[go: up one dir, main page]

JPH1033947A - Removal of nitrogen oxide in exhaust gas - Google Patents

Removal of nitrogen oxide in exhaust gas

Info

Publication number
JPH1033947A
JPH1033947A JP8194229A JP19422996A JPH1033947A JP H1033947 A JPH1033947 A JP H1033947A JP 8194229 A JP8194229 A JP 8194229A JP 19422996 A JP19422996 A JP 19422996A JP H1033947 A JPH1033947 A JP H1033947A
Authority
JP
Japan
Prior art keywords
denitration
zeolite
ion exchange
catalyst
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194229A
Other languages
Japanese (ja)
Other versions
JP4172828B2 (en
Inventor
Takuya Hatagishi
琢弥 畑岸
Koji Imai
康志 今井
Masamichi Kuramoto
政道 倉元
Yoshihiko Asano
義彦 浅野
Tatsutoshi Tamura
達利 田村
Masahiko Ieda
正彦 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP19422996A priority Critical patent/JP4172828B2/en
Publication of JPH1033947A publication Critical patent/JPH1033947A/en
Application granted granted Critical
Publication of JP4172828B2 publication Critical patent/JP4172828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve denitration efficiency by producing a catalyst carrier by firing ZSM-5 type zeolite as a main raw material and forming the resultant material into a honeycomb structure, depositing cobalt or copper on the catalyst carrier, and using aqueous ammonia, urea containing ammonia, etc., as a reducing agent. SOLUTION: In a removing method of nitrogen oxide in an exhaust gas by contact reaction of a denitration agent obtaining by depositing an activated metal on a catalyst carrier with a NOx-conrtaining gas in the presence of a reducing agent, ZSM-5 type zeolite as a main raw material is fired and formed into a honeycomb structure to give a catalyst carrier and then cobalt or copper as a metal catalyst is deposited on the carrier by an ion-exchange method. At that time, as the reducing agent, aqueous ammonia and urea containing ammonia are used. Moreover, as an ion-exchange method for cobalt Co ion, zeolite is immersed in a solution of acetic acid salt, nitric acid salt containing Co ion and stirred for several hours at 60 deg.C solution temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関等における
排気ガス中に含まれている窒素酸化物(NOX)を除去
して浄化する方法に関するものである。
The present invention relates to relates to a method for purifying by removing the nitrogen oxides contained in the exhaust gas of an internal combustion engine or the like (NO X).

【0002】[0002]

【従来の技術】従来からNOX処理技術は種々の分野で
必要とされており、例えばディーゼル機関等の排気ガス
中に存在するNOXは人体に有害であり、空中に放散さ
れると酸性雨の発生原因ともなるので、これら排気ガス
中のNOXを効果的に除去することが望まれている。
Conventionally the NO X processing techniques are required in various fields, NO X present in the exhaust gas, for example a diesel engine or the like is harmful to the human body, acid rain when it is dissipated into the air Therefore, it is desired to effectively remove NO X in these exhaust gases.

【0003】一般に上記NOXの処理方法は排煙脱硝技
術として実用化されている。この排煙脱硝技術は乾式法
と湿式法に大別されるが、現在では乾式法の一つである
選択接触還元法が技術的に先行しており、有力な脱硝方
法として注目されている。
[0003] Generally, the above-mentioned NO X treatment method is put to practical use as a flue gas denitration technique. This flue gas denitrification technique is roughly classified into a dry method and a wet method. At present, a selective catalytic reduction method, which is one of the dry methods, is technically advanced, and is attracting attention as an effective denitration method.

【0004】上記選択接触還元法の主反応は以下の通り
である。
The main reaction of the above selective catalytic reduction method is as follows.

【0005】 4NO+4NH3+O2 → 4N2+6H2O・・・・・・・・・・・・・(1) この反応は還元剤としてアンモニア,炭化水素,一酸化
炭素が使用され、特にアンモニアは酸素が共存しても選
択的にNOXを除去するため、ディーゼル機関等の排気
ガス中に含まれているNOXの除去に用いて有効であ
る。この反応は触媒としてチタニウム酸化物(Ti
2)を主成分として、バナジウム(V),モリブデン
(Mo),タングステン(W)等の酸化物とか複塩を含
有する触媒が使用される。この中でもV25/TiO2
系触媒は、活性,選択性,耐久性の面で有効であり、N
XのみならずSOXダストの含有量の多い排気ガス中で
の2年以上の運転実績がある。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) In this reaction, ammonia, hydrocarbon, and carbon monoxide are used as a reducing agent. since oxygen is removed selectively NO X even coexist, it is effectively used to remove of the NO X contained in the exhaust gas such as a diesel engine. This reaction uses titanium oxide (Ti
A catalyst containing an oxide such as vanadium (V), molybdenum (Mo), tungsten (W) or a double salt with O 2 ) as a main component is used. Among them, V 2 O 5 / TiO 2
Based catalysts are effective in terms of activity, selectivity and durability,
It has been operating for more than two years in exhaust gas containing a large amount of SO X dust as well as O X.

【0006】[0006]

【発明が解決しようとする課題】上記の選択接触還元法
は簡単なシステムでNOXを処理することができるとと
もに高脱硝率が得られ、しかもNOXを無害なN2ガスと
2Oに分解することにより廃液処理を不要とするとい
う利点を有している反面で、還元触媒が排気ガス中のN
X以外の成分で劣化してしまうことがあるため、触媒
交換を必要とするという課題がある。特に高価な貴金属
系の触媒は経済的な見地から使用できないケースがあ
り、その中でもV25/TiO2系触媒のV25は可溶
性で且つ毒性が強いため、使用後の触媒の処分に関して
特別な処理をしない限り環境汚染をもたらす虞れがあ
る。
SUMMARY OF THE INVENTION It is an object of the aforementioned selective catalytic reduction method is a high denitration ratio can be obtained it is possible to process the NO X with a simple system, yet the NO X into harmless N 2 gas and H 2 O The decomposition catalyst has the advantage of eliminating the need for waste liquid treatment.
Since a component other than O X may be deteriorated, there is a problem that it requires catalyst replacement. Particularly expensive noble metal catalysts there are cases that can not be used from an economic point of view, since and virulent in V 2 O 5 is soluble in V 2 O 5 / TiO 2 catalyst Among them, the disposal of the catalyst after use May cause environmental pollution unless special treatment is carried out.

【0007】近年は省エネルギー化によりコ・ジェネレ
ーションシステムが普及しており、特に内燃機関である
ガスエンジンとかディーゼルエンジンは酸素過剰下で燃
焼する必要があるため、排気ガス中には13%程度の過
剰の酸素が含まれている。このような過剰酸素の影響で
ガソリンエンジンの排気ガス浄化触媒である三元触媒は
酸化反応による触媒金属の劣化を生じることがあり、内
燃機関のNOXを完全に除去することは困難である。
In recent years, cogeneration systems have become widespread due to energy savings. In particular, since a gas engine or a diesel engine, which is an internal combustion engine, needs to burn under excess oxygen, an excess of about 13% is contained in exhaust gas. Contains oxygen. Three-way catalyst is an exhaust gas purifying catalyst of a gasoline engine under the influence of such excess oxygen may cause deterioration of the catalyst metal by the oxidation reaction, it is difficult to completely remove the NO X in the internal combustion engine.

【0008】還元剤としてアンモニアを用いた場合、こ
のアンモニアは危険物に指定されているため、高圧の液
化ガスでの運搬と貯蔵は取り扱い性に問題点がある。貴
金属系とか遷移金属系の触媒を使用した場合、これら触
媒の比重が大きいために実際に取り扱う上で不利であ
り、高温下では触媒成分の焼結が進行する反面で、低温
下ではアンモニウムが水分あるいはSOXと反応して硫
酸アンモニウム等の塩が触媒表面に生成してしまい、脱
硝率が低下するという問題がある。そのため使用温度の
範囲は320℃〜450℃に制限されているのが現状で
ある。
When ammonia is used as a reducing agent, the ammonia is designated as a dangerous substance, and therefore, there is a problem in handling and storage with high-pressure liquefied gas. When a noble metal or transition metal catalyst is used, the specific gravity of these catalysts is large, which is disadvantageous in actual handling.At a high temperature, the sintering of the catalyst component proceeds, but at a low temperature, ammonium becomes a water component. Alternatively, there is a problem in that a salt such as ammonium sulfate is formed on the catalyst surface by reacting with SO X and the denitration rate is reduced. Therefore, the operating temperature range is currently limited to 320 ° C to 450 ° C.

【0009】他の脱硝法として直接分解法とか炭化水素
系の還元剤を用いた選択還元脱硝法も研究されており、
例えば近年ではCu−ZSM−5ゼオライトとかペロブ
スカイト型複合化合物等に遷移金属、アルカリ土類金属
といった金属を担持あるいはイオン交換したものを触媒
とし、還元剤を用いてNOXをN2に還元させる反応が見
いだされているが、この反応は反応機構が詳細に解明さ
れていないこともあって温度とか触媒(金属)、還元剤
等の組み合わせにより活性が大きく変化する難点があ
る。最も高活性なCu−ZSM−5ゼオライトでも排気
ガス中のSOXあるいはO2で触媒性能が劣化することが
あり、実用上での障害となっている。
As another denitration method, a direct decomposition method or a selective reduction denitration method using a hydrocarbon-based reducing agent has been studied.
For example recent years, transition metal Cu-ZSM-5 zeolite Toka perovskite type complex compound or the like, a material obtained by carrying or ion exchange metal such alkaline earth metals as a catalyst, the reaction of reducing the NO X with a reducing agent to N 2 However, this reaction has a drawback that its activity greatly changes depending on the temperature, the combination of a catalyst (metal), a reducing agent, and the like, because the reaction mechanism has not been elucidated in detail. Most also highly active Cu-ZSM-5 zeolite may catalyst performance deteriorates with SO X or O 2 in the exhaust gas, which is an obstacle in practical use.

【0010】還元剤として危険なアンモニアに代えて尿
素を使用する方法もあり、触媒担体としてTiO2とV2
5,WO3,MoO3等が用いられるが、特にTiO2
触媒は排気ガス中に含まれるSOXとの反応性が低く、
劣化しにくいため、触媒担体として適している。しかし
TiO2のV25成分は可溶性で毒性を持つため、触媒
の処理に問題がある。
There is also a method of using urea instead of dangerous ammonia as a reducing agent, and TiO 2 and V 2 are used as catalyst carriers.
O 5, WO 3, but MoO 3 or the like is used, in particular TiO 2 catalysts have low reactivity with the SO X contained in the exhaust gas,
Since it is hardly deteriorated, it is suitable as a catalyst carrier. However, since the V 2 O 5 component of TiO 2 is soluble and toxic, there is a problem in treating the catalyst.

【0011】本発明は上記に鑑みてなされたものであっ
て、最適な触媒の担体を選択し、この触媒の担体に担持
させる金属と還元剤を選択することにより、脱硝率を高
めた排気ガス中の窒素酸化物の除去方法を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and it is an object of the present invention to select an optimal catalyst carrier and select a metal and a reducing agent to be carried on the catalyst carrier, thereby improving the exhaust gas with a high denitration rate. It is an object of the present invention to provide a method for removing nitrogen oxides therein.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために、触媒の担体に活性金属を担持させて得られ
る脱硝剤とNOX含有ガスとを還元剤の共存下で接触反
応させるようにした排気ガス中の窒素酸化物の除去方法
において、請求項1により、ZSM−5型ゼオライトを
主原料として焼成とハニカム成形を行って触媒担体と
し、この触媒担体にイオン交換法により金属触媒として
コバルトもしくは銅を担持させ、還元剤としてアンモニ
ア水,アンモニアを含む尿素,炭酸アンモニウムもしく
はメラミンを用いる排気ガス中の窒素酸化物の除去方法
を提供する。
SUMMARY OF THE INVENTION The present invention, in order to achieve the above object, contacting reaction of denitrating agent and NO X containing gas obtained by supporting an active metal on the catalyst support in the presence of a reducing agent According to the method for removing nitrogen oxides in exhaust gas as described above, according to claim 1, calcination and honeycomb forming are performed using ZSM-5 type zeolite as a main raw material to form a catalyst carrier, and the catalyst carrier is provided with a metal catalyst by an ion exchange method. The present invention provides a method for removing nitrogen oxides in exhaust gas using ammonia or urea containing ammonium, ammonium carbonate or melamine as a reducing agent, carrying cobalt or copper as a reducing agent.

【0013】コバルトイオンもしくは銅イオンを含む酢
酸塩もしくは硝酸塩溶液に焼成過程前のゼオライトを浸
漬し、加温しながら数時間撹拌することにより、コバル
トもしくは銅のイオン交換を実施する。
[0013] The zeolite before the calcination step is immersed in an acetate or nitrate solution containing cobalt ions or copper ions, and the mixture is stirred for several hours while being heated, thereby performing cobalt or copper ion exchange.

【0014】更に主原料としてのNH4−ZSM−5ゼ
オライトを成形,焼成してH型のH−ZSM−5とし、
イオン交換率を5〜30(%)としてコバルトもしくは
銅のイオン交換を行うようにしている。還元剤として軽
油を採用し、脱硝剤に軽油/NO=0.5の比率で添加
する。
Further, NH 4 -ZSM-5 zeolite as a main raw material is formed and calcined to obtain H-type H-ZSM-5,
The ion exchange of cobalt or copper is performed with the ion exchange rate of 5 to 30 (%). Light oil is used as the reducing agent, and is added to the denitration agent at a ratio of light oil / NO = 0.5.

【0015】かかる排気ガス中の窒素酸化物の除去方法
によれば、主原料としてZSM−5ゼオライトを用いる
とともにコバルトもしくは銅のイオン交換率は5〜30
(%)にすることによって従来のNaYもしくはNaA
型ゼオライトを用いた脱硝剤に比して脱硝率が格段に向
上しており、又、ZSM−5ゼオライトを用いて還元剤
としてアンモニア水、アンモニアを含む尿素,炭酸アン
モニウム,メラミンを用いた場合、還元剤によって物質
の分解特性及び脱硝率は異なるが、何れの還元剤を用い
ても85(%)以上の高い脱硝率が得られる。又、イオ
ン交換を焼成前に行うことにより、焼成温度によってN
4型ゼオライトがN型ゼオライトに変化して定度が向
上する。
According to the method for removing nitrogen oxides in exhaust gas, ZSM-5 zeolite is used as a main raw material and the ion exchange rate of cobalt or copper is 5 to 30.
(%) To make the conventional NaY or NaA
The denitration rate is remarkably improved as compared with the denitration agent using zeolite, and when ammonia water, urea containing ammonia, ammonium carbonate, and melamine are used as the reducing agent using ZSM-5 zeolite, Decomposition characteristics and denitration rates of substances differ depending on the reducing agent, but a high denitration rate of 85 (%) or more can be obtained using any reducing agent. In addition, by performing ion exchange before firing, N2 can be changed depending on the firing temperature.
The H 4 type zeolite is changed to an N type zeolite to improve the degree of stability.

【0016】[0016]

【発明の実施の形態】以下本発明にかかる排気ガス中の
窒素酸化物の除去方法の具体的な実施例を説明する。本
実施例では先ず触媒と還元剤を用いて窒素酸化物(NO
X)を窒素ガス(N2)に還元する反応において、触媒の
担体として軽量,安価で且つ毒性を持つゼオライトを使
用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the method for removing nitrogen oxides in exhaust gas according to the present invention will be described below. In the present embodiment, nitrogen oxides (NO
In the reaction for reducing X ) to nitrogen gas (N 2 ), a lightweight, inexpensive and toxic zeolite is used as a catalyst carrier.

【0017】一般にゼオライトはアルミニウムとシリカ
で構成され、X(M2+,M+1)O・Al23・ySiO
2・zH2Oで示される結晶性のアルミナシリケートであ
り、3〜9Åの微細な細孔を有する結晶であるが、アル
ミニウムとシリカの比率を変えることによってY型とか
X型,A型モルデナイト型,ZSM−5型等の種々の構
造を有するゼオライトとなる。
Generally, zeolite is composed of aluminum and silica, and X (M 2+ , M +1 ) O.Al 2 O 3 .ySiO
A crystalline alumina silicate represented by 2 · zH 2 O, which is a crystal having fine pores of 3 to 9 °, but by changing the ratio of aluminum to silica, Y type, X type, A type mordenite type , ZSM-5 type and other structures.

【0018】中でもZSM−5型ゼオライトは化学的に
安定したゼオライトとして知られている。本実施例では
ZSM−5型ゼオライトを主原料として焼成とハニカム
成形を行って触媒担体とし、この触媒担体にイオン交換
法により金属触媒を担持させる方法を検討した。
Among them, ZSM-5 type zeolite is known as a chemically stable zeolite. In the present example, a method of firing and honeycomb-forming a ZSM-5 type zeolite as a main raw material to obtain a catalyst carrier, and studying a method of supporting a metal catalyst on the catalyst carrier by an ion exchange method was studied.

【0019】本実施例を適用した実験では、触媒担体の
主原料としてNH4−ZSM−5ゼオライト(組成:SiO
2/Al2O3=39.5)を用いて、上記主原料をハニカム状に
成形,焼成した。上記主原料をハニカム状に成形する際
に700℃〜800℃の高温焼成工程が入るため、主原
料中のNH4が抜けてH型のH−ZSM−5となる。 NH4−ZSM−5 → NH3(g)+H−ZSM−5 このH−ZSM−5に触媒として活性金属のコバルトC
oをイオン交換法により担持させる。イオン交換率は5
%,つまりHの量の5%をコバルトに置き換える。還元
剤としてアンモニア水、及びアンモニアを含む尿素,炭
酸アンモニウム,メラミンを用いた。
In the experiment to which this embodiment was applied, NH 4 -ZSM-5 zeolite (composition: SiO
2 / Al 2 O 3 = 39.5), the above main raw material was formed into a honeycomb shape and fired. Since a high-temperature sintering step at 700 ° C. to 800 ° C. is performed when the main raw material is formed into a honeycomb shape, NH 4 in the main raw material escapes to become H-type H-ZSM-5. NH 4 -ZSM-5 → NH 3 (g) + H-ZSM-5 This H-ZSM-5 can be used as a catalyst with cobalt C as an active metal.
o is carried by an ion exchange method. Ion exchange rate is 5
%, Ie 5% of the amount of H, is replaced by cobalt. Ammonia water and urea containing ammonium, ammonium carbonate, and melamine were used as reducing agents.

【0020】コバルトCoのイオン交換方法としてはC
oイオンを含む溶液にゼオライトを浸漬し、溶液温度6
0℃で数時間撹拌する。Coイオンを含む塩類は酢酸
塩、硝酸塩等が挙げられる。
The method of ion exchange of cobalt Co is C
The zeolite is immersed in a solution containing o ions, and the solution temperature is 6
Stir at 0 ° C. for several hours. The salts containing Co ions include acetates, nitrates and the like.

【0021】実験条件を以下に記す。 (1)反応温度:400℃ (2)サンプルガス:NO,SO2(濃度860pp
m),酸素(濃度13%),残部窒素ガス(6.7l/
min) (3)還元剤:アンモニア水(NH3),サンプルガス
中にNH3ガスとして860ppm (4)ハニカム体積:6.8×10-5(m3) (5)比較例:ゼオライト原料としてNaY型ゼオライ
ト、NaA型ゼオライトを用いる。
The experimental conditions are described below. (1) Reaction temperature: 400 ° C. (2) Sample gas: NO, SO 2 (concentration 860 pp
m), oxygen (13% concentration), and the remaining nitrogen gas (6.7 l /
min) (3) Reducing agent: ammonia water (NH 3 ), 860 ppm as NH 3 gas in sample gas (4) Honeycomb volume: 6.8 × 10 -5 (m 3 ) (5) Comparative example: as zeolite raw material NaY type zeolite and NaA type zeolite are used.

【0022】本実施例と比較例による脱硝剤に用いて、
図1に示す装置により脱硝効率を求めた。図中の1は常
圧固定床型の反応槽、2はガス導入管であり、反応槽1
の内部には脱硝剤3,3が充填され、反応槽1の入口と
出口には温度測定用の熱電対13,14が配備されてい
る。この反応槽1は保温ヒータ4によって所定温度に加
温,保持されており、該反応槽1に近接するガス導入管
2の周囲にも予熱ヒータ5が配備されている。
Using the denitration agent according to the present embodiment and the comparative example,
The denitration efficiency was determined by the apparatus shown in FIG. In the figure, reference numeral 1 denotes a normal pressure fixed bed type reaction tank, and 2 denotes a gas introduction pipe.
Are filled with denitration agents 3 and 3, and thermocouples 13 and 14 for temperature measurement are provided at the inlet and outlet of the reaction tank 1. The reaction tank 1 is heated and maintained at a predetermined temperature by a heat retaining heater 4, and a preheater 5 is also provided around a gas introduction pipe 2 close to the reaction tank 1.

【0023】6は還元剤溶液が充填されたタンク、7は
還元剤を反応槽1に送り込むためのポンプ、8は還元剤
溶液を反応槽1内に注入するノズルである。又、上記ガ
ス導入管2に供給するサンプルガスMを調製するため、
NOガスボンベ9,N2ガスボンベ10,SO2ガスボン
ベ11,O2ガスボンベ12を用意し、これらの混合ガ
スを作成して図外の流量調節バルブを介してガス導入管
2にサンプルガスMが流入される。
Reference numeral 6 denotes a tank filled with a reducing agent solution, 7 denotes a pump for feeding the reducing agent into the reaction tank 1, and 8 denotes a nozzle for injecting the reducing agent solution into the reaction tank 1. Further, in order to prepare the sample gas M to be supplied to the gas introduction pipe 2,
A NO gas cylinder 9, an N 2 gas cylinder 10, an SO 2 gas cylinder 11, and an O 2 gas cylinder 12 are prepared, and a mixed gas thereof is prepared, and the sample gas M flows into the gas introduction pipe 2 via a flow control valve (not shown). You.

【0024】実験に際して、保温ヒータ4によって反応
槽1内の温度を400℃に保持し、サンプルガスMを予
熱ヒータ5によって予熱しながら6.7(l/min)
で反応槽1内に流し、同時にポンプ7を起動してタンク
6に充填された還元剤としてのアンモニア水をサンプル
ガス中にNH3ガスとして860ppmの割合となるよ
うにして反応槽1に注入した。注入量は還元剤と反応槽
1入口のNOの組成比が1:1になるように調整した。
At the time of the experiment, the temperature in the reaction tank 1 was maintained at 400 ° C. by the heat retaining heater 4 and the sample gas M was preheated by the preheater 5 to 6.7 (l / min).
At the same time, the pump 7 was started, and the ammonia water as a reducing agent filled in the tank 6 was injected into the reaction tank 1 so that the sample gas had a ratio of 860 ppm as NH 3 gas in the sample gas. . The injection amount was adjusted so that the composition ratio of the reducing agent and NO at the inlet of the reaction tank 1 was 1: 1.

【0025】図2は反応槽1内部を示す断面図であり、
ステンレス鋼で成る反応槽1の内壁面にシール材1aが
配置され、このシール材1aの内方にハニカム状に成形
された脱硝剤3,3が積層されている。
FIG. 2 is a sectional view showing the inside of the reaction tank 1.
A sealing material 1a is disposed on the inner wall surface of a reaction tank 1 made of stainless steel, and honeycomb-shaped denitration agents 3 and 3 are laminated inside the sealing material 1a.

【0026】反応槽1を通過したサンプルガスMと反応
槽1を通過しないサンプルガスM、即ち反応前後におけ
る各サンプルガスMのNOX濃度と酸素濃度とを図示し
ていないNOX・O2分析計もしくはガスクロマトグラフ
ィーにより測定した。
The sample gas M that does not pass a sample gas M having passed through the reaction vessel 1 to reaction vessel 1, i.e. does not show the NO X concentration and the oxygen concentration of the sample gas M before and after the reaction NO X · O 2 Analysis It was measured by a meter or gas chromatography.

【0027】そして反応前のサンプルガスMのNOX
度をC0(ppm)とし、反応後のNOXの濃度をC1(pp
m)として脱硝率を次式によって求めた。
The NO x concentration of the sample gas M before the reaction is defined as C 0 (ppm), and the NO x concentration after the reaction is defined as C 1 (pp
The denitration rate was determined by the following equation as m).

【0028】 脱硝率(%)={C0(ppm)−C1(ppm)}/{C0(ppm)}×100・・・・・(2) 表1は上記実験により、ゼオライト原料としてNaY型
ゼオライト、NaA型ゼオライト及び本実施例によるZ
SM−5ゼオライトを用いた場合の脱硝率(%)を示して
いる。
Denitration rate (%) = {C 0 (ppm) −C 1 (ppm)} / {C 0 (ppm)} × 100 (2) Table 1 shows that zeolite raw material was obtained from the above experiment. NaY-type zeolite, NaA-type zeolite and Z according to this embodiment
The graph shows the denitration rate (%) when SM-5 zeolite was used.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果からNaY型ゼオライト又はN
aA型ゼオライトを用いた場合の脱硝率35%,20%
に較べて、ZSM−5ゼオライトを用いた場合の脱硝率
90%が格段に向上していることが分かる。
From the results shown in Table 1, the NaY type zeolite or N
Denitration rate of 35% and 20% when using aA type zeolite
It can be seen that the denitration rate of 90% when ZSM-5 zeolite was used was remarkably improved as compared with that of Example 1.

【0031】次に主原料としてのNH4−ZSM−5ゼ
オライトを成形,焼成してH型のH−ZSM−5とし、
イオン交換率を変えて触媒としてのコバルトCoを担持
して同一の条件で実験を試みた。表2はイオン交換率を
0,5,10,30,100(%)とした時の脱硝率
(%)を示している。
Next, NH 4 -ZSM-5 zeolite as a main raw material is molded and calcined to obtain H-type H-ZSM-5,
Experiments were carried out under the same conditions while supporting cobalt Co as a catalyst while changing the ion exchange rate. Table 2 shows the denitration rate when the ion exchange rate is 0, 5, 10, 30, 100 (%).
(%).

【0032】[0032]

【表2】 [Table 2]

【0033】表2によれば、コバルトCoのイオン交換
率が5%乃至10%で最も脱硝率が高いことが判明し
た。但しコバルトCoの交換率が30(%)を超える
と、逆に脱硝率は低下する傾向を示した。これは還元剤
であるNH3はゼオライト中のH+(プロトン)と選択的
に吸着するため、H+をCo2+に交換していくと触媒表
面へのNOの吸着量が増大し、NH3の吸着量が低下す
るためと考えられる。従ってコバルトCoのイオン交換
率は5〜30(%)が適当である。
According to Table 2, it was found that the denitration rate was highest when the cobalt Co ion exchange rate was 5% to 10%. However, when the exchange rate of cobalt Co exceeded 30 (%), the denitration rate tended to decrease. This is because the reducing agent, NH 3 , selectively adsorbs to H + (proton) in the zeolite. Therefore, as H + is exchanged for Co 2+ , the amount of NO adsorbed on the catalyst surface increases, and NH 3 It is considered that the adsorption amount of 3 was decreased. Therefore, the ion exchange rate of cobalt Co is suitably 5 to 30 (%).

【0034】次にコバルトのイオン交換率5%としたC
o−ZSM−5ゼオライトを用いて、還元剤としてアン
モニア水、アンモニアを含む尿素,炭酸アンモニウム,
メラミンを用いて同一の条件で実験を試みた。実験は夫
々の還元剤に含まれるNH3の量をサンプルガス中で8
60ppmになるようにした。その結果を表3に示す。
Next, C with an ion exchange rate of cobalt of 5% was used.
Using o-ZSM-5 zeolite, ammonia water as a reducing agent, urea containing ammonia, ammonium carbonate,
An experiment was performed under the same conditions using melamine. In the experiment, the amount of NH 3 contained in each reducing agent was adjusted to 8 in the sample gas.
It was adjusted to 60 ppm. Table 3 shows the results.

【0035】[0035]

【表3】 [Table 3]

【0036】還元剤によって物質の分解特性及び脱硝率
は異なるが、何れの還元剤を用いても85(%)以上の
脱硝率が得られた。
Although the decomposition characteristics and the denitration rate of the substance differ depending on the reducing agent, a denitration rate of 85 (%) or more was obtained using any of the reducing agents.

【0037】図3は本実施例にかかるCo−ZSM−5
ゼオライトとCo−NaYゼオライトを主原料として用
いた脱硝剤にNOを吸着させて、昇温脱離法でNOを脱
離して排出されたNOの量をTCD検出器で検出した際
の温度と脱離速度の関係を示すグラフである。に示す
Co−ZSM−5ゼオライトを用いた脱硝剤には多量の
NOが吸着されており、に示したCo−NaYゼオラ
イトにはほとんどNOが吸着されていないことが分か
る。
FIG. 3 shows Co-ZSM-5 according to the present embodiment.
NO is adsorbed to a denitration agent using zeolite and Co-NaY zeolite as main raw materials, and the temperature and desorption when the amount of NO discharged by desorbing NO by the temperature-programmed desorption method is detected by a TCD detector is determined. It is a graph which shows the relationship of separation speed. It can be seen that a large amount of NO is adsorbed on the denitration agent using the Co-ZSM-5 zeolite shown in (1), and almost no NO is adsorbed on the Co-NaY zeolite shown in (2).

【0038】次に本実施例で採用した各種脱硝剤の製作
方法を比較例とともに説明する。
Next, a method for producing various types of denitration agents employed in this embodiment will be described together with comparative examples.

【0039】〔脱硝剤1〕シリカ/アルミナ比が23.
3のNH4型ZSM−ゼオライト粉末を用いて成形と焼
成によりハニカム状触媒担体を製作したが、コバルトC
oのイオン交換は焼成過程前に実施した。イオン交換は
焼成後に行うこともできるが、焼成温度によってNH4
型ゼオライトがN型ゼオライトに変化し、安定度が向上
するので焼成前に行うことが好ましい。
[Denitration agent 1] A silica / alumina ratio of 23.
The honeycomb catalyst carrier was manufactured by molding and firing using the NH 4 type ZSM-zeolite powder of No. 3;
The ion exchange of o was performed before the calcination process. The ion exchange can be performed after the calcination, but depending on the calcination temperature, NH 4 may be used.
Since the zeolite is changed to N-type zeolite and the stability is improved, it is preferable to carry out the calcination before calcination.

【0040】得られたハニカム状触媒担体の1個の重量
は250gであり、これを0.1M濃度のCo(CH3
OO)2・4H2O水溶液4リットルに浸漬し、60℃で
12時間撹拌してイオン交換を行った。イオン交換操作
終了後に担体を4リットルの純水で洗浄し、150℃で
8時間乾燥した。乾燥後700℃で5時間焼成し、ハニ
カム状脱硝剤を得た。
The weight of one piece of the obtained honeycomb catalyst carrier was 250 g, and this was mixed with a 0.1 M concentration of Co (CH 3 C).
OO) was immersed in 2 · 4H 2 O aqueous solution 4 l was subjected to ion exchange by stirring at 60 ° C. 12 hours. After the completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, firing was performed at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.

【0041】得られた脱硝剤の元素分析の結果、Coが
1.0重量%含まれていることが判明した。
As a result of elemental analysis of the obtained denitration agent, it was found that 1.0% by weight of Co was contained.

【0042】〔脱硝剤2〕上記と同一のハニカム状触媒
担体に対するCoのイオン交換時間を60℃で2時間と
した。他の操作は同一とした。得られた脱硝剤の元素分
析の結果、Coが0.1重量%含まれており、イオン交
換時間によってイオン交換量の調節が可能であることが
判明した。
[Denitration Agent 2] The ion exchange time of Co on the same honeycomb catalyst carrier as above was 60 ° C. for 2 hours. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, it was found that Co was contained at 0.1% by weight, and that the amount of ion exchange could be adjusted by the ion exchange time.

【0043】〔脱硝剤3〕上記と同一のハニカム状触媒
担体に対するCoのイオン交換時間を60℃で24時間
とした。他の操作は同一とした。得られた脱硝剤の元素
分析の結果、Coが2.0重量%含まれていた。
[Denitration Agent 3] The ion exchange time of Co on the same honeycomb catalyst carrier as above was set to 60 ° C. for 24 hours. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, 2.0% by weight of Co was contained.

【0044】〔比較例1〕上記と同一のハニカム状触媒
担体にイオン交換を行わずに4リットルの純水で洗浄
し、150℃で8時間乾燥した。乾燥後700℃で5時
間焼成したH型ゼオライトを得た。このH型ゼオライト
を用いて実施例1と同一の操作により脱硝剤を作成し
た。
Comparative Example 1 The same honeycomb catalyst carrier as described above was washed with 4 liters of pure water without performing ion exchange, and dried at 150 ° C. for 8 hours. After drying, an H-type zeolite calcined at 700 ° C. for 5 hours was obtained. Using this H-type zeolite, a denitration agent was prepared in the same manner as in Example 1.

【0045】〔比較例2〕上記と同一のハニカム状触媒
担体に銅Cuのイオン交換を行った。具体的には触媒担
体を0.1M濃度のCu(CH3COO)2・4H2O水溶
液4リットルに浸漬し、60℃で12時間撹拌してイオ
ン交換を行った。イオン交換操作終了後に担体を4リッ
トルの純水で洗浄し、150℃で8時間乾燥した。乾燥
後700℃で5時間焼成し、ハニカム状脱硝剤を得た。
Comparative Example 2 The same honeycomb catalyst carrier as described above was subjected to ion exchange of copper Cu. Specifically, the catalyst support was immersed in 4 liters of a 0.1 M concentration aqueous solution of Cu (CH 3 COO) 2 .4H 2 O and stirred at 60 ° C. for 12 hours to perform ion exchange. After the completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, firing was performed at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.

【0046】得られた脱硝剤の元素分析の結果、Cuが
0.9重量%含まれていることが判明した。
As a result of elemental analysis of the obtained denitration agent, it was found that Cu was contained at 0.9% by weight.

【0047】〔脱硝剤の性能評価〕上記各実施例と比較
例で得られた脱硝剤を前記図1に示した常圧固定床型の
反応槽1内に充填し、空気の流通下で約1時間の前処理
を行ってから表4に示す混合ガスを流通して還元剤とし
て尿素をNO/尿素=0.5の比率で添加し、反応温度
400〜500℃で脱硝を行い、脱硝特性として定常状
態に戻した時点でのNOの浄化率を測定した結果を表5
に示す。
[Evaluation of Performance of Denitration Agent] The denitration agent obtained in each of the above Examples and Comparative Examples was filled in the normal-pressure fixed-bed type reaction tank 1 shown in FIG. After pretreatment for one hour, urea was added as a reducing agent at a ratio of NO / urea = 0.5 by flowing a mixed gas shown in Table 4 and denitration was performed at a reaction temperature of 400 to 500 ° C. Table 5 shows the measurement result of the NO purification rate at the time when the state was returned to the steady state.
Shown in

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】表5によれば、本実施例にかかる脱硝剤
1,2のNO浄化率は93%,95%,と良好であり、
Coが0.1〜1.0重量%含まれている脱硝剤に還元剤
として尿素を用いることによって良好な脱硝特性が得ら
れ、比較例1のCoをイオン交換しない脱硝剤のNO浄
化率30%と較べて明らかに差異があった。尚、脱硝剤
3はCoが2.0重量%含まれているためNO浄化率は
85%とやや低下した。比較例2のCuを用いてイオン
交換した脱硝剤はNO浄化率が脱硝剤3と同一の85%
であり、やや良好な結果が得られたので、Coと同様に
Cuをイオン交換した脱硝剤の実用化の可能性を示し
た。
According to Table 5, the NO purification rates of the denitration agents 1 and 2 according to the present embodiment are as good as 93% and 95%, respectively.
By using urea as a reducing agent in a denitration agent containing 0.1 to 1.0% by weight of Co, good denitration characteristics can be obtained, and the NO purification rate of the denitration agent of Comparative Example 1 which does not ion-exchange Co is 30. % Was clearly different. Since the denitration agent 3 contained 2.0% by weight of Co, the NO purification rate was slightly lowered to 85%. The denitration agent ion-exchanged using Cu of Comparative Example 2 has the same NO purification rate as the denitration agent 3 of 85%.
Since somewhat favorable results were obtained, the possibility of practical use of a denitration agent obtained by ion-exchanging Cu like Co was shown.

【0051】次に表6により上記実施例と比較例1で得
られた脱硝剤を前記反応槽1内に充填し、前記と同様な
空気の流通下で約1時間の前処理を行ってから表4に示
す混合ガスを流通して還元剤として軽油を軽油/NO=
0.5の比率で添加し、反応温度350〜450℃で脱
硝を行い、脱硝特性として反応温度が350℃,400
℃,450℃でのNOの浄化率を測定した結果を示す。
Next, according to Table 6, the denitration agents obtained in the above Examples and Comparative Example 1 were charged into the reaction tank 1 and pretreated for about 1 hour under the same air flow as described above. The mixed gas shown in Table 4 was circulated and light oil was used as the reducing agent.
Denitration is performed at a reaction temperature of 350 to 450 ° C.
The result of measuring the NO purification rate at 450C and 450C is shown.

【0052】[0052]

【表6】 [Table 6]

【0053】表6によれば本実施例にかかる脱硝剤1,
2,3に還元剤として軽油を用いることによって各反応
温度条件下で良好な脱硝特性が得られ、比較例1のCo
をイオン交換しない脱硝剤のNO浄化率33%,40
%,35%と較べて明らかに差異があった。但し脱硝剤
3はCoが2.0重量%含まれているため脱硝剤1,2
と較べてNO浄化率はやや低下した。
According to Table 6, the denitration agents 1 and 2
By using light oil as a reducing agent for each of Examples 2 and 3, good denitration characteristics were obtained under each reaction temperature condition.
NO purification rate of denitration agent without ion exchange
%, 35%. However, since the denitration agent 3 contains 2.0% by weight of Co, the denitration agents 1 and 2
The NO purification rate was slightly lower than that.

【0054】次に前記比較例1の結果に鑑みて、コバル
トCoに代えて銅Cuをイオン交換した脱硝剤4,5,
6を作成した。
Next, in view of the results of Comparative Example 1, the denitration agents 4, 5 obtained by ion-exchanging copper Cu instead of cobalt Co were used.
No. 6 was created.

【0055】〔脱硝剤4〕シリカ/アルミナ比が23.
3のNH4型ZSM−ゼオライト粉末を用いて成形と焼
成によりハニカム状触媒担体を製作した。得られたハニ
カム状触媒担体の1個の重量は250gであり、これを
0.1M濃度のCu(CH3COO)2・4H2O水溶液4
リットルに浸漬し、60℃で12時間撹拌してイオン交
換を行った。イオン交換操作終了後に担体を4リットル
の純水で洗浄し、150℃で8時間乾燥した。乾燥後7
00℃で5時間焼成し、ハニカム状脱硝剤を得た。
[Denitration agent 4] The silica / alumina ratio is 23.
A honeycomb catalyst carrier was manufactured by molding and firing using the NH 4 type ZSM-zeolite powder No. 3 described above. Each of the obtained honeycomb-shaped catalyst supports weighed 250 g, and this was mixed with a 0.1 M aqueous Cu (CH 3 COO) 2 .4H 2 O aqueous solution 4.
The mixture was immersed in a liter and stirred at 60 ° C. for 12 hours to perform ion exchange. After the completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying 7
The mixture was fired at 00 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.

【0056】得られた脱硝剤の元素分析の結果、Cuが
0.9重量%含まれていることが判明した。
As a result of elemental analysis of the obtained denitration agent, it was found that Cu was contained at 0.9% by weight.

【0057】〔脱硝剤5〕上記と同一のハニカム状触媒
担体に対するCuのイオン交換時間を、60℃で1.5
時間とし、他の操作は同一とした。得られた脱硝剤の元
素分析の結果、Cuが0.1重量%含まれている。
[Denitration agent 5] The ion exchange time of Cu for the same honeycomb catalyst carrier as above was 1.5 times at 60 ° C.
Time and other operations were the same. As a result of elemental analysis of the obtained denitration agent, 0.1% by weight of Cu was contained.

【0058】〔脱硝剤6〕上記と同一のハニカム状触媒
担体に対するCuのイオン交換時間を60℃で18時間
とした。他の操作は同一とした。得られた脱硝剤の元素
分析の結果、Cuが1.5重量%含まれていた。
[Denitration agent 6] The ion exchange time of Cu with respect to the same honeycomb catalyst carrier as described above was set to 18 hours at 60 ° C. Other operations were the same. As a result of elemental analysis of the obtained denitration agent, 1.5% by weight of Cu was contained.

【0059】〔比較例3〕上記と同一のハニカム状触媒
担体にNiのイオン交換を行った。具体的には触媒担体
を0.1M濃度のNi(CH3COO)2・4H2O水溶液
4リットルに浸漬し、60℃で10時間撹拌してイオン
交換を行った。イオン交換操作終了後に担体を4リット
ルの純水で洗浄し、150℃で8時間乾燥した。乾燥後
700℃で5時間焼成し、ハニカム状脱硝剤を得た。
Comparative Example 3 The same honeycomb catalyst carrier as above was subjected to Ni ion exchange. Specifically, the catalyst carrier was immersed in 4 liters of a 0.1 M Ni (CH 3 COO) 2 .4H 2 O aqueous solution and stirred at 60 ° C. for 10 hours to perform ion exchange. After the completion of the ion exchange operation, the carrier was washed with 4 liters of pure water and dried at 150 ° C. for 8 hours. After drying, firing was performed at 700 ° C. for 5 hours to obtain a honeycomb-shaped denitration agent.

【0060】得られた脱硝剤の元素分析の結果、Niが
1.2重量%含まれていることが判明した。次に表7に
より上記実施例と比較例3で得られた脱硝剤4,5,6
を前記反応槽1内に充填し、前記と同様な空気の流通下
で400℃約1時間の前処理を行ってから表4に示す混
合ガスを流通して還元剤として軽油を軽油/NO=0.
8の比率で添加して反応温度350〜450℃で脱硝を
行い、脱硝特性として反応温度が350℃,400℃,
450℃でのNOの浄化率を測定した結果を示す。
As a result of elemental analysis of the obtained denitration agent, it was found that Ni was contained at 1.2% by weight. Next, according to Table 7, the denitration agents 4, 5, and 6 obtained in the above Examples and Comparative Example 3 were used.
Is filled in the reaction vessel 1 and subjected to a pretreatment at 400 ° C. for about 1 hour under the same flow of air as described above, and then a gaseous mixture as shown in Table 4 is passed to reduce light oil as light oil / NO = 0.
And denitration was performed at a reaction temperature of 350 to 450 ° C., and the reaction temperature was 350 ° C., 400 ° C.,
The result of measuring the NO purification rate at 450 ° C. is shown.

【0061】[0061]

【表7】 [Table 7]

【0062】表7によれば本実施例にかかる脱硝剤4,
5,6に還元剤として軽油を用いることによって各反応
温度条件下で良好な脱硝特性が得られ、比較例1,3の
脱硝剤のNO浄化率と較べて明らかに差異があった。
According to Table 7, the denitration agents 4 and 4
By using light oils as the reducing agents in Nos. 5 and 6, good denitration characteristics were obtained under each reaction temperature condition, and there was a clear difference as compared with the NO removal rates of the denitration agents of Comparative Examples 1 and 3.

【0063】この測定においてSO2の濃度を0〜10
00ppmまで変化させてNOの浄化率を測定した結果
を表8に示す。尚、SO2の連続通気時間は500時間
とした。
In this measurement, the concentration of SO 2 was set to 0 to 10
Table 8 shows the results of measuring the NO purification rate by changing the concentration to 00 ppm. The continuous aeration time of SO 2 was 500 hours.

【0064】[0064]

【表8】 [Table 8]

【0065】表8によれば、SO2濃度が0ppmであ
ればほぼ問題なく、SO2濃度が1000ppmになる
と脱硝剤4,5は良好な脱硝特性を示したが脱硝剤6の
NOの浄化率が40%とやや低下した。
According to Table 8, when the SO 2 concentration was 0 ppm, there was almost no problem. When the SO 2 concentration was 1000 ppm, the denitration agents 4 and 5 showed good denitration characteristics. Decreased slightly to 40%.

【0066】[0066]

【発明の効果】以上詳細に説明したように、本発明によ
れば主原料としてZSM−5ゼオライトを用いて触媒の
担体を形成するとともに、この触媒担体に担持するコバ
ルトもしくは銅のイオン交換率は5〜30(%)にする
ことによって従来の脱硝剤に比して脱硝率が格段に向上
し、還元剤としてアンモニア水、アンモニアを含む尿
素,炭酸アンモニウム,メラミン,軽油を用いた場合で
も還元剤によって物質の分解特性及び脱硝率は異なるも
のの何れの還元剤を用いても85(%)以上の高い脱硝
率を得ることができる。
As described above in detail, according to the present invention, a catalyst support is formed using ZSM-5 zeolite as a main raw material, and the ion exchange rate of cobalt or copper supported on the catalyst support is increased. By setting the content to 5 to 30 (%), the denitration rate is remarkably improved as compared with the conventional denitration agent. Although the decomposition characteristics of the substance and the denitration rate are different, a high denitration rate of 85 (%) or more can be obtained using any reducing agent.

【0067】又、還元触媒が排気ガス中のNOX以外の
成分、例えばSOXあるいはO2で触媒性能が劣化するこ
とがないため頻繁な触媒交換は不要であり、還元剤とし
てアンモニア以外の尿素,炭酸アンモニウム,メラミ
ン,軽油等が利用可能であるため、これらの還元剤の取
扱いに格別の注意は要求されないという利点がある。更
に還元触媒として高価な貴金属系の触媒を使用すること
がないので、経済的な見地からも有効である。
Further, since the reduction catalyst does not deteriorate its catalytic performance due to components other than NO X in the exhaust gas, for example, SO X or O 2 , frequent replacement of the catalyst is unnecessary, and urea other than ammonia is used as a reducing agent. , Ammonium carbonate, melamine, light oil and the like are available, so that there is an advantage that no special care is required for handling these reducing agents. Furthermore, since an expensive noble metal catalyst is not used as a reduction catalyst, it is effective from an economical viewpoint.

【0068】特に本発明によれば、内燃機関の排気ガス
の処理に際して最適な触媒の担体を選択し、この触媒の
担体に担持させる活性金属と還元剤を選択することによ
り排気ガス中の脱硝率を格段に高めることができるとい
う効果が得られる。
In particular, according to the present invention, when treating exhaust gas of an internal combustion engine, an optimal catalyst carrier is selected, and an active metal and a reducing agent to be carried on the catalyst carrier are selected. Can be significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる脱硝方法を用いて脱硝効率を求
める実験装置の構成を示す概要図。
FIG. 1 is a schematic diagram showing the configuration of an experimental apparatus for obtaining denitration efficiency using a denitration method according to the present invention.

【図2】図1の要部縦断面図。FIG. 2 is a longitudinal sectional view of a main part of FIG.

【図3】本実施例と従来例で用いた脱硝剤に吸着したN
Oを脱離器で検出した際の温度と脱離速度の関係を示す
グラフ。
FIG. 3 shows N adsorbed on a denitration agent used in this example and a conventional example.
The graph which shows the relationship between the temperature at the time of detecting O with a desorber, and a desorption rate.

【符号の説明】[Explanation of symbols]

1…反応槽 2…ガス導入管 3…脱硝剤 4…保温ヒータ 5…予熱ヒータ 6…(還元剤の)タンク 8…(還元剤の)ノズル 9…NOガスボンベ 10…N2ガスボンベ 11…SO2ガスボンベ 12…O2ガスボンベ 13,14…熱電対1 ... reactor 2 ... gas (reducing agent) inlet pipe 3 ... denitrating agent 4 ... insulation heater 5 ... preheater 6 ... (reducing agent) tank 8 ... nozzle 9 ... NO gas cylinder 10 ... N 2 gas cylinder 11 ... SO 2 Gas cylinder 12 ... O 2 gas cylinder 13,14 ... Thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 義彦 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 田村 達利 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 家田 正彦 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiko Asano 2-1-117 Osaki, Shinagawa-ku, Tokyo Inside the Meidensha Co., Ltd. (72) Inventor Tatsutoshi Tamura 2-1-1, Osaki, Shinagawa-ku, Tokyo Stock Company Inside the company Meidensha (72) Inventor Masahiko Ieda 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside the company Meidensha

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒の担体に活性金属を担持させて得ら
れる脱硝剤とNOX含有ガスとを還元剤の共存下で接触
反応させるようにした排気ガス中の窒素酸化物の除去方
法において、 ZSM−5型ゼオライトを主原料として焼成とハニカム
成形を行って触媒担体とし、この触媒担体にイオン交換
法により金属触媒としてコバルトもしくは銅を担持さ
せ、還元剤としてアンモニア水,アンモニアを含む尿
素,炭酸アンモニウムもしくはメラミンを用いることを
特徴とする排気ガス中の窒素酸化物の除去方法。
In the method of removing the 1. A nitrogen oxide in the exhaust gas and the carrier the active metal be supported denitrating agent and NO X containing gas obtained catalyst so as to catalytically reacting in the presence of a reducing agent, Using ZSM-5 type zeolite as a main raw material, calcination and honeycomb forming are performed to form a catalyst carrier. Cobalt or copper is supported on the catalyst carrier as a metal catalyst by an ion exchange method, and ammonia water, urea containing ammonia, urea containing A method for removing nitrogen oxides in exhaust gas, characterized by using ammonium or melamine.
【請求項2】 コバルトイオンもしくは銅イオンを含む
酢酸塩もしくは硝酸塩溶液に焼成過程前のゼオライトを
浸漬し、加温しながら数時間撹拌することにより、コバ
ルトもしくは銅のイオン交換を行うようにした請求項1
記載の排気ガス中の窒素酸化物の除去方法。
2. The method according to claim 1, wherein the zeolite before the sintering process is immersed in an acetate or nitrate solution containing cobalt ions or copper ions, and the mixture is stirred for several hours while heating, thereby performing ion exchange of cobalt or copper. Item 1
The method for removing nitrogen oxides in exhaust gas as described above.
【請求項3】 主原料としてのNH4−ZSM−5ゼオ
ライトを成形,焼成してH型のH−ZSM−5とし、イ
オン交換率を5〜30(%)としてコバルトもしくは銅
のイオン交換を行うようにした請求項1又は2記載の排
気ガス中の窒素酸化物の除去方法。
3. An NH 4 -ZSM-5 zeolite as a main raw material is formed and calcined to obtain H-type H-ZSM-5, with an ion exchange rate of 5 to 30 (%) and ion exchange of cobalt or copper. 3. The method for removing nitrogen oxides in exhaust gas according to claim 1, wherein the method is performed.
【請求項4】 還元剤として軽油を採用し、脱硝剤に軽
油/NO=0.5の比率で添加することを特徴とする請
求項1,2又は3記載の排気ガス中の窒素酸化物の除去
方法。
4. The method according to claim 1, wherein light oil is used as the reducing agent, and light oil / NO is added to the denitration agent at a ratio of 0.5. Removal method.
JP19422996A 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas Expired - Lifetime JP4172828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19422996A JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19422996A JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Publications (2)

Publication Number Publication Date
JPH1033947A true JPH1033947A (en) 1998-02-10
JP4172828B2 JP4172828B2 (en) 2008-10-29

Family

ID=16321117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19422996A Expired - Lifetime JP4172828B2 (en) 1996-07-24 1996-07-24 NOx removal agent and method for removing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JP4172828B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2160497A1 (en) * 1999-06-17 2001-11-01 Univ Valencia Politecnica CATALYST FOR THE ELIMINATION OF NITROGEN OXIDES IN THE PRESENCE OF OXYGEN.
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
JP2009233620A (en) * 2008-03-28 2009-10-15 Tosoh Corp Catalyst for scr and purification method of nitrogen oxide using it
CN102151585A (en) * 2011-03-22 2011-08-17 华东理工大学 Melamine-supported denitration catalyst and preparation method thereof
JP2011194346A (en) * 2010-03-23 2011-10-06 Ngk Insulators Ltd Filter and method for manufacturing the same
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
WO2015146913A1 (en) * 2014-03-24 2015-10-01 日立造船株式会社 Combustion exhaust gas purifying catalyst and method for purifying combustion exhaust gas
CN105396614A (en) * 2015-10-28 2016-03-16 天津大学 Catalyst for removing nitric oxide by selective catalytic reduction by ammonia, and preparation method and application of catalyst
CN111921555A (en) * 2020-08-06 2020-11-13 大连海事大学 A catalyst for NO decomposition and denitration and its preparation method and application
CN115487657A (en) * 2022-09-20 2022-12-20 陈少男 Solid denitration agent and preparation method and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2160497A1 (en) * 1999-06-17 2001-11-01 Univ Valencia Politecnica CATALYST FOR THE ELIMINATION OF NITROGEN OXIDES IN THE PRESENCE OF OXYGEN.
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
US7824474B2 (en) 2005-09-09 2010-11-02 Taiyo Nippon Sanso Corporation Molded Cu-ZSM5 zeolite adsorbent, method of activating the same, temperature swing adsorption apparatus, and method of purifying gas
JP2009233620A (en) * 2008-03-28 2009-10-15 Tosoh Corp Catalyst for scr and purification method of nitrogen oxide using it
JP2011194346A (en) * 2010-03-23 2011-10-06 Ngk Insulators Ltd Filter and method for manufacturing the same
CN102151585A (en) * 2011-03-22 2011-08-17 华东理工大学 Melamine-supported denitration catalyst and preparation method thereof
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
WO2015146913A1 (en) * 2014-03-24 2015-10-01 日立造船株式会社 Combustion exhaust gas purifying catalyst and method for purifying combustion exhaust gas
JP2015182005A (en) * 2014-03-24 2015-10-22 日立造船株式会社 Combustion exhaust gas purification catalyst and combustion exhaust gas purification method
US10112183B2 (en) 2014-03-24 2018-10-30 Hitachi Zosen Corporation Catalyst for purifying combustion exhaust gas, and method for purifying combustion exhaust gas
CN105396614A (en) * 2015-10-28 2016-03-16 天津大学 Catalyst for removing nitric oxide by selective catalytic reduction by ammonia, and preparation method and application of catalyst
CN111921555A (en) * 2020-08-06 2020-11-13 大连海事大学 A catalyst for NO decomposition and denitration and its preparation method and application
CN111921555B (en) * 2020-08-06 2023-05-26 大连海事大学 NO decomposition denitration catalyst and preparation method and application thereof
CN115487657A (en) * 2022-09-20 2022-12-20 陈少男 Solid denitration agent and preparation method and application thereof

Also Published As

Publication number Publication date
JP4172828B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5540421B2 (en) Method for removing nitrogen oxides in exhaust gas
CA2013869C (en) Method for removing nitrogen oxides from exhaust gases
Iwamoto Chapter II. 3 catalytic decomposition of nitrogen monoxide
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
WO2005023421A1 (en) Catalyst and method for contact decomposition of nitrogen oxide
CN106334577A (en) Preparation method of Mo modified Cu-SSZ-13 catalyst
JPH06277512A (en) Nox cracking catalyst and denitrification method using the same
JPH1033947A (en) Removal of nitrogen oxide in exhaust gas
JPH08323151A (en) Method for purifying NOx-containing exhaust gas
KR20080113565A (en) Method for preparing iron-supported zeolite catalyst for selective catalytic reduction reaction
JP2005111436A (en) Method and apparatus for catalytic removal of nitrogen oxides
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP3510908B2 (en) Exhaust gas purification catalyst
JPH09313946A (en) NOx-containing exhaust gas purification catalyst and purification method thereof
Coppola et al. De-NOx SCR: Catalysts and Process Designs in the Automotive Industry
JP2002295241A (en) Method and apparatus for purifying marine exhaust gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH09206600A (en) Catalyst for denitrification and denitrifying method using that catalyst
JPH06343868A (en) Production of denitrating agent
JPH08192056A (en) Denitrification method
JPH0655076A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPS6129776B2 (en)
JPH0724257A (en) Production of denitrating agent
JP2002219338A (en) Nitrogen oxide reduction treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060203

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

EXPY Cancellation because of completion of term