JPH1085755A - Desalting method using electrodialysis equipment - Google Patents
Desalting method using electrodialysis equipmentInfo
- Publication number
- JPH1085755A JPH1085755A JP8238934A JP23893496A JPH1085755A JP H1085755 A JPH1085755 A JP H1085755A JP 8238934 A JP8238934 A JP 8238934A JP 23893496 A JP23893496 A JP 23893496A JP H1085755 A JPH1085755 A JP H1085755A
- Authority
- JP
- Japan
- Prior art keywords
- water
- seawater
- chamber
- desalination
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000000909 electrodialysis Methods 0.000 title claims abstract description 40
- 238000011033 desalting Methods 0.000 title claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 110
- 239000013535 sea water Substances 0.000 claims abstract description 57
- 238000010612 desalination reaction Methods 0.000 claims abstract description 42
- 150000003839 salts Chemical class 0.000 claims abstract description 40
- 239000012528 membrane Substances 0.000 claims abstract description 9
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 8
- 239000012267 brine Substances 0.000 claims abstract description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 8
- 238000005341 cation exchange Methods 0.000 claims abstract description 6
- 239000002351 wastewater Substances 0.000 claims description 44
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 16
- 238000006477 desulfuration reaction Methods 0.000 claims description 16
- 230000023556 desulfurization Effects 0.000 claims description 16
- 239000003546 flue gas Substances 0.000 claims description 16
- 239000000498 cooling water Substances 0.000 claims description 5
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims 2
- 238000011084 recovery Methods 0.000 abstract description 12
- 238000012545 processing Methods 0.000 abstract description 7
- 238000001914 filtration Methods 0.000 description 12
- 238000000502 dialysis Methods 0.000 description 9
- 239000003014 ion exchange membrane Substances 0.000 description 7
- 238000004065 wastewater treatment Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000008235 industrial water Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Treating Waste Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
(57)【要約】
【課題】スケールトラブルを回避して脱塩水の回収率を
飛躍的に向上させることができるばかりでなく、限界電
流密度を大きくして電気透析の処理性能自体を高めるこ
とができる電気透析装置による脱塩方法を提供する。
【解決手段】陽イオン交換膜Cと陰イオン交換膜Aを電
極38、40間に交互に配列して交互に脱塩室24と濃
縮室34を形成する電気透析装置に海水以外の被処理水
を供給して被処理水中の塩類を脱塩する電気透析装置に
よる脱塩方法において、被処理水を脱塩室24だけに通
水すると共に、濃縮室には海水又はかん水を通水する。
(57) [Summary] [PROBLEMS] To not only improve the recovery rate of desalinated water by avoiding scale trouble, but also to increase the limiting current density to improve the processing performance itself of electrodialysis. A method for desalination using an electrodialysis device is provided. An electrodialysis apparatus in which a cation exchange membrane (C) and an anion exchange membrane (A) are alternately arranged between electrodes (38, 40) to alternately form a desalting chamber (24) and a concentration chamber (34) is treated water other than seawater. In the desalination method using an electrodialysis apparatus for desalinating the salts in the water to be treated by supplying water, the water to be treated is passed only through the desalting chamber 24, and the concentrated water is passed through seawater or brine.
Description
【0001】[0001]
【発明の属する技術分野】本発明は電気透析装置による
脱塩方法に係り、特に、臨海地域に立地している火力発
電所や工場の工場排水、例えば排煙脱硫排水等の脱塩を
行い工業用水として再利用を図るための電気透析装置に
よる脱塩方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination method using an electrodialysis apparatus, and more particularly to desalination of industrial wastewater from a thermal power plant or a factory located in a seaside area, for example, flue gas desulfurization wastewater. The present invention relates to a desalination method using an electrodialysis device for reusing water for use.
【0002】[0002]
【従来の技術】各種の工場では、工業用水の使用量の節
減を図るために、工場排水(以下、排水という)の回収
・再利用化の検討が行われている。一般的に、排水の汚
染度が低く、且つ排水中に含有される塩類濃度が500
mg/l程度以下の場合には、排水を回収系排水或いは
低塩系排水として分別回収し、そのままか或いは除濁処
理程度の簡単な排水処理を行って再利用している。2. Description of the Related Art Various factories are studying the collection and reuse of factory wastewater (hereinafter referred to as wastewater) in order to reduce the amount of industrial water used. Generally, the pollution degree of wastewater is low and the concentration of salts contained in the wastewater is 500
When the amount is less than about mg / l, the wastewater is separated and collected as a collection wastewater or a low-salt wastewater and reused as it is or after performing a simple wastewater treatment such as a turbidity treatment.
【0003】しかし、排水の汚染度が高く、且つ排水中
に含有される塩類濃度が500mg/l程度以上の場合
には、排水を非回収系排水或いは高塩系排水として分別
回収し、総理府令で定められた排水基準、都道府県条例
で定める排水基準、更には地元協定値を遵守するように
排水処理を行ってから、河川、海域等に放流している。[0003] However, when the degree of pollution of the wastewater is high and the concentration of salts contained in the wastewater is about 500 mg / l or more, the wastewater is separated and recovered as non-collection wastewater or high-salt wastewater. The wastewater is treated so as to comply with the wastewater standards set forth in, the prefectural ordinances, and even the local agreement, before being released into rivers and seas.
【0004】非回収系排水の放流量は工場によって異な
るが、例えば工場排水の発生量が大きい火力発電所の場
合でみると、発電規模や燃料の種類により異なるものの
概ね日水量数100〜5000m3 程度である。放流水
の水質は、無機系塩類(NaCl、Na2 SO4 、Ca
Cl2 、CaSO4 他、Mg化合物等)が主成分であ
り、有機系成分は殆ど含有されていない。そして、排水
中の総塩類濃度は、略2000〜5000mg/lであ
る。回収されて再利用される回収系排水量は、回収系、
非回収系を合わせた総排水量の10〜20%にすぎず、
大部分は非回収系排水であり、回収・再利用率は極めて
低いのが現状である。[0004] The discharge rate of non-recovery system wastewater varies from factory to factory. For example, in the case of a thermal power plant in which the amount of factory wastewater generated is large, it differs depending on the power generation scale and the type of fuel, but is generally about 100 to 5000 m 3 per day. It is about. The quality of the effluent is determined by inorganic salts (NaCl, Na 2 SO 4 , Ca
Cl 2, CaSO 4 other, a Mg compound, etc.) is the main component, an organic component is not contained little. And the total salt concentration in the waste water is approximately 2000 to 5000 mg / l. The amount of wastewater collected and reused in the collection system is
It is only 10-20% of the total drainage combined with non-recovery system,
Most of the wastewater is non-collection wastewater, and the recovery / reuse rate is extremely low.
【0005】このような背景から、非回収系排水の回収
・再利用化率を高める検討が行われているが、再利用す
るには放流水並みの水質に加えて工業用水並みの塩類濃
度、具体的には500mg/l程度以下を確保すること
が必要条件であり、脱塩処理を必要とする。また、排水
からの脱塩処理に係わらず、例えば、塩類を含有する地
下水等を向上用水として使用する場合にも脱塩処理を必
要とする。[0005] Against this background, studies have been made to increase the rate of recovery and reuse of non-recovery wastewater. However, in order to reuse the wastewater, in addition to the water quality equivalent to the effluent water, the salt concentration and the industrial water level are reduced. Specifically, it is a necessary condition to secure about 500 mg / l or less, and desalting treatment is required. In addition, regardless of the desalination treatment from wastewater, desalination treatment is also required when, for example, groundwater containing salts is used as improvement water.
【0006】脱塩処理の方法としては、蒸発法、逆浸透
膜法、電気透析法、及びイオン交換法があるが、塩類濃
度が小さい場合には、蒸発法は大きなエネルギーを要す
ることから逆浸透膜法、電気透析法、及びイオン交換法
がコスト的に有利である。なかでも電気透析法は物質移
動量が小さくエネルギー的に有利なことから注目されて
いる。[0006] Desalination methods include an evaporation method, a reverse osmosis membrane method, an electrodialysis method, and an ion exchange method. When the salt concentration is low, the evaporation method requires a large amount of energy, so that the reverse osmosis method is used. The membrane method, the electrodialysis method, and the ion exchange method are advantageous in cost. Among them, the electrodialysis method has attracted attention because it has a small mass transfer amount and is advantageous in terms of energy.
【0007】図5は、従来の電気透析装置1による脱塩
方法を示したもので、被処理水である排水は濾過装置2
で濾過されが後、脱塩水槽3に送水され、脱塩水槽3か
らイオン交換膜で区画形成される脱塩室4と濃縮室5と
に分配供給され、電圧が印加されることによりイオン状
の溶解塩類を脱塩室4側から濃縮室5側に透析(移動)
させる。これにより、脱塩室4には脱塩された脱塩水が
生成され、濃縮室5には塩類が濃縮された濃縮水が生成
される。そして、脱塩室4で生成された塩類濃度の低下
した脱塩水を回収することにより工業用水として再利用
することができる。一方、濃縮室5で濃縮された濃縮水
は濃縮水槽6を介して排水処理装置7へ送られ、濃縮さ
れて排水基準値をオーバーした排水規制成分を排水処理
により再度放流基準以下にしてから放流される。FIG. 5 shows a desalination method using a conventional electrodialysis apparatus 1.
After being filtered, the water is sent to the desalting water tank 3, and is distributed and supplied from the desalting water tank 3 to the desalting chamber 4 and the concentrating chamber 5 formed by the ion exchange membrane. Dialysis (transfer) of the dissolved salts from the desalting chamber 4 to the enrichment chamber 5
Let it. Thereby, desalted demineralized water is generated in the desalination chamber 4, and concentrated water in which salts are concentrated is generated in the concentration chamber 5. Then, by recovering the desalinated water having a reduced salt concentration generated in the desalination chamber 4, it can be reused as industrial water. On the other hand, the concentrated water concentrated in the concentration chamber 5 is sent to the wastewater treatment device 7 via the concentrated water tank 6, and the concentrated wastewater regulated component, which has exceeded the wastewater standard value, is again reduced to the discharge standard or less by the wastewater treatment, and then discharged. Is done.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
電気透析装置による脱塩方法には以下のような欠点があ
る。 被処理水、特に火力発電所において多量に発生する排
煙脱硫排水のように、CaSO4 等のスケール成分が多
く含有されている場合には、濃縮室の濃縮倍率を上げす
ぎるとスケールが析出し、イオン交換膜にスケールが付
着して膜性能を低下させる。従って、このスケールトラ
ブルを回避するために、濃縮室側の塩類の濃縮倍率を低
く抑える必要があり、そのためには濃縮室側への排水の
供給量を多くする必要がある。その結果、相対的に脱塩
室側に供給される排水の供給量が少なくなるため、脱塩
水の回収率が低下し、通常は50%以下の低回収率にな
ってしまうという欠点がある。However, the conventional desalting method using an electrodialysis apparatus has the following disadvantages. In the case where a large amount of scale components such as CaSO 4 is contained, as in the case of treated water, particularly flue gas desulfurization wastewater generated in a large amount in a thermal power plant, if the concentration ratio in the concentration chamber is too high, scale will precipitate. In addition, the scale adheres to the ion exchange membrane and deteriorates the membrane performance. Therefore, in order to avoid this scale trouble, it is necessary to reduce the concentration ratio of the salts on the enrichment chamber side, and for that purpose, it is necessary to increase the amount of wastewater supplied to the enrichment chamber side. As a result, the supply amount of the wastewater supplied to the desalination chamber side is relatively reduced, so that the recovery rate of the desalinated water is reduced, and there is a disadvantage that the recovery rate is usually 50% or less.
【0009】一方、濃縮室側への排水の供給量を多く
するために濃縮水の発生量が大きくなり、しかも濃縮水
中の排水規制成分濃度が大きすぎてそのままでは放流で
きないので、後工程で大量な濃縮水の排水処理が必要に
なる。この結果、排水処理費が嵩むという欠点がある。 電気透析における処理性能を高めるためには、電流密
度を限界電流密度以下の範囲で可能な限り大きくとるこ
とが好ましい。しかし、限界電流密度は塩類濃度に比例
し拡散層の厚みに反比例するので、拡散層の厚みが一定
の場合、被処理水である排水中の塩類濃度により左右さ
れてしまうという欠点ある。On the other hand, the amount of concentrated water generated is increased to increase the amount of wastewater supplied to the enrichment chamber, and the concentration of wastewater-regulating components in the concentrated water is too high to be discharged as it is, so that a large amount of wastewater is discharged in the subsequent process. Wastewater treatment of concentrated water is required. As a result, there is a drawback that the wastewater treatment cost increases. In order to enhance the processing performance in electrodialysis, it is preferable that the current density be as high as possible within the range of the limit current density or less. However, since the limiting current density is proportional to the salt concentration and inversely proportional to the thickness of the diffusion layer, there is a disadvantage that when the thickness of the diffusion layer is constant, it is influenced by the salt concentration in the wastewater as the water to be treated.
【0010】本発明は、このような事情に鑑みてなされ
たもので、スケールトラブルを回避して脱塩水の回収率
を飛躍的に向上させることができるばかりでなく、限界
電流密度を大きくして電気透析の処理性能自体を高める
ことができる電気透析装置による脱塩方法を提供するこ
とを目的とする。The present invention has been made in view of such circumstances, and not only can the scale trouble be avoided and the recovery rate of desalinated water can be drastically improved, but also the critical current density can be increased. It is an object of the present invention to provide a desalination method using an electrodialysis apparatus that can enhance the processing performance itself of electrodialysis.
【0011】[0011]
【課題を解決する為の手段】本発明は前記目的を達成す
る為に、陽イオン交換膜と陰イオン交換膜を電極間に交
互に配列して交互に脱塩室と濃縮室を形成する電気透析
装置に海水以外の被処理水を供給して前記被処理水中の
塩類を脱塩する電気透析装置による脱塩方法において、
前記被処理水を前記脱塩室だけに通水すると共に、前記
濃縮室には海水又はかん水を通水することを特徴とす
る。According to the present invention, in order to achieve the above-mentioned object, a cation exchange membrane and an anion exchange membrane are alternately arranged between electrodes to alternately form a desalting chamber and a concentrating chamber. In a desalination method by an electrodialysis device that supplies water to be treated other than seawater to a dialysis device to desalinate salts in the water to be treated,
The treatment water is passed only through the desalting chamber, and seawater or brine is passed through the concentrating chamber.
【0012】本発明によれば、海水以外の被処理水は脱
塩室側だけに通水し、濃縮室側には被処理水とは別の塩
類含有水である海水又はかん水を通水するようにしたの
で、被処理水の略全量を脱塩水として回収することがで
きる。この場合、海水ならば低コストで潤沢に入手可能
なので、脱塩室側の被処理水から濃縮室側の海水に透析
したスケール成分が濃縮室で析出しない程度に、濃縮室
に通水する海水を多量に供給すれば、スケールトラブル
を確実に防止することができ、しかもランニングコスト
が殆どかからない。また、濃縮室側で濃縮される濃縮
水、即ち海水又はかん水の排水規制成分濃度が放流基準
以下なるように濃縮室に通水する海水の供給量を制御す
るなら、海水又はかん水を排水処理して放流する必要も
ない。According to the present invention, the water to be treated other than seawater passes only through the desalination chamber, and the seawater or brine which is salt-containing water different from the water to be treated passes through the enrichment chamber. As a result, substantially all of the water to be treated can be recovered as desalinated water. In this case, since seawater can be obtained abundantly at low cost, the seawater passing through the concentration chamber is reduced to such an extent that scale components dialyzed from the water to be treated in the desalination chamber into the seawater in the concentration chamber do not precipitate in the concentration chamber. If a large amount of is supplied, the scale trouble can be reliably prevented, and the running cost is hardly required. In addition, if the supply amount of concentrated seawater concentrated in the enrichment chamber, that is, seawater or brackish water, is controlled to be below the discharge standard, the seawater or brackish water is drained. There is no need to release.
【0013】更に、塩類濃度の大きな海水又はかん水を
濃縮室に通水することにより、限界電流密度を高めるこ
とができるので、電気透析装置の処理性能を向上させる
ことができる。Further, by passing seawater or brackish water having a high salt concentration through the concentration chamber, the critical current density can be increased, so that the processing performance of the electrodialysis apparatus can be improved.
【0014】[0014]
【発明の実施の形態】以下添付図面に従って本発明に係
る電気透析装置による脱塩方法の形態について詳説す
る。図1は、本発明の脱塩方法の実施の形態を適用する
電気透析装置の構成を説明する全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a desalting method using an electrodialysis apparatus according to the present invention. FIG. 1 is an overall configuration diagram illustrating the configuration of an electrodialysis apparatus to which an embodiment of the desalting method of the present invention is applied.
【0015】図1に示すように、電気透析装置10は、
脱塩水系路12と濃縮水系路14とが分離独立した形で
形成され、脱塩水系路12には脱塩水として処理される
被処理水が供給されると共に、濃縮水系路14には濃縮
水として処理される海水が供給されるように構成され
る。脱塩水系路12は、被処理水を濾過する濾過装置1
6と、濾過装置16で濾過された被処理水が送水される
脱塩水槽18及び送水ポンプ20と、脱塩水槽18と透
析槽22内の脱塩室24との間で被処理水を循環させる
循環ポンプ26とで構成される。As shown in FIG. 1, the electrodialysis apparatus 10 comprises:
The desalinated water system 12 and the concentrated water system 14 are formed in a separate and independent manner, and the water to be treated as demineralized water is supplied to the desalinated water system 12 and the concentrated water system 14 is supplied to the concentrated water system 14. It is configured to supply seawater that is treated as. The desalination water passage 12 is provided with a filtration device 1 for filtering the water to be treated.
6, the desalinated water tank 18 and the water pump 20 to which the water to be treated filtered by the filtration device 16 is sent, and the water to be treated is circulated between the desalinated water tank 18 and the desalination chamber 24 in the dialysis tank 22. And a circulating pump 26 to be operated.
【0016】濃縮水系路14は、海水を濾過する濾過装
置28と、濾過された海水が送水される濃縮水槽30及
び送水ポンプ32と、濃縮水槽30と透析槽22内の濃
縮室34との間で海水を循環させる循環ポンプ36とで
構成される。被処理水又は海水の濾過に用いる濾過装置
16、28としては、これらの水に含まれる懸濁性浮遊
物質(以下、SSという)により電気透析装置10の流
路の閉塞や後記するイオン交換膜への付着による処理性
能の低下を招かないように精密濾過が可能な濾過装置が
適切である。この濾過装置16、28により濾過された
被処理水又は海水のSS濃度は0.5mg/l以下であ
ることが好ましい。The concentrated water passage 14 includes a filtration device 28 for filtering seawater, a concentrated water tank 30 and a water pump 32 to which the filtered seawater is fed, and a concentrated water tank 30 and a concentration chamber 34 in the dialysis tank 22. And a circulation pump 36 for circulating seawater. As the filtration devices 16 and 28 used for filtering the water to be treated or seawater, the suspension of suspended matter (hereinafter, referred to as SS) contained in these waters may block the flow path of the electrodialysis device 10 or an ion exchange membrane described later. A filtration device capable of performing microfiltration so as not to cause a decrease in processing performance due to adhesion to the filter is appropriate. The SS concentration of the water to be treated or seawater filtered by the filtration devices 16 and 28 is preferably 0.5 mg / l or less.
【0017】透析槽22内には、図2に示すように、陽
イオン交換膜Cと陰イオン交換膜Aとを交互に配列して
区画したエリアに、脱塩室24と濃縮室34とが交互に
形成され、脱塩室24には被処理水が通水され、濃縮室
34には海水が通水される。また、透析槽22内におけ
るイオン交換膜群の両端には陽極38と陰極40が配置
され、陽極38と陰極40との間に直流電圧が印加され
る。これにより、脱塩室24に通水された被処理水中の
塩類は、電離したCa2+,Na+ などの陽イオン交換膜
Cを透過して濃縮室34側に透析(移動)し、Cl- ,
SO4 2-などの陰イオンが陰イオン交換膜Aを透過して
濃縮室34側に透析(移動)して脱塩される一方、濃縮
室34では透析してきた塩類が海水に溶解して塩類濃度
が高くなる。As shown in FIG. 2, in the dialysis tank 22, a desalting chamber 24 and a concentrating chamber 34 are provided in an area in which cation exchange membranes C and anion exchange membranes A are alternately arranged. The water to be treated is passed alternately through the desalting chamber 24, and the seawater is passed through the concentration chamber 34. An anode 38 and a cathode 40 are arranged at both ends of the ion exchange membrane group in the dialysis tank 22, and a DC voltage is applied between the anode 38 and the cathode 40. Thereby, the salts in the water to be treated passed through the desalting chamber 24 permeate the cation exchange membrane C, such as Ca 2+ and Na +, and are dialyzed (moved) toward the concentration chamber 34 to remove Cl - ,
Anions such as SO 4 2- permeate the anion exchange membrane A and are dialyzed (moved) toward the concentration chamber 34 to be desalted, while in the concentration chamber 34, the dialyzed salts are dissolved in seawater to form salts. The concentration increases.
【0018】次に、上記の如く構成された電気透析装置
10を用いて本発明の脱塩方法を、被処理水としてスケ
ール成分を多く含有する排煙脱硫排水の脱塩を行う例で
説明する。脱塩水系路12には、濾過装置16で濾過し
た排煙脱硫排水だけを通水し、循環ポンプ26により脱
塩水槽18と脱塩室24との間で循環させる。一方、濃
縮水系路14には、濾過装置28で濾過した海水を通水
し、循環ポンプ36により濃縮水槽30と濃縮室34と
の間で循環させる。この状態で陽極38と陰極40との
間に直流電圧が印加されると、排煙脱硫排水中の塩類は
脱塩室24から濃縮室34側に透析(移動)する。これ
により、脱塩室24に通水された排煙脱硫排水中の塩類
が脱塩されて脱塩水が生成される一方、濃縮室34に通
水された海水中に塩類が濃縮されて濃縮水、即ち塩類濃
度が増加した海水が生成される。そして、脱塩された脱
塩水の一部は脱塩水槽18から回収され、回収された分
だけ新たな排煙脱硫排水が脱塩水槽18に供給される。Next, the desalination method of the present invention using the electrodialyzer 10 configured as described above will be described with an example in which desalination of flue gas desulfurization wastewater containing a large amount of scale components as water to be treated. . Only the flue gas desulfurization effluent filtered by the filtration device 16 is passed through the desalination water passage 12, and circulated between the desalination water tank 18 and the desalination chamber 24 by the circulation pump 26. On the other hand, the seawater filtered by the filtration device 28 is passed through the concentrated water system 14 and circulated between the concentrated water tank 30 and the concentration chamber 34 by the circulation pump 36. When a DC voltage is applied between the anode 38 and the cathode 40 in this state, the salts in the flue gas desulfurization effluent are dialyzed (moved) from the desalting chamber 24 to the concentration chamber 34 side. As a result, the salts in the flue gas desulfurization effluent passed through the desalination chamber 24 are desalted to produce desalinated water, while the salts are concentrated in the seawater passed through the concentration chamber 34 to form concentrated water. That is, seawater with increased salt concentration is produced. Then, a part of the desalted demineralized water is recovered from the desalination water tank 18, and fresh flue gas desulfurization wastewater is supplied to the desalination water tank 18 by the recovered amount.
【0019】このように、本発明の電気透析装置による
脱塩方法では、被処理水である排煙脱硫排水を脱塩室2
4だけに供給し、従来のように、排煙脱硫排水を脱塩室
24と濃縮室34とに分配しないようにしたので、被処
理水の略全量を脱塩水として回収することができる。ま
た、この脱塩処理において、脱塩室24側の排煙脱硫排
水から濃縮室34側の海水に透析したスケール成分が濃
縮室34で析出しないように、濃縮室34に多量の海水
を供給すれば、スケールトラブルを確実に防止すること
ができる。具体的には、被処理水である排煙脱硫排水に
含有されていた塩類が全て濃縮室34側の海水に移動し
たとして、脱塩水系路12に供給する排煙脱硫排水の供
給量と同程度の海水を濃縮水系路14に供給すれば良
い。これにより、スケールトラブルを回避することがで
きるので、安定運転を行うことができる。しかも、海水
ならば、多量の海水を低コストで容易に入手可能なの
で、ランニングコストが殆どかからない。一般的に、火
力発電所や工場は臨海地域に立地しているので、海水は
低コストで潤沢に入手可能である。As described above, in the desalination method using the electrodialysis apparatus of the present invention, the flue gas desulfurization effluent which is the water to be treated is supplied to the desalination chamber 2
4, the flue gas desulfurization effluent is not distributed between the desalting chamber 24 and the concentrating chamber 34 as in the prior art, so that substantially all of the water to be treated can be recovered as desalinated water. In this desalination treatment, a large amount of seawater is supplied to the enrichment chamber 34 so that scale components dialyzed from the flue gas desulfurization wastewater on the desalination chamber 24 side into the seawater on the enrichment chamber 34 do not precipitate in the enrichment chamber 34. Thus, a scale trouble can be reliably prevented. Specifically, it is assumed that all of the salts contained in the flue gas desulfurization effluent, which is the water to be treated, have moved to the seawater on the enrichment chamber 34 side, and the supply amount of the flue gas desulfurization effluent to be supplied to the desalination water passage 12 is the same. It is only necessary to supply a certain amount of seawater to the concentrated water system 14. Thus, a scale trouble can be avoided, and stable operation can be performed. In addition, since seawater can be easily obtained at a low cost with a large amount of seawater, the running cost is hardly required. Generally, thermal power plants and factories are located in the coastal area, so seawater is available at low cost and abundantly.
【0020】更に、濃縮室34で濃縮される海水中の排
水規制成分濃度が放流基準を越えないように濃縮水系路
に供給する海水の供給量を制御すれば、海水をそのまま
海に放流することができる。従って、濃縮水である海水
を後工程で排水処理する必要がないので、ランニングコ
ストが大幅に低減する。また、塩類濃度の大きな海水を
濃縮室34に通水することにより、限界電流密度を高め
ることができるので、電気透析装置10の処理性能を向
上させることができる。この場合、濃縮室34に通水す
る海水として、冷却水として使用され自らは昇温された
使用済の冷却水用海水を使用すると一層良い。この理由
は、従来、廃棄されていた使用済の冷却水用海水を有効
利用できる他に、昇温された海水を使用することによ
り、透析槽22内の電気抵抗を低減でき、電流効率を向
上させることができるためで、ひいては処理性能の向上
を図ることができる。Further, if the supply amount of seawater supplied to the concentrated water system is controlled so that the concentration of the wastewater regulatory component in the seawater concentrated in the concentration chamber 34 does not exceed the discharge standard, the seawater can be discharged to the sea as it is. Can be. Therefore, it is not necessary to subject the concentrated seawater to wastewater treatment in a subsequent step, so that the running cost is greatly reduced. In addition, by passing seawater having a high salt concentration through the concentration chamber 34, the critical current density can be increased, so that the processing performance of the electrodialysis apparatus 10 can be improved. In this case, it is more preferable to use the used seawater for the cooling water which is used as the cooling water and which has been heated and used as the seawater passing through the concentration chamber 34. The reason for this is that, in addition to being able to effectively use the used seawater for cooling water that has been conventionally discarded, by using heated seawater, the electric resistance in the dialysis tank 22 can be reduced and the current efficiency can be improved. Therefore, the processing performance can be improved.
【0021】尚、本実施の形態として、脱塩水系路12
に供給する被処理水として排煙脱硫排水の例で説明した
が、これに限定されるものではなく、海水以外の塩類含
有水であれば全てに適用することができる。特に、本発
明の脱塩方法は、排煙脱硫排水のようにCaSO4 等の
難溶性の塩類を多く含みスケールトラブルが発生し易い
塩類含有水に最適である。In this embodiment, the desalinated water system 12
Although the example of the flue gas desulfurization effluent is described as the water to be supplied to the tank, the present invention is not limited to this, and may be applied to any salt-containing water other than seawater. In particular, the desalination method of the present invention is most suitable for salt-containing water, such as flue gas desulfurization effluent, which contains a large amount of hardly soluble salts such as CaSO 4 and is likely to cause scale trouble.
【0022】また、濃縮水系路14に通水する塩類含有
水としては、海水に限定するものではなく、例えば、食
塩の飽和していない食塩水溶液であるかん水(ブライ
ン)をも使用することができる。要は、電気電導性のあ
る水溶液でコストがかからずに潤沢に入手可能なもので
あれば何でもよい。The salt-containing water passing through the concentrated water passage 14 is not limited to seawater, but may be, for example, brine, which is a saline solution in which salt is not saturated. . In short, any electrically conductive aqueous solution can be used as long as it can be obtained abundantly at low cost.
【0023】[0023]
【実施例】次に、上記した図1の電気透析装置を用いて
本発明の電気透析装置による脱塩方法を実験した実施例
を説明する。被処理水としては火力発電所の排煙脱硫排
水を使用し、火力発電所近傍から採水した海水を用い、
脱塩室に排水を全量通水し、濃縮室に海水を全量通水す
る本発明の電気透析装置による脱塩方法により行った。EXAMPLE Next, an example in which a desalting method using the electrodialysis apparatus of the present invention was tested using the above-described electrodialysis apparatus of FIG. 1 will be described. As the water to be treated, use the flue gas desulfurization effluent of the thermal power plant, and use the seawater collected from near the thermal power plant,
It carried out by the desalination method by the electrodialysis apparatus of the present invention in which the entire amount of wastewater was passed through the desalting chamber and the entire amount of seawater was passed through the concentration chamber.
【0024】実験装置の仕様並びに実験条件、及び排水
と海水の水質は(表1)及び(表2)に示す通りであ
る。The specifications of the experimental apparatus, the experimental conditions, and the effluent and seawater qualities are as shown in (Table 1) and (Table 2).
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 表2より分かるように、排水中には、スケール成分であ
るカルシウムイオン(Ca2+)が456mg/l、硫酸
イオン(SO4 2-)が1000mg/l含まれており、
海水中には、Ca2+が350mg/l、SO4 2-が26
00mg/l含まれている。また、排水中の塩類濃度
(TDS)は3540mg/lで、脱塩水としての処理
水の塩類濃度の管理目標値を400mg/l以下として
運転を行った。[Table 2] As can be seen from Table 2, the wastewater contains 456 mg / l of calcium ion (Ca 2+ ) and 1000 mg / l of sulfate ion (SO 4 2− ) as scale components.
In seawater, Ca 2+ contains 350 mg / l and SO 4 2-
00 mg / l. The operation was performed with a salt concentration (TDS) in the wastewater of 3540 mg / l and a control target value of the salt concentration of the treated water as the desalinated water of 400 mg / l or less.
【0027】運転は、排水並びに海水の供給流量をいず
れも5リッター/時間と一定とし、荷電を一定電圧とし
て500時間連続運転を行った。また、比較例として、
実施例と同じ排水を用いて、図5に示すように、排水を
脱塩室と濃縮室に分配する従来の電気透析装置による脱
塩方法により行い、その他は実施例と同様の実験条件で
行った。The operation was performed at a constant supply rate of 5 liters / hour for both the drainage and seawater supply rates, and a continuous operation was performed for 500 hours with a constant charge. As a comparative example,
Using the same wastewater as in the example, as shown in FIG. 5, the wastewater was distributed by a conventional desalting method using an electrodialysis apparatus in which the wastewater was distributed to a desalination chamber and a concentration chamber. Was.
【0028】実験結果を評価するための測定データとし
ては、実施例及び比較例ともに、電流密度、電流効率及
び脱塩水の塩類濃度を、500時間連続運転における経
時変化として把握できるようにした。図3は、本発明の
脱塩方法で行った実施例の実験結果であり、図4は、従
来の脱塩方法で行った比較例の実験結果である。As the measurement data for evaluating the experimental results, the current density, the current efficiency and the salt concentration of the demineralized water in both the examples and comparative examples can be grasped as changes over time in 500 hours of continuous operation. FIG. 3 shows an experimental result of an example performed by the desalting method of the present invention, and FIG. 4 shows an experimental result of a comparative example performed by the conventional desalting method.
【0029】本実施例の場合には、図3から明らかなよ
うに、電流密度、電流効率及び脱塩水の塩類濃度ともに
500時間経過後も運転開始時と同等であり、安定した
運転を行うことができた。また、得られた脱塩水の塩類
濃度も400mg/l以下となり工業用水(塩類濃度で
500mg/l以下であれば使用可)として十分満足で
きるものであった。In the case of this embodiment, as apparent from FIG. 3, the current density, the current efficiency, and the salt concentration of the deionized water are the same as those at the start of operation even after 500 hours, so that stable operation can be performed. Was completed. Further, the salt concentration of the obtained demineralized water was 400 mg / l or less, which was sufficiently satisfactory as industrial water (it can be used if the salt concentration is 500 mg / l or less).
【0030】また、脱塩水の回収率は、生成される脱塩
水を貯留槽に一時貯留して単位時間当たりの流量を計測
して計算した結果、常時97%以上を確保することがで
きた。これは、従来の脱塩方法が略50%であることか
ら飛躍的な向上をみることができた。また、実験終了後
に、電気透析装置を解体して陰イオン交換膜のスケール
成分の有り無しを目視観察したが、スケールの析出は全
く認められなかった。The recovery rate of the demineralized water was calculated by measuring the flow rate per unit time by temporarily storing the generated demineralized water in a storage tank. As a result, a recovery rate of 97% or more was always maintained. This is a dramatic improvement since the conventional desalting method is about 50%. After the experiment was completed, the electrodialysis apparatus was disassembled, and the presence or absence of scale components in the anion exchange membrane was visually observed, but no scale deposition was observed.
【0031】これに対し、比較例の場合には、図4から
明らかなように、運転開始から30時間あたりから電流
密度、電流効率の低下が認められ、脱塩水の塩類濃度が
次第に増加すると共に、濃縮水に僅かな白濁が生じ始め
た。この白濁がスケールか否かの確認のために、実験終
了後に、電気透析装置を解体して陰イオン交換膜のスケ
ール成分の有り無しを目視観察したところ、白色の結晶
がイオン交換膜に付着していた。結晶を採取して分析し
た結果、二水石膏(CaSO4 ・2H2 O)のスケール
であることが分かった。On the other hand, in the case of the comparative example, as is clear from FIG. 4, the current density and the current efficiency decreased from about 30 hours after the start of the operation, and the salt concentration of the demineralized water gradually increased. A slight cloudiness began to occur in the concentrated water. After the experiment, the electrodialysis device was disassembled and the presence or absence of scale components in the anion exchange membrane was visually observed to confirm whether or not the cloudiness was a scale.The white crystals adhered to the ion exchange membrane. I was As a result of collecting and analyzing the crystals, it was found that the scale was a scale of gypsum dihydrate (CaSO 4 .2H 2 O).
【0032】[0032]
【発明の効果】以上説明したように、本発明の電気透析
装置による脱塩方法によれば、被処理水を脱塩室だけに
通水すると共に、濃縮室に海水又はかん水を通水するよ
うにしたので、被処理水の略全量を脱塩水として回収す
ることができる。従って、従来の電気透析装置による脱
塩方法に比べて脱塩水の回収率を飛躍的に向上させるこ
とができる。As described above, according to the desalination method using the electrodialysis apparatus of the present invention, the water to be treated is passed only through the desalination chamber, and the seawater or the brine is passed through the concentration chamber. Therefore, almost all of the water to be treated can be recovered as desalinated water. Therefore, the recovery rate of the desalinated water can be dramatically improved as compared with the desalination method using the conventional electrodialysis apparatus.
【0033】また、この脱塩処理のおいて、脱塩室側の
被処理水から濃縮室側の海水又はかん水に透析したスケ
ール成分が濃縮室で析出しない程度に濃縮室に多量の海
水又はかん水の供給すれば、スケールトラブルを確実に
防止することができる。従って、安定的な運転を行うこ
とができると共に、イオン交換膜にスケールが付着しな
いので、イオン交換膜の寿命を延ばすことができる。In this desalting treatment, a large amount of seawater or brine is introduced into the concentration chamber so that scale components dialyzed from the water to be treated in the desalination chamber into seawater or brine in the concentration chamber do not precipitate in the concentration chamber. With this supply, scale trouble can be reliably prevented. Accordingly, stable operation can be performed, and scale does not adhere to the ion exchange membrane, so that the life of the ion exchange membrane can be extended.
【0034】更に、濃縮された海水中又はかん水中の排
水規制成分濃度が放流基準を越えないように濃縮室に供
給する海水又はかん水の供給量を制御するなら、海水を
そのまま海に放流することができる。従って、従来のよ
うに濃縮水の排水処理を行う必要がなくランニングコス
トが大幅に削減できる。Further, if the supply amount of seawater or brackish water to be supplied to the enrichment chamber is controlled so that the concentration of the wastewater regulatory component in the concentrated seawater or brackish water does not exceed the discharge standard, the seawater is directly discharged to the sea. Can be. Therefore, it is not necessary to perform the wastewater treatment of the concentrated water unlike the related art, and the running cost can be greatly reduced.
【図1】図1は、本発明の脱塩方法を適用する電気透析
装置の構成を示す全体構成図FIG. 1 is an overall configuration diagram showing a configuration of an electrodialysis apparatus to which a desalting method of the present invention is applied.
【図2】図2は、電気透析装置の透析槽内を説明する説
明図FIG. 2 is an explanatory view illustrating the inside of a dialysis tank of the electrodialysis apparatus.
【図3】図3は、本発明の脱塩方法で行った実施例の結
果を示すグラフFIG. 3 is a graph showing the results of examples performed by the desalting method of the present invention.
【図4】図4は、従来の脱塩方法で行った比較例の結果
を示すグラフFIG. 4 is a graph showing the results of a comparative example performed by a conventional desalting method.
【図5】図5は、従来の脱塩方法を適用する電気透析装
置の構成を示す全体構成図FIG. 5 is an overall configuration diagram showing a configuration of an electrodialysis apparatus to which a conventional desalting method is applied.
10…電気透析装置 12…脱塩水系路 14…濃縮水系路 16、28…濾過装置 18…脱塩水槽 22…透析槽 24…脱塩室 30…濃縮水槽 34…濃縮室 38…陽極 40…陰極 A…陰イオン交換膜 C…陽イオン交換膜 DESCRIPTION OF SYMBOLS 10 ... Electrodialysis apparatus 12 ... Demineralized water system path 14 ... Concentrated water system path 16, 28 ... Filtration apparatus 18 ... Demineralized water tank 22 ... Dialysis tank 24 ... Demineralization room 30 ... Concentrated water tank 34 ... Concentrated room 38 ... Anode 40 ... Cathode A: Anion exchange membrane C: Cation exchange membrane
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 浩 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Uchiyama 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd.
Claims (4)
に交互に配列して交互に脱塩室と濃縮室を形成する電気
透析装置に海水以外の被処理水を供給して前記被処理水
中の塩類を脱塩する電気透析装置による脱塩方法におい
て、 前記被処理水を前記脱塩室だけに通水すると共に、前記
濃縮室には海水又はかん水を通水することを特徴とする
電気透析装置による脱塩方法。The present invention relates to an electrodialysis apparatus in which a cation exchange membrane and an anion exchange membrane are alternately arranged between electrodes to alternately form a desalting chamber and a concentrating chamber. In a desalination method using an electrodialysis device for desalting salts in treated water, the treated water is passed only through the desalting chamber, and seawater or brine is passed through the concentrating chamber. Desalting method using an electrodialysis device.
昇温された使用済の冷却水用海水であることを特徴とす
る請求項1の電気透析装置による脱塩方法。2. The desalination method according to claim 1, wherein said seawater is used seawater for cooling water which has been used as cooling water and has been heated.
硫酸カルシウム等の難溶性の塩類が含有されていること
を特徴とする請求項1又は2の電気透析装置による脱塩
方法。3. The desalination method using an electrodialysis apparatus according to claim 1, wherein the water to be treated contains a sparingly soluble salt such as calcium sulfate such as flue gas desulfurization wastewater. .
前記海水を前記濃縮室に通水する通水量を同程度にする
ことを特徴とする請求項1、2又は3の電気透析装置に
よる脱塩方法。4. The method according to claim 1, wherein the amount of water for passing said treated water to a desalination chamber and the amount of water for passing said seawater to said concentration chamber are substantially equal. Desalting method using an electrodialysis device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23893496A JP3271744B2 (en) | 1996-09-10 | 1996-09-10 | Desalting method using electrodialysis equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23893496A JP3271744B2 (en) | 1996-09-10 | 1996-09-10 | Desalting method using electrodialysis equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1085755A true JPH1085755A (en) | 1998-04-07 |
JP3271744B2 JP3271744B2 (en) | 2002-04-08 |
Family
ID=17037458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23893496A Expired - Fee Related JP3271744B2 (en) | 1996-09-10 | 1996-09-10 | Desalting method using electrodialysis equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3271744B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007049549A1 (en) * | 2005-10-27 | 2007-05-03 | Nisshinbo Industries, Inc. | Method for producing fine particles of salt, hydroxide or oxide, and fine particles of salt, hydroxide or oxide produced by such method |
WO2008044544A1 (en) * | 2006-10-04 | 2008-04-17 | Nisshinbo Industries, Inc. | Fine particle of hydroxide and/or oxide and process for producing the same |
JP2012521290A (en) * | 2009-03-26 | 2012-09-13 | ゼネラル・エレクトリック・カンパニイ | Method for removing ionic species from a desalinator |
WO2013039677A1 (en) * | 2011-09-16 | 2013-03-21 | General Electric Company | Electrodialysis method and apparatus for passivating scaling species |
CN112263912A (en) * | 2020-11-20 | 2021-01-26 | 中船重工船舶设计研究中心有限公司 | Oil gas exploitation contains salt ethylene glycol solution desalination device based on electrodialysis technique |
-
1996
- 1996-09-10 JP JP23893496A patent/JP3271744B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007049549A1 (en) * | 2005-10-27 | 2007-05-03 | Nisshinbo Industries, Inc. | Method for producing fine particles of salt, hydroxide or oxide, and fine particles of salt, hydroxide or oxide produced by such method |
WO2008044544A1 (en) * | 2006-10-04 | 2008-04-17 | Nisshinbo Industries, Inc. | Fine particle of hydroxide and/or oxide and process for producing the same |
JP2012521290A (en) * | 2009-03-26 | 2012-09-13 | ゼネラル・エレクトリック・カンパニイ | Method for removing ionic species from a desalinator |
WO2013039677A1 (en) * | 2011-09-16 | 2013-03-21 | General Electric Company | Electrodialysis method and apparatus for passivating scaling species |
US9339765B2 (en) | 2011-09-16 | 2016-05-17 | General Electric Company | Electrodialysis method and apparatus for passivating scaling species |
CN112263912A (en) * | 2020-11-20 | 2021-01-26 | 中船重工船舶设计研究中心有限公司 | Oil gas exploitation contains salt ethylene glycol solution desalination device based on electrodialysis technique |
Also Published As
Publication number | Publication date |
---|---|
JP3271744B2 (en) | 2002-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100874269B1 (en) | High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process | |
WO2013005369A1 (en) | Water purification system and water purification method | |
US20160159671A1 (en) | Method and apparatus for treating water containing boron | |
GB2249307A (en) | Process for purifying water by means of a combination of electrodialysis and reverse osmosis | |
JP3800450B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
WO2011065222A1 (en) | Device and method for treating nitrogen compound-containing acidic solutions | |
JP3800449B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
EP3292082A1 (en) | Removal of nitrates from ground water | |
JP3137831B2 (en) | Membrane processing equipment | |
JP2723422B2 (en) | Production method of domestic water | |
JP3271744B2 (en) | Desalting method using electrodialysis equipment | |
JP2000051665A (en) | Desalting method | |
JP2000015257A (en) | Apparatus and method for producing high-purity water | |
JPH08108184A (en) | Water treatment system | |
JP2001259644A (en) | Pure water producer and pure water production method using the same | |
KR100398417B1 (en) | A method for treating electrogalvanizing wastewaters | |
US20230295019A1 (en) | Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations | |
JP2002096068A (en) | Treating method and device for waste water of desalting | |
JP2009233607A (en) | Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water | |
CN212222710U (en) | System for waste water purification salt | |
JP2002205070A (en) | Method of making mineral water from marine deep water and system of making for the same | |
JPH09294974A (en) | Water treatment apparatus | |
JPH07163845A (en) | Equipment for waste liquid containing ammonium nitrate | |
JP3782217B2 (en) | Desalination equipment | |
JP3026136B2 (en) | Desulfurization wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100125 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |