
細結晶粒であるとともに、粒径分布が狭い窒化物磁石粉
末を得ることができ、ボンド゛磁石用粉末として実用に
耐える高い磁気特性を有していることがわかる。
From the results shown in Tables 1 and 2, it is possible to obtain a nitride magnet powder having a high area ratio of the magnet main phase, fine crystal grains and a narrow particle size distribution by using the strip cast material. It can be seen that the powder has high magnetic properties that can be practically used as a powder for bond-magnet.

【0026】上記実施例に限定されず、本発明によれ
ば、ストリップキャスト法により得られた鋳造体の厚み
が0.03〜10mmの範囲にあるものを用いることによって、
上記比較例に比べて格段に良好な磁気特性を有した希土
類窒化物磁石粉末を得ることができる。
According to the present invention, the present invention is not limited to the above-described embodiment, and the thickness of the cast obtained by the strip casting method is in the range of 0.03 to 10 mm.
It is possible to obtain a rare earth nitride magnet powder having much better magnetic properties than the comparative example.

【0027】[0027]

【発明の効果】本発明によれば、R3(Fe,M,B)
29y相またはR3(Fe,M)29y相の含有率が高く
かつ微細結晶粒であり、粉末の粒径分布のシャープな希
土類磁石粉末を提供することができる。
According to the present invention, R 3 (Fe, M, B)
A rare earth magnet powder having a high content of 29 N y phase or R 3 (Fe, M) 29 N y phase and having fine crystal grains and a sharp particle size distribution can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成分組成がRαFe100-(α+β+γ)Mβ
Bγ(RはYを含めた希土類元素のいずれか1種または
2種以上であり、MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれ
か1種または2種以上、α、β、γは原子百分率で下記
の範囲にある。)の合金溶湯をストリップキャスト法に
より板厚0.03〜10mmの鋳造体に鋳造後、粉砕して粉体と
なした後窒化することにより、R3(Fe,M,B)29
yを主相として含み、成分組成がRαFe100-(α+β+
γ+δ)MβBγNδ(α、β、γ、δは原子百分率で下
記の範囲にある。)である等方性の磁石材料粉末を得る
ことを特徴とする希土類磁石粉末の製造方法。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
(1) a composition of RαFe100- (α + β + γ) Mβ;
Bγ (R is any one or more of rare earth elements including Y, M is Al, Ti, V, Cr, Mn, C
Any one or more of u, Ga, Zr, Nb, Mo, Hf, Ta, and W, α, β, and γ are in the following ranges in atomic percentages. ) Is cast into a casting having a thickness of 0.03 to 10 mm by a strip casting method, crushed into powder, and then nitrided to obtain R 3 (Fe, M, B) 29.
Include N y as a main phase, component composition is RαFe100- (α + β +
γ + δ) MβBγNδ (α, β, γ, and δ are in the following range in atomic percentage): A method for producing a rare earth magnet powder, characterized by obtaining an isotropic magnet material powder. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項2】 成分組成がRαFe100-(α+β)Mβ
(RはYを含めた希土類元素のいずれか1種または2種
以上であり、MはAl、Ti、V、Cr、Mn、Cu、
Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれか1
種または2種以上、α、βは原子百分率で下記の範囲に
ある。)の合金溶湯をストリップキャスト法により板厚
0.03〜10mmの鋳造体に鋳造後、粉砕して粉体となした後
窒化することにより、R3(Fe,M)29yを主相とし
て含み、成分組成がRαFe100-(α+β+δ)MβNδ
(α、β、δは原子百分率で下記の範囲にある。)であ
る等方性の磁石材料粉末を得ることを特徴とする希土類
磁石粉末の製造方法。 5≦α≦18 1≦β≦50 4≦δ≦30
2. A composition comprising RαFe100- (α + β) Mβ
(R is one or more of rare earth elements including Y, and M is Al, Ti, V, Cr, Mn, Cu,
Any one of Ga, Zr, Nb, Mo, Hf, Ta, and W
The kind or two or more kinds, α and β are in the following ranges in atomic percentage. ) Thickness of molten alloy by strip casting method
After casting the castings of 0.03~10Mm, by nitriding after without a powder by crushing, wherein R 3 (Fe, M) and 29 N y as a main phase, component composition is RαFe100- (α + β + δ) MβNδ
(Where α, β, and δ are in atomic percentage in the following range): A method for producing a rare earth magnet powder, characterized by obtaining an isotropic magnet material powder. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 4 ≦ δ ≦ 30
【請求項3】 成分組成がRαFe100-(α+β+γ)Mβ
Bγ(RはYを含めた希土類元素のいずれか1種または
2種以上であり、MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれ
か1種または2種以上、α、β、γは原子百分率で下記
の範囲にある。)の合金溶湯をストリップキャッスト法
により板厚0.03〜10mmの鋳造体に鋳造後、この鋳造体を
真空中または不活性ガス雰囲気中で1000〜1200℃×0.5
〜48時間加熱保持する均質化処理を行い、続いて水素処
理により母合金のR3(Fe,M,B)29相またはR
3(Fe,M)29相を微細化し、粉砕して粉体となした
後窒化することにより、R3(Fe,M,B)29yまた
はR3(Fe,M)29yを主相として含み、成分組成が
RαFe100-(α+β+γ+δ)MβBγNδ(α、β、
γ、δは原子百分率で下記の範囲にある。)である等方
性の磁石材料粉末を得ることを特徴とする希土類磁石粉
末の製造方法。 5≦α≦18 1≦β≦50 0≦γ≦5 4≦δ≦30
3. A composition comprising RαFe100- (α + β + γ) Mβ
Bγ (R is any one or more of rare earth elements including Y, M is Al, Ti, V, Cr, Mn, C
Any one or more of u, Ga, Zr, Nb, Mo, Hf, Ta, and W, and α, β, and γ are in the following ranges in atomic percentage. ) Is cast into a casting having a thickness of 0.03 to 10 mm by the strip casting method, and then the casting is placed in a vacuum or in an inert gas atmosphere at 1000 to 1200 ° C x 0.5.
A homogenization treatment of heating and holding for ~ 48 hours is performed, followed by hydrogen treatment of the R 3 (Fe, M, B) 29 phase or R
The 3 (Fe, M) 29 phase is refined, pulverized to a powder, and then nitrided to obtain R 3 (Fe, M, B) 29 Ny or R 3 (Fe, M) 29 Ny . Included as the main phase, and the component composition was RαFe100- (α + β + γ + δ) MβBγNδ (α, β,
γ and δ are in the following range in atomic percentage. A method for producing rare earth magnet powder, characterized in that isotropic magnet material powder is obtained. 5 ≦ α ≦ 18 1 ≦ β ≦ 500 0 ≦ γ ≦ 5 4 ≦ δ ≦ 30
JP9282351A 1997-10-15 1997-10-15 Manufacture of rare-earth magnetic powder Pending JPH11121215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9282351A JPH11121215A (en) 1997-10-15 1997-10-15 Manufacture of rare-earth magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9282351A JPH11121215A (en) 1997-10-15 1997-10-15 Manufacture of rare-earth magnetic powder

Publications (1)

Publication Number Publication Date
JPH11121215A true JPH11121215A (en) 1999-04-30

Family

ID=17651293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9282351A Pending JPH11121215A (en) 1997-10-15 1997-10-15 Manufacture of rare-earth magnetic powder

Country Status (1)

Country Link
JP (1) JPH11121215A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039216A1 (en) * 1999-11-24 2001-05-31 Hitachi Metals, Ltd. Isotropic compound and method for preparation thereof, isotropic bonded magnet, rotary machine and magnet roll
JP2015098623A (en) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnetic powder and method for producing the same
JP2017511294A (en) * 2014-04-02 2017-04-20 フランク ナタリ Doped rare earth nitride materials and devices containing the same
JP2017098412A (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039216A1 (en) * 1999-11-24 2001-05-31 Hitachi Metals, Ltd. Isotropic compound and method for preparation thereof, isotropic bonded magnet, rotary machine and magnet roll
JP2015098623A (en) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnetic powder and method for producing the same
JP2017511294A (en) * 2014-04-02 2017-04-20 フランク ナタリ Doped rare earth nitride materials and devices containing the same
US10415153B2 (en) 2014-04-02 2019-09-17 Franck Natali Doped rare earth nitride materials and devices comprising same
JP2017098412A (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and manufacturing method thereof
WO2017090635A1 (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and method of producing rare earth magnet

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP3057448B2 (en) Rare earth permanent magnet
JP2001189206A (en) Permanent magnet
WO1999062081A1 (en) Nitride type rare-earth permanent magnet material and bonded magnet using the same
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000114017A (en) Permanent magnet and material thereof
US5069713A (en) Permanent magnets and method of making
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JP4170468B2 (en) permanent magnet
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
JP2002294413A (en) Magnet material and manufacturing method therefor
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JP2002356701A (en) Rare earth alloy sintered compact and production method therefor
JPH01100242A (en) Permanent magnetic material
JPH08181009A (en) Permanent magnet and its manufacturing method
JP3645312B2 (en) Magnetic materials and manufacturing methods
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JPH0146575B2 (en)
JP3469496B2 (en) Manufacturing method of magnet material
JPH10312918A (en) Magnet and bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525