JPH1041385A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH1041385A JPH1041385A JP8190657A JP19065796A JPH1041385A JP H1041385 A JPH1041385 A JP H1041385A JP 8190657 A JP8190657 A JP 8190657A JP 19065796 A JP19065796 A JP 19065796A JP H1041385 A JPH1041385 A JP H1041385A
- Authority
- JP
- Japan
- Prior art keywords
- film
- wiring
- insulating film
- silicon oxide
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000005530 etching Methods 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 24
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 14
- 229910052731 fluorine Inorganic materials 0.000 claims description 14
- 239000011737 fluorine Substances 0.000 claims description 14
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 7
- 230000003071 parasitic effect Effects 0.000 abstract description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract 4
- 229910020177 SiOF Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-OUBTZVSYSA-N aluminium-28 atom Chemical compound [28Al] XAGFODPZIPBFFR-OUBTZVSYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Local Oxidation Of Silicon (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体装置及びその
製造方法に関し、特に低寄生容量の配線層形成を埋め込
み配線を用いて行う製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a method of forming a wiring layer having a low parasitic capacitance using embedded wiring.
【0002】[0002]
【従来の技術】配線溝を形成しこれを導体で埋めること
で配線パターンを形成する方法は、露光時の配線金属に
よるハレーションがない等の理由で、配線金属をエッチ
ングして配線パターン形成する従来の方法に比べ絶縁膜
に微細な溝パターンを形成する方が容易であり、また平
坦性に優れるため、配線パターンの微細化が容易であ
る。このため今後微細化するLSI回路では埋め込み配
線は不可欠な製法となる。溝配線の形成方については、
例えば特開平6−244180号公報に示されているよ
うな方法がある。この従来例を図5に示す。この例で示
されるように、層間絶縁膜として主にシリコン酸化膜や
BPSG51,52を用い、配線溝54の形成の際の溝
の深さのばらつきを抑えるためにエッチングストッパー
としてエッチングレートの低いシリコン窒化膜53を用
いている。このように、溝配線の形成では、溝の深さを
均一にするため溝の底部にエッチングストッパーを設け
る必要がある。尚、図5中、1はソース・ドレイン領
域、2はゲート電極、3はフィールド酸化膜である。2. Description of the Related Art A method of forming a wiring pattern by forming a wiring groove and filling the groove with a conductor is a conventional method of forming a wiring pattern by etching a wiring metal because there is no halation due to the wiring metal at the time of exposure. It is easier to form a fine groove pattern in the insulating film as compared with the method described above, and the fineness of the wiring pattern is easy because the flatness is excellent. For this reason, embedded wiring is an indispensable manufacturing method in LSI circuits that will be miniaturized in the future. For details on how to form grooved wiring,
For example, there is a method as disclosed in JP-A-6-244180. This conventional example is shown in FIG. As shown in this example, a silicon oxide film or BPSG 51 or 52 is mainly used as an interlayer insulating film, and silicon with a low etching rate is used as an etching stopper in order to suppress variations in the depth of the wiring groove 54 when forming the groove. The nitride film 53 is used. As described above, in forming the groove wiring, it is necessary to provide an etching stopper at the bottom of the groove in order to make the depth of the groove uniform. In FIG. 5, 1 is a source / drain region, 2 is a gate electrode, and 3 is a field oxide film.
【0003】一方大規模の集積回路において、近年の半
導体素子の微細化にともない、素子間をつなぐ配線の抵
抗・寄生容量による回路遅延が大きな問題となってい
る。特に隣接する配線同士の距離が短くなることにより
隣接配線間の容量が大きくなり、そのため配線遅延の増
大、クロストーク等が生じ、回路の高速化を妨げたり、
また誤動作の原因となっている。この対策として配線間
の寄生容量を減らすために低誘電率の絶縁膜を用いる方
法が一般的に用いられている。このような低誘電率膜と
しては、フッ素含有シリコン酸化膜(SiOF)やテフ
ロン等有機系の膜が提言されている。これらの膜はフッ
素を含む場合が多く、配線金属を腐食する等の問題があ
り、また金属との密着性が悪いので、配線金属と直接接
することができず、金属に直接接する膜は従来と同様シ
リコン酸化膜を用いる。低誘電率膜を用いた多層配線の
形成法の従来例を図6に示す。尚、図6中、60は基
板、61は第1のシリコン酸化膜、62は第2のシリコ
ン酸化膜、63は低誘電率膜、64は第3のシリコン酸
化膜、65は配線金属である。On the other hand, in a large-scale integrated circuit, with the recent miniaturization of semiconductor elements, circuit delay due to resistance and parasitic capacitance of wiring connecting elements has become a serious problem. In particular, as the distance between adjacent wirings becomes shorter, the capacitance between the adjacent wirings becomes larger, which leads to an increase in wiring delay, crosstalk, etc., which hinders a high-speed circuit,
It also causes malfunction. As a countermeasure, a method using an insulating film having a low dielectric constant is generally used in order to reduce the parasitic capacitance between wirings. As such a low dielectric constant film, an organic film such as a fluorine-containing silicon oxide film (SiOF) or Teflon has been proposed. These films often contain fluorine, have problems such as corrosion of wiring metal, and have poor adhesion to metal, so that they cannot directly contact with wiring metal, and the film that directly contacts metal is different from conventional ones. Similarly, a silicon oxide film is used. FIG. 6 shows a conventional example of a method of forming a multilayer wiring using a low dielectric constant film. In FIG. 6, reference numeral 60 denotes a substrate, 61 denotes a first silicon oxide film, 62 denotes a second silicon oxide film, 63 denotes a low dielectric constant film, 64 denotes a third silicon oxide film, and 65 denotes a wiring metal. .
【0004】[0004]
【発明が解決しようとする課題】従来のようなシリコン
酸化膜を主な層間絶縁膜として用いる溝配線の形成法で
は、ストッパーとして用いる膜がシリコン窒化膜のよう
に比誘電率が高い膜となるため、集積度の高い配線を有
する回路では、金属をパターニングして配線を形成する
方法に比べ、隣接する配線間の容量が増加し、遅延やク
ロストークをまねく。このためシリコン窒化膜を薄くす
る必要があるが、この場合溝エッチングの際のシリコン
酸化膜とシリコン窒化膜の選択性が十分高くないと、窒
化膜が抜けてしまいエッチングストッパーとして十分機
能しない恐れがある。配線の集積度が増すほどシリコン
窒化膜による配線間容量増加の影響は大きくなるので、
シリコン窒化膜はより薄くする必要があり、従来の溝配
線工程では次世代以降の集積回路への適用は困難であ
る。例えば、図5の従来例でエッチングストッパーの窒
化膜厚を100nmとすると配線寄生容量は約1割増加
してしまう。In the conventional method of forming a trench wiring using a silicon oxide film as a main interlayer insulating film, a film used as a stopper is a film having a high relative dielectric constant like a silicon nitride film. Therefore, in a circuit having highly integrated wiring, the capacitance between adjacent wirings is increased as compared with a method in which wiring is formed by patterning a metal, resulting in delay and crosstalk. For this reason, it is necessary to make the silicon nitride film thin, but in this case, if the selectivity between the silicon oxide film and the silicon nitride film at the time of trench etching is not sufficiently high, the nitride film may come off and may not function sufficiently as an etching stopper. is there. As the degree of integration of the wiring increases, the effect of the increase in the capacitance between wirings due to the silicon nitride film increases,
It is necessary to make the silicon nitride film thinner, and it is difficult to apply the silicon trench film to next generation integrated circuits in the conventional trench wiring process. For example, when the nitride thickness of the etching stopper is 100 nm in the conventional example of FIG. 5, the wiring parasitic capacitance increases by about 10%.
【0005】低誘電率膜の利用に関しては、層間絶縁膜
の膜厚は薄くならない傾向なので、集積度の高い回路で
は対基板容量や配線層間の容量より隣接配線間を容量の
低減することが最も重要であり、配線間に低誘電率膜が
あれば効果的に配線寄生容量を低減できる。つまり配線
の上層には低誘電率膜がある必要はない。配線ピッチの
微細化に伴う全配線容量に占める隣接配線間容量の増加
の様子を図7に示す。As for the use of a low dielectric constant film, the thickness of the interlayer insulating film does not tend to be reduced. Therefore, in a highly integrated circuit, it is most preferable to reduce the capacitance between adjacent wirings than the capacitance between the substrate and the capacitance between wiring layers. Importantly, if a low dielectric constant film is provided between the wirings, the wiring parasitic capacitance can be effectively reduced. That is, there is no need to provide a low dielectric constant film above the wiring. FIG. 7 shows how the capacitance between adjacent wirings in the total wiring capacitance increases as the wiring pitch becomes finer.
【0006】それ故に、本発明の目的は低誘電率膜を埋
め込み配線製法に用い、埋め込み配線の製造を容易にす
るとともに、配線の寄生容量を効果的に低減することで
ある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to use a low dielectric constant film in a buried wiring manufacturing method to facilitate the manufacture of the buried wiring and to effectively reduce the parasitic capacitance of the wiring.
【0007】[0007]
【課題を解決するための手段】請求項1記載の発明によ
れば、半導体基板上の素子領域或いは配線層上に第1の
絶縁膜を有し、該第1の絶縁膜上に配線パターンを有
し、少なくとも該配線パターンに挟まれた領域に前記第
1の絶縁膜に比べエッチングレートが高く、且つ比誘電
率が低い第2の絶縁膜を有することを特徴とする半導体
装置が得られる。According to the present invention, a first insulating film is provided on an element region or a wiring layer on a semiconductor substrate, and a wiring pattern is formed on the first insulating film. And a semiconductor device characterized by having a second insulating film having a higher etching rate and a lower relative dielectric constant than the first insulating film in at least a region between the wiring patterns.
【0008】請求項2記載の発明によれば、前記第1の
絶縁膜はシリコン酸化膜であり、前記第2の絶縁膜はフ
ッ素添加シリコン酸化膜或いはフッ素含有非晶質炭素膜
であることを特徴とする請求項1記載の半導体装置が得
られる。According to a second aspect of the present invention, the first insulating film is a silicon oxide film, and the second insulating film is a fluorine-containing silicon oxide film or a fluorine-containing amorphous carbon film. A semiconductor device according to claim 1 is obtained.
【0009】請求項3記載の発明によれば、半導体基板
上の素子領域或いは配線層上に第1の絶縁膜を形成する
工程と、該第1の絶縁膜に比べエッチングレートが高
く、且つ比誘電率が低い第2の絶縁膜を形成する工程
と、該第2の絶縁膜上の所望の配線パターンに対応する
領域以外を通常の露光法によりレジストで覆う工程と、
該レジストをマスクとし前記第1の絶縁膜をエッチング
ストッパーとして前記第2の絶縁膜の前記配線パターン
に対応する領域をエッチングして配線溝を形成する工程
と、該配線溝内部を含む前記第2の絶縁膜上全面に導電
体を形成する工程と、前記配線溝内部以外の領域の前記
導電体を取り除き前記配線溝内部のみに導電体を残すこ
とにより配線パターンを形成する工程とを有することを
特徴とする請求項1又は請求項2記載の半導体装置の製
造方法が得られる。According to the third aspect of the present invention, the step of forming the first insulating film on the element region or the wiring layer on the semiconductor substrate is performed at a higher etching rate than the first insulating film, and Forming a second insulating film having a low dielectric constant, and covering a region other than a region corresponding to a desired wiring pattern on the second insulating film with a resist by a normal exposure method;
Forming a wiring groove by etching a region of the second insulating film corresponding to the wiring pattern using the resist as a mask and the first insulating film as an etching stopper; Forming a conductor on the entire surface of the insulating film, and forming a wiring pattern by removing the conductor in a region other than inside the wiring groove and leaving the conductor only inside the wiring groove. A method for manufacturing a semiconductor device according to claim 1 or 2 is obtained.
【0010】以上のように、本発明の半導体装置及びそ
の製造方法では、配線層間にはシリコン酸化膜等従来の
層間絶縁膜を、配線溝形成層に低誘電率膜を用い、下層
の層間絶縁膜をエッチングストッパーとすることを第1
の特徴とし、低誘電率膜層に形成された配線溝を配線金
属で埋め込むことにより、隣接する配線間の絶縁膜を低
誘電率にすることを第2の特徴とする。As described above, in the semiconductor device and the method of manufacturing the same according to the present invention, a conventional interlayer insulating film such as a silicon oxide film is used between wiring layers, a low dielectric constant film is used as a wiring groove forming layer, and a lower interlayer insulating film is used. The first is to use the film as an etching stopper.
The second feature is that the wiring groove formed in the low dielectric constant film layer is buried with a wiring metal so that the insulating film between adjacent wirings has a low dielectric constant.
【0011】[0011]
【作用】配線層間の十分厚い層間絶縁膜をエッチングス
トッパーとすることで均一な深さの配線溝の形成を容易
にし、また配線層の絶縁膜に低誘電率膜を用いることで
配線寄生容量を効果的に低減する。By using a sufficiently thick interlayer insulating film between wiring layers as an etching stopper, it is easy to form a wiring groove having a uniform depth, and by using a low dielectric constant film as an insulating film of the wiring layer, wiring parasitic capacitance can be reduced. Effectively reduce.
【0012】[0012]
【発明の実施の形態】本発明の第1の実施形態を工程順
に表す図を図1及び図2に示す。MOS型トランジスタ
を含む素子領域(ソース・ドレイン領域1、ゲート電極
2、フィールドシリコン酸化膜3)を有する半導体基板
10上に第1のシリコン酸化膜11を0.6μmの膜厚
で、プラズマCVD法により堆積する。次に第1のシリ
コン酸化膜11を化学的機械的研磨法により研磨し平坦
化する。このとき第1のシリコン酸化膜11の膜厚はフ
ィールドシリコン酸化膜3から0.5μmとなるように
する。この平坦化された第1のシリコン酸化膜11上
に、SiOF膜12をプラズマCVD方により0.5μ
m堆積する。SiOF膜は、例えば成膜ガスはSiF4
/O2 /Arとし、これらをそれぞれ40sccm/8
0sccm/70sccmの流量で反応層内に供給し、
RFパワーは1.4kWとして成膜する。このときSi
OF膜の比誘電率は3.5となる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 show a first embodiment of the present invention in the order of steps. A first silicon oxide film 11 having a thickness of 0.6 μm is formed on a semiconductor substrate 10 having an element region (source / drain region 1, gate electrode 2, field silicon oxide film 3) including a MOS transistor by a plasma CVD method. Is deposited. Next, the first silicon oxide film 11 is polished and flattened by a chemical mechanical polishing method. At this time, the thickness of the first silicon oxide film 11 is set to be 0.5 μm from the field silicon oxide film 3. On the flattened first silicon oxide film 11, an SiOF film 12 is formed by a plasma CVD method to a thickness of 0.5 μm.
m. The SiOF film is made of, for example, SiF 4
/ O 2 / Ar, each of which is 40 sccm / 8
Supply into the reaction layer at a flow rate of 0 sccm / 70 sccm,
The film is formed at an RF power of 1.4 kW. At this time, Si
The dielectric constant of the OF film becomes 3.5.
【0013】次にこのSiOF膜12上で通常のフォト
リソグラフィー技術により配線溝を形成するためのレジ
ストマクスを形成し、異方性ドライエッチングにより配
線溝13を形成する。このドライエッチング条件は通常
のシリコン酸化膜エッチング条件と同様で、例えば出力
1000WのRF中で、圧力300mT、Ar/CF4
/CHF3 をそれぞれ200sccm/20sccm/
20sccmの流量で供給すれば、SiOF膜12のエ
ッチングレートをSiO2 膜の約3倍にすることができ
るので、SiOF膜12の膜厚のばらつきやエッチング
量の基板面内でのばらつきを考慮して、所望のSiOF
膜厚から計算されるエッチング量よりもオーバーエッチ
ングを行っても、第1のシリコン酸化膜11の全層がエ
ッチングストッパーとなり、均一な深さの配線溝13が
形成できる。配線溝形成後、通常のフォトリソグラフィ
ー技術によりコンタクトホールを形成するためのレジス
トマスクを形成し、異方性ドライエッチングによりコン
タクトホール14を開口する。このエッチング条件は通
常のシリコン酸化膜エッチングと同様の条件で行う。Next, a resist mask for forming a wiring groove is formed on the SiOF film 12 by ordinary photolithography, and a wiring groove 13 is formed by anisotropic dry etching. The dry etching conditions are the same as ordinary silicon oxide film etching conditions, for example, in RF with an output of 1000 W, pressure of 300 mT, Ar / CF 4
/ CHF 3 at 200 sccm / 20 sccm /
When supplied at a flow rate of 20 sccm, the etching rate of the SiOF film 12 can be made about three times as large as that of the SiO 2 film. Therefore, the variation in the thickness of the SiOF film 12 and the variation in the etching amount in the substrate surface are taken into consideration. And the desired SiOF
Even if overetching is performed more than the etching amount calculated from the film thickness, all layers of the first silicon oxide film 11 serve as an etching stopper, and the wiring groove 13 having a uniform depth can be formed. After forming the wiring groove, a resist mask for forming a contact hole is formed by a usual photolithography technique, and the contact hole 14 is opened by anisotropic dry etching. This etching condition is performed under the same conditions as ordinary silicon oxide film etching.
【0014】以上のように配線溝13とコンタクトホー
ル14を形成した後、第2のシリコン酸化膜15を配線
溝13及びコンタクトホール14を含む基板10全面に
50nmの膜厚でプラズマCVD法により堆積し、その
後これをエッチバックし、配線溝13及びコンタクトホ
ール14の側壁部分のみに第2のシリコン酸化膜15が
サイドウォール状に残るようにする。次にバリアメタル
となるTiN膜16を50nmの膜厚でCVD法或いは
スパッタ法により配線溝13及びコンタクトホール14
の側壁に堆積する。これらの第2のシリコン酸化膜15
及びTiN16膜の役割のひとつは、配線金属とSiO
F膜中のフッ素とが反応するのを防ぐことである。After forming the wiring groove 13 and the contact hole 14 as described above, a second silicon oxide film 15 is deposited on the entire surface of the substrate 10 including the wiring groove 13 and the contact hole 14 to a thickness of 50 nm by the plasma CVD method. Then, this is etched back so that the second silicon oxide film 15 remains in a sidewall shape only on the side wall portions of the wiring groove 13 and the contact hole 14. Next, a TiN film 16 serving as a barrier metal is formed to a thickness of 50 nm by a CVD method or a sputtering method using a wiring groove 13 and a contact hole 14.
Deposited on the side wall of These second silicon oxide films 15
One of the roles of the TiN16 film and the TiN16 film is that the wiring metal and SiON
The purpose is to prevent the fluorine in the F film from reacting.
【0015】続いてコンタクトホール14及び配線溝1
3の内部を含むウェハー全面に配線金属としてアルミニ
ウム17をCVD法により堆積し、化学的機械的研磨法
により配線溝13及びコンタクトホール14の内部以外
のアルミニウムを除去することにより配線17′を形成
する。Subsequently, the contact hole 14 and the wiring groove 1 are formed.
Aluminum 17 is deposited as a wiring metal on the entire surface of the wafer including the inside of the substrate 3 by the CVD method, and the wiring 17 'is formed by removing aluminum other than the wiring grooves 13 and the contact holes 14 by a chemical mechanical polishing method. .
【0016】以上述べたように本発明の第1の実施形態
を用いれば、配線層の下層の第1のシリコン酸化膜11
が全て配線溝13のエッチングの際のエッチングストッ
パーになるので、従来例のようにエッチング時に抜けて
しまう可能性がなく、エッチング量の余裕が増加し加工
が容易になる。さらに隣接配線間に低誘電率のSiOF
膜12があるので、配線の寄生容量は約1割低減でき
る。As described above, according to the first embodiment of the present invention, the first silicon oxide film 11 under the wiring layer is formed.
Are all used as etching stoppers at the time of etching the wiring groove 13, so that there is no possibility that they are removed at the time of etching as in the conventional example, the margin of the etching amount is increased, and the processing is facilitated. Furthermore, a low dielectric constant SiOF between adjacent wirings
The presence of the film 12 can reduce the parasitic capacitance of the wiring by about 10%.
【0017】次に本発明の第2の実施形態を工程順に表
す断面図を図3及び図4に示す。第1の実施形態と同様
に素子領域(ソース・ドレイン領域1、ゲート電極2、
フィールドシリコン酸化膜3)を含む半導体基板20上
に第1のシリコン酸化膜21を0.6μmの膜厚で堆積
する。次にこの第1のシリコン酸化膜21を化学的機械
的研磨法により研磨し平坦化する。このとき第1のシリ
コン酸化膜21の膜厚はフィールドシリコン酸化膜3か
ら0.5μmとなるようにする。この平坦化された第1
のシリコン酸化膜21上に、先ず水素含有非晶質炭素膜
22を10nm堆積した後、フッ素含有非晶質炭素膜2
3を0.5μm堆積する。これらはいずれもプラズマC
VD法で行う。水素含有非晶質炭素膜22は第1のシリ
コン酸化膜21とフッ素含有非晶質炭素膜23の密着性
を良くするための緩衝膜の役割をもつ。Next, sectional views showing a second embodiment of the present invention in the order of steps are shown in FIGS. As in the first embodiment, the device regions (source / drain region 1, gate electrode 2,
A first silicon oxide film 21 is deposited to a thickness of 0.6 μm on a semiconductor substrate 20 including the field silicon oxide film 3). Next, the first silicon oxide film 21 is polished and flattened by a chemical mechanical polishing method. At this time, the thickness of the first silicon oxide film 21 is set to be 0.5 μm from the field silicon oxide film 3. This flattened first
First, a hydrogen-containing amorphous carbon film 22 is deposited to a thickness of 10 nm on the silicon oxide film 21 of FIG.
3 is deposited to a thickness of 0.5 μm. These are all plasma C
This is performed by the VD method. The hydrogen-containing amorphous carbon film 22 has a role of a buffer film for improving the adhesion between the first silicon oxide film 21 and the fluorine-containing amorphous carbon film 23.
【0018】水素含有非晶質炭素膜22及びフッ素含有
非晶質炭素膜23の成膜条件は、例えばRFパワー2k
W、圧力2mTの反応層内で、成膜ガスをCH4 からC
2 F6 (それぞれ流量50sccm)に変換することで
連続的に成膜できる。このときフッ素含有非晶質炭素膜
23の比誘電率は2.5になる。The conditions for forming the hydrogen-containing amorphous carbon film 22 and the fluorine-containing amorphous carbon film 23 are, for example, RF power 2 k
In a reaction layer of W and a pressure of 2 mT, the deposition gas is changed from CH 4 to C
By converting to 2 F 6 (each flow rate is 50 sccm), a film can be continuously formed. At this time, the relative dielectric constant of the fluorine-containing amorphous carbon film 23 becomes 2.5.
【0019】以下第1の実施形態と同様の方法で配線溝
24及びコンタクトホール25を形成する。この際、配
線溝24のエッチング条件は、例えば第1の実施形態と
同様に出力1000WのRF中で、圧力300mT、A
r/CF4 /CHF3 をそれぞれ200sccm/20
sccm/20sccmの流量で供給する。このときフ
ッ素含有非晶質炭素膜23のエッチングレートは、シリ
コン酸化膜21の5倍とすることができるので、フッ素
含有非晶質炭素膜23の膜厚のばらつきやエッチング量
の基板面内でのばらつきを考慮して、所望のフッ素含有
非晶質炭素膜23の膜厚から計算されるエッチング量よ
りもオーバーエッチングを行っても、第1のシリコン酸
化膜21全層がエッチングストッパーとなり、均一な深
さの配線溝24が形成できる。以下第1の実施形態と同
様に配線溝24及びコンタクトホール25の側壁を第2
のシリコン酸化膜26のサイドウォールで覆った後、バ
リアメタルとなるTiN膜27を50nm堆積する。続
いてコンタクトホール25及び配線溝24内部を含む基
板全面に配線金属としてアルミニウム28をCVD法に
より堆積し、化学的機械的研磨法により配線溝24及び
コンタクトホール25の内部以外のアルミニウムを除去
することにより配線28′を形成する。Thereafter, a wiring groove 24 and a contact hole 25 are formed in the same manner as in the first embodiment. At this time, the etching condition of the wiring groove 24 is, for example, the same as in the first embodiment, in RF of output 1000 W, pressure of 300 mT, A
r / CF 4 / CHF 3 at 200 sccm / 20
Supply at a flow rate of sccm / 20 sccm. At this time, the etching rate of the fluorine-containing amorphous carbon film 23 can be made five times that of the silicon oxide film 21. Even if overetching is performed over the etching amount calculated from the desired film thickness of the fluorine-containing amorphous carbon film 23 in consideration of the variation in the thickness, the entire first silicon oxide film 21 becomes an etching stopper, The wiring groove 24 having a small depth can be formed. Thereafter, similarly to the first embodiment, the side walls of the wiring groove 24 and the contact hole 25 are
Then, a TiN film 27 serving as a barrier metal is deposited to a thickness of 50 nm. Subsequently, aluminum 28 is deposited as a wiring metal by CVD on the entire surface of the substrate including the inside of the contact hole 25 and the wiring groove 24, and aluminum other than the inside of the wiring groove 24 and the contact hole 25 is removed by chemical mechanical polishing. Thus, a wiring 28 'is formed.
【0020】以上述べたように本発明の第2の実施形態
を用いれば、配線層の下層の第1のシリコン酸化膜21
が全て配線溝エッチングの際のエッチングストッパーに
なるので、従来例のようにエッチング時に抜けてしまう
可能性がなく、エッチング量の余裕が増加し加工が容易
になる。さらに隣接配線間に低誘電率のフッ素含有非晶
質炭素膜23があるので、配線の寄生容量は約3割低減
できる。As described above, according to the second embodiment of the present invention, the first silicon oxide film 21 under the wiring layer is formed.
Are all used as etching stoppers at the time of etching the wiring groove, so that there is no possibility of being removed at the time of etching as in the conventional example, and the margin of the etching amount is increased, and the processing becomes easy. Furthermore, since the fluorine-containing amorphous carbon film 23 having a low dielectric constant is provided between the adjacent wirings, the parasitic capacitance of the wirings can be reduced by about 30%.
【0021】第1及び第2の実施形態で述べた成膜方法
やエッチング条件は、本発明の製造法の一例であり、こ
こで述べた方法以外のガス条件、堆積法を用いても可能
である。またここでは半導体素子上の配線層の製法を述
べたが、多層配線において2層目以降の配線の形成につ
いても同様な方法が適用できる。The film forming methods and etching conditions described in the first and second embodiments are examples of the manufacturing method of the present invention, and gas conditions and deposition methods other than the methods described here can be used. is there. Although the method of manufacturing the wiring layer on the semiconductor element has been described here, the same method can be applied to the formation of the second and subsequent wiring layers in the multilayer wiring.
【0022】[0022]
【発明の効果】以上述べたように本発明の半導体装置及
び製造方法では、配線層部分に低誘電率でエッチングレ
ートの高いSiOF膜や有機系絶縁膜を用いることで、
配線層間のシリコン酸化膜がエッチングストッパーとし
て機能するので、従来のようにストッパー膜を特に形成
する場合に比べ溝配線の形成が容易になる。さらに従来
のように窒化膜等の高誘電率膜のエッチングストッパー
を用いた構造に比べ、低誘電率の絶縁膜が隣接配線間に
あるため、例えば、図7で示したように配線寄生容量を
1〜3割低減できる。As described above, in the semiconductor device and the manufacturing method according to the present invention, a SiOF film or an organic insulating film having a low dielectric constant and a high etching rate is used for a wiring layer portion.
Since the silicon oxide film between the wiring layers functions as an etching stopper, the formation of the trench wiring is facilitated as compared with the conventional case where the stopper film is particularly formed. Further, compared with the conventional structure using an etching stopper of a high dielectric constant film such as a nitride film, since an insulating film having a low dielectric constant is provided between adjacent wirings, for example, as shown in FIG. It can be reduced by 10 to 30%.
【図1】本発明の第1の実施形態でコンタクトホールを
形成するまでの工程を示す断面図である。FIG. 1 is a cross-sectional view showing a process until a contact hole is formed in a first embodiment of the present invention.
【図2】本発明の第1の実施形態で配線を形成するまで
の工程を示す断面図である。FIG. 2 is a cross-sectional view showing a process until a wiring is formed in the first embodiment of the present invention.
【図3】本発明の第2の実施形態でコンタクトホールを
形成するまでの工程を示す断面図である。FIG. 3 is a cross-sectional view illustrating a process until a contact hole is formed in a second embodiment of the present invention.
【図4】本発明の第2の実施形態で配線を形成するまで
の工程を示す断面図である。FIG. 4 is a cross-sectional view illustrating a process until a wiring is formed in a second embodiment of the present invention.
【図5】従来法による埋め込み配線形成後の断面図であ
る。FIG. 5 is a cross-sectional view after a buried wiring is formed by a conventional method.
【図6】従来法による低誘電率膜を埋め込み配線を用い
ないで適用した場合の断面図である。FIG. 6 is a cross-sectional view of a case where a low dielectric constant film according to a conventional method is applied without using an embedded wiring.
【図7】配線ピッチによる配線寄生容量の各成分を比較
した図である。FIG. 7 is a diagram comparing each component of a wiring parasitic capacitance according to a wiring pitch;
1 ソース・ドレイン領域 2 ゲート電極 3 フィールドシリコン酸化膜 10 半導体基板 11 第1のシリコン酸化膜 12 SiOF膜 13 配線溝 14 コンタクトホール 15 第2のシリコン酸化膜 16 TiN膜 17 アルミニウム 17′ 配線 20 半導体基板 21 第1のシリコン酸化膜 22 水素含有非晶質炭素膜 23 フッ素含有非晶質炭素膜 24 配線溝 25 コンタクトホール 26 第2のシリコン酸化膜 27 TiN膜 28 アルミニウム 28′ 配線 50 半導体基板 51 第1のシリコン酸化膜又はBPSG膜 52 第2のシリコン酸化膜又はBPSG膜 53 シリコン窒化膜 54 配線溝 60 半導体基板 61 第1のシリコン酸化膜 62 第2のシリコン酸化膜 63 低誘電率膜 64 第3のシリコン酸化膜 65 配線金属 66 バリアメタル Reference Signs List 1 source / drain region 2 gate electrode 3 field silicon oxide film 10 semiconductor substrate 11 first silicon oxide film 12 SiOF film 13 wiring groove 14 contact hole 15 second silicon oxide film 16 TiN film 17 aluminum 17 'wiring 20 semiconductor substrate Reference Signs List 21 first silicon oxide film 22 hydrogen-containing amorphous carbon film 23 fluorine-containing amorphous carbon film 24 wiring groove 25 contact hole 26 second silicon oxide film 27 TiN film 28 aluminum 28 'wiring 50 semiconductor substrate 51 first Silicon oxide film or BPSG film 52 second silicon oxide film or BPSG film 53 silicon nitride film 54 wiring groove 60 semiconductor substrate 61 first silicon oxide film 62 second silicon oxide film 63 low dielectric constant film 64 third Silicon oxide film 65 Wiring metal 66 Burr Ametal
Claims (3)
に第1の絶縁膜を有し、該第1の絶縁膜上に配線パター
ンを有し、少なくとも該配線パターンに挟まれた領域に
前記第1の絶縁膜に比べエッチングレートが高く、且つ
比誘電率が低い第2の絶縁膜を有することを特徴とする
半導体装置。A first insulating film on an element region or a wiring layer on a semiconductor substrate, a wiring pattern on the first insulating film, and at least a region sandwiched between the wiring patterns; A semiconductor device comprising a second insulating film having a higher etching rate and a lower relative dielectric constant than the first insulating film.
り、前記第2の絶縁膜はフッ素添加シリコン酸化膜或い
はフッ素含有非晶質炭素膜であることを特徴とする請求
項1記載の半導体装置。2. The method according to claim 1, wherein said first insulating film is a silicon oxide film, and said second insulating film is a fluorine-containing silicon oxide film or a fluorine-containing amorphous carbon film. Semiconductor device.
に第1の絶縁膜を形成する工程と、該第1の絶縁膜に比
べエッチングレートが高く、且つ比誘電率が低い第2の
絶縁膜を形成する工程と、該第2の絶縁膜上の所望の配
線パターンに対応する領域以外を通常の露光法によりレ
ジストで覆う工程と、該レジストをマスクとし前記第1
の絶縁膜をエッチングストッパーとして前記第2の絶縁
膜の前記配線パターンに対応する領域をエッチングして
配線溝を形成する工程と、該配線溝内部を含む前記第2
の絶縁膜上全面に導電体を形成する工程と、前記配線溝
内部以外の領域の前記導電体を取り除き前記配線溝内部
のみに導電体を残すことにより配線パターンを形成する
工程とを有することを特徴とする請求項1又は請求項2
記載の半導体装置の製造方法。3. A step of forming a first insulating film on an element region or a wiring layer on a semiconductor substrate, and a step of forming a second insulating film having a higher etching rate and a lower relative dielectric constant than the first insulating film. Forming a film, covering a region other than a region corresponding to a desired wiring pattern on the second insulating film with a resist by a normal exposure method, and using the resist as a mask to form the first insulating film.
Forming a wiring groove by etching a region of the second insulating film corresponding to the wiring pattern using the insulating film as an etching stopper;
Forming a conductor on the entire surface of the insulating film, and forming a wiring pattern by removing the conductor in a region other than inside the wiring groove and leaving the conductor only inside the wiring groove. Claim 1 or Claim 2
The manufacturing method of the semiconductor device described in the above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190657A JP3000935B2 (en) | 1996-07-19 | 1996-07-19 | Method for manufacturing semiconductor device |
KR1019970034240A KR100258044B1 (en) | 1996-07-19 | 1997-07-19 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190657A JP3000935B2 (en) | 1996-07-19 | 1996-07-19 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1041385A true JPH1041385A (en) | 1998-02-13 |
JP3000935B2 JP3000935B2 (en) | 2000-01-17 |
Family
ID=16261744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8190657A Expired - Lifetime JP3000935B2 (en) | 1996-07-19 | 1996-07-19 | Method for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3000935B2 (en) |
KR (1) | KR100258044B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010010169A (en) * | 1999-07-16 | 2001-02-05 | 윤종용 | Ferroelectric memory having a dielectric layer of SiOF and Method for fabricating the dielectric layer |
KR20010046918A (en) * | 1999-11-16 | 2001-06-15 | 박종섭 | Method for forming metalline having dual damascene structure |
US6277730B1 (en) | 1998-02-17 | 2001-08-21 | Matsushita Electronics Corporation | Method of fabricating interconnects utilizing fluorine doped insulators and barrier layers |
US6333257B1 (en) | 1998-02-26 | 2001-12-25 | Matsushita Electric Industrial Co., Ltd. | Interconnection structure and method for forming the same |
US6344693B1 (en) | 1999-05-18 | 2002-02-05 | Nec Corporation | Semiconductor device and method for manufacturing same |
US6596551B1 (en) | 1998-12-01 | 2003-07-22 | Hitachi, Ltd. | Etching end point judging method, etching end point judging device, and insulating film etching method using these methods |
-
1996
- 1996-07-19 JP JP8190657A patent/JP3000935B2/en not_active Expired - Lifetime
-
1997
- 1997-07-19 KR KR1019970034240A patent/KR100258044B1/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277730B1 (en) | 1998-02-17 | 2001-08-21 | Matsushita Electronics Corporation | Method of fabricating interconnects utilizing fluorine doped insulators and barrier layers |
US6365959B2 (en) | 1998-02-17 | 2002-04-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US6333257B1 (en) | 1998-02-26 | 2001-12-25 | Matsushita Electric Industrial Co., Ltd. | Interconnection structure and method for forming the same |
USRE38753E1 (en) | 1998-02-26 | 2005-07-05 | Matsushita Electric Industrial Co., Ltd. | Interconnect structure and method for forming the same |
US6596551B1 (en) | 1998-12-01 | 2003-07-22 | Hitachi, Ltd. | Etching end point judging method, etching end point judging device, and insulating film etching method using these methods |
US6344693B1 (en) | 1999-05-18 | 2002-02-05 | Nec Corporation | Semiconductor device and method for manufacturing same |
US6541396B2 (en) | 1999-05-18 | 2003-04-01 | Nec Corporation | Method of manufacturing a semiconductor device using a low dielectric constant organic film grown in a vacuum above an inlaid interconnection layer |
KR20010010169A (en) * | 1999-07-16 | 2001-02-05 | 윤종용 | Ferroelectric memory having a dielectric layer of SiOF and Method for fabricating the dielectric layer |
KR20010046918A (en) * | 1999-11-16 | 2001-06-15 | 박종섭 | Method for forming metalline having dual damascene structure |
Also Published As
Publication number | Publication date |
---|---|
JP3000935B2 (en) | 2000-01-17 |
KR100258044B1 (en) | 2000-06-01 |
KR980012612A (en) | 1998-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3248492B2 (en) | Semiconductor device and manufacturing method thereof | |
US6951709B2 (en) | Method of fabricating a semiconductor multilevel interconnect structure | |
US5990015A (en) | Dual damascence process | |
JP2739853B2 (en) | Semiconductor device manufacturing method and etching method | |
JP3309783B2 (en) | Method for manufacturing semiconductor device | |
JP2000174123A (en) | Semiconductor device and manufacturing method thereof | |
JP3757213B2 (en) | Manufacturing method of semiconductor device | |
JP2005535124A (en) | Method for fabricating multilayer contacts by sizing contact size in integrated circuits | |
US6790772B2 (en) | Dual damascene processing method using silicon rich oxide layer thereof and its structure | |
JP3312604B2 (en) | Method for manufacturing semiconductor device | |
JP3183238B2 (en) | Method for manufacturing semiconductor device | |
JP3000935B2 (en) | Method for manufacturing semiconductor device | |
JP3525788B2 (en) | Method for manufacturing semiconductor device | |
US5966632A (en) | Method of forming borderless metal to contact structure | |
JP2000091308A (en) | Manufacture of semiconductor device | |
US20010023990A1 (en) | Semiconductor device and method for fabricating same | |
JPH10116904A (en) | Manufacture of semiconductor device | |
KR100876532B1 (en) | Manufacturing Method of Semiconductor Device | |
US6815337B1 (en) | Method to improve borderless metal line process window for sub-micron designs | |
KR100574645B1 (en) | How to Form Tungsten Plug | |
US6284645B1 (en) | Controlling improvement of critical dimension of dual damasceue process using spin-on-glass process | |
JP2000183166A (en) | Manufacture of semiconductor device | |
JP2007521630A (en) | Method for fabricating multilayer contacts by sizing contact size in integrated circuits | |
JP3196847B2 (en) | Wiring structure and method of manufacturing the same | |
JP2001148423A (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991012 |