JPH1043946A - Control device of electric discharge machine - Google Patents
Control device of electric discharge machineInfo
- Publication number
- JPH1043946A JPH1043946A JP19922396A JP19922396A JPH1043946A JP H1043946 A JPH1043946 A JP H1043946A JP 19922396 A JP19922396 A JP 19922396A JP 19922396 A JP19922396 A JP 19922396A JP H1043946 A JPH1043946 A JP H1043946A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- amount
- electric discharge
- electrode
- driving device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003754 machining Methods 0.000 claims abstract description 24
- 238000013459 approach Methods 0.000 claims abstract description 12
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000009193 crawling Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 238000004070 electrodeposition Methods 0.000 description 9
- 239000012530 fluid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、放電加工機の制御
装置に関し、特に電極と被加工物の間に安定した放電を
逐次発生させるために適正な間隙を保つ制御に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an electric discharge machine, and more particularly to a control for maintaining a proper gap between electrodes and a workpiece in order to generate a stable electric discharge.
【0002】[0002]
【従来の技術】放電加工は、加工液に浸された電極と被
加工物の間、いわゆる「極間」に放電を逐次発生させ、
これに伴う被加工物の熔融除去作用によって加工を行な
う。放電を逐次発生させるためには、極間の距離、すな
わち間隙を適正に保つ必要がある。放電が逐次発生する
と被加工物が徐々に除去されていくので、被加工物の除
去に応じて間隙が適正に保たれるよう、間隙制御と称す
自動制御系が構成されている。2. Description of the Related Art In electric discharge machining, an electric discharge is successively generated between an electrode immersed in a machining fluid and a workpiece, that is, between electrodes.
Processing is performed by the melting and removing action of the workpiece accompanying this. In order to generate discharges sequentially, the distance between the poles, that is, the gap must be properly maintained. Since the workpiece is gradually removed when the discharge is sequentially generated, an automatic control system called gap control is configured so that the gap is appropriately maintained according to the removal of the workpiece.
【0003】図5は従来の放電加工機の制御装置の間隙
制御部の構成例を示したものである。電極1と被加工物
2は加工液3を介して対峙し、放電電源4が接続されて
いる。電極1は駆動機器8によって被加工物2に対し接
近または開離方向に移動する。このような構成の下、電
極1と被加工物2の間に現れる電圧を基に、平均電圧生
成器5でフィルターなどを介して極間平均電圧V1を生
成する。この極間平均電圧V1と基準電圧V2との差分
から移動量演算処理部6が駆動方向および速度を演算
し、駆動機器制御部7を介して駆動機器8を駆動する。
そして、フィードバック制御の結果、電極1と被加工物
2の間隙は放電を行なうに適正な間隙を保つことにな
る。FIG. 5 shows an example of the configuration of a gap control section of a control device of a conventional electric discharge machine. The electrode 1 and the workpiece 2 face each other via the working fluid 3, and a discharge power supply 4 is connected. The electrode 1 is moved toward or away from the workpiece 2 by the driving device 8. With such a configuration, the average voltage V1 is generated by the average voltage generator 5 via a filter or the like based on the voltage appearing between the electrode 1 and the workpiece 2. The moving amount calculation processing unit 6 calculates the driving direction and speed from the difference between the inter-electrode average voltage V1 and the reference voltage V2, and drives the driving device 8 via the driving device control unit 7.
Then, as a result of the feedback control, the gap between the electrode 1 and the workpiece 2 maintains an appropriate gap for performing discharge.
【0004】なお放電による被加工物の熔融除去作用に
伴い、極間に加工屑が発生する。過度な加工屑は正常な
放電を阻害するので、移動量演算処理部6は、一定時間
毎に電極を一定量開離し再び元の位置へ戻すいわゆる
「ジャンプ動作」を実行し、加工屑を極間外へ排出する
ようにしている。[0004] With the action of melting and removing the workpiece by the electric discharge, machining chips are generated between the poles. Since excessive machining detriment hinders normal discharge, the moving amount calculation processing unit 6 executes a so-called “jump operation” in which the electrode is separated by a predetermined amount at regular time intervals and returned to the original position again, and the machining debris is extremely reduced. They are discharged outside.
【0005】[0005]
【発明が解決しようとする課題】適正な放電を行なう間
隙は数十μm〜数百μmであり、この僅かなすき間に加
工液3が満たされている。このため電極1を移動する
と、移動方向と逆の向きに反力が働き、電極1の移動を
抑制しようとする。この反力は一般的にジャンプ動作後
の電極接近時に極大となる。反力によって駆動機器8と
電極1の間に物理的な歪みが生じるので、間隙制御系に
おける間接制御対象である電極位置の追従性が悪化し、
放電を行なうのに適正な間隙を持続できなくなる。これ
により放電が逐次発生しないので加工効率が低下するば
かりでなく、短絡が増加して局部的な集中放電をひきお
こし、電極表面や被加工物表面を悪化させるという問題
がある。The gap for performing proper discharge is several tens μm to several hundreds μm, and the working fluid 3 is filled in this slight gap. For this reason, when the electrode 1 is moved, a reaction force acts in a direction opposite to the moving direction, and attempts to suppress the movement of the electrode 1. This reaction force generally becomes maximum when the electrode approaches after the jump operation. Since the reaction force causes physical distortion between the driving device 8 and the electrode 1, the followability of the electrode position, which is the object of indirect control in the gap control system, deteriorates.
An appropriate gap for discharging can not be maintained. As a result, the discharge does not occur successively, so that not only the machining efficiency is reduced, but also the short-circuit is increased to cause a localized concentrated discharge, thereby deteriorating the electrode surface and the workpiece surface.
【0006】以上の現象は特に電極面積が大きく、かつ
極間距離の小さい仕上げ加工で顕著になる。図6(A)
は反力が僅かな条件での加工の様子を、図6(B)は反
力が大きい条件下での加工時の様子を示している。横軸
は時間軸、p1は駆動機器部における位置、p2は電極
位置、v1は極間平均電圧である。なお極間平均電圧v
1が最大値の時は極間状態は非放電が支配的、極間平均
電圧が0の時は極間状態は短絡が支配的である。極間平
均電圧v1が基準電圧v2に一致している時に、極間に
期待した放電が現れている。[0006] The above-mentioned phenomenon becomes remarkable especially in finishing processing in which the electrode area is large and the distance between the electrodes is small. FIG. 6 (A)
FIG. 6B shows a state of processing under a condition of a small reaction force, and FIG. 6B shows a state of processing at a condition of a large reaction force. The horizontal axis is the time axis, p1 is the position in the drive unit, p2 is the electrode position, and v1 is the average voltage between the electrodes. Note that the average voltage between contacts v
When 1 is the maximum value, non-discharge is dominant in the gap state, and when the average gap voltage is 0, short-circuit is dominant in the gap state. When the inter-electrode average voltage v1 matches the reference voltage v2, an expected discharge appears between the interelectrodes.
【0007】図6(A)では、反力が小さいので電極位
置p2は駆動機器部位置p1に追従して運動している。
極間平均電圧v1は電極位置p2に伴って変動し、基準
電圧v2に収束し、結果極間に期待した放電が安定して
発生している。一方図6(B)では、電極位置p2は接
近方向への移動時に、反力によって駆動機器部位置p1
に対して歪みが生じている。間隙制御によって極間電圧
v1が基準電圧v2に収束するよう駆動機器部が駆動さ
れるが、電極位置の追従性の悪化により駆動機器部位置
p1および電極位置p2は発振状態になり、極間平均電
圧v1も収束しない。つまり反力が大きい条件下では、
極間状態は非放電あるいは短絡が支配的になっており、
期待した放電が殆んど発生していない状況で加工が行な
われるという問題があった。In FIG. 6A, since the reaction force is small, the electrode position p2 moves following the drive device section position p1.
The inter-electrode average voltage v1 fluctuates with the electrode position p2 and converges to the reference voltage v2. As a result, a discharge expected between the inter-electrodes is stably generated. On the other hand, in FIG. 6B, when the electrode position p2 moves in the approaching direction, the driving device unit position p1 is moved by the reaction force.
Is distorted. The driving device is driven so that the gap voltage v1 converges to the reference voltage v2 by the gap control. However, the driving device portion position p1 and the electrode position p2 enter an oscillating state due to the deterioration of the electrode position following capability, and the gap average is changed. The voltage v1 also does not converge. In other words, under conditions where the reaction force is large,
In the gap state, non-discharge or short circuit is dominant,
There is a problem that machining is performed in a state where the expected discharge is hardly generated.
【0008】本発明は、上述のような問題を解決するた
めになされたものであり、反力が大きい条件下の加工で
も、期待した放電を発生するよう間隙を維持することが
できる放電加工機の制御装置を供給することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and is an electric discharge machine capable of maintaining a gap so as to generate an expected electric discharge even when machining under conditions of a large reaction force. The purpose is to supply a control device.
【0009】[0009]
【課題を解決するための手段】本発明は、電極と被加工
物の間に放電を逐次発生させて加工を行なう放電加工機
の制御装置に関するものであり、本発明の上記目的は
前記電極と被加工物の間の電圧を検出して平均電圧を生
成する平均電圧生成手段と、前記平均電圧に基づいて放
電状態を判定する放電状態判定手段と、前記放電が継続
し放電安定状態と判定された時点からの前記電極を移動
させる駆動機器の相対移動ベクトル量を得る相対移動量
算出手段と、前記放電安定状態と判定された時点の前記
駆動機器の位置から前記被加工物に接近可能な前記駆動
機器の位置までのベクトル量を示す過接近量を決定する
過接近量決定手段と、前記駆動機器の駆動速度を得る移
動量演算手段とを備え、前記過接近量を超えて間隙が狭
くなる方向に前記相対移動ベクトル量が位置する際に前
記駆動機器の駆動速度を低下させることによって達成さ
れる。さらに、前記過接近量は、加工条件に基づいて決
定するようにすること、前記過接近量は、ジャンプ動作
後に変更するようにすること、前記放電状態判定手段
が、放電中の時間の累積値に基づいて食いつき状態を判
定するようになっており、前記食いつき状態の時には前
記駆動機器の駆動速度を変化させないようにすることに
よって、それぞれより効果的に達成される。SUMMARY OF THE INVENTION The present invention relates to a control device for an electric discharge machine which performs machining by successively generating electric discharge between an electrode and a workpiece.
Average voltage generation means for detecting a voltage between the electrode and the workpiece to generate an average voltage, discharge state determination means for determining a discharge state based on the average voltage, and a discharge stable state where the discharge is continued Relative movement amount calculating means for obtaining a relative movement vector amount of the driving device that moves the electrode from the time point when it is determined that the electrode is moved, and approaching the workpiece from the position of the driving device at the time point when the discharge stable state is determined. An over-approaching amount determining unit that determines an over-approaching amount indicating a vector amount to a possible position of the driving device; and a moving amount calculating unit that obtains a driving speed of the driving device. This is achieved by reducing the driving speed of the driving device when the relative movement vector amount is located in a direction in which the distance becomes smaller. Further, the over-approaching amount is determined based on a machining condition, the over-approaching amount is changed after a jump operation, and the discharge state determination means calculates a cumulative value of time during discharge. The biting state is determined on the basis of the following. In the case of the biting state, the driving speed of the driving device is not changed, thereby achieving each of them more effectively.
【0010】[0010]
【発明の実施の形態】本発明の放電加工機の制御装置
は、極間平均電圧V1から、極間状態が非放電、放電で
あることを判断する手段と、極間状態が放電を継続して
いると判断した時点からの駆動機器の相対移動量を記憶
する手段と、前記相対移動量を用いて前記駆動機器が被
加工物に対して過度に接近する位置にあるか否かを判定
し、過度に接近する位置にあり、かつ極間状態が非放電
であれば、電極と駆動機器との間に歪みが生じていると
判断し、駆動機器の駆動速度を低下させる手段とを備え
ている。反力によって歪みが生じている時に駆動機器の
駆動速度を低下すると、極間の反力が減衰して電極は被
加工物に徐々に接近し、やがて放電を安定持続するよう
になる。この方法は、特に反力の大きい仕上げ加工にお
いて、単位時間当たりの被加工物除去量が極めて小さ
く、放電を維持又は再開するための電極位置の変化は、
接近方向へは非常に緩慢であるという現象を利用してい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A control device for an electric discharge machine according to the present invention comprises means for judging from a mean gap voltage V1 whether a gap state is non-discharge or discharge, and a gap state in which discharge is continued. Means for storing the relative movement amount of the driving device from the point in time when it is determined that the driving device is in use, and determining whether or not the driving device is at a position excessively close to the workpiece using the relative movement amount. If it is located in an excessively close position, and if the gap state is non-discharge, it is determined that distortion has occurred between the electrode and the driving device, and means for reducing the driving speed of the driving device are provided. I have. If the driving speed of the driving device is reduced when the reaction force causes distortion, the reaction force between the electrodes is attenuated, and the electrode gradually approaches the workpiece, so that the discharge can be stably maintained. In this method, particularly in the finishing process with a large reaction force, the amount of workpiece removal per unit time is extremely small, and the change in the electrode position for maintaining or restarting the discharge is
It takes advantage of the phenomenon that it is very slow in the approach direction.
【0011】なお、ジャンプ動作直後、および「食いつ
き」と呼ばれる加工開始直後の状態の時は、一般的に前
述の現象があてはまらない。ジャンプ動作直後は極間の
加工屑が少なくなるので、正常放電を逐次発生させるに
妥当な間隙は、前回の放電維持した間隙より僅かに狭い
状態が望ましい。また食いつきでは、放電する電極位置
が頻繁に変化するので、前回放電した電極位置で次回も
放電を行なうとは限らず、前記の手段によって駆動機器
の駆動速度を低下させると加工効率が低下する場合があ
る。そこで本発明では、この2つの場合に鑑み、以下に
述べる制御手段を有している。In general, the above-mentioned phenomenon does not apply immediately after the jump operation and immediately after the start of machining called "biting". Immediately after the jump operation, machining dust between the poles is reduced. Therefore, it is desirable that the gap appropriate for successively generating the normal discharge be slightly narrower than the gap maintained for the previous discharge. In addition, in the biting, the position of the electrode to be discharged frequently changes, so that the next time the discharge is not always performed at the previously discharged electrode position, and when the driving speed of the driving device is reduced by the above-described means, the processing efficiency is reduced. There is. In view of these two cases, the present invention has the following control means.
【0012】第1の制御手段では、ジャンプ動作後に限
り、前回の放電した電極位置より所定の過接近距離Dj
分接近した位置で歪み判定を実施する。ジャンプ動作後
に駆動機器の移動速度を低下した時、駆動機器位置は既
に過接近距離Dj分被加工物に接近した位置にあるの
で、電極位置は反力の減衰とともに被加工物に過接近距
離Dj分接近した位置に移動する。これによりジャンプ
動作後、間隙は過接近距離Dj分狭い状態で放電を再開
し、放電が逐次発生し易くなる。なお面粗さの小さい加
工条件ほど、過接近距離Djは小さい値であることが望
ましいので、過接近距離Djを例えば加工条件のピーク
電流値などに基づいて決定する。In the first control means, only after the jump operation, a predetermined over-approaching distance Dj is determined from the position of the previously discharged electrode.
A distortion judgment is performed at a position that is a minute closer. When the moving speed of the driving device is reduced after the jump operation, the position of the driving device is already at a position close to the workpiece by the over-proximity distance Dj. Move to a position closer by minutes. As a result, after the jump operation, the discharge is restarted in a state where the gap is narrow by the over-approaching distance Dj, and the discharge is likely to occur sequentially. Note that it is desirable that the over-approaching distance Dj be smaller as the processing condition has a smaller surface roughness, and thus the over-approaching distance Dj is determined based on, for example, the peak current value of the processing condition.
【0013】また、第2の制御手段では、加工を開始し
てから極間に放電が現れていると判断した時の累積時間
が一定の時間を超過するまで、食いつきと判断し、食い
つき状態では、前記歪み判定およびそれに伴う駆動速度
の低下を行なわないことで、加工効率の低下を抑制す
る。Further, the second control means determines that biting has occurred until the cumulative time when it is determined that electric discharge has appeared in the gap from the start of machining until a cumulative time exceeds a predetermined time. By not performing the above-described distortion determination and the accompanying reduction in the driving speed, a reduction in machining efficiency is suppressed.
【0014】以下、図面に基づいて本発明の好適な実施
の形態について詳細に説明する。図1は本発明の放電加
工機の制御装置の一例を図5に対応させて示すブロック
図である。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of a control device for an electric discharge machine according to the present invention in correspondence with FIG.
【0015】放電状態判定部10では、平均電圧生成器
5で生成された極間平均電圧V1から、極間状態を判定
する。放電状態判定部10における動作例を図2のフロ
ーチャートを用いて説明する。極間平均電圧V1が非放
電判定電圧以下でかつ短絡判定電圧以上である時は(ス
テップS1、S2)、放電累積時間、放電継続時間をそ
れぞれカウントアップし(ステップS3、S4)、そう
でない時は放電継続時間をリセットする(ステップS
5)。続いて、放電累積時間と食いつき判定時間とを比
較し、放電累積時間が食いつき判定時間より短い時は
(ステップS6)、食いつき状態と判断する(ステップ
S7)。一方、放電継続時間が継続判定時間より長い時
は(ステップS8)、放電安定状態と判断する(ステッ
プS9)。また、食いつき状態でなくかつ放電安定状態
でない時で、かつ極間平均電圧V1が非放電判定電圧以
上の時は(ステップS10)、非放電状態と判断する
(ステップS11)。The discharge state determination unit 10 determines the state of the gap from the average gap voltage V1 generated by the average voltage generator 5. An operation example of the discharge state determination unit 10 will be described with reference to the flowchart of FIG. When the inter-electrode average voltage V1 is equal to or lower than the non-discharge judgment voltage and equal to or higher than the short-circuit judgment voltage (steps S1 and S2), the discharge cumulative time and the discharge duration time are counted up (steps S3 and S4). Resets the discharge duration (step S
5). Subsequently, the cumulative discharge time is compared with the biting determination time. If the cumulative discharge time is shorter than the biting determination time (step S6), it is determined that the biting state is present (step S7). On the other hand, when the discharge continuation time is longer than the continuation determination time (step S8), it is determined that the discharge is stable (step S9). Further, when it is not in the biting state and in the stable discharge state, and when the average voltage V1 between the electrodes is equal to or higher than the non-discharge determination voltage (step S10), it is determined that the battery is in the non-discharge state (step S11).
【0016】相対移動量算出部11では、放電安定状態
と判断された時点からの駆動機器8の相対移動ベクトル
量Diを生成する。移動量演算処理部6から出力された
移動指令ベクトル量を逐次積算する一方、放電状態判定
部10で放電安定中と判断された時に、相対移動ベクト
ル量Diを0にする。本実施例では、駆動機器8が被加
工物2に接近する方向へ移動した時、相対移動ベクトル
量Diは正の値、駆動機器8が被加工物2より開離する
方向へ移動した時には相対移動ベクトル量Diは負の値
としている。The relative movement amount calculation unit 11 generates a relative movement vector amount Di of the driving device 8 from the time when the discharge state is determined to be stable. While the movement command vector amount output from the movement amount calculation processing unit 6 is sequentially integrated, the relative movement vector amount Di is set to 0 when the discharge state determination unit 10 determines that the discharge is stable. In this embodiment, when the driving device 8 moves in the direction approaching the workpiece 2, the relative movement vector amount Di is a positive value, and when the driving device 8 moves in the direction separating from the workpiece 2, the relative movement vector amount Di is relatively large. The movement vector amount Di is a negative value.
【0017】過接近量決定部12では、過去に安定放電
した極間距離に対して、ジャンプ後における被加工物2
に接近可能なベクトル量、すなわち過接近量Djを決定
する。過接近量決定部12には予めピーク電流値とその
電流値に対応して過接近量を示した決定表を有し、現在
選択されているピーク電流より、前記決定表から該当す
るピーク電流値を検索し、対応する過接近量を採用す
る。なお過接近量決定の手段として前記決定表を用いる
他、関数を用いて決定しても良い。関数の例を数1に示
す。The over-approaching amount determining section 12 determines the workpiece 2 after the jump with respect to the distance between the poles that has been stably discharged in the past.
Is determined, that is, the over-approaching amount Dj. The over-approaching amount determining unit 12 has a determination table indicating the amount of over-approaching in advance corresponding to the peak current value and the current value. Based on the currently selected peak current, the corresponding peak current value from the determination table is used. And employs the corresponding over-approach amount. The determination table may be determined using a function other than using the determination table as a means for determining the over-approaching amount. An example of the function is shown in Equation 1.
【0018】[0018]
【数1】過接近量Dj=2×√(ピーク電流値)## EQU1 ## Over-approach amount Dj = 2 × √ (peak current value)
【0019】移動量演算処理部6では、駆動機器8の移
動ベクトル量を算出する。移動量演算処理部6における
動作例を図3のフローチャートを用いて説明する。ジャ
ンプタイミングであれば(ステップS20)、過接近量
決定部12で決定された過接近量Djを取得し(ステッ
プS21)、ジャンプ動作用の移動ベクトル量を発生す
る(ステップS22)。ジャンプタイミングでない時
は、相対移動ベクトル量Diと過接近量Djとを比較
し、相対移動ベクトル量Diが大きい時、すなわち駆動
機器位置が過去に放電安定した位置に対して過接近量D
jを超えて被加工物に接近している時は(ステップS2
3)、過接近量Djを0にするとともに(ステップS2
4)、放電判定部10で判断された極間状態が非放電で
あるか否かを判定する(ステップS25)。極間状態が
非放電である時、つまり歪みが生じている時で、かつ極
間平均電圧V1が基準電圧V2より大きい時、つまり接
近方向に移動すべき時は(ステップS26)、移動速度
係数を縮小する(ステップS27)。一方、ステップS
23において、駆動機器位置が過接近量Djを超えて被
加工物に接近していない時、またはステップS25にお
いて歪みが生じていない時、またはステップS26にお
いて開離方向に移動すべき時は、移動速度係数として標
準値を採用する(ステップS28)。最後に極間平均電
圧V1と基準電圧V2との差に移動速度係数を乗じて移
動ベクトル量を算出する(ステップS29)。The moving amount calculating section 6 calculates a moving vector amount of the driving device 8. An example of the operation of the movement amount calculation processing unit 6 will be described with reference to the flowchart of FIG. If it is a jump timing (step S20), the over-approaching amount Dj determined by the over-approaching amount determining unit 12 is obtained (step S21), and a moving vector amount for the jump operation is generated (step S22). When it is not the jump timing, the relative movement vector amount Di and the over-approach amount Dj are compared, and when the relative movement vector amount Di is large, that is, the over-approaching amount D
j and approaching the workpiece (step S2
3) While setting the over-approach amount Dj to 0 (step S2)
4), it is determined whether or not the gap state determined by the discharge determination unit 10 is non-discharge (step S25). When the gap state is non-discharged, that is, when distortion occurs, and when the gap average voltage V1 is larger than the reference voltage V2, that is, when the gap should be moved in the approaching direction (step S26), the movement speed coefficient Is reduced (step S27). On the other hand, step S
In 23, when the position of the driving device is not approaching the workpiece exceeding the over-approaching amount Dj, or when there is no distortion in step S25, or when it should be moved in the separating direction in step S26, A standard value is adopted as the speed coefficient (step S28). Finally, the difference between the inter-electrode average voltage V1 and the reference voltage V2 is multiplied by a moving speed coefficient to calculate a moving vector amount (step S29).
【0020】駆動機器制御部7では移動量演算処理部6
で生成された移動ベクトル量に基づき、駆動機器8を駆
動する。なお一般的に放電加工機は複数の直交した駆動
機器を有しているので、駆動機器制御部7では、プログ
ラム等によって指令された加工軌跡上に沿うよう移動ベ
クトル量を各々の駆動機器に分配し、それぞれ同期させ
て駆動する。The driving device control unit 7 includes a moving amount calculation processing unit 6
The driving device 8 is driven based on the movement vector amount generated in. Since the electric discharge machine generally has a plurality of orthogonal driving devices, the driving device control unit 7 distributes the movement vector amount to each driving device along a machining locus specified by a program or the like. Then, they are driven in synchronization with each other.
【0021】以上のような構成とすることで、加工液に
よる反力が大きい条件での加工でも放電を安定持続で
き、加工効率の低下の抑制、加工面品質の悪化の抑制が
期待できる。更に特徴的なことは、本発明にかかる駆動
速度の低下処理は加工液の反力が小さい場合は無効であ
るので、例えばリブ加工などの様に反力が小さく、放電
を維持する電極位置が頻繁に変動する場合では、駆動速
度の低下は起こらず、電極は高周波に運動し良好な放電
を得ることができる。なお本発明にかかる間隙制御を用
いた加工の様子を図4に示す。図4では駆動機器部位置
と電極位置の間に歪みが生じているが、駆動機器の駆動
速度を低下することで、やがて極間平均電圧v1が基準
電圧V2に一致し、期待した放電が安定して極間に現れ
る。With the above-described structure, the discharge can be stably maintained even when machining is performed under the condition where the reaction force by the machining fluid is large, and it is expected that a decrease in machining efficiency and a decrease in machining surface quality can be suppressed. What is more characteristic is that the drive speed reduction processing according to the present invention is ineffective when the reaction force of the machining fluid is small. When the frequency fluctuates frequently, the driving speed does not decrease, and the electrodes move at a high frequency to obtain a good discharge. FIG. 4 shows a state of processing using the gap control according to the present invention. In FIG. 4, although a distortion is generated between the position of the driving device and the position of the electrode, the average voltage v1 between the electrodes eventually coincides with the reference voltage V2 by reducing the driving speed of the driving device, and the expected discharge is stabilized. And appear in the gap.
【0022】なお、以上の実施例では本発明にかかる要
部の動作をフローチャートを用いて説明したが、動作の
全てあるいは一部を、ソフトウェアまたはハードウェア
いずれを用いて実現しても機能上差し支えない。また、
駆動機器によって電極を移動させる構成の放電加工機を
例として説明したが、電極の代わり被加工物を移動させ
る構成の放電加工機についても本発明を適用することが
できる。In the above embodiment, the operation of the main part according to the present invention has been described with reference to the flowchart. However, even if all or a part of the operation is realized by using software or hardware, there is no problem in terms of function. Absent. Also,
Although an electric discharge machine configured to move an electrode by a driving device has been described as an example, the present invention can be applied to an electric discharge machine configured to move a workpiece instead of an electrode.
【0023】[0023]
【発明の効果】以上のように本発明の放電加工機の制御
装置によれば、従来困難とされた反力の大きい電極面積
の大きい仕上げ加工においても、安定して放電を持続す
ることができ、加工速度、加工品質の悪化を抑制するこ
とが可能となる。As described above, according to the control apparatus for an electric discharge machine of the present invention, the electric discharge can be stably maintained even in the finishing work having a large electrode area and a large reaction force, which has been conventionally difficult. In addition, it is possible to suppress the deterioration of the processing speed and the processing quality.
【図1】本発明の放電加工機の制御装置の一例を示すブ
ロック図である。FIG. 1 is a block diagram illustrating an example of a control device of an electric discharge machine according to the present invention.
【図2】本発明装置の放電状態判定部の動作例を示すフ
ローチャートである。FIG. 2 is a flowchart illustrating an operation example of a discharge state determination unit of the device of the present invention.
【図3】本発明装置の移動量演算処理部の動作例を示す
フローチャートである。FIG. 3 is a flowchart illustrating an operation example of a movement amount calculation processing unit of the apparatus of the present invention.
【図4】本発明装置における、反力が大きい場合の加工
の様子を示す図である。FIG. 4 is a view showing a state of processing when a reaction force is large in the apparatus of the present invention.
【図5】従来の放電加工機の制御装置の一例を示すブロ
ック図である。FIG. 5 is a block diagram showing an example of a control device of a conventional electric discharge machine.
【図6】従来装置における、加工の様子を示す図であ
る。FIG. 6 is a diagram showing a state of processing in a conventional apparatus.
1 電極 2 被加工物 3 加工液 4 放電電源 5 平均電圧生成器 6 移動量演算処理部 7 駆動機器制御部 8 駆動機器 10 放電状態判定部 11 相対移動量算出部 12 過接近量決定部 DESCRIPTION OF SYMBOLS 1 Electrode 2 Workpiece 3 Machining fluid 4 Discharge power supply 5 Average voltage generator 6 Movement amount calculation processing unit 7 Driving device control unit 8 Driving device 10 Discharge state determination unit 11 Relative movement amount calculation unit 12 Over approach amount determination unit
Claims (4)
せて加工を行なう放電加工機の制御装置において、 前記電極と被加工物の間の電圧を検出して平均電圧を生
成する平均電圧生成手段と、前記平均電圧に基づいて放
電状態を判定する放電状態判定手段と、前記放電が継続
し放電安定状態と判定された時点からの前記電極を移動
させる駆動機器の相対移動ベクトル量を得る相対移動量
算出手段と、前記放電安定状態と判定された時点の前記
駆動機器の位置から前記被加工物に接近可能な前記駆動
機器の位置までのベクトル量を示す過接近量を決定する
過接近量決定手段と、前記駆動機器の駆動速度を得る移
動量演算手段とを備え、前記過接近量を超えて間隙が狭
くなる方向に前記相対移動ベクトル量が位置する際に前
記駆動機器の駆動速度を低下させるようにしたことを特
徴とする放電加工機の制御装置。1. A control device for an electric discharge machine which performs machining by successively generating electric discharge between an electrode and a workpiece, comprising: an average for detecting a voltage between the electrode and the workpiece to generate an average voltage. A voltage generation unit, a discharge state determination unit that determines a discharge state based on the average voltage, and a relative movement vector amount of a driving device that moves the electrode from a time point when the discharge is determined to be continued and the discharge is stable. A relative movement amount calculating means for obtaining an over-approaching amount indicating a vector amount from a position of the driving device at the time when the discharge stable state is determined to a position of the driving device accessible to the workpiece. An approach amount determining means, and a movement amount calculating means for obtaining a drive speed of the drive device, wherein the drive of the drive device is performed when the relative movement vector amount is located in a direction in which the gap is narrowed beyond the over approach amount. speed Electric discharge machine control apparatus being characterized in that so as to decrease.
定するようになっている請求項1に記載の放電加工機の
制御装置。2. The control apparatus for an electric discharge machine according to claim 1, wherein the over-approaching amount is determined based on machining conditions.
するようになっている請求項1又は請求項2に記載の放
電加工機の制御装置。3. The control apparatus for an electric discharge machine according to claim 1, wherein the over-approaching amount is changed after a jump operation.
の累積値に基づいて食いつき状態を判定するようになっ
ており、前記食いつき状態の時には前記駆動機器の駆動
速度を変化させないようになっている請求項1、2、又
は3に記載の放電加工機の制御装置。4. The discharging state determining means determines a biting state based on a cumulative value of time during discharging, and does not change a driving speed of the driving device in the biting state. The control device for an electric discharge machine according to claim 1, 2, or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19922396A JPH1043946A (en) | 1996-07-29 | 1996-07-29 | Control device of electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19922396A JPH1043946A (en) | 1996-07-29 | 1996-07-29 | Control device of electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1043946A true JPH1043946A (en) | 1998-02-17 |
Family
ID=16404200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19922396A Withdrawn JPH1043946A (en) | 1996-07-29 | 1996-07-29 | Control device of electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1043946A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7266560B2 (en) * | 1998-01-30 | 2007-09-04 | Navteq North America, Llc | Parcelized geographic data medium with internal spatial indices and method and system for use and formation thereof |
JP6022125B1 (en) * | 2015-10-20 | 2016-11-09 | 三菱電機株式会社 | Electric discharge machine |
WO2021240804A1 (en) * | 2020-05-29 | 2021-12-02 | 三菱電機株式会社 | Electrical discharge machining device, learning device, inference device, and electrical discharge machining method |
-
1996
- 1996-07-29 JP JP19922396A patent/JPH1043946A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7266560B2 (en) * | 1998-01-30 | 2007-09-04 | Navteq North America, Llc | Parcelized geographic data medium with internal spatial indices and method and system for use and formation thereof |
JP6022125B1 (en) * | 2015-10-20 | 2016-11-09 | 三菱電機株式会社 | Electric discharge machine |
WO2017068654A1 (en) * | 2015-10-20 | 2017-04-27 | 三菱電機株式会社 | Electrical discharge machining device |
US10189102B2 (en) | 2015-10-20 | 2019-01-29 | Mitsubishi Electric Corporation | Electric discharge machine |
WO2021240804A1 (en) * | 2020-05-29 | 2021-12-02 | 三菱電機株式会社 | Electrical discharge machining device, learning device, inference device, and electrical discharge machining method |
CN115605308A (en) * | 2020-05-29 | 2023-01-13 | 三菱电机株式会社(Jp) | Electric discharge machining device, learning device, estimation device, and electric discharge machining method |
CN115605308B (en) * | 2020-05-29 | 2023-06-30 | 三菱电机株式会社 | Electric discharge machining apparatus, learning apparatus, estimating apparatus, and electric discharge machining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1607161A1 (en) | Controller for a wire electrical discharge machine | |
KR100472294B1 (en) | Method and apparatus for electrodischarge wire machining | |
EP0124625B1 (en) | Electric discharge machining control circuit | |
JP2003165030A (en) | Wire electric discharge machining device and wire electric discharge machining method | |
JPH1043946A (en) | Control device of electric discharge machine | |
EP0034477B1 (en) | A power source circuit for an electric discharge machine | |
EP0032023B1 (en) | A power source for an electric discharge machine | |
JP3888805B2 (en) | Jump control method and apparatus for electric discharge machine | |
US4431895A (en) | Power source arrangement for electric discharge machining | |
JP2692022B2 (en) | Electric discharge machine | |
JP3818257B2 (en) | Wire electrical discharge machine | |
JPH1190628A (en) | Polarity switching control method and consumable electrode arc welding machine | |
JP4348506B2 (en) | Electric discharge machining method and apparatus | |
JPS6116572B2 (en) | ||
JP3902713B2 (en) | Electric discharge machine and jump control method for electric discharge machine | |
JPH0453646B2 (en) | ||
JPH0343119A (en) | Abnormality detection circuit for electrolysis finishing processing device | |
JPS59196123A (en) | Method and device for controlling electric discharge in electric discharge machine | |
JPH06106418A (en) | Electric discharge machining method and device | |
JPH0724638A (en) | Electric discharge machining control device | |
JPH10217033A (en) | Numerical control electric discharge processor | |
JPS63267122A (en) | Wire-cut electric discharge machining device | |
JPS6312726B2 (en) | ||
JPH10118848A (en) | Electric discharge machining method and electric discharge machining device | |
JP2969027B2 (en) | EDM method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Effective date: 20031217 Free format text: JAPANESE INTERMEDIATE CODE: A761 |