[go: up one dir, main page]

JPH10339808A - Reflection mirror - Google Patents

Reflection mirror

Info

Publication number
JPH10339808A
JPH10339808A JP9148941A JP14894197A JPH10339808A JP H10339808 A JPH10339808 A JP H10339808A JP 9148941 A JP9148941 A JP 9148941A JP 14894197 A JP14894197 A JP 14894197A JP H10339808 A JPH10339808 A JP H10339808A
Authority
JP
Japan
Prior art keywords
styrene
microspheres
gold
layer
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9148941A
Other languages
Japanese (ja)
Other versions
JP3972410B2 (en
Inventor
Hiroyuki Takei
弘之 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14894197A priority Critical patent/JP3972410B2/en
Publication of JPH10339808A publication Critical patent/JPH10339808A/en
Application granted granted Critical
Publication of JP3972410B2 publication Critical patent/JP3972410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

(57)【要約】 【課題】任意の波長帯域の吸収特性を有し、任意の形状
の反射鏡を作製する。 【解決手段】金,銀,銅,アルミニウムなどの金属層、
粒径5nmから100μmの単一径のポリスチレン,ス
チレン/ブタジエン,ポリビニルトルエン,スチレン/
ジビニルベンゼン,ビニルトルエン/ターシャリーブチ
ルスチレンなどの高分子またはシリコン,酸化シリコ
ン,砒化ガリウム,ガラスなどの非金属の絶縁体微小球
層,それら微小球上に蒸着などで形成された1nmから
100nm厚の金,銀,銅,アルミニウムなどの金属微
粒子層の三層構造を有する。
(57) [Summary] A reflector having an arbitrary shape and having an absorption characteristic in an arbitrary wavelength band is manufactured. [MEANS FOR SOLVING PROBLEMS] Metal layers such as gold, silver, copper, and aluminum;
Single diameter polystyrene with a particle size of 5 nm to 100 μm, styrene / butadiene, polyvinyl toluene, styrene /
Polymer such as divinylbenzene, vinyltoluene / tertiary butylstyrene or non-metallic insulator microsphere layer such as silicon, silicon oxide, gallium arsenide, glass, etc., 1 nm to 100 nm thick formed by vapor deposition on these microspheres It has a three-layer structure of a layer of fine metal particles such as gold, silver, copper, and aluminum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定波長帯域の光
を吸収し、かつ複雑な曲面を有する反射鏡の作製方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflecting mirror that absorbs light in a specific wavelength band and has a complicated curved surface.

【0002】[0002]

【従来の技術】従来の技術では金,銀,銅,アルミニウ
ムなどの金属を反射面として用い、金属の厚さ,種類を
適切に選択することにより、異なる反射率の鏡を作製し
た。また任意の厚さ,材質の誘電体多層膜を形成するこ
とにより、任意の反射率を有する鏡を作製した。
2. Description of the Related Art In the prior art, mirrors having different reflectances were produced by using a metal such as gold, silver, copper, or aluminum as a reflecting surface and appropriately selecting the thickness and type of the metal. In addition, a mirror having an arbitrary reflectance was manufactured by forming a dielectric multilayer film of an arbitrary thickness and material.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術におい
て、金属を利用した場合には任意の波長帯域の吸収特性
を有する反射鏡を作製することが不可能であり、また誘
電体多層膜を利用した場合には、膜厚を厳密に制御する
必要から、複雑な曲面の反射鏡の作製が困難であるとい
った問題があった。
In the above prior art, when a metal is used, it is impossible to manufacture a reflector having absorption characteristics in an arbitrary wavelength band, and a dielectric multilayer film is used. In this case, there is a problem that it is difficult to manufacture a reflecting mirror having a complicated curved surface because the film thickness must be strictly controlled.

【0004】本発明の目的は、任意の波長帯域における
吸収特性と任意の表面形状を有する反射鏡を容易に製作
する方法を提供することである。
An object of the present invention is to provide a method for easily manufacturing a reflector having an absorption characteristic in an arbitrary wavelength band and an arbitrary surface shape.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、金属微粒子による吸収を利用し
た。金属微粒子の表面プラズモンによる吸収特性は、微
粒子の形状,材料,粒径に依存しており、バルクの吸収
特性とは異なることが知られているが、金属微粒子を数
nmから数100nmの絶縁体スペーサ層を介して金属
基板に吸着すると、金属微粒子の局在表面プラズモンと
金属基板の表面プラズモンの相互作用により吸収が増大
すること、また吸収スペクトルのピークが粒径に依存し
て大幅に変化することが近年になり判明した。
In order to achieve the above object, the present invention utilizes absorption by fine metal particles. It is known that the absorption characteristics of metal fine particles due to surface plasmon depend on the shape, material, and particle size of the fine particles and are different from the bulk absorption characteristics. When adsorbed on the metal substrate via the spacer layer, the absorption increases due to the interaction between the localized surface plasmon of the metal fine particles and the surface plasmon of the metal substrate, and the peak of the absorption spectrum changes significantly depending on the particle size. This has recently turned out.

【0006】金属基板上に粒径の揃った絶縁体の微小球
を一層形成し、さらに微小球上に金属を蒸着すると微粒
子が絶縁体スペーサ層となり、また蒸着された金属は微
小球の上で孤立した金属微粒子となるので、図1(a)
に示す様に、金属基板1,絶縁体スペーサ層として機能
する絶縁体微小球2、金属微粒子3の三層からなる反射
鏡を容易に形成することができた。入射光4のうち特定
波長帯域の成分が吸収され、反射光5として正反射し
た。反射特性は、蒸着される金属の種類と絶縁体微小球
の粒径に強く依存する。金により反射鏡が作製された場
合、図1(b)に示す様に、粒径100nmの微粒子を
用いた際得られる反射率6,同図(c)のように、粒径
200nmの微小球を用いた際得られる反射率7,同図
(d)のように粒径300nmの微小球を用いた際得ら
れる反射率8などとなる。
[0006] When a single layer of insulating microspheres having a uniform particle size is formed on a metal substrate, and a metal is vapor-deposited on the microsphere, fine particles become an insulator spacer layer, and the deposited metal is deposited on the microsphere. FIG. 1 (a)
As shown in (1), a reflecting mirror composed of three layers of a metal substrate 1, insulating microspheres 2 functioning as an insulating spacer layer, and metal fine particles 3 could be easily formed. The component in the specific wavelength band of the incident light 4 was absorbed and was specularly reflected as the reflected light 5. The reflection characteristics strongly depend on the type of metal to be deposited and the particle size of the insulating microspheres. When the reflecting mirror is made of gold, as shown in FIG. 1 (b), the reflectance obtained when using fine particles having a particle size of 100 nm is 6, and as shown in FIG. And the reflectance 8 obtained when microspheres having a particle size of 300 nm are used as shown in FIG.

【0007】本発明の反射鏡は、粒径に大きく依存する
反面、反射特性は蒸着膜の厚さ,蒸着方向にはさほど依
存しないため、曲面状表面においても均一な吸収特性を
実現することができた。
The reflecting mirror of the present invention largely depends on the particle size, but the reflecting characteristics do not depend much on the thickness of the deposited film and the direction of the deposition. Therefore, it is possible to realize uniform absorption characteristics even on a curved surface. did it.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<実施例1>以下、本発明の一実施例を図2により説明
する。平坦なシリコン基板10の上に、蒸着により厚さ
5nmから1000nmの金薄膜11を形成した。金薄
膜表面を親水性にするために、チオグリコール酸ナトリ
ウムの様にカルボン酸を有するチオール溶液(濃度0.
01mM から1M)で金薄膜を1分以上処理して、金
薄膜表面をチオール分子層12で化学修飾した。
<Embodiment 1> An embodiment of the present invention will be described below with reference to FIG. A gold thin film 11 having a thickness of 5 nm to 1000 nm was formed on a flat silicon substrate 10 by vapor deposition. In order to make the surface of the gold thin film hydrophilic, a thiol solution containing a carboxylic acid such as sodium thioglycolate (concentration: 0.
(From 1 mM to 1 M), the gold thin film was treated with the thiol molecular layer 12 for 1 minute or more.

【0009】次に、濃度0.01mM から1Mのカルボ
ジイミド溶液でチオール分子のカルボン酸を活性化し、
水溶液に懸濁された粒径5nmから100μmのポリス
チレン微小球13を表面に添加することにより金薄膜表
面に吸着した。乾燥後、金を厚さ5nmから100nm
に蒸着して金微粒子14を形成することにより、反射鏡
を作製した。本実施例によれば、任意の反射特性を有す
る反射鏡を、適切な粒径の微小球を選択することにより
容易に作製できる効果がある。
Next, the carboxylic acid of the thiol molecule is activated with a carbodiimide solution having a concentration of 0.01 mM to 1 M,
Polystyrene microspheres 13 having a particle size of 5 nm to 100 μm suspended in an aqueous solution were added to the surface to be adsorbed on the gold thin film surface. After drying, the gold is 5 to 100 nm thick
A reflective mirror was manufactured by forming gold fine particles 14 by vapor deposition. According to this embodiment, there is an effect that a reflecting mirror having an arbitrary reflecting characteristic can be easily manufactured by selecting microspheres having an appropriate particle diameter.

【0010】<実施例2>以下、本発明の一実施例を図
3により説明する。平坦なガラス基板20の上に、金の
蒸着により厚さ5nmから1000nmの金薄膜21を
形成した。金薄膜表面を親水性にするために、チオグリ
コール酸ナトリウムの様にカルボン酸を有するチオール
溶液(濃度0.01mM から1M)で金薄膜を1分以上
処理して、金薄膜表面をチオール分子層22で化学修飾
した。次に、濃度0.01mM から1Mのカルボジイミ
ド溶液でカルボン酸を活性化し、水溶液に懸濁された粒
径5nmから100μmのポリスチレンのA微小球23
とB微小球24といった異なる粒径の微小球を表面に添
加することにより、金薄膜表面に吸着した。
<Embodiment 2> An embodiment of the present invention will be described below with reference to FIG. A gold thin film 21 having a thickness of 5 nm to 1000 nm was formed on a flat glass substrate 20 by vapor deposition of gold. In order to make the surface of the gold thin film hydrophilic, the gold thin film is treated with a thiol solution having a carboxylic acid such as sodium thioglycolate (concentration of 0.01 mM to 1 M) for 1 minute or more, so that the surface of the gold thin film is a thiol molecular layer. 22 was chemically modified. Next, the carboxylic acid was activated with a carbodiimide solution having a concentration of 0.01 mM to 1 M, and the polystyrene A microspheres 23 having a particle size of 5 nm to 100 μm suspended in an aqueous solution.
And B microspheres 24 having different particle diameters, such as microspheres 24, were adsorbed on the surface of the gold thin film.

【0011】乾燥後、厚さ5nmから100nmの金を
さらに蒸着して金微粒子25を形成することにより、同
図(b)のように、A微小球23による吸収26とB微
小球24による吸収27を合わせた広波長帯域吸収特性
28の反射鏡を作製した。本実施例によれば、任意の広
帯域吸収特性を有する反射鏡を容易に作製できる効果が
あり、また吸着する微小球は二種類に限定するものでは
ない。
After drying, gold having a thickness of 5 nm to 100 nm is further vapor-deposited to form gold fine particles 25, so that the absorption 26 by the A microspheres 23 and the absorption by the B microspheres 24 as shown in FIG. Thus, a reflector having a wide wavelength band absorption characteristic 28 was manufactured. According to this embodiment, there is an effect that a reflecting mirror having an arbitrary broadband absorption characteristic can be easily manufactured, and the number of the adsorbed microspheres is not limited to two.

【0012】<実施例3>以下、本発明の一実施例を図
4により説明する。同図(a)のように、放物面を有す
る高分子基板30に、蒸着により厚さ5nmから100
0nmの銀薄膜を形成した。銀薄膜表面を親水性にする
ために、チオグリコール酸ナトリウムの様にカルボン酸
を有するチオール溶液(濃度0.01mM から1M)で
銀薄膜を1分以上処理して、銀薄膜表面をチオール分子
層で化学修飾した。次に、濃度0.01mMから1Mのカル
ボジイミド溶液でカルボン酸を活性し、水溶液に懸濁さ
れた粒径5nmから100μmのポリスチレン微小球を
表面に添加することにより、銀薄膜表面に吸着した。乾
燥後、厚さ5nmから100nmの銀をさらに蒸着する
ことにより、吸収膜31で被覆された反射面32を有す
る放物鏡33を作製した。
<Embodiment 3> An embodiment of the present invention will be described below with reference to FIG. As shown in FIG. 3A, a polymer substrate 30 having a paraboloid is formed by evaporation to a thickness of 5 nm to 100 nm.
A 0 nm silver thin film was formed. In order to make the surface of the silver thin film hydrophilic, the silver thin film is treated with a thiol solution having a carboxylic acid such as sodium thioglycolate (concentration of 0.01 mM to 1 M) for 1 minute or more, so that the surface of the silver thin film is a thiol molecular layer. Was chemically modified. Next, the carboxylic acid was activated with a carbodiimide solution having a concentration of 0.01 mM to 1 M, and polystyrene microspheres having a particle size of 5 nm to 100 μm suspended in an aqueous solution were added to the surface to be adsorbed on the surface of the silver thin film. After drying, silver having a thickness of 5 nm to 100 nm was further evaporated to produce a parabolic mirror 33 having a reflection surface 32 covered with an absorption film 31.

【0013】本実施例によれば、任意の反射特性を有す
る反射鏡を容易に作製できるため、従来であれば同図
(b)のように反射鏡34と吸収フィルタ35の個別の
光学素子を必要とした場合にも、一つの反射鏡で代用で
き、光学系の簡素化の効果がある。また本実施例によれ
ば、放物面のみならず、図5に示す様に複雑な反射面4
0を有する反射鏡41も容易に作製できる効果がある。
According to this embodiment, since a reflecting mirror having an arbitrary reflecting characteristic can be easily manufactured, conventionally, as shown in FIG. When necessary, a single reflecting mirror can be used instead, which has the effect of simplifying the optical system. According to the present embodiment, not only the paraboloid but also the complicated reflecting surface 4 as shown in FIG.
There is an effect that the reflecting mirror 41 having 0 can be easily manufactured.

【0014】<実施例4>以下、本発明の一実施例を図
6により説明する。平坦なシリコン基板50の上に、蒸
着により厚さ5nmから1000nmの金薄膜51を形
成した。金薄膜表面を親水性にするために、チオグリコ
ール酸ナトリウムの様にカルボン酸を有するチオール溶
液(濃度0.01m Mから1M)で金薄膜を1分以上処
理して、金薄膜表面をチオール分子層52で化学修飾し
た。次に、濃度0.01mM から1Mのカルボジイミド
溶液でチオール分子のカルボン酸を活性化し、水溶液に
懸濁された粒径5nmから100μmのポリスチレン微
小球53を表面に添加することにより金薄膜表面に吸着
した。乾燥後、金を厚さ5nmから100nmに蒸着し
て金微粒子54を形成した。二層目の反射面を構築する
にあたって、絶縁体薄膜55を形成し、次に一層目と同
様な手法により、銀薄膜56,微小球57,金微粒子5
8から構成される二層目の反射膜を構築した。本実施例
によれば、各反射層において適切な粒径の微小球を選択
することにより、任意の反射特性を有する反射鏡を容易
に作製できる効果がある。
<Embodiment 4> An embodiment of the present invention will be described below with reference to FIG. A gold thin film 51 having a thickness of 5 nm to 1000 nm was formed on a flat silicon substrate 50 by vapor deposition. In order to make the surface of the gold thin film hydrophilic, the gold thin film is treated with a thiol solution having a carboxylic acid such as sodium thioglycolate (concentration of 0.01 mM to 1 M) for 1 minute or more, and the surface of the gold thin film is treated with thiol molecules. The layer 52 was chemically modified. Next, the carboxylic acid of the thiol molecule is activated with a carbodiimide solution having a concentration of 0.01 mM to 1 M, and polystyrene microspheres 53 having a particle size of 5 nm to 100 μm suspended in an aqueous solution are added to the surface to be adsorbed on the gold thin film surface. did. After drying, gold was deposited to a thickness of 5 nm to 100 nm to form fine gold particles 54. In constructing the second-layer reflecting surface, the insulating thin film 55 is formed, and then the silver thin film 56, the microspheres 57, and the gold fine particles 5 are formed in the same manner as in the first layer.
A second reflective film composed of No. 8 was constructed. According to this embodiment, by selecting microspheres having an appropriate particle size in each reflective layer, there is an effect that a reflector having an arbitrary reflection characteristic can be easily manufactured.

【0015】[0015]

【発明の効果】本発明により、任意波長帯域の吸収特性
を有し、また任意の表面形状を有する反射鏡の作製方法
を提供できた。
According to the present invention, it is possible to provide a method for manufacturing a reflector having absorption characteristics in an arbitrary wavelength band and having an arbitrary surface shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理的構成と基板上に形成された金属
微小球により生じる光反射特性を示す図。
FIG. 1 is a diagram showing a principle configuration of the present invention and light reflection characteristics generated by metal microspheres formed on a substrate.

【図2】本発明の一実施例の反射鏡の作製工程を示す断
面図。
FIG. 2 is a sectional view showing a manufacturing process of the reflecting mirror according to one embodiment of the present invention.

【図3】粒径の異なる複数の微小球を用いた実施例の断
面図とその光吸収特性を示す図。
FIG. 3 is a cross-sectional view of an example using a plurality of microspheres having different particle diameters and a diagram showing its light absorption characteristics.

【図4】反射鏡と吸収フィルタの機能を一体化した実施
例の反射鏡と、従来例を示す断面図。
FIG. 4 is a sectional view showing a reflecting mirror of an embodiment in which the functions of a reflecting mirror and an absorption filter are integrated, and a conventional example.

【図5】複雑な曲面を有する反射鏡に、光学的に均一に
吸収膜を形成した実施例の断面図。
FIG. 5 is a sectional view of an embodiment in which an absorbing film is formed optically uniformly on a reflecting mirror having a complicated curved surface.

【図6】反射層を複数有する実施例の反射鏡を示す断面
図。
FIG. 6 is a sectional view showing a reflecting mirror of an embodiment having a plurality of reflecting layers.

【符号の説明】[Explanation of symbols]

1…金属基板、2…絶縁体微小球、3…金属微粒子、4
…入射光、5…反射光、6…粒径100nmの微小球を
用いた際得られる反射率、7…粒径200nmの微小球
を用いた際得られる反射率、8…粒径300nmの微小
球を用いた際得られる反射率、10…シリコン基板、1
1…金薄膜、12…チオール分子層、13…ポリスチレ
ン微小球、14…金微粒子、20…ガラス基板、21…
金薄膜、22…チオール分子層、23…A微小球、24
…B微小球、25…金微粒子、26…A微小球による吸
収、27…微小球Bによる吸収、28…広波長帯域吸収
特性、30…放物面を有する高分子基板、31…吸収
膜、32…反射面、33…反射鏡、34…吸収膜を有さ
ない放物鏡、35…吸収フィルタ、40…反射面、41
…反射鏡、50…シリコン基板、51…金薄膜、52…
チオール分子層、53…ポリスチレン微小球、54…金
微粒子、55…絶縁体薄膜、56…銀薄膜、57…微小
球、58…銀微粒子。
DESCRIPTION OF SYMBOLS 1 ... Metal substrate, 2 ... Insulator microsphere, 3 ... Metal fine particle, 4
... incident light, 5 ... reflected light, 6 ... reflectivity obtained when using microspheres having a particle size of 100 nm, 7 ... reflectance obtained when using microspheres having a particle size of 200 nm, 8 ... microparticles having a particle size of 300 nm The reflectance obtained when using a sphere, 10 ... silicon substrate, 1
DESCRIPTION OF SYMBOLS 1 ... Gold thin film, 12 ... Thiol molecular layer, 13 ... Polystyrene microsphere, 14 ... Gold fine particle, 20 ... Glass substrate, 21 ...
Gold thin film, 22: thiol molecular layer, 23: A microsphere, 24
.. B microspheres, 25 ... gold fine particles, 26 ... absorption by A microspheres, 27 ... absorption by microspheres B, 28 ... wide wavelength band absorption characteristics, 30 ... polymer substrate having parabolic surface, 31 ... absorption film, 32: Reflecting surface, 33: Reflecting mirror, 34: Parabolic mirror without an absorbing film, 35: Absorbing filter, 40: Reflecting surface, 41
... reflecting mirror, 50 ... silicon substrate, 51 ... gold thin film, 52 ...
Thiol molecular layer, 53: polystyrene microspheres, 54: gold fine particles, 55: insulating thin film, 56: silver thin film, 57: microspheres, 58: silver fine particles.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金,銀,銅,アルミニウムなどの金属層、
粒径5nmから100μmの単一径のポリスチレン,ス
チレン/ブタジエン,ポリビニルトルエン,スチレン/
ジビニルベンゼン,ビニルトルエン/ターシャリーブチ
ルスチレンなどの高分子またはシリコン,酸化シリコ
ン,砒化ガリウム,ガラスなどの非金属の絶縁体微小球
層,それら微小球上に蒸着などで形成された1nmから
100nm厚の金,銀,銅,アルミニウムなどの金属微
粒子層の三層構造を有することにより、微小球の粒径に
依存した波長帯域の紫外線,可視光,赤外光を吸収する
ことを特徴とする反射鏡。
1. A metal layer of gold, silver, copper, aluminum or the like,
Single diameter polystyrene with a particle size of 5 nm to 100 μm, styrene / butadiene, polyvinyl toluene, styrene /
Polymer such as divinylbenzene, vinyltoluene / tertiary butylstyrene or non-metallic insulator microsphere layer such as silicon, silicon oxide, gallium arsenide, glass, etc., 1 nm to 100 nm thick formed by vapor deposition on these microspheres It has a three-layer structure of fine metal particles such as gold, silver, copper, and aluminum, so that it absorbs ultraviolet, visible, and infrared light in a wavelength band that depends on the particle size of the microspheres. mirror.
【請求項2】請求項1の反射鏡において、中間層の絶縁
体微小球層に異なる粒径の複数種類のポリスチレン,ス
チレン/ブタジエン,ポリビニルトルエン,スチレン/
ジビニルベンゼン,ビニルトルエン/ターシャリーブチ
ルスチレンなどの高分子またはシリコン,酸化シリコ
ン,砒化ガリウム,ガラスなどの非金属の絶縁体微小球
を混合して用いることにより、吸収波長帯域を制御する
ことを特徴とする反射鏡。
2. A reflecting mirror according to claim 1, wherein a plurality of types of polystyrene, styrene / butadiene, polyvinyltoluene, styrene / styrene having different particle sizes are provided on the insulating microsphere layer of the intermediate layer.
The absorption wavelength band is controlled by using a mixture of polymers such as divinylbenzene, vinyltoluene / tertiary butylstyrene, or non-metallic insulator microspheres such as silicon, silicon oxide, gallium arsenide, and glass. And a reflecting mirror.
【請求項3】請求項1の反射鏡において、ポリスチレ
ン,スチレン/ブタジエン,ポリビニルトルエン,スチ
レン/ジビニルベンゼン,ビニルトルエン/ターシャリ
ーブチルスチレンなどの高分子またはシリコン,酸化シ
リコン,砒化ガリウム,ガラスなどの非金属の絶縁体微
小球層と、それら微小球の上に蒸着で形成された金,
銀,銅,アルミニウムなどの金属微粒子層を複数重ねた
階層構造を有することを特徴とする反射鏡。
3. A reflecting mirror according to claim 1, wherein said polymer is a polymer such as polystyrene, styrene / butadiene, polyvinyl toluene, styrene / divinylbenzene, vinyl toluene / tertiary butyl styrene or silicon, silicon oxide, gallium arsenide, glass or the like. A non-metallic insulator microsphere layer, gold deposited on these microspheres by evaporation,
A reflecting mirror having a hierarchical structure in which a plurality of layers of fine metal particles such as silver, copper, and aluminum are stacked.
JP14894197A 1997-06-06 1997-06-06 Reflector Expired - Fee Related JP3972410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14894197A JP3972410B2 (en) 1997-06-06 1997-06-06 Reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14894197A JP3972410B2 (en) 1997-06-06 1997-06-06 Reflector

Publications (2)

Publication Number Publication Date
JPH10339808A true JPH10339808A (en) 1998-12-22
JP3972410B2 JP3972410B2 (en) 2007-09-05

Family

ID=15464094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14894197A Expired - Fee Related JP3972410B2 (en) 1997-06-06 1997-06-06 Reflector

Country Status (1)

Country Link
JP (1) JP3972410B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250668A (en) * 2005-03-10 2006-09-21 Tatsuro Endo Non-labelled biochip
JP2006349532A (en) * 2005-06-16 2006-12-28 Takao Saito Plasmon resonance structure and its manufacturing method
JP2007514975A (en) * 2003-12-17 2007-06-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
JP2007223015A (en) * 2006-02-27 2007-09-06 Toshiba Corp Method for manufacturing particle substrate, and particle substrate
JP2008180702A (en) * 2006-12-27 2008-08-07 Canon Inc Optical element, sensor device, and sensing method
US7629166B2 (en) 2004-09-27 2009-12-08 Hitachi, Ltd. Measuring apparatus for interaction of biomolecule
JP2019168358A (en) * 2018-03-23 2019-10-03 新コスモス電機株式会社 Optical analyzer
JP2019168357A (en) * 2018-03-23 2019-10-03 新コスモス電機株式会社 Reflection structure and optical analyzer using reflection structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514975A (en) * 2003-12-17 2007-06-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
US7629166B2 (en) 2004-09-27 2009-12-08 Hitachi, Ltd. Measuring apparatus for interaction of biomolecule
JP2006250668A (en) * 2005-03-10 2006-09-21 Tatsuro Endo Non-labelled biochip
JP2006349532A (en) * 2005-06-16 2006-12-28 Takao Saito Plasmon resonance structure and its manufacturing method
JP2007223015A (en) * 2006-02-27 2007-09-06 Toshiba Corp Method for manufacturing particle substrate, and particle substrate
JP2008180702A (en) * 2006-12-27 2008-08-07 Canon Inc Optical element, sensor device, and sensing method
JP2019168358A (en) * 2018-03-23 2019-10-03 新コスモス電機株式会社 Optical analyzer
JP2019168357A (en) * 2018-03-23 2019-10-03 新コスモス電機株式会社 Reflection structure and optical analyzer using reflection structure

Also Published As

Publication number Publication date
JP3972410B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP6402799B2 (en) Light-absorbing polarizing element, transmissive projector, and liquid crystal display device
US6224219B1 (en) Method for making retroreflective articles having polymer multilayer reflective coatings
JP3654836B2 (en) Photonic crystal omnidirectional reflector
US4310876A (en) Lighting fixture and method using multiple reflections
JP3972410B2 (en) Reflector
JP2002328222A (en) Polarizing element and method for manufacturing the same
JPH05506937A (en) Highly reflective bio-grating and method
JP2008083657A (en) Wire grid polarizer and liquid display device using the same
Maaroof et al. Mie and Bragg plasmons in subwavelength silver semi‐shells
JP2005242361A (en) Selective reflection
Wang et al. Large‐area low‐cost dielectric perfect absorber by one‐step sputtering
CN111312846B (en) Superconducting microwire single-photon detector with nanopore array and preparation method thereof
JPH0720303A (en) Reflection-preventing structure
CA2324267A1 (en) Polymer-inorganic multilayer dielectric film
JP2010049017A (en) Method for producing absorptive wire grid polarizer
KR20050046573A (en) Polarizing optical device, its continuous manufacturing process and reflective optical device using it
JP2008268297A (en) Thin polarizing plate
US20240076231A1 (en) Fabrication Technique For Wire Grid Polarizer
KR102484181B1 (en) Light absorber and manufacturing method thereof
CN110133761A (en) A metamaterial reflective film and its manufacturing method
US20060187551A1 (en) Reflector and method for producing the same
JPH085795A (en) Soft X-ray multilayer mirror
JPH04190200A (en) Multilayer mirror for vacuum ultraviolet light region and its manufacturing method
Tanaka Optical Metamaterials and Their Fabrication Techniques
JPH05346496A (en) Multilayer film reflecting mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees