[go: up one dir, main page]

JPH10325366A - Mounting method of injection valve for natural gas engine - Google Patents

Mounting method of injection valve for natural gas engine

Info

Publication number
JPH10325366A
JPH10325366A JP9151733A JP15173397A JPH10325366A JP H10325366 A JPH10325366 A JP H10325366A JP 9151733 A JP9151733 A JP 9151733A JP 15173397 A JP15173397 A JP 15173397A JP H10325366 A JPH10325366 A JP H10325366A
Authority
JP
Japan
Prior art keywords
injection valve
natural gas
intake
fuel
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9151733A
Other languages
Japanese (ja)
Inventor
Toru Sato
佐藤  亨
Yoshiro Kato
吉郎 加藤
Masahiko Masubuchi
匡彦 増渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP9151733A priority Critical patent/JPH10325366A/en
Publication of JPH10325366A publication Critical patent/JPH10325366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cleanliness of exhaust gas and fuel consumption performance by making gaseous fuel collide against intake air flow, and evenly mixing air with the gas fuel. SOLUTION: In this mounting method for an injection valve of a natural gas engine, an injection valve 6 is arranged on a side wall of an intake pipe 27 in a downstream of a throttle valve 25. An injection port of the injection valve 6 is directed opposedly to intake air for injecting natural gas fuel only in the intake stroke. The injection valve 6 is arranged on the outer side of a bent portion of the intake pipe 27, and also in the downstream thereof. The natural gas fuel is injected to an area where velocity of the outer intake air is relatively higher compared to the center axis of the bent portion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスエンジン
に用いる燃料噴射弁の搭載方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a fuel injection valve used in a natural gas engine.

【0002】[0002]

【従来の技術】エネルギー対策、環境対策のために、自
動車の燃料として圧縮天然ガス(CNG)を使用するこ
とが多くなってきた。天然ガスエンジンにおいても、排
気ガスの清浄化、燃料消費率の向上、出力性能の向上、
始動性の向上等のために燃料噴射方式が採用されてい
る。
2. Description of the Related Art Compressed natural gas (CNG) has been increasingly used as fuel for automobiles for energy and environmental measures. Even in natural gas engines, purifying exhaust gas, improving fuel consumption rate, improving output performance,
A fuel injection system has been adopted to improve startability and the like.

【0003】図8・図9は天然ガスエンジン用噴射弁を
搭載した従来例を示し、CNGボンベ1はガス管2を通
してデリバリパイプ5に連通され、ガス管2には遮断弁
3及びレギュレータ4が配設されている。CNGボンベ
1には高圧の天然ガスが充填されており(例えば最大充
填圧力211Kg/cm2 (ゲージ圧))、この天然ガ
スをレギュレータ4により減圧(例えば2.5Kg/c
2 に)する。減圧された天然ガスは、デリバリパイプ
5を通って、各気筒毎に配置された噴射弁6に送られ
る。天然ガス流量はガス圧力及びガス温度により変化す
るので、ガス圧力及びガス温度に応じて燃料噴射時間を
補正する必要がある。そのため、デリバリパイプ5には
燃圧センサ10及び燃温センサ11が配置されている。
FIGS. 8 and 9 show a conventional example equipped with a natural gas engine injection valve. A CNG cylinder 1 is connected to a delivery pipe 5 through a gas pipe 2, and a shutoff valve 3 and a regulator 4 are connected to the gas pipe 2. It is arranged. The CNG cylinder 1 is filled with a high-pressure natural gas (for example, a maximum filling pressure of 211 kg / cm 2 (gauge pressure)), and the natural gas is depressurized by the regulator 4 (for example, 2.5 kg / c).
m to 2). The decompressed natural gas passes through a delivery pipe 5 and is sent to an injection valve 6 arranged for each cylinder. Since the natural gas flow rate changes depending on the gas pressure and the gas temperature, it is necessary to correct the fuel injection time according to the gas pressure and the gas temperature. Therefore, the delivery pipe 5 is provided with a fuel pressure sensor 10 and a fuel temperature sensor 11.

【0004】エンジン本体17のピストン18の上部には燃
焼室19があり、燃焼室19と吸入ポート20との間に吸気弁
21が配設され、燃焼室19と排気ポート22との間に排気弁
23が配設されている。吸入ポート20の上流側には、スロ
ットルバルブ25を有するスロットルボデー26が吸気管27
を介して連設され、スロットルバルブ25の上流側にはエ
アクリーナ28が連設されている。噴射弁6は、吸気管27
の下流端部の側壁に、先端を吸入ポート20の方向に向け
て取り付けられている。吸気管27には吸気圧力センサ12
が配設され、エンジン本体17には水温センサ14が配設さ
れ、吸気圧力センサ12及び水温センサ14の出力は配線を
通してECU(電子制御ユニット)16に入力される。燃
圧センサ10、燃温センサ11、クランク角センサ13及びス
ロットルセンサ15の出力も配線を通してECU16に入力
される。7は点火プラグを示す。
A combustion chamber 19 is provided above the piston 18 of the engine body 17, and an intake valve is provided between the combustion chamber 19 and an intake port 20.
21 is provided, and an exhaust valve is provided between the combustion chamber 19 and the exhaust port 22.
23 are arranged. On the upstream side of the suction port 20, a throttle body 26 having a throttle valve 25 is provided with an intake pipe 27.
, And an air cleaner 28 is provided upstream of the throttle valve 25. The injection valve 6 has an intake pipe 27
Is attached to the side wall of the downstream end of the airbag with the front end directed toward the suction port 20. The intake pipe 27 has an intake pressure sensor 12
The water temperature sensor 14 is provided in the engine body 17, and the outputs of the intake pressure sensor 12 and the water temperature sensor 14 are input to an ECU (electronic control unit) 16 through wiring. Outputs of the fuel pressure sensor 10, the fuel temperature sensor 11, the crank angle sensor 13, and the throttle sensor 15 are also input to the ECU 16 through wiring. Reference numeral 7 denotes a spark plug.

【0005】図9に明示するように、吸気管27の下流端
部の上側の側壁に噴射弁6が配置され、天然ガス燃料は
吸入空気の流れに対して上方から斜め下流に向けて横切
るように噴射される。天然ガスの主成分はメタンであっ
て、天然ガスは空気の比重より小さい(0.6 〜0.7 倍)
ので、噴射された天然ガスは吸入ポート20の上方に集合
し、吸入空気は下方に集合する傾向にあり、天然ガスと
空気との均一混合が難しい。
As shown in FIG. 9, an injection valve 6 is arranged on the upper side wall of the downstream end of the intake pipe 27, and the natural gas fuel crosses the flow of the intake air obliquely downstream from above. Injected to. The main component of natural gas is methane, which is smaller than the specific gravity of air (0.6 to 0.7 times)
Therefore, the injected natural gas tends to gather above the intake port 20 and the intake air tends to gather below, making it difficult to uniformly mix the natural gas and air.

【0006】天然ガス燃料を使用するエンジンにおい
て、エンジン各気筒の吸気管のスロットルバルブ下流側
の吸気ポート内に、吸気の主流に対向する方向に燃料噴
出口を形成し、気筒の吸気行程においてのみ、噴出口か
ら燃料を噴射するようにした燃料噴射弁を配置すること
が知られている(実開平6−80825号公報参照)。
この吸気システムによれば、吸入される空気流に逆らっ
て噴射されるガス燃料により、偏流が発生しその結果、
燃焼室内にタンブルが発生する。
In an engine using natural gas fuel, a fuel injection port is formed in an intake port downstream of a throttle valve in an intake pipe of each cylinder of the engine in a direction opposite to a main flow of intake air, and only in an intake stroke of the cylinder. It is known to dispose a fuel injection valve that injects fuel from an injection port (see Japanese Utility Model Laid-Open No. 6-80825).
According to this intake system, a drift occurs due to gas fuel injected against the intake air flow, and as a result,
Tumble is generated in the combustion chamber.

【0007】[0007]

【発明が解決しようとする課題】従来の吸気システム
は、ガス燃料の噴射圧力により吸気流を制御し、タンブ
ル流とするので、低空気量域ではその効果が発揮でき
ず、燃焼が悪化するおそれがある。本発明は、天然ガス
エンジン用噴射弁の搭載方法において、吸入空気流にガ
ス燃料を衝突させ、空気とガス燃料との均一混合を行
い、排気ガスの清浄化及び燃料消費率の向上を図ること
を課題とする。
In the conventional intake system, the intake air flow is controlled by the injection pressure of gaseous fuel to produce a tumble flow. Therefore, the effect cannot be exerted in a low air amount range, and combustion may be deteriorated. There is. The present invention provides a method for mounting an injection valve for a natural gas engine, in which gas fuel collides with an intake air flow to uniformly mix air and gas fuel, thereby purifying exhaust gas and improving fuel consumption rate. As an issue.

【0008】[0008]

【課題を解決するための手段】本発明は、スロットルバ
ルブ(25)の下流側の吸気管(27,27a,27b)の側壁に噴射弁
(6) が配設され、噴射弁(6) の噴射口が吸入空気に対向
する方向に向けられ、吸気行程においてのみ天然ガス燃
料を噴射するようにされた天然ガスエンジン用噴射弁の
搭載方法において、吸気管(27,27a,27b)の曲がり部の外
側かつ下流に噴射弁(6) が配置され、曲がり部の中心軸
線(X-X) よりも外側の吸入空気の速度が相対的に速い領
域に向けて、天然ガス燃料が噴射されるように構成され
たことを第1の構成とする。本発明は、第1の構成にお
いて、曲がり部の中心軸線(X-X) に垂直な断面におい
て、吸気管(27,27a,27b)の内側から外側へ流れる二次流
れに向けて、天然ガス燃料が噴射されるように構成され
たことを第2の構成とする。本発明は、第1又は第2の
構成において、吸入空気量と吸気弁開弁時期により吸入
空気の曲がり部への到達時刻が予測され、燃圧を加味し
た噴射タイミングを設定して天然ガス燃料が噴射され、
曲がり部において吸入空気と噴射ガス燃料とが衝突する
ようにされたことを第3の構成とする。なお、本発明に
おいて、吸気管の曲がり部は、曲がり部の下流であって
管軸方向の流れが相対的に速い領域及び二次流れの存在
する領域を包含するように解釈することとする。
According to the present invention, an injection valve is provided on a side wall of an intake pipe (27, 27a, 27b) downstream of a throttle valve (25).
(6) is disposed, the injection port of the injection valve (6) is directed in a direction facing the intake air, and a natural gas engine injection valve is mounted such that natural gas fuel is injected only in an intake stroke. In the region, the injection valve (6) is arranged outside and downstream of the curved portion of the intake pipe (27, 27a, 27b), and the speed of the intake air outside the central axis (XX) of the curved portion is relatively high. The first configuration is that natural gas fuel is injected toward. In the first configuration, the natural gas fuel is directed toward a secondary flow flowing from the inside to the outside of the intake pipe (27, 27a, 27b) in a cross section perpendicular to the central axis (XX) of the bent portion in the first configuration. The configuration configured to be injected is referred to as a second configuration. According to the present invention, in the first or second configuration, the arrival time of the intake air to the bent portion is predicted based on the intake air amount and the intake valve opening timing, and the natural gas fuel is set by setting the injection timing in consideration of the fuel pressure. Injected
The third configuration is such that the intake air and the injected gas fuel collide in the bent portion. In the present invention, the bent portion of the intake pipe is interpreted to include a region downstream of the bent portion and in which the flow in the pipe axial direction is relatively fast and a region where the secondary flow exists.

【0009】[0009]

【発明の実施の形態】図1〜図5は、本発明の天然ガス
エンジン用噴射弁の搭載方法の実施の形態第1を示す。
図1〜図4の構成の説明において、図8及び図9に示す
従来例と同一の部材には図8及び図9と同一の符号を付
し、その構成の説明は省略する。先ず、噴射弁の取付位
置について説明する。図2,図3に明示するように、実
施の形態第1においては、吸気管27として縦方向から横
方向へ曲がった90°ベンドの曲がり管が用いられてお
り、縦方向から横方向へ曲がり終わった部分の下側壁
(曲がり管の下流の外側壁)に噴射弁6が配置されてい
る。噴射弁6の先端を上流側(吸入空気に対向する方
向)に向け、噴射弁6の中心線(噴射の中心線)が曲が
り管の管軸方向の中心軸線X−Xより外側を通り、しか
も噴射弁6の中心線が曲がり部の接線T−T方向と平行
になるように配置する。また、噴射弁6の中心線が曲が
り管の縦方向の中心軸X−Xと交差するように配置す
る。なお、ここでは、縦方向の中心軸X−Xに対して曲
がり部の接線T−Tが45°となる位置が選択されてい
る。
1 to 5 show a first embodiment of a method for mounting an injection valve for a natural gas engine according to the present invention.
In the description of the configuration in FIGS. 1 to 4, the same members as those in the conventional example shown in FIGS. 8 and 9 are denoted by the same reference numerals as in FIGS. 8 and 9, and the description of the configuration is omitted. First, the mounting position of the injection valve will be described. As clearly shown in FIGS. 2 and 3, in the first embodiment, a 90 ° bend bending pipe which is bent from the vertical direction to the horizontal direction is used as the intake pipe 27, and is bent from the vertical direction to the horizontal direction. The injection valve 6 is arranged on the lower wall (outer wall downstream of the curved pipe) of the finished portion. With the tip of the injection valve 6 directed upstream (in the direction opposite to the intake air), the center line of the injection valve 6 (the center line of the injection) passes outside the center axis XX in the tube axis direction of the curved pipe, and The injection valve 6 is arranged so that the center line thereof is parallel to the tangent line TT of the bent portion. Further, the injection valve 6 is disposed so that the center line thereof intersects the center axis XX in the vertical direction of the bent pipe. Here, a position where the tangent line TT of the bent portion is 45 ° with respect to the vertical center axis XX is selected.

【0010】吸入空気の流れについて説明する。吸気管
27の曲がり管における吸入空気流は、粘性と遠心力の作
用により、管軸方向の流速分布は外壁付近が最大となり
(図3(a) 参照)、曲がり部の中心軸線に垂直な断面
(接線T−Tに直角な断面)A−Aにおいて、吸気管27
の内側から外側へ流れる二次流れ(図3(b) 参照)が生
ずる。二次流れは、管軸方向の流れに、曲がり管の曲が
り部で外側への遠心力が作用することにより生ずるとい
われている。このように、曲がり部の中心軸線よりも外
側の吸入空気の速度が相対的に速い領域で、曲がり部の
中心軸線に垂直な断面において、吸気管の内側から外側
へ流れる二次流れに向けて、天然ガス燃料が噴射され
る。
The flow of the intake air will be described. Intake pipe
Due to the effect of viscosity and centrifugal force, the intake air flow in the 27 bent pipes has a maximum flow velocity distribution near the outer wall in the axial direction of the pipe (see Fig. 3 (a)), and the cross section perpendicular to the center axis of the bent section (tangent (Section perpendicular to TT) At AA, the intake pipe 27
A secondary flow (see FIG. 3 (b)) flowing from the inside to the outside occurs. It is said that the secondary flow is caused by an outward centrifugal force acting on the flow in the pipe axial direction at the bent portion of the bent pipe. As described above, in a region where the speed of the intake air outside the central axis of the bent portion is relatively high, in a section perpendicular to the central axis of the bent portion, toward the secondary flow flowing from the inside to the outside of the intake pipe. , Natural gas fuel is injected.

【0011】噴射ガス燃料と吸入空気流との混合につい
て説明する。吸入空気流と噴射ガス燃料との衝突が、吸
気管27の曲がり部の中心軸線よりも外側で起こるよう
に、吸気行程において天然ガス燃料が噴射弁6から噴射
される。図2に明示するように、低空気量から高空気量
の全域で、流速が相対的に速い吸入空気流と噴射ガス燃
料とが衝突する。前記のとおり天然ガスは、空気に比べ
て比重が小さいので、吸入空気流に押されながら二次流
れに乗って、吸気管内に拡散し、燃焼室19に流入する前
に吸気管27内で均一混合が行われ、均一混合気が形成さ
れる。なお、吸入空気流と噴射ガス燃料との衝突が、吸
気管27の曲がり部の下流であって、管軸方向の流れが相
対的に速い領域及び二次流れの存在する領域で行われれ
ば、均一混合気が形成される。従って、本発明におい
て、吸気管27の曲がり部は、曲がり部の下流であって管
軸方向の流れが相対的に速い領域及び二次流れの存在す
る領域を包含することとする。
The mixing of the injected gas fuel and the intake air flow will be described. Natural gas fuel is injected from the injection valve 6 during the intake stroke so that the collision between the intake air flow and the injected gas fuel occurs outside the central axis of the bent portion of the intake pipe 27. As shown in FIG. 2, the injected gas fuel collides with the intake air flow having a relatively high flow velocity in the entire range from the low air amount to the high air amount. As described above, natural gas has a lower specific gravity than air, so it rides on the secondary flow while being pushed by the intake air flow, diffuses into the intake pipe, and is uniform in the intake pipe 27 before flowing into the combustion chamber 19. Mixing is performed to form a homogeneous mixture. Incidentally, if the collision between the intake air flow and the injected gas fuel is performed downstream of the bent portion of the intake pipe 27 and in a region where the flow in the pipe axial direction is relatively fast and a region where the secondary flow exists, A homogeneous mixture is formed. Therefore, in the present invention, the bent portion of the intake pipe 27 includes a region downstream of the bent portion and in which the flow in the pipe axis direction is relatively fast and the region where the secondary flow exists.

【0012】図1〜図5により本発明の実施の形態第1
の制御について説明する。最初にエンジン運転状態の読
み込みが行われ、吸気圧力センサ12の出力がECU16に
入力されて吸気管圧力の読み込みが行われ(ステップS
1)、同様にクランク角センサ13からエンジン回転数を
読み込み(ステップS2)、水温センサ14からエンジン
本体17の水温を読み込み(ステップS3)、スロットル
センサ15からスロットル開度を読み込む(ステップS
4)。次いで、ステップS1〜S4で読み込んだデータ
を元にして吸入空気量を算出する(ステップS5)。
1 to 5 show a first embodiment of the present invention.
Will be described. First, the engine operating state is read, and the output of the intake pressure sensor 12 is input to the ECU 16 to read the intake pipe pressure (step S).
1) Similarly, the engine speed is read from the crank angle sensor 13 (step S2), the water temperature of the engine body 17 is read from the water temperature sensor 14 (step S3), and the throttle opening is read from the throttle sensor 15 (step S2).
4). Next, the intake air amount is calculated based on the data read in steps S1 to S4 (step S5).

【0013】燃圧センサ10から燃圧を読み込み( ステッ
プS6)、燃温センサ11から燃温を読み込み( ステップ
S7)、こうしてデリバリパイプ5内の天然ガス燃料の
状態を読み込む。ステップS5で算出された吸入空気量
及びエンジン回転速度のデータから噴射弁6の開弁時間
(燃料噴射時間)を算出し、燃圧及び燃温による補正を
行って、噴射弁6の開弁時間を設定する(ステップS
8)。
The fuel pressure is read from the fuel pressure sensor 10 (step S6), the fuel temperature is read from the fuel temperature sensor 11 (step S7), and the state of the natural gas fuel in the delivery pipe 5 is read. The valve opening time (fuel injection time) of the injection valve 6 is calculated from the data of the intake air amount and the engine rotation speed calculated in step S5, the fuel pressure and the fuel temperature are corrected, and the valve opening time of the injection valve 6 is calculated. Set (Step S
8).

【0014】クランク角のデータから吸気弁21の開弁時
期が予め設定してあり、吸入空気量と吸気弁21の開弁時
期のデータから吸入空気の曲がり部への到達時刻を予測
する(ステップS9)。そして、燃圧による燃料の飛行
時間の差を考慮して、燃圧を加味した噴射タイミングの
設定を行い(ステップS10)、噴射の実行をする(ス
テップS11)。
The opening timing of the intake valve 21 is set in advance from the crank angle data, and the arrival time of the intake air to the bent portion is predicted from the intake air amount and the data of the opening timing of the intake valve 21 (step). S9). Then, taking into account the difference in fuel flight time due to the fuel pressure, the injection timing is set in consideration of the fuel pressure (step S10), and the injection is executed (step S11).

【0015】図6は、本発明の天然ガスエンジン用噴射
弁の搭載方法の実施の形態第2を示す。図6の構成の説
明において、図1〜図5に示す実施の形態第1と同一の
部材には図1〜図5と同一の符号を付し、その構成の説
明は省略する。実施の形態第2においては、吸気管27a
として横方向から縦方向へ曲がり更に横方向へU字状に
曲がった返しベンドの曲がり管が用いられており、吸気
管27aの横長部分がエンジンのシリンダヘッドの上方に
延びている。吸気管27aの横方向から縦方向へ曲がり終
わった部分の外側壁に噴射弁6が配置されており、噴射
弁6の先端を上流側に向け、噴射弁6の中心線(噴射の
中心線)が曲がり管の管軸方向の中心軸より外側を通
り、しかも噴射弁6の中心線が曲がり部(横方向から縦
方向への曲げの中心部)の接線方向と平行になるように
配置する。実施の形態第2のその他の点は、実施の形態
第1と同じである。
FIG. 6 shows a second embodiment of the method for mounting an injection valve for a natural gas engine according to the present invention. In the description of the configuration in FIG. 6, the same members as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as those in FIGS. In the second embodiment, the intake pipe 27a
A bent pipe of a bent back which is bent from the horizontal direction to the vertical direction and further bent in the U-shape in the horizontal direction is used, and a horizontally long portion of the intake pipe 27a extends above the cylinder head of the engine. The injection valve 6 is disposed on the outer wall of the portion of the intake pipe 27a which has been bent from the horizontal direction to the vertical direction, and the tip of the injection valve 6 is directed upstream, and the center line of the injection valve 6 (center line of injection). Are arranged outside the central axis of the bent pipe in the pipe axis direction, and the center line of the injection valve 6 is arranged so as to be parallel to the tangential direction of the bent part (the center part of the bending from the horizontal direction to the vertical direction). Other points of the second embodiment are the same as those of the first embodiment.

【0016】図7は、本発明の天然ガスエンジン用噴射
弁の搭載方法の実施の形態第3を示す。図7の構成の説
明において、図1〜図5に示す実施の形態第1と同一の
部材には図1〜図5と同一の符号を付し、その構成の説
明は省略する。実施の形態第3においては、吸気管27b
として縦方向から横方向へ曲がった90°ベンドの曲がり
管が用いられており、縦方向から横方向へ曲がり終わっ
た部分よりも幾らか下流の下側壁(曲がり管の外側壁の
下流)に噴射弁6が配置されている。噴射弁6の先端を
上流側に向け、天然ガス燃料が、曲がり管の管軸方向の
中心軸線X−Xより外側の吸入空気の流れが相対的に速
い領域に噴射されるように構成する。実施の形態第3の
その他の点は、実施の形態第1と同じである。
FIG. 7 shows a third embodiment of the method for mounting an injection valve for a natural gas engine according to the present invention. In the description of the configuration in FIG. 7, the same members as those in the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as in FIGS. 1 to 5, and the description of the configuration is omitted. In the third embodiment, the intake pipe 27b
A 90 ° bend tube bent from the vertical direction to the horizontal direction is used, and is sprayed on the lower wall (downstream of the outer wall of the bent tube) somewhat downstream from the portion where the bending from the vertical direction to the horizontal direction is completed. A valve 6 is arranged. The tip of the injection valve 6 is directed to the upstream side so that the natural gas fuel is injected into a region where the flow of the intake air outside the central axis XX in the pipe axis direction of the curved pipe is relatively fast. The other points of the third embodiment are the same as those of the first embodiment.

【0017】[0017]

【発明の効果】本発明の請求項1〜3の構成により、低
空気量から高空気量の全域で、吸入空気流と噴射ガス燃
料との衝突が、吸気管の曲がり部の中心軸線よりも外側
の吸入空気の速度が相対的に速い領域で起こり、天然ガ
ス燃料は空気に比べて比重が小さいので、吸入空気流に
押されながらそして二次流れに乗って、吸気管内に拡散
し、燃焼室に流入する前に吸気管内で均一混合が行わ
れ、均一混合気が形成される。均一混合気は燃焼室で完
全燃焼し、排気ガスの清浄化(特にCOの低減)及び燃
料消費率の向上を図ることができる。
According to the first to third aspects of the present invention, the collision between the intake air flow and the injected gas fuel in the entire range from the low air amount to the high air amount is more than the center axis of the bent portion of the intake pipe. Occurrence occurs in a region where the speed of the intake air on the outside is relatively high.Natural gas fuel has a lower specific gravity than air, so it is diffused into the intake pipe while being pushed by the intake air flow and riding on the secondary flow, burning. Before flowing into the chamber, uniform mixing is performed in the intake pipe to form a uniform mixture. The homogeneous air-fuel mixture is completely burned in the combustion chamber, thereby purifying the exhaust gas (particularly, reducing CO) and improving the fuel consumption rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態第1の全体を示すシステム
図である。
FIG. 1 is a system diagram showing a first overall embodiment of the present invention.

【図2】本発明の実施の形態第1の吸入空気とガス燃料
の流れを示す図である。
FIG. 2 is a diagram showing flows of intake air and gas fuel according to the first embodiment of the present invention.

【図3】図3(a) は本発明の実施の形態第1の吸入空気
の管軸方向の速度分布を示す図であり、図3(b) は図3
(a) のA−A線断面における二次流れを示す図である。
FIG. 3 (a) is a view showing a velocity distribution in the pipe axis direction of the first intake air according to the first embodiment of the present invention, and FIG. 3 (b) is a view showing FIG.
It is a figure which shows the secondary flow in the AA cross section of (a).

【図4】図4(a) は本発明の実施の形態第1の噴射弁搭
載を示す断面図であり、図4(b) は図4(a) の右側面図
である。
FIG. 4 (a) is a sectional view showing the mounting of the first injection valve according to the embodiment of the present invention, and FIG. 4 (b) is a right side view of FIG. 4 (a).

【図5】本発明の実施の形態第1の噴射弁の制御を示す
フローチャートである。
FIG. 5 is a flowchart showing control of the first injection valve according to the embodiment of the present invention.

【図6】図6(a) は本発明の実施の形態第2の噴射弁搭
載を示す断面図であり、図6(b) は図6(a) の上面図で
ある。
FIG. 6 (a) is a sectional view showing a second embodiment of the injection valve according to the present invention, and FIG. 6 (b) is a top view of FIG. 6 (a).

【図7】図7(a) は本発明の実施の形態第3の噴射弁搭
載を示す断面図であり、図7(b) は図7(a) の要部底面
図である。
7 (a) is a cross-sectional view showing the mounting of the third injection valve according to the third embodiment of the present invention, and FIG. 7 (b) is a bottom view of a main part of FIG. 7 (a).

【図8】従来の天然ガスエンジン用噴射弁のシステム図
である。
FIG. 8 is a system diagram of a conventional injection valve for a natural gas engine.

【図9】図8に示したシステムおける吸入空気とガス燃
料の流れを示す図である。
FIG. 9 is a diagram showing flows of intake air and gas fuel in the system shown in FIG. 8;

【符号の説明】[Explanation of symbols]

6 噴射弁 25 スロットルバルブ 27,27a,27b 吸気管 6 Injection valve 25 Throttle valve 27,27a, 27b Intake pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増渕 匡彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Masuchi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スロットルバルブの下流側の吸気管の側
壁に噴射弁が配設され、噴射弁の噴射口が吸入空気に対
向する方向に向けられ、吸気行程においてのみ天然ガス
燃料を噴射するようにされた天然ガスエンジン用噴射弁
の搭載方法において、吸気管の曲がり部の外側かつ下流
に噴射弁が配置され、曲がり部の中心軸線よりも外側の
吸入空気の速度が相対的に速い領域に向けて、天然ガス
燃料が噴射されるように構成された天然ガスエンジン用
噴射弁の搭載方法。
An injection valve is disposed on a side wall of an intake pipe on a downstream side of a throttle valve, an injection port of the injection valve is directed in a direction facing intake air, and natural gas fuel is injected only during an intake stroke. In the mounting method of the injection valve for a natural gas engine, the injection valve is arranged outside and downstream of the bent portion of the intake pipe, and in a region where the speed of the intake air outside the central axis of the bent portion is relatively high. A method for mounting a natural gas engine injection valve configured to inject a natural gas fuel toward the engine.
【請求項2】 曲がり部の中心軸線に垂直な断面におい
て、吸気管の内側から外側へ流れる二次流れに向けて、
天然ガス燃料が噴射されるように構成された請求項1記
載の天然ガスエンジン用噴射弁の搭載方法。
2. In a cross section perpendicular to the central axis of the bent portion, toward a secondary flow flowing from the inside to the outside of the intake pipe,
The method for mounting an injection valve for a natural gas engine according to claim 1, wherein the injection valve is configured to be injected with a natural gas fuel.
【請求項3】 吸入空気量と吸気弁開弁時期により吸入
空気の曲がり部への到達時刻が予測され、燃圧を加味し
た噴射タイミングを設定して天然ガス燃料が噴射され、
曲がり部において吸入空気と噴射ガス燃料とが衝突する
ようにされた請求項1又は2記載の天然ガスエンジン用
噴射弁の搭載方法。
3. The time at which the intake air reaches a curved portion is predicted based on the intake air amount and the intake valve opening timing, and natural gas fuel is injected by setting an injection timing in consideration of fuel pressure,
3. The method for mounting an injection valve for a natural gas engine according to claim 1, wherein the intake air and the injected gas fuel collide in the bent portion.
JP9151733A 1997-05-27 1997-05-27 Mounting method of injection valve for natural gas engine Pending JPH10325366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9151733A JPH10325366A (en) 1997-05-27 1997-05-27 Mounting method of injection valve for natural gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9151733A JPH10325366A (en) 1997-05-27 1997-05-27 Mounting method of injection valve for natural gas engine

Publications (1)

Publication Number Publication Date
JPH10325366A true JPH10325366A (en) 1998-12-08

Family

ID=15525111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9151733A Pending JPH10325366A (en) 1997-05-27 1997-05-27 Mounting method of injection valve for natural gas engine

Country Status (1)

Country Link
JP (1) JPH10325366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071052A (en) * 2005-09-05 2007-03-22 Hino Motors Ltd Gas engine
JP2008138565A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Fuel gas feeder for gas engine
EP1647684A3 (en) * 2004-10-12 2010-01-13 Bayerische Motoren Werke Aktiengesellschaft Hydrogen engine with optimized fuel injecting device.
JP2013199932A (en) * 2005-11-10 2013-10-03 Roger Kennedy Induction regulator block

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647684A3 (en) * 2004-10-12 2010-01-13 Bayerische Motoren Werke Aktiengesellschaft Hydrogen engine with optimized fuel injecting device.
JP2007071052A (en) * 2005-09-05 2007-03-22 Hino Motors Ltd Gas engine
JP4675191B2 (en) * 2005-09-05 2011-04-20 日野自動車株式会社 Gas engine
JP2013199932A (en) * 2005-11-10 2013-10-03 Roger Kennedy Induction regulator block
JP2008138565A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Fuel gas feeder for gas engine

Similar Documents

Publication Publication Date Title
US7747379B2 (en) Control device of direct injection internal combustion engine
US20130192561A1 (en) Ignition delay period estimation apparatus and ignition time control apparatus for internal combustion engine
WO2008135715A1 (en) Control assembly
JP2001355471A (en) Compressed self-ignition type internal combustion engine
US20030051707A1 (en) Fuel injection system for internal combustion engines with gasoline direct injection, which includes optional injection into the intake tube, and method for operating it
CN100513774C (en) Ignition timing controller of internal combustion engine
JPH10325366A (en) Mounting method of injection valve for natural gas engine
JP3849743B2 (en) Injector port structure of gas fuel engine
JP2006125333A (en) Internal combustion engine
JP2005344639A (en) Gaseous fuel direct injection engine
JP2007239487A (en) Fuel supply control device for internal combustion engine
EP2615285A1 (en) Control device for internal combustion engine
WO2008102910A1 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP2005155528A (en) Internal combustion engine and control method for internal combustion engine
KR100748479B1 (en) Fuel injection system for large engine of natural gas vehicle
JP2005155570A (en) Fuel supply apparatus and method for internal combustion engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JP4735382B2 (en) Fuel supply control device for internal combustion engine
JP2000257476A (en) Control device for in-cylinder injection internal combustion engine
JPS61223268A (en) Jet apparatus of internal combustion engine
JP2007040205A (en) Control device for internal combustion engine
KR100820492B1 (en) Intake manifold for diesel engines
JP2006132400A (en) Fuel injection control method for internal combustion engine
JP2006125250A (en) Combustion control method of gas fuel direct injection engine
JP4341488B2 (en) Internal combustion engine