JPH1083905A - Corrosion-resistant permanent magnet and its manufacture - Google Patents
Corrosion-resistant permanent magnet and its manufactureInfo
- Publication number
- JPH1083905A JPH1083905A JP8257699A JP25769996A JPH1083905A JP H1083905 A JPH1083905 A JP H1083905A JP 8257699 A JP8257699 A JP 8257699A JP 25769996 A JP25769996 A JP 25769996A JP H1083905 A JPH1083905 A JP H1083905A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- permanent magnet
- film
- thickness
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 28
- 230000007797 corrosion Effects 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000011247 coating layer Substances 0.000 claims abstract description 17
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012071 phase Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000012808 vapor phase Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 26
- 238000000576 coating method Methods 0.000 abstract description 26
- 238000007733 ion plating Methods 0.000 abstract description 14
- 150000002500 ions Chemical class 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 8
- 238000005299 abrasion Methods 0.000 abstract description 7
- 238000004544 sputter deposition Methods 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、高磁気特性を有しか
つ密着性がすぐれ、耐食性、耐酸、耐アルカリ性、耐摩
耗性にすぐれた耐食性被膜を設けたFe−B−R系永久
磁石に係り、Al被膜を介してTi1-xAlxN被膜層を
特定膜厚みで設けた耐食性、特に80℃、相対湿度90
%の雰囲気に長時間放置した場合の初期磁石特性からの
劣化が少なく、きわめて安定した磁石特性を有する耐食
性永久磁石およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-BR-based permanent magnet provided with a corrosion-resistant coating having high magnetic properties, excellent adhesion, and excellent corrosion resistance, acid resistance, alkali resistance and abrasion resistance. In connection with this, a Ti 1-x Al x N coating layer is provided with a specific film thickness via an Al coating, particularly at 80 ° C. and a relative humidity of 90 °.
% Permanent magnet with little deterioration from initial magnet properties when left in a% atmosphere for a long time and having extremely stable magnet properties, and a method for producing the same.
【0002】[0002]
【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、F
e−B−R系永久磁石が提案されている(特開昭59−
46008号公報、特開昭59−89401号公報)。2. Description of the Related Art First, using rare earths, which are abundant in resources, mainly Nd and Pr, B and Fe as main components, do not contain expensive Sm and Co, and are the highest among conventional rare earth cobalt magnets. As a new high-performance permanent magnet that greatly exceeds the characteristics,
e-B-R permanent magnets have been proposed (Japanese Patent Laid-Open No. 59-1984).
46008, JP-A-59-89401).
【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するFe−B−
R系永久磁石(特開昭59−64733号、特開昭59
−132104号)を得ており、さらに、前記Co含有
のFe−B−R系希土類永久磁石と同等以上のキュリー
点並びにより高い(BH)maxを有し、その温度特
性、特にiHcを向上させるため、希土類元素(R)と
してNdやPr等の軽希土類を中心としたCo含有のF
e−B−R系希土類永久磁石のRの一部にDy、Tb等
の重希土類のうち少なくとも1種を含有することによ
り、25MGOe以上の極めて高い(BH)maxを保
有したままで、iHcをさらに向上させたCo含有のF
e−B−R系希土類永久磁石が提案(特開昭60−34
005号公報)されている。The Curie point of the above magnet alloy is generally 30
0 ° C. to 370 ° C., but having a higher Curie point by substituting a part of Fe with Co
R-based permanent magnets (JP-A-59-64733, JP-A-59-64733)
-132104), and has a Curie point equal to or higher than that of the Co-containing Fe-BR based rare earth permanent magnet and a higher (BH) max, and improves its temperature characteristics, particularly iHc. Therefore, as a rare earth element (R), Co-containing F mainly containing light rare earth elements such as Nd and Pr is used.
By containing at least one of heavy rare earths such as Dy and Tb in a part of R of the eBR type rare earth permanent magnet, iHc can be increased while retaining a very high (BH) max of 25 MGOe or more. Further improved Co-containing F
e-BR type rare earth permanent magnets have been proposed (JP-A-60-34).
005).
【0004】しかしながら、上記のすぐれた磁気特性を
有するFe−B−R系磁気異方性焼結体からなる永久磁
石は主成分として、空気中で酸化し易い希土類元素及び
鉄を含有するため、磁気回路に組込んだ場合に、磁石表
面に生成する酸化物により、磁気回路の出力低下及び磁
気回路間のばらつきを惹起し、また、表面酸化物の脱落
による周辺機器への汚染の問題があった。[0004] However, since the permanent magnet made of the Fe-BR based magnetic anisotropic sintered body having the excellent magnetic properties described above contains a rare earth element and iron which are easily oxidized in air as main components, When incorporated in a magnetic circuit, the oxides generated on the magnet surface cause a reduction in the output of the magnetic circuit and variations between the magnetic circuits, and there is a problem of contamination of peripheral devices due to the loss of the surface oxide. Was.
【0005】[0005]
【発明が解決しようとする課題】そこで、上記のFe−
B−R系永久磁石の耐食性の改善のため、磁石体表面に
無電解めっき法あるいは電解めっき法により耐食性金属
めっき層を被覆した永久磁石(特公平3−74012号
公報)が提案されているが、このめっき法では永久磁石
体が焼結体で有孔性のため、この孔内にめっき前処理で
の酸性溶液またはアルカリ溶液が残留し、経年変化とと
もに腐食する恐れがあり、また磁石体の耐薬品性が劣る
ため、めっき時に磁石表面が腐食されて密着性、防蝕性
が劣る問題があった。また、耐食性めっきを設けても、
温度60℃、相対湿度90%の条件下の耐食性試験で1
00時間放置にて、磁石特性は初期磁石特性の10%以
上劣化し、非常に不安定であった。Therefore, the above-mentioned Fe-
In order to improve the corrosion resistance of BR permanent magnets, there has been proposed a permanent magnet in which the surface of a magnet body is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method (Japanese Patent Publication No. 3-74012). However, in this plating method, since the permanent magnet body is a sintered body and is porous, an acidic solution or an alkaline solution in the plating pretreatment remains in the pores, and may corrode with aging. Since the chemical resistance is poor, there has been a problem that the magnet surface is corroded at the time of plating and the adhesion and corrosion resistance are poor. Also, even if corrosion resistant plating is provided,
1 in the corrosion resistance test under the condition of temperature 60 ° C and relative humidity 90%
After leaving for 00 hours, the magnet properties were degraded by 10% or more of the initial magnet properties and were very unstable.
【0006】そのため、Fe−B−R系永久磁石の耐食
性の改善向上のため、前記磁石表面にイオンプレーティ
ング法、イオンスパッタリング法等により、TiN、A
l被膜を被着して耐食性の改善向上することが提案(特
公平5−15043号公報)されている。しかし、Ti
N被膜はFe−B−R系磁石体と結晶構造の他、熱膨張
係数、延性等が相違するため密着性が悪く、またAl被
膜は密着性、耐食性は良好であるが、耐摩耗性が低い等
の問題があった。[0006] Therefore, in order to improve the corrosion resistance of the Fe-BR-based permanent magnet, TiN, AN is applied to the surface of the magnet by ion plating, ion sputtering or the like.
It has been proposed to improve the corrosion resistance by applying a 1 film (Japanese Patent Publication No. 5-15043). However, Ti
The N film has poor adhesion due to differences in the thermal expansion coefficient, ductility, etc., besides the crystal structure of the Fe-BR system magnet body, and the Al film has good adhesion and corrosion resistance, but has abrasion resistance. There was a problem such as low.
【0007】この発明は、Fe−B−R系永久磁石下地
との密着性にすぐれ、耐摩耗性、耐食性の改善向上を目
的に、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合の初期磁石特性からの劣化を極力
少なくし、安定した高磁石特性、耐摩耗性、耐食性を有
するFe−B−R系永久磁石を安価に提供することを目
的とする。[0007] The present invention has excellent adhesion to an Fe-BR-based permanent magnet base, and is intended to improve wear resistance and corrosion resistance. An object of the present invention is to provide an inexpensive Fe-BR-based permanent magnet having stable high magnet properties, abrasion resistance and corrosion resistance while minimizing deterioration from initial magnet properties when left for a long time.
【0008】[0008]
【課題を解決するための手段】発明者らは、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下
で長時間放置した場合においても、下地との密着性がす
ぐれ、被着した耐食性金属被膜の耐食性、耐摩耗性によ
り、その磁石特性の安定したFe−B−R系永久磁石を
目的に永久磁石体表面へのTi1-xAlxN被膜形成法に
ついて種々検討した結果、磁石体表面をイオンスパッタ
ー法等により清浄化した後、前記磁石体表面にイオンプ
レーティング法、イオンスパッタリング法等の気相成膜
法により特定膜厚のAl被膜を形成後、特定条件のN2
ガスを導入しながら、イオンプレーティング、イオンス
パッタリング法等の気相成膜法により、特定層厚のTi
1-xAlxN被膜を形成することにより、磁石表面に付着
の酸化物はAl被膜にて還元作用により、磁石表面の酸
化物は一部もしくは大部分が還元され、磁石とAl被膜
の密着性は著しく改善され、Al被膜上にTi1-xAlx
N被膜を形成するに際し、界面にはTi1- ■Al■N■
なるTi、Al、Nの複合被膜が生成し、このTi1- ■
Al■N■の組成、膜厚は基板温度、バイアス電圧、成
膜スピード等によって変化し、Ti1-xAlxN界面に向
かってTi,Nが連続的に増加する組成となっており、
これによりAl被膜とTi1-xAlxN被膜との密着性が
著しく改善できることを知見し、この発明を完成した。Means for Solving the Problems The present inventors have found that excellent corrosion resistance, especially even when left for a long time under an atmosphere condition of a temperature of 80.degree. corrosion resistance of the corrosion-resistant metal coating, the abrasion resistance, the results of various studies on Ti 1-x Al x N coating film formation method of the stable Fe-B-R based permanent magnet of the magnetic properties to the permanent magnet body surface to the purpose After the surface of the magnet body is cleaned by an ion sputtering method or the like, an Al film having a specific thickness is formed on the surface of the magnet body by a vapor deposition method such as an ion plating method or an ion sputtering method. Two
While introducing the gas, a specific layer thickness of Ti is formed by a vapor phase film forming method such as ion plating and ion sputtering.
By forming a 1-x Al x N coating, the oxide on the magnet surface is reduced by the Al coating to reduce a part or most of the oxide on the magnet surface, and the adhesion between the magnet and the Al coating Properties are significantly improved and Ti 1-x Al x
In forming the N film, the interface is Ti 1- ■ Al ■ N ■
Ti, Al, a composite film of N generated composed, the Ti 1-■
The composition and film thickness of Al ■ N ■ vary depending on the substrate temperature, bias voltage, film-forming speed, etc., so that Ti and N continuously increase toward the Ti 1-x Al xN interface.
It has been found that the adhesion between the Al coating and the Ti 1-x Al x N coating can be remarkably improved by this, and the present invention has been completed.
【0009】すなわち、この発明は主相が正方晶相から
なるFe−B−R系永久磁石体表面に、膜厚0.06μ
m〜5.0μmのAl被膜を介して膜厚0.5μm〜1
0μmのTi1-xAlxN被膜層を有することを特徴とす
る耐食性永久磁石である。That is, according to the present invention, the surface of the Fe-BR-based permanent magnet whose main phase is a tetragonal phase
0.5 μm to 1 μm through an Al coating of m to 5.0 μm
A corrosion-resistant permanent magnet and having a Ti 1-x Al x N coating layer of 0 .mu.m.
【0010】また、この発明は主相が正方晶相からなる
Fe−B−R系永久磁石体表面を清浄化した後、前記磁
石体面に膜厚0.06μm〜5.0μmのAl被膜を気
相成膜法により形成後、N2ガス雰囲気中で気相成膜法
により膜厚0.5μm〜10μmのTi1-xAlxN被膜
層を形成することを特徴とする耐食性永久磁石の製造方
法である。Further, the present invention cleans the surface of an Fe-BR-based permanent magnet having a tetragonal phase as a main phase, and then applies an Al coating having a thickness of 0.06 to 5.0 μm on the surface of the magnet. A method for producing a corrosion-resistant permanent magnet, comprising: forming a Ti 1-x Al x N film layer having a thickness of 0.5 μm to 10 μm by a gas phase film forming method in an N 2 gas atmosphere after forming by a phase film forming method. Is the way.
【0011】この発明において、Fe−B−R系永久磁
石体表面に被着するAl被膜、Ti1-xAlxN被膜の形
成方法としてはイオンプレーティング法、イオンスパッ
タリング法、蒸着法等のいわゆる気相成膜法が適宜利用
できるのが、被膜緻密性、均一性、被膜形成速度などの
理由からイオンプレーティング、反応イオンプレーティ
ングが好ましい。In the present invention, as a method of forming an Al film and a Ti 1-x Al x N film to be adhered on the surface of the Fe—BR based permanent magnet body, there are ion plating, ion sputtering, vapor deposition and the like. The so-called vapor phase film forming method can be appropriately used, and ion plating and reactive ion plating are preferable from the viewpoints of film density, uniformity, and film formation speed.
【0012】また、反応被膜生成時の基板となる永久磁
石の温度は200℃〜500℃に設定するのが好まし
く、200℃未満では基板磁石との反応密着が十分でな
く、また500℃を超えると常温(25℃)との温度差
が大きくなり、処理後の冷却過程で被膜に亀裂が入り、
一部基板より剥離を発生するため、基板磁石の温度を2
00℃〜500℃に設定するとよい。The temperature of the permanent magnet serving as the substrate when the reaction film is formed is preferably set at 200 ° C. to 500 ° C. If the temperature is lower than 200 ° C., the reaction adhesion with the substrate magnet is not sufficient, and the temperature exceeds 500 ° C. The temperature difference between the temperature and normal temperature (25 ° C) increases, and the coating cracks in the cooling process after the treatment,
The temperature of the substrate magnet is set to 2
It is good to set to 00 degreeC-500 degreeC.
【0013】Fe−B−R系永久磁石体表面にAl被膜
層を介してTi1-xAlxN被膜層を設けたことを特徴と
するこの発明の耐食性永久磁石の製造方法の一例を以下
に詳述する。 1)アークイオンプレーティング装置を用いて、真空容
器を到達真空度が1×10-3pa以下まで真空排気した
後、Arガス圧10pa、−300VでArイオンによ
る表面スパッターにてFe−B−R系磁石体表面を清浄
化する。An example of a method for producing a corrosion-resistant permanent magnet according to the present invention, characterized in that a Ti 1-x Al x N coating layer is provided on the surface of an Fe—BR-based permanent magnet body via an Al coating layer, Will be described in detail. 1) The vacuum vessel was evacuated to an ultimate vacuum of 1 × 10 −3 pa or less using an arc ion plating apparatus, and then Fe—B— was sputtered with Ar ions at a surface pressure of −300 V at an Ar gas pressure of 10 Pa. Clean the surface of the R-based magnet body.
【0014】2)次に、Arガス圧0.1pa、バイア
ス電圧−50Vにより、ターゲットのAlを蒸発させ
て、アークイオンプレーティング法にて、磁石体表面に
0.06μm〜5.0μm膜厚のAl被膜層を形成す
る。 3)続いて、ターゲットとしてTi1-yAly(0.03
<y<0.80)を用い、基板の磁石温度を250℃に
保持し、N2ガス圧3pa、バイアス電圧−120Vの
条件にて、Al被膜層上に特定厚のTi1-xAlxN被膜
層を形成する。2) Next, the target Al is evaporated with an Ar gas pressure of 0.1 pa and a bias voltage of −50 V, and a 0.06 μm to 5.0 μm film thickness is formed on the surface of the magnet body by arc ion plating. Is formed. 3) Subsequently, Ti 1-y Al y (0.03
<Y <0.80), the magnet temperature of the substrate was kept at 250 ° C., the N 2 gas pressure was 3 pa, the bias voltage was −120 V, and a specific thickness of Ti 1-x Al x was formed on the Al coating layer. An N coating layer is formed.
【0015】この発明において、Fe−B−R系永久磁
石体表面のAl被膜厚を0.06μm〜5.0μmに限
定した理由は、0.06μm未満では磁石体表面にAl
が均一に被着し難く、下地膜としての効果が十分でな
く、5.0μmを超えると効果的には問題ないが、下地
膜としてはコスト上昇を招来して、実用的でなく好まし
くないので、Al被膜厚は0.06μm〜5.0μmと
する。特に、Al被膜厚は磁石体の表面粗度によって選
定され、表面粗度が0.1μm以下の場合、Al被膜厚
は0.06μm〜5.0μmが好ましく、また表面粗度
が0.1μm〜1.2μmの場合、望ましい膜厚は0.
1μm〜5.0μmである。In the present invention, the reason why the thickness of the Al coating on the surface of the Fe—BR type permanent magnet body is limited to 0.06 μm to 5.0 μm is that if the thickness is less than 0.06 μm, Al
Is difficult to apply uniformly, and the effect as a base film is not sufficient. When the thickness exceeds 5.0 μm, there is no problem. However, the cost of the base film is increased, which is not practical and not preferable. , Al coating thickness is set to 0.06 μm to 5.0 μm. In particular, the Al coating thickness is selected according to the surface roughness of the magnet body. When the surface roughness is 0.1 μm or less, the Al coating thickness is preferably 0.06 μm to 5.0 μm, and the surface roughness is 0.1 μm to In the case of 1.2 μm, the desired film thickness is 0.1 μm.
It is 1 μm to 5.0 μm.
【0016】また、Ti1-xAlxN被膜厚を0.5μm
〜10μmに限定した理由は、0.5μm未満ではTi
1-xAlxN被膜としての耐食性、耐摩耗性が十分でな
く、10μmを超えると効果的には問題ないが、製造コ
スト上昇を招来するので好ましくない。また、Ti1-x
AlxN被膜において、xの値を限定した理由は、0.
03未満ではTi1-xAlxN被膜としての性能、すなわ
ち、耐食性、耐磨耗性が得られず、また、0.70を越
えても性能の向上が得られないためである。The thickness of the Ti 1-x Al x N coating is 0.5 μm
The reason for limiting the thickness to 10 to 10 μm is that if the thickness is less than 0.5 μm
The corrosion resistance and abrasion resistance of the 1-x Al x N film are not sufficient, and if it exceeds 10 μm, there is no problem effectively, but it is not preferable because it increases the production cost. Also, Ti 1-x
The reason why the value of x is limited in the Al x N coating is as follows.
If it is less than 03, the performance as a Ti 1-x Al x N coating, that is, corrosion resistance and abrasion resistance cannot be obtained, and if it exceeds 0.70, no improvement in performance can be obtained.
【0017】この発明において、永久磁石に用いる希土
類元素Rは、組成の10原子%〜30原子%を占める
が、Nd、Pr、Dy、Ho、Tbのうち少なくとも1
種、あるいはさらに、La、Ce、Sm、Gd、Er、
Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含
むものが好ましい。また、通常Rのうち1種をもって足
りるが、実用上は2種以上の混合物(ミッシュメタル、
ジジム等)を入手上の便宜等の理由により用いることが
できる。なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を含有す
るものでも差支えない。In the present invention, the rare earth element R used in the permanent magnet occupies 10 to 30 atomic% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb.
Species, or additionally, La, Ce, Sm, Gd, Er,
Those containing at least one of Eu, Tm, Yb, Lu, and Y are preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal,
Jijim etc.) can be used for reasons such as convenience in obtaining. Note that this R may not be a pure rare earth element,
It may be one containing impurities that are unavoidable in production as far as it is industrially available.
【0018】Rは、上記系永久磁石における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、R10原子%〜
30原子%の範囲が望ましい。R is an essential element in the above-mentioned permanent magnets. If it is less than 10 atomic%, the crystal structure has the same cubic structure as α-iron, so that high magnetic properties, especially high coercive force cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R10 atomic% or more
A range of 30 atomic% is desirable.
【0019】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。B is an essential element in the above-mentioned permanent magnet. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.
【0020】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、Brは置換しない場合に比較して増加するため、高
磁束密度を得るために好ましい。Fe is an essential element in the above-mentioned permanent magnets. When the content is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic%.
Further, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, conversely, It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, Br is increased as compared with the case where no substitution is made, and thus it is preferable to obtain a high magnetic flux density.
【0021】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。In addition to R, B, and Fe, it is possible to allow the presence of unavoidable impurities in industrial production. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.
【0022】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、F
e−B−R系永久磁石材料に対してその保磁力、減磁曲
線の角型性を改善あるいは製造性の改善、低価格化に効
果があるため添加することができる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上と
するには、Brが少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is F
It can be added to the e-B-R permanent magnet material because it has the effect of improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. The upper limit of the addition amount is preferably in a range that satisfies the above condition, since Br needs to be at least 9 kG or more in order to make (BH) max of the magnet material 20 MGOe or more.
【0023】また、Fe−B−R系永久磁石は平均結晶
粒径が1〜80μmの範囲にある正方晶系の結晶構造を
有する化合物を主相とし、体積比で1%〜50%の非磁
性相(酸化物相を除く)を含むことを特徴とする。Fe
−B−R系永久磁石は、保磁力iHc≧1kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(B
H)maxは、(BH)max≧10MGOeを示し、
最大値は25MGOe以上に達する。The Fe-BR permanent magnet has a main phase of a compound having a tetragonal crystal structure having an average crystal grain size in a range of 1 to 80 μm, and a non-volume of 1% to 50% by volume. It is characterized by containing a magnetic phase (excluding an oxide phase). Fe
The -BR type permanent magnet has a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (B
H) max indicates (BH) max ≧ 10MGOe,
The maximum reaches 25 MGOe or more.
【0024】[0024]
【実施例】 実施例1 公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理、表面加工後に、17Nd−1Dy−76F
e−6B組成の径12mm×厚み2mm寸法の磁石体試
験片を得た。得られた試験片の表面粗度を表2に、磁石
特性を表1に示す。真空容器内を1×10-3pa以下に
真空排気し、Arガス圧10pa、−500Vで20分
間、表面スパッターを行って、磁石体表面を清浄化した
後、表2に示すイオンプレーティング条件にて基板磁石
温度を250℃にして、ターゲットとして金属Alを用
いてアークイオンプレーティング法にて、磁石体表面に
0.2μm厚および1.6μm厚のAl被膜層を形成し
た。EXAMPLES Example 1 A known casting ingot was pulverized, finely pulverized, molded, sintered, heat-treated, and surface-treated to obtain 17Nd-1Dy-76F.
A magnet test piece having a composition of e-6B and having a diameter of 12 mm and a thickness of 2 mm was obtained. Table 2 shows the surface roughness of the obtained test piece, and Table 1 shows the magnet characteristics. The inside of the vacuum vessel was evacuated to 1 × 10 −3 pa or less, the surface was sputtered at an Ar gas pressure of 10 pa and −500 V for 20 minutes to clean the magnet body surface, and then the ion plating conditions shown in Table 2 were obtained. The substrate magnet temperature was set to 250 ° C., and an Al coating layer having a thickness of 0.2 μm and 1.6 μm was formed on the surface of the magnet body by arc ion plating using metal Al as a target.
【0025】次に基板磁石温度350℃、バイアス電圧
−120Vで、N2ガス3paにて、ターゲットとして
合金Ti0.5・Al0.5をアークイオンプレーティング法
にて3時間でAl被膜表面に膜厚3μmのTi1-xAlx
N被膜層を形成した。生成膜組成はTi0.55Al0.45N
であった。その後、放冷した後、得られたTi0.55Al
0.45N被膜を表面に有する永久磁石を温度80℃、相対
湿度90%の条件下で1000時間放置した後の磁石特
性及びその劣化状況を測定し、その結果を表3に示す。Next, at a substrate magnet temperature of 350 ° C., a bias voltage of −120 V and an N 2 gas of 3 pa, an alloy of Ti 0.5 and Al 0.5 as a target was applied to the surface of the Al film by an arc ion plating method for 3 hours to form a film having a thickness of 3 μm. Ti 1-x Al x
An N coating layer was formed. The composition of the formed film is Ti 0.55 Al 0.45 N
Met. Then, after cooling, the obtained Ti 0.55 Al
The properties and deterioration of the permanent magnet having the 0.45 N coating film on the surface after standing for 1000 hours at a temperature of 80 ° C. and a relative humidity of 90% were measured, and the results are shown in Table 3.
【0026】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、磁石体上に実施例1と同一条
件にて直接Ti0.55Al0.45N被膜を3μm厚に形成し
た。その後、実施例1と同一の温度80℃、相対湿度9
0%の条件下で1000時間放置後の磁石特性及びその
劣化状況を測定し、その結果を第3表に示す。COMPARATIVE EXAMPLE 1 A test piece of a magnet body having the same composition as in Example 1 was cleaned under the same conditions as in Example 1, and then directly on the magnet body under the same conditions as in Example 1 with Ti 0.55 Al 0.45 N. The coating was formed to a thickness of 3 μm. Thereafter, the same temperature of 80 ° C. and relative humidity of 9
The properties of the magnet and the state of deterioration after 1000 hours of standing at 0% were measured, and the results are shown in Table 3.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【表3】 [Table 3]
【0030】表3に示すように、同一磁石特性を有する
Fe−B−R系永久磁石体表面にTi1-xAlxN被膜層
を設けた比較例磁石は、温度80℃、相対湿度90%の
条件下で1000時間放置した耐食試験前後の磁石特性
の劣化が大きくかつ発錆しているのに対し、Al被膜層
を介してTi1-xAlxN被膜層を設けたこの発明のFe
−B−R系永久磁石は、錆は発生せず、磁石特性もほと
んど変わらないことが明らかである。As shown in Table 3, the comparative magnet in which the Ti 1-x Al x N coating layer was provided on the surface of the Fe—BR based permanent magnet body having the same magnet characteristics was at a temperature of 80 ° C. and a relative humidity of 90 °. % Of the magnets before and after the corrosion resistance test which was left for 1000 hours under the condition of 0.1%, and rusted, whereas the Ti 1-x Al x N coating layer was provided via the Al coating layer. Fe
It is clear that rust does not occur in the -BR type permanent magnet and the magnet characteristics hardly change.
【0031】[0031]
【発明の効果】この発明は、Fe−B−R系永久磁石体
表面をイオンスパッター法等により清浄化した後、前記
磁石体表面にイオンプレーティング法等の気相成膜法に
よりAl被膜を形成後、特定条件のN2ガスを導入しな
がらイオンプレーティング等の気相成膜法により、Ti
1-xAlxN被膜を形成したことを特徴とし、磁石体表面
にAl被膜を形成することにより磁石体表面の酸化物は
一部もしくは大部分が還元され、磁石体表面とAl被膜
との密着性は改善され、さらにAl被膜上にTi1-xA
lxN被膜を積層することにより、実施例の如く、すぐ
れた耐食性、特に温度80℃、相対湿度90%の雰囲気
条件下で長時間放置した場合においても、下地との密着
性がすぐれ、被着した耐食性金属被膜の耐食性、耐摩耗
性により、その磁石特性の安定したFe−B−R系永久
磁石が得られる。According to the present invention, after the surface of the Fe-BR based permanent magnet is cleaned by ion sputtering or the like, an Al coating is formed on the surface of the magnet by a vapor phase film forming method such as ion plating. After the formation, while introducing N 2 gas under specific conditions, Ti 2
It is characterized by forming a 1-x Al x N coating, and by forming an Al coating on the surface of the magnet body, the oxide on the surface of the magnet body is partially or mostly reduced, and the oxide on the magnet body surface and the Al coating Adhesion is improved, and Ti 1-x A
By laminating l x N film, as in Example, good corrosion resistance, in particular the temperature 80 ° C., even when the left for a long time in an atmosphere under a relative humidity of 90%, good adhesion to the underlying layer, the Due to the corrosion resistance and wear resistance of the deposited corrosion-resistant metal film, a Fe-BR-based permanent magnet having stable magnet properties can be obtained.
Claims (2)
永久磁石体表面に、膜厚0.06μm〜5.0μmのA
l被膜を介して膜厚0.5μm〜10μmのTi1-xA
lxN(但し、0.03<x<0.70)被膜層を有す
ることを特徴とする耐食性永久磁石。1. A 0.06 μm-5.0 μm thick A—B—R based permanent magnet body having a tetragonal phase as a main phase.
l 1-0.5 μm to 10 μm-thick Ti 1-x A
l x N (where, 0.03 <x <0.70) corrosion-resistant permanent magnet and having a coating layer.
永久磁石体表面を清浄化した後、前記磁石体面に膜厚
0.06μm〜5.0μmのAl被膜を気相成膜法によ
り形成後、N2ガス雰囲気中で気相成膜法により膜厚
0.5μm〜10μmのTi1-xAlxN(但し、0.0
3<x<0.70)被膜層を形成することを特徴とする
耐食性永久磁石の製造方法。2. After cleaning the surface of an Fe-BR-based permanent magnet whose main phase is a tetragonal phase, an Al film having a thickness of 0.06 μm to 5.0 μm is formed on the surface of the magnet in a vapor phase. After forming by a method, a Ti 1-x Al x N (0.5 to 10 μm thick) film is formed in a N 2 gas atmosphere by a vapor phase film forming method.
3 <x <0.70) A method for producing a corrosion-resistant permanent magnet, comprising forming a coating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8257699A JPH1083905A (en) | 1996-09-06 | 1996-09-06 | Corrosion-resistant permanent magnet and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8257699A JPH1083905A (en) | 1996-09-06 | 1996-09-06 | Corrosion-resistant permanent magnet and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1083905A true JPH1083905A (en) | 1998-03-31 |
Family
ID=17309892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8257699A Pending JPH1083905A (en) | 1996-09-06 | 1996-09-06 | Corrosion-resistant permanent magnet and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1083905A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422503B1 (en) * | 2000-06-02 | 2004-03-12 | 고창모 | Lamp state display apparatus for a car |
-
1996
- 1996-09-06 JP JP8257699A patent/JPH1083905A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422503B1 (en) * | 2000-06-02 | 2004-03-12 | 고창모 | Lamp state display apparatus for a car |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11307328A (en) | Corrosion resistant permanent magnet and its manufacture | |
WO1997023884A1 (en) | Permanent magnet for ultrahigh vacuum application and method for manufacturing the same | |
EP0923087B1 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH1074607A (en) | Corrosion-resisting permanent magnet and its manufacture | |
JP3737830B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH07283017A (en) | Corrosion resistant permanent magnet and production thereof | |
JPH07249509A (en) | Corrosion-resistant permanent magnet and its manufacture | |
JPH0569282B2 (en) | ||
JPH1083905A (en) | Corrosion-resistant permanent magnet and its manufacture | |
JP3652816B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3652818B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3383338B2 (en) | Corrosion-resistant permanent magnet and its manufacturing method | |
JP3676513B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPS61281850A (en) | Permanent magnet material | |
JPH10340823A (en) | Manufacture of r-iron-boron permanent magnet having excellent salt water resistance | |
JPH06140226A (en) | Corrosion-resistant permanent magnet | |
JP3234306B2 (en) | Corrosion resistant permanent magnet | |
JP3595082B2 (en) | Ultra-high vacuum permanent magnet and method of manufacturing the same | |
JP5036207B2 (en) | Magnet member | |
JP2724391B2 (en) | Corrosion resistant permanent magnet | |
JP3595078B2 (en) | Ultra-high vacuum permanent magnet and method of manufacturing the same | |
JPS63254702A (en) | Manufacture of corrosion resisting permanent magnet | |
JPH09180921A (en) | Permanent magnet for ultra high vacuum and manufacture thereof | |
JPH10106818A (en) | Permanent magnet for ultra high vacuum and method for manufacturing the same | |
JPH10106819A (en) | Permanent magnet for ultra high vacuum and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051006 |