[go: up one dir, main page]

JPH10293102A - Detecting method of defect in semiconductor or the like - Google Patents

Detecting method of defect in semiconductor or the like

Info

Publication number
JPH10293102A
JPH10293102A JP14513298A JP14513298A JPH10293102A JP H10293102 A JPH10293102 A JP H10293102A JP 14513298 A JP14513298 A JP 14513298A JP 14513298 A JP14513298 A JP 14513298A JP H10293102 A JPH10293102 A JP H10293102A
Authority
JP
Japan
Prior art keywords
laser beam
microscope
light
test object
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14513298A
Other languages
Japanese (ja)
Other versions
JP3267551B2 (en
Inventor
Kazuo Moriya
一男 守矢
Hideo Wada
英男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP14513298A priority Critical patent/JP3267551B2/en
Publication of JPH10293102A publication Critical patent/JPH10293102A/en
Application granted granted Critical
Publication of JP3267551B2 publication Critical patent/JP3267551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect accurately the internal defect of a semiconductor or the like. SOLUTION: In this method, a laser beam 101 is made incident on an object 105 to be inspected constituted of a semiconductor wafer, a scattering image formed by the scattered light generated thereby from the object 105 is obtained through a microscope and detection of an internal defect of the object 105 is executed on the basis of the image. In this case, a normal line 106 of the surface of the object 105, an observational optical axis 108 of the microscope and an incident light axis 110 of the laser beam 101 are so disposed as to be within the same plane and the incident light axis 110 of the laser beam 101 is made to enter the object 105 obliquely from above on one side and to proceed through the object 105 downward on the other side, becoming the optical axis 102 of retracted light 104, while the microscope is disposed so that the object 105 be observed from above on the other side. Thereby the whole of the scattering image of the defect brought about by the refracted light 104 is observed by the microscope.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハ等の被検
物体の内部欠陥を、レーザ光等を用いて照明しその散乱
光等を観察して検出する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for illuminating an internal defect of an object to be inspected such as a semiconductor wafer by using a laser beam or the like and observing the scattered light thereof for detection.

【0002】[0002]

【従来技術】従来公知の特開平4−24541号公報の
第4図には、入射させるレーザビームの波長を適当に選
択することにより、ガリウムヒ素からなる被検物体にレ
ーザビームを入射させるその深さを制御することができ
ること、および、このような特性により、ガリウムヒ素
からなる被検物体の内部欠陥を測定する場合は、例えば
波長900nm程度のレーザビームを用いたときは、被
検物体の表面から入射したレーザビームが、裏面付近で
充分減衰するようにできることが記載されている(6枚
目上段右欄13行〜6枚目下段左欄11行)。また、特
開平3−238348号公報、および特開平4−268
45号公報には、透過特性の相違する複数波長を用い
て、透明体の内部欠陥を測定する方法において、複数波
長による光情報を比較することにより、表面欠陥から区
別して内部欠陥を検出することについて記載されてい
る。
2. Description of the Related Art FIG. 4 of the conventionally known Japanese Patent Application Laid-Open No. Hei 4-24541 shows that the depth of a laser beam incident on a test object made of gallium arsenide by appropriately selecting the wavelength of the laser beam to be incident. When the internal defect of the test object made of gallium arsenide is measured due to such characteristics, for example, when a laser beam having a wavelength of about 900 nm is used, the surface of the test object can be measured. It is described that the laser beam incident from the front side can be sufficiently attenuated near the back surface (line 13 in the upper right column of the sixth sheet to line 11 of the lower column in the sixth sheet). Also, JP-A-3-238348 and JP-A-4-268.
No. 45 discloses a method for measuring internal defects of a transparent body using a plurality of wavelengths having different transmission characteristics. In this method, optical information at a plurality of wavelengths is compared to detect internal defects by distinguishing from surface defects. Is described.

【0003】[0003]

【発明が解決しようとする課題】前記公知の特開平4−
24541号公報に記載されたものは、その第4図にあ
るように、入射させるレーザビームの吸収特性を応用し
て被検物体に入り込む深さの制御をしたものであり、こ
の点は、特開平3−238348号公報および特開平4
−26845号公報も同様であるが、いずれも、被検物
体に入り込む深さの制御はできても、表面の欠陥とかあ
る深さの内部の欠陥を検出することはできない。即ち、
被検物体に入り込む深さの制御をしたとしても、それ
は、制御された深さまでの情報が得られるということで
あって、更に進んでその深さのみの情報を得るというも
のではない。半導体ウエハ等の深さ方向の内部欠陥の情
報を正確に得るためには、被検物体の表面の法線および
前記顕微鏡の観察光軸および前記レーザビームの入射光
軸は同一平面内にあるように配置し、かつ前記レーザビ
ームの入射光軸は一側上方から被検物体に対して斜めに
入射して被検物体内を他側下方に向けて屈折光の光軸と
なって進むようにし、前記顕微鏡は他側上方から前記被
検物体を観察するように配置すると、全体が観察でき
る。
The above-mentioned known Japanese Patent Application Laid-Open No. Hei 4-
As disclosed in Japanese Patent No. 24541, as shown in FIG. 4, the depth of penetration into a test object is controlled by applying the absorption characteristics of an incident laser beam. JP-A-3-238348 and JP-A-Hei 4
The same applies to Japanese Patent Application Publication No. 26845, but in each case, it is not possible to detect a surface defect or a defect inside a certain depth, even if the depth of the object can be controlled. That is,
Even if the depth into the test object is controlled, this means that information up to the controlled depth can be obtained, and not that information obtained only at that depth can be obtained. In order to accurately obtain information on internal defects in the depth direction of a semiconductor wafer or the like, the normal to the surface of the test object, the observation optical axis of the microscope, and the incident optical axis of the laser beam must be in the same plane. And the incident optical axis of the laser beam is obliquely incident on the object to be measured from one side above, and travels inside the object downward as the optical axis of refracted light toward the other side downward. When the microscope is arranged so as to observe the object to be inspected from above the other side, the whole can be observed.

【0004】[0004]

【課題を解決するための手段】よって、本願は、半導体
ウエハからなる被検物体105にレーザビーム101を
入射させ、それによって生じる前記被検物体105から
の散乱光による散乱像を顕微鏡109を介して得、これ
に基づいて前記被検物体105の内部欠陥を検出する方
法において、前記被検物体105の表面の法線106お
よび前記顕微鏡109の観察光軸108および前記レー
ザビーム101の入射光軸110は同一平面内にあるよ
うに配置し、かつ前記レーザビーム101の入射光軸1
10は一側上方から被検物体105に対して斜めに入射
して被検物体105内を他側下方に向けて屈折光104
の光軸102となって進むようにし、前記顕微鏡109
は他側上方から前記被検物体105を観察するように配
置し、もって、前記顕微鏡109により前記屈曲光10
4による欠陥の散乱像を全体的に観察するようにした半
導体等における欠陥の検出方法としたものである。
According to the present invention, a laser beam 101 is incident on a test object 105 formed of a semiconductor wafer, and a scattered image generated by the scattered light from the test object 105 is transmitted through a microscope 109. In the method for detecting an internal defect of the object to be measured 105 based on this, a normal 106 of the surface of the object to be measured 105, an observation optical axis 108 of the microscope 109, and an incident optical axis of the laser beam 101 Numerals 110 are arranged so as to be in the same plane, and the incident optical axis 1 of the laser beam 101 is
Reference numeral 10 denotes a refracted light 104 which is obliquely incident on the object to be measured 105 from one side upper side and moves the inside of the object to be measured 105 downward toward the other side.
The optical axis 102 of the microscope 109
Are arranged so as to observe the test object 105 from above the other side, and the bending light 10
4 is a method for detecting a defect in a semiconductor or the like in which a scattered image of the defect is observed as a whole.

【0005】[0005]

【実施例】本発明の半導体等における欠陥の検出方法を
実施しうる装置につき説明すると、図1、図2がそれぞ
れ該当し、図1において、103は、例えば図12のよ
うに、予め半導体等における入射光の波長λに対する反
射率Rと散乱強度Sをグラフで求めて、表面欠陥からの
散乱強度Sの変化と内部欠陥からの散乱強度Sの変化の
図を作成し、該グラフ図より半導体等に対し半導体等の
表面における光情報を比較的多く発生させる波長λ1 と
被検物体の内部における光情報を比較的多く発生させる
波長λ2 のレーザビーム101を出力するレーザ装置で
あり、レーザビーム101を被検物体105に照射する
ための集光レンズ107と、レーザビーム101に起因
する被検物体105からの散乱光を受光しその散乱像を
拡大する顕微鏡109と、その拡大散乱像を光電変換し
てその散乱像の画像信号を得るための撮像素子111
と、被検物体105に対する顕微鏡109の焦点を合わ
せるために用いるパターンの被検物体105上に投影す
る投影手段113と、被検物体105をその法線と顕微
鏡109の光軸がなす角度θが5〜35度となるようの
保持し、図示していない駆動手段により移動されるステ
ージ115とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus which can carry out the method for detecting a defect in a semiconductor or the like according to the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, reference numeral 103 denotes a semiconductor or the like in advance as shown in FIG. , The reflectance R and the scattering intensity S with respect to the wavelength λ of the incident light are obtained in a graph, and a diagram of the change in the scattering intensity S from the surface defect and the change in the scattering intensity S from the internal defect is created. A laser device for outputting a laser beam 101 having a wavelength λ1 for generating a relatively large amount of optical information on the surface of a semiconductor or the like and a wavelength λ2 for generating a relatively large amount of optical information inside a test object. Lens 107 for irradiating the test object 105 with light, and a microscope 109 for receiving scattered light from the test object 105 caused by the laser beam 101 and enlarging the scattered image. And an image sensor 111 for photoelectrically converting the enlarged scattered image to obtain an image signal of the scattered image.
Projection means 113 for projecting a pattern used for focusing the microscope 109 on the test object 105 onto the test object 105, and an angle θ between the normal line of the test object 105 and the optical axis of the microscope 109. And a stage 115 which is held at 5 to 35 degrees and is moved by a driving means (not shown).

【0006】なお、前記顕微鏡109は、対物レンズ1
17および結像レンズ119とを有する。また、前記投
影手段113は、空間変調素子パターン121と、光源
123と、光源123が発する光を空間変調素子パター
ン121に照射する凸レンズ125、拡散板127およ
び凸レンズ129、並びに、これにより照明された空間
変調素子パターン121を顕微鏡109の焦点位置に結
像させるための投光用レンズ131およびハーフミラー
133とを備える。空間変調素子パターン121はハー
フミラー133の焦点面に配置される。
[0006] The microscope 109 is connected to the objective lens 1.
17 and an imaging lens 119. The projection means 113 is illuminated by the spatial modulation element pattern 121, the light source 123, the convex lens 125 for irradiating the light emitted from the light source 123 to the spatial modulation element pattern 121, the diffusion plate 127 and the convex lens 129, and A light projection lens 131 and a half mirror 133 for forming an image of the spatial modulation element pattern 121 at the focal position of the microscope 109 are provided. The spatial modulation element pattern 121 is disposed on the focal plane of the half mirror 133.

【0007】[0007]

【作用】つぎに作用を述べる。図2は図1の装置による
被検物体105の観察原理を説明する原理図である。図
中、201は前記撮像素子111と結像レンズ119と
を含むTVカメラであり、TVカメラ201と対物レン
ズ117とにより観察系を構成する。半導体ウエハ等の
被検物体105の表面の法線(表面と平行の線)106
と、観察系のTVカメラ201の観察光軸108と、レ
ーザビーム101の入射光軸110は、上方から見ると
縦の同一平面内にあるように配置され、かつ被検物体1
05と一側上方よりのレーザビーム101の入射光軸1
10とのなす角度βは10〜60°、前記レーザビーム
101が被検物体105内で屈折するレーザビーム10
1の屈曲光104の光軸102は、垂直線とのなす角度
αが略16%の傾斜になるようにする。この屈折光10
4を、他側にθ角度傾斜しているTVカメラ201で観
察すると、その視野203は、図2の取出図のように、
被検物体105の層1b、2b、3b、4bの各層の深
さに対応した計測領域1a、2a、3a、4aに区切ら
れて観察できることになる。
Next, the operation will be described. FIG. 2 is a principle diagram illustrating the principle of observation of the test object 105 by the apparatus of FIG. In the figure, reference numeral 201 denotes a TV camera including the image sensor 111 and the imaging lens 119. The TV camera 201 and the objective lens 117 constitute an observation system. Normal line (line parallel to the surface) 106 of the surface of the test object 105 such as a semiconductor wafer
The observation optical axis 108 of the TV camera 201 of the observation system and the incident optical axis 110 of the laser beam 101 are arranged so as to be in the same vertical plane when viewed from above.
05 and the incident optical axis 1 of the laser beam 101 from above one side
And the laser beam 101 is refracted in the test object 105.
The optical axis 102 of the one bending light 104 is set so that the angle α formed with the vertical line is approximately 16%. This refracted light 10
4 is observed with the TV camera 201 inclined to the other side by the angle θ, the field of view 203 is as shown in the drawing of FIG.
The observation can be performed by being divided into measurement areas 1a, 2a, 3a, and 4a corresponding to the depths of the layers 1b, 2b, 3b, and 4b of the test object 105.

【0008】図1の装置により、詳しく述べると、光源
123をオンにし、凸レンズ125と拡散板127およ
び凸レンズ129を介して空間変調素子パターン121
に照射し、焦点合わせ用のパターン121の像を対物レ
ンズ117を介して被検物体105上に投影する。つぎ
に、空間変調素子パターン121の投影像のコントラス
トが前記計測領域2aと3aの中間において最大になる
ようにステージ115を制御移動させる。つぎに、この
焦点位置が層2bと3b間の境界の深さ位置に対応する
ように、ステージ115を所定の距離縦移動させる。つ
ぎに、レーザ装置103からのレーザビーム101の集
光点205が、所望の検出対象層である計測領域1a、
2a、3aおよび4aに対応するようにレーザビーム1
01の位置を調整する。これにより、視野203内の計
測領域1a〜4aは層1b〜4bに対応し、したがっ
て、観察系の焦点深度が被検物体105における各層1
bー4bをカバーする程度であれば、視野203内の欠
陥等の像がそれが存在する層の情報とともに得られるこ
とになる。なお、この場合の被写界深度は、例えば、観
察系の倍率が20倍において約40μm、50倍で15
μm程度である。また、空間変調素子パターン121の
投影は、観察の妨げにならないように、不要になった時
点で停止する。空間変調素子パターン121として、観
察に支障となる模様のないものを用いた場合はこの限り
でない。
More specifically, the light source 123 is turned on by the apparatus shown in FIG. 1, and the spatial light modulating element pattern 121 is passed through the convex lens 125, the diffusion plate 127 and the convex lens 129.
And the image of the pattern 121 for focusing is projected onto the test object 105 via the objective lens 117. Next, the stage 115 is controlled and moved so that the contrast of the projected image of the spatial modulation element pattern 121 is maximized between the measurement areas 2a and 3a. Next, the stage 115 is moved longitudinally by a predetermined distance so that the focal position corresponds to the depth position of the boundary between the layers 2b and 3b. Next, the focal point 205 of the laser beam 101 from the laser device 103 is set at the measurement area 1a, which is a desired detection target layer.
Laser beam 1 corresponding to 2a, 3a and 4a
Adjust the position of 01. As a result, the measurement areas 1a to 4a in the visual field 203 correspond to the layers 1b to 4b.
To the extent that b-4b is covered, an image such as a defect in the visual field 203 can be obtained together with information on the layer in which it exists. The depth of field in this case is, for example, about 40 μm when the magnification of the observation system is 20 ×, and 15 μm when the magnification of the observation system is 50 ×.
It is about μm. Further, the projection of the spatial modulation element pattern 121 is stopped when it becomes unnecessary so as not to hinder observation. This is not the case when a pattern having no pattern that hinders observation is used as the spatial modulation element pattern 121.

【0009】また、視野203を越える範囲での検出を
行うために、レーザビーム101を被検物体105の最
大傾斜方向に対して直角な方向に往復移動させるととも
に、被検物体105をその最大傾斜方向に平行に移動さ
せることにより、図3に示すように、被検物体105
の、例えば、200×200×16μm程度の立体領域
における欠陥の散乱像が、いずれの計測領域1a〜4a
において検出されたかという深さ位置の情報とともに得
られる。
Further, in order to perform detection in a range beyond the visual field 203, the laser beam 101 is reciprocated in a direction perpendicular to the maximum tilt direction of the test object 105, and the test object 105 is moved in the maximum tilt direction. By moving the object 105 in parallel to the direction, as shown in FIG.
For example, the scattered image of a defect in a three-dimensional region of about 200 × 200 × 16 μm shows any one of the measurement areas 1a to 4a.
At the same time as the information on the depth position that was detected.

【0010】図4はこの検出における分解能を説明する
ための説明図である。同図に示すように、レーザビーム
101により走査における各走査線間の間隔によって規
定される被検物体105の表面方向の分解能を約0.4
μm,レーザビーム101の被検物体105における屈
折角αを約16%とすれば、深さ方向の分解能は約1.
4μmとなる。この深さ方向の分解能は、表面方向の分
解能を向上させれば1μm程度まで向上させることがで
きる。
FIG. 4 is an explanatory diagram for explaining the resolution in this detection. As shown in the drawing, the resolution in the surface direction of the test object 105 defined by the interval between each scanning line in the scanning by the laser beam 101 is about 0.4.
Assuming that the refraction angle α of the laser beam 101 in the test object 105 is about 16%, the resolution in the depth direction is about 1.
4 μm. The resolution in the depth direction can be improved to about 1 μm by improving the resolution in the surface direction.

【0011】図5は本発明の他の実施例に係る欠陥検出
方法を示す模式図である。ここではレーザ装置として、
波長可変レーザである色素レーザとか Titサファイヤレ
ーザ等を用い、それが発するレーザビーム101をコリ
メータ301を介して拡大して被検物体105に照射す
る。この場合は、TVカメラ201の視野内における計
測領域の区分は不要である。また、被検物体105面の
方線方向はTVカメラ201の光軸方向と一致させる。
それ以外は図1の場合と同様の構成である。
FIG. 5 is a schematic diagram showing a defect detection method according to another embodiment of the present invention. Here, as a laser device,
A dye laser, a Tit sapphire laser, or the like, which is a wavelength tunable laser, is used. The laser beam 101 emitted from the laser is expanded via a collimator 301 and is irradiated on a test object 105. In this case, it is not necessary to divide the measurement area in the field of view of the TV camera 201. The direction of the normal to the surface of the test object 105 is made to coincide with the direction of the optical axis of the TV camera 201.
Otherwise, the configuration is the same as in FIG.

【0012】図6は、被検物体105として用いられ
る。Si結晶の多層構造を有するSOI(Silicon on Insulat
or) 構造ウエハの断面図である。このウエハはSi基板4
01、その上に形成された厚さ 0.2μmの酸化膜(Si
O2)層403、およびその上に形成された厚さ1μmの
Si層405を有する。
FIG. 6 is used as a test object 105. SOI (Silicon on Insulat) with multilayer structure of Si crystal
or) is a cross-sectional view of a structured wafer. This wafer is Si substrate 4
01, a 0.2 μm thick oxide film (Si
O 2 ) layer 403 and a 1 μm thick layer
It has a Si layer 405.

【0013】この構成において、欠陥を検出するには、
観察系の焦点を、上述と同様にしてウエハの表面に合わ
せる。ただし、ここでは、その焦点深度内のSi層405
およびSiO2層403に局在する欠陥を検出しようとする
ので、焦点位置を更に調整する必要はない。そして、レ
ーザビーム101を、その照射領域がTVカメラ201
の視野と一致するように照射して観察を行う。
In this configuration, to detect a defect,
The observation system is focused on the surface of the wafer in the same manner as described above. However, here, the Si layer 405 within the depth of focus is used.
Further, since it is intended to detect a defect localized in the SiO 2 layer 403, there is no need to further adjust the focal position. Then, the irradiation area of the laser beam 101 is set to the TV camera 201.
Irradiation is performed so as to coincide with the visual field of, and observation is performed.

【0014】図7はレーザビーム101を前記ウエハに
照射したときの様子を示した説明図である。同図(a) は
ウエハ表面での反射率が大きい場合を示し、同図(b) は
これが小さい場合を示す。また、各図(a) および(b) の
左側のグラフは入射強度1oのレーザビーム101によ
る屈折光の光強度1のウエハ深さDに対る変化を示すグ
ラフである。なお、曲線509は吸収による減衰カーブ
である。
FIG. 7 is an explanatory view showing the state when the laser beam 101 is irradiated on the wafer. FIG. 3A shows a case where the reflectance on the wafer surface is large, and FIG. 3B shows a case where the reflectance is small. In addition, the graphs on the left side of each of FIGS. 7A and 7B are graphs showing the change of the light intensity 1 of the refracted light by the laser beam 101 having the incident intensity of 1 ° with respect to the wafer depth D. Note that a curve 509 is an attenuation curve due to absorption.

【0015】同図に示すように、レーザビーム101
は、反射光501と屈折光503とに分離するが、ウエ
ハ表面(屈折率≠3.5のSi結晶)とSiO2層403(屈
折率≠1.5)表面での反射光の干渉によって、ウエハ
表面での反射率Rは、Si結晶のみのウエハの場合より
も、レーザ光の波長λに応じ、図8に示すように大きな
幅で変動する。そして反射率が大きな場合(λ2 、λ4
、…、λ12) は、同図(a)に示すように、Si層405お
よびSiO2層403との境界にある欠陥505からの散乱
光507の強度は小さく、反射率が小さい場合(λ2 、
λ3 、…、λ11) は、同図(b) に示すように、逆に大き
くなる。
As shown in FIG.
Is separated into reflected light 501 and refracted light 503, and the interference between the reflected light on the surface of the wafer (Si crystal having a refractive index of 3.5) and the surface of the SiO 2 layer 403 (refractive index of 1.5) The reflectivity R on the wafer surface fluctuates with a larger width as shown in FIG. 8 in accordance with the wavelength λ of the laser light than in the case of a wafer containing only Si crystals. When the reflectance is large (λ2, λ4
,..., Λ12), as shown in FIG. 3A, when the intensity of the scattered light 507 from the defect 505 at the boundary between the Si layer 405 and the SiO 2 layer 403 is small and the reflectance is small (λ2,
.lambda.3,..., .lambda.11) become larger as shown in FIG.

【0016】したがって、反射率の低い波長λ1 、λ3
、…、λ11のレーザビーム101を用いて層405、
層403内部の欠陥からの散乱像を有効に検出し、反射
率の高い波長λ2 、λ4 、…、λ12のレーザ光を用いて
ウエハ表面の塵埃や傷からの散乱像を主体に検出する。
そして、これらの散乱像を比較することにより、表面の
欠陥と内部欠陥とを鮮明に区別する。また、図8に示す
ように、前記干渉による反射強度の上下振動は、波長4
00nm以上において観察される。したがって、層内部
には波長400〜2000nmの光が十分入るので、こ
の波長範囲のレーザ光を使用して内部欠陥を観察し、一
方、波長400nm未満の光は層内部に侵入しないの
で、波長200〜650nmのレーザ光または普通の光
を用いて表面欠陥を観察し、そして内部欠陥と表面欠陥
とを識別するようにしてもよい。
Therefore, wavelengths λ 1, λ 3 having low reflectance
,..., Λ11 using the laser beam 101,
A scattered image from a defect inside the layer 403 is effectively detected, and a scattered image from dust or a scratch on the wafer surface is mainly detected by using a laser beam having a wavelength λ2, λ4,...
Then, by comparing these scattered images, surface defects and internal defects are clearly distinguished. Further, as shown in FIG. 8, the vertical vibration of the reflection intensity due to the interference has a wavelength of 4
Observed above 00 nm. Therefore, since light having a wavelength of 400 to 2,000 nm sufficiently enters the inside of the layer, internal defects are observed using laser light in this wavelength range. On the other hand, light having a wavelength of less than 400 nm does not enter the inside of the layer. Surface defects may be observed using laser light of 6650 nm or ordinary light, and internal defects and surface defects may be distinguished.

【0017】なお、レーザビームの波長を変化させる代
わりに、図9に示すように、波長λのレーザ光801
を、2次高調波発生素子803を介して波長λ/2(=
400〜1300nm)の基本波と波長λの二次高調波
発生素子805とし、これをウエハに入射させ、その表
面欠陥と内部欠陥からの散乱光を、それぞれ基本波と二
次高調波の散乱光として別の観察系を用いて画像化する
ようにしてもよい。
In addition, instead of changing the wavelength of the laser beam, as shown in FIG.
At the wavelength λ / 2 (=
400-1300 nm) and a second harmonic generation element 805 having a wavelength λ, which is incident on a wafer, and scattered light from surface defects and internal defects is scattered light of the fundamental wave and the second harmonic, respectively. Alternatively, an image may be formed using another observation system.

【0018】図10はこのようにして得られた散乱像の
一例を示す。ただし、被検物体105であるウエハとし
ては、Si層405の厚さが1μm、SiO2層403の厚さ
が0.4〜0.5μmであり、図11に示すように、表
面の半分はそのままの面11であるが、他の半分はエッ
チングにより内部欠陥のピット13を露出させた面14
としたものを用いている。図10(a) は波長940nm
のレーザ光による内部散乱像が顕著に現れた500μm
四方の視野の様子を示し、同図(b) は波長1000nm
のレーザ光による表面散乱像が顕著に現れた同じ部分の
視野の様子を示している。部分11aは面11に対応
し、部分14aは面14に対応する。図10(b) におい
ては、部分11aにおいて表面11上の塵埃の像が現れ
ており、部分14aでは面11上の微小な無数のピット
像が現れている。図10(a) の部分11aおよび14a
においては、微小なピット像は現れず、表面の大きなご
みや傷および内部欠陥が無数に現れている。 図12
は、このウエハにおける入射光の波長λに対する反射率
R及ぶ散乱強度Sの変化を示すグラフである。図中、曲
線151は計算による反射率の変化、曲線153は実測
による反射率の変化、曲線155は表面欠陥からの散乱
強度の変化、曲線157は内部欠陥からの散乱強度の変
化をそれぞれ示す。このグラフから、内部欠陥の検出に
は波長940nmのレーザ光が適し、表面欠陥の検出に
は波長1000nmのレーザ光が適することが分かる。
FIG. 10 shows an example of the scattered image thus obtained. However, as for the wafer to be inspected 105, the thickness of the Si layer 405 is 1 μm and the thickness of the SiO 2 layer 403 is 0.4 to 0.5 μm, and as shown in FIG. The surface 11 is left as it is, but the other half is a surface 14 exposing the pits 13 of the internal defect by etching.
Is used. FIG. 10A shows a wavelength of 940 nm.
500 μm in which the internal scatter image due to the laser light
FIG. 4B shows the state of the visual field in four directions, and FIG.
2 shows the state of the field of view of the same portion where the surface scattered image by the laser light appears remarkably. Portion 11a corresponds to surface 11, and portion 14a corresponds to surface 14. In FIG. 10B, dust images on the surface 11 appear at the portion 11a, and countless minute pit images on the surface 11 appear at the portion 14a. Portions 11a and 14a of FIG.
, No minute pit image appears, and numerous dusts, scratches and internal defects on the surface appear innumerably. FIG.
Is a graph showing changes in reflectance R and scattering intensity S with respect to the wavelength λ of incident light on the wafer. In the figure, a curve 151 shows a change in reflectance by calculation, a curve 153 shows a change in reflectance by actual measurement, a curve 155 shows a change in scattering intensity from a surface defect, and a curve 157 shows a change in scattering intensity from an internal defect. From this graph, it can be seen that laser light having a wavelength of 940 nm is suitable for detecting internal defects, and laser light having a wavelength of 1000 nm is suitable for detecting surface defects.

【0019】図13(a) および (b)は別の被検物体10
5の同じ場所を、その内部まで到達する波長1000n
mのレーザ光、および波長451nmのレーザ光で観察
したときの500μm四方の視野の様子をそれぞれ示
す。両者を比較することにより、内部欠陥からの散乱像
を認識することができる。
FIGS. 13A and 13B show another test object 10.
5 the same place, the wavelength 1000n reaching inside
The state of a visual field of 500 μm square when observed with a laser beam of m and a laser beam of a wavelength of 451 nm is shown. By comparing the two, a scattered image from an internal defect can be recognized.

【0020】[0020]

【発明の効果】前記公知の特開平4−24541号公報
に記載されたものは、その第4図にあるように、入射さ
せるレーザビームの吸収特性を応用して被検物体に入り
込む深さの制御をしたものであり、この点は、特開平3
−238348号公報および特開平4−26845号公
報も同様であるが、いずれも、被検物体に入り込む深さ
の制御はできても、表面の欠陥とかある深さの内部の欠
陥を検出することはできない。即ち、被検物体に入り込
む深さの制御をしたとしても、それは、制御された深さ
までの情報が得られるということであって、更に進んで
その深さのみの情報を得るというものではない。しかる
に、本発明は、半導体ウエハからなる被検物体105に
レーザビーム101を入射させ、それによって生じる前
記被検物体105からの散乱光による散乱像を顕微鏡1
09を介して得、これに基づいて前記被検物体105の
内部欠陥を検出する方法において、前記被検物体105
の表面の法線106および前記顕微鏡109の観察光軸
108および前記レーザビーム101の入射光軸110
は同一平面内にあるように配置し、かつ前記レーザビー
ム101の入射光軸110は一側上方から被検物体10
5に対して斜めに入射して被検物体105内を他側下方
に向けて屈折光104の光軸102となって進むように
し、前記顕微鏡109は他側上方から前記被検物体10
5を観察するように配置し、もって、前記顕微鏡109
により前記屈曲光104による欠陥の散乱像を全体的に
観察するようにした半導体等における欠陥の検出方法と
したものであるから、 (イ)被検物体105の表面の法線106および顕微鏡
109の観察光軸108およびレーザビーム101の入
射光軸110は同一平面内にあるように配置してあるか
ら、顕微鏡109で被検物体105の内部の欠陥の観察
が良好に行なえる。 (ロ)レーザビーム101の入射光軸110は、被検物
体105の一側上方から被検物体105に対して斜めに
入射するようにしたから、入射光軸110は被検物体1
05内を他側下方に向けて屈折光104となって進むよ
うになる。 (ハ)顕微鏡109は被検物体105の屈折光104
を、他側上方から観察するように配置したから、顕微鏡
109により屈曲光104による欠陥の散乱像を全体的
に観察できる効果を奏する。
As shown in FIG. 4 of the above-mentioned Japanese Patent Application Laid-Open No. Hei 4-24541, the depth of penetration into the object to be inspected by applying the absorption characteristics of the incident laser beam. This point is described in
Japanese Patent Application Laid-Open No. 238348/1992 and Japanese Patent Application Laid-Open No. Hei 4-26845 are also similar. Can not. That is, even if the depth into the object to be inspected is controlled, this means that information up to the controlled depth can be obtained, and not that the information is further advanced to obtain only the depth. However, according to the present invention, a laser beam 101 is made incident on a test object 105 made of a semiconductor wafer, and a scattered image generated by the scattered light from the test object 105 is reflected by a microscope 1.
09 and detecting the internal defect of the object to be detected 105 based on the detected object.
The normal 106 of the surface, the observation optical axis 108 of the microscope 109, and the incident optical axis 110 of the laser beam 101
Are arranged so as to be on the same plane, and the incident optical axis 110 of the laser beam 101
The microscope 109 is obliquely incident on the object 5 and travels in the test object 105 toward the lower side on the other side as the optical axis 102 of the refracted light 104.
5 so that the microscope 109 can be observed.
This is a method for detecting a defect in a semiconductor or the like in which a scattered image of the defect due to the bending light 104 is observed as a whole. (A) The normal 106 of the surface of the test object 105 and the microscope 109 Since the observation optical axis 108 and the incident optical axis 110 of the laser beam 101 are arranged so as to be in the same plane, the microscope 109 can favorably observe a defect inside the test object 105. (B) Since the incident optical axis 110 of the laser beam 101 is obliquely incident on the test object 105 from above one side of the test object 105, the incident optical axis 110 is
Refracted light 104 travels downward in the area 05 on the other side. (C) The microscope 109 is the refracted light 104 of the test object 105
Is arranged so as to be observed from the upper side on the other side, so that there is an effect that the scattering image of the defect caused by the bending light 104 can be observed by the microscope 109 as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 欠陥検出装置の第一実施例概略的構成図。FIG. 1 is a schematic configuration diagram of a first embodiment of a defect detection device.

【図2】 第一実施例の観察原理を説明するための原
理図。
FIG. 2 is a principle diagram for explaining the observation principle of the first embodiment.

【図3】 被検物体をラスタ・スキャン的に走査した
説明図。
FIG. 3 is an explanatory diagram in which a test object is scanned in a raster scan.

【図4】 分解能の説明図。FIG. 4 is an explanatory diagram of resolution.

【図5】 他の実施例の欠陥検出方法の模式図。FIG. 5 is a schematic diagram of a defect detection method according to another embodiment.

【図6】 多層構造のウエハの断面図。FIG. 6 is a sectional view of a wafer having a multilayer structure.

【図7】 レーザビームを多層構造のウエハに照射し
たときの説明図。
FIG. 7 is an explanatory diagram when a laser beam is applied to a wafer having a multilayer structure.

【図8】 ウエハの表面および内部の反射率を示すグ
ラフ図。
FIG. 8 is a graph showing the reflectance on the surface and inside of the wafer.

【図9】 基本波と2次高調波からなるレーザビーム
の説明図。
FIG. 9 is an explanatory diagram of a laser beam including a fundamental wave and a second harmonic.

【図10】 図9をより得られたウエハの模式図。FIG. 10 is a schematic view of the wafer obtained from FIG. 9;

【図11】 図10の斜視図。FIG. 11 is a perspective view of FIG. 10;

【図12】 図8のグラフの詳細を示すグラフ図。FIG. 12 is a graph showing details of the graph in FIG. 8;

【図13】 内部欠陥の散乱像の状態図。FIG. 13 is a state diagram of a scattered image of an internal defect.

【符号の説明】[Explanation of symbols]

101…照射レーザ光、102…光軸、103…レーザ
装置、104…屈折光、105…被検物体、106…法
線、107…集光レンズ、108…光軸、109…顕微
鏡、110…光軸、111…撮像素子、113…投影手
段、115…ステージ、117…対物レンズ、119…
結像レンズ、121…空間変調素子パターン、123…
光源、125…凸レンズ、127…拡散板、129…凸
レンズ、131…投光用レンズ、133…ハーフミラ
ー。
101: irradiation laser beam, 102: optical axis, 103: laser device, 104: refracted light, 105: test object, 106: normal, 107: condenser lens, 108: optical axis, 109: microscope, 110: light Axis 111, imaging device 113, projection means 115, stage 117, objective lens 119
Imaging lens, 121 ... spatial modulation element pattern, 123 ...
Light source, 125: convex lens, 127: diffusion plate, 129: convex lens, 131: light projecting lens, 133: half mirror.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハからなる被検物体105に
レーザビーム101を入射させ、それによって生じる前
記被検物体105からの散乱光による散乱像を顕微鏡1
09を介して得、これに基づいて前記被検物体105の
表面および内部の欠陥を検出する方法において、前記被
検物体105の表面の法線106と前記顕微鏡109の
観察光軸108および前記レーザビーム101の入射光
軸110は同一平面内にあるように配置し、かつ前記レ
ーザビーム101の入射光軸110は一側上方から被検
物体105に対して斜めに入射して被検物体105内を
他側下方に向けて屈折光104の光軸102となって進
むようにし、前記顕微鏡109は他側上方から前記被検
物体105を観察するように配置し、もって、前記顕微
鏡109により前記屈曲光104による欠陥の散乱像を
全体的に観察するようにした半導体等における欠陥の検
出方法。
A laser beam is made incident on a test object made of a semiconductor wafer, and a scattered image generated by the laser light from the test object is generated by a microscope.
09 for detecting defects on the surface and inside of the object to be measured 105 based on the normal line 106 of the surface of the object to be measured 105, the observation optical axis 108 of the microscope 109 and the laser The incident optical axis 110 of the beam 101 is disposed so as to be in the same plane, and the incident optical axis 110 of the laser beam 101 is obliquely incident on the test object 105 from above one side and enters the test object 105. The microscope 109 is arranged so as to be viewed downward from the other side and becomes the optical axis 102 of the refracted light 104, and the microscope 109 is arranged so as to observe the test object 105 from the upper side on the other side. A method for detecting a defect in a semiconductor or the like in which a scattering image of the defect by the light 104 is observed as a whole.
JP14513298A 1998-05-11 1998-05-11 Method for detecting defects in multilayer semiconductors etc. Expired - Fee Related JP3267551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14513298A JP3267551B2 (en) 1998-05-11 1998-05-11 Method for detecting defects in multilayer semiconductors etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14513298A JP3267551B2 (en) 1998-05-11 1998-05-11 Method for detecting defects in multilayer semiconductors etc.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4092362A Division JP2916321B2 (en) 1992-03-19 1992-03-19 Method for detecting internal defects in multilayer semiconductor substrate, etc.

Publications (2)

Publication Number Publication Date
JPH10293102A true JPH10293102A (en) 1998-11-04
JP3267551B2 JP3267551B2 (en) 2002-03-18

Family

ID=15378157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14513298A Expired - Fee Related JP3267551B2 (en) 1998-05-11 1998-05-11 Method for detecting defects in multilayer semiconductors etc.

Country Status (1)

Country Link
JP (1) JP3267551B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191849B1 (en) * 1997-12-26 2001-02-20 Hitachi, Ltd. Wafer inspecting apparatus
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
JP2006133042A (en) * 2004-11-04 2006-05-25 V Technology Co Ltd Defect detection method for multilayer flat plate inspection object having optical transparency
JP2007324099A (en) * 2006-06-05 2007-12-13 Hitachi High-Technologies Corp Sample fine movement system and charged particle beam apparatus
WO2009142305A1 (en) 2008-05-22 2009-11-26 独立行政法人産業技術総合研究所 Method for inspecting defects, and defect inspecting apparatus
JP2010197352A (en) * 2009-02-27 2010-09-09 Hitachi High-Technologies Corp Defect inspection method and defect inspecting apparatus
WO2011080244A2 (en) 2009-12-29 2011-07-07 Electrolux Home Products Corporation N.V. A heat pump system for a tumble dryer
JP2016516307A (en) * 2013-04-03 2016-06-02 ケーエルエー−テンカー コーポレイション Apparatus and method for determining defect depth in a vertical stack memory

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191849B1 (en) * 1997-12-26 2001-02-20 Hitachi, Ltd. Wafer inspecting apparatus
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
JP4647090B2 (en) * 2000-12-13 2011-03-09 ローム株式会社 Inspection device for transparent laminate
JP2006133042A (en) * 2004-11-04 2006-05-25 V Technology Co Ltd Defect detection method for multilayer flat plate inspection object having optical transparency
JP4619748B2 (en) * 2004-11-04 2011-01-26 株式会社ブイ・テクノロジー Defect detection method for multilayer flat plate inspection object having optical transparency
JP2007324099A (en) * 2006-06-05 2007-12-13 Hitachi High-Technologies Corp Sample fine movement system and charged particle beam apparatus
WO2009142305A1 (en) 2008-05-22 2009-11-26 独立行政法人産業技術総合研究所 Method for inspecting defects, and defect inspecting apparatus
US8599379B2 (en) 2008-05-22 2013-12-03 National Institute Of Advanced Industrial Science And Technology Method for inspecting defects and defect inspecting apparatus
JP2010197352A (en) * 2009-02-27 2010-09-09 Hitachi High-Technologies Corp Defect inspection method and defect inspecting apparatus
WO2011080244A2 (en) 2009-12-29 2011-07-07 Electrolux Home Products Corporation N.V. A heat pump system for a tumble dryer
JP2016516307A (en) * 2013-04-03 2016-06-02 ケーエルエー−テンカー コーポレイション Apparatus and method for determining defect depth in a vertical stack memory

Also Published As

Publication number Publication date
JP3267551B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP3258385B2 (en) Optical board inspection system
JP2659429B2 (en) Photoacoustic signal detection method and apparatus, and semiconductor element internal defect detection method
JP6552513B2 (en) Apparatus and method combining bright field inspection, dark field inspection, and photothermal inspection
JP5268061B2 (en) Board inspection equipment
TWI402498B (en) An image forming method and image forming apparatus
US20070076199A1 (en) Laser microscope
JP2916321B2 (en) Method for detecting internal defects in multilayer semiconductor substrate, etc.
JP7307534B2 (en) Laser processing method, semiconductor device manufacturing method and inspection apparatus
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JP3186695B2 (en) Device for detecting defects in semiconductors, etc.
JP2009251535A (en) Confocal microscope
JP7625426B2 (en) Observation device and observation method
CN114531857B (en) Inspection device and inspection method
JP4325909B2 (en) Defect inspection apparatus, defect inspection method, optical scanning apparatus, and semiconductor device manufacturing method
CN114430706A (en) Inspection apparatus and inspection method
JP3282790B2 (en) Defect inspection system for phase shift mask
JPH0694613A (en) Infrared microscopic measuring apparatus
TWI813782B (en) Laser processing method, semiconductor device manufacturing method, and inspection device
JP4555925B2 (en) 3D shape measuring device
JP3048895B2 (en) Position detection method applied to proximity exposure
JP2005043229A (en) Device for inspecting defect of transparent plate
JPH01137547A (en) Focused energy beam processing device and processing method
JP2911283B2 (en) Non-contact step measurement method and device
JPH1183465A (en) Surface inspecting method and device therefor
KR102790412B1 (en) Laser processing method, method for manufacturing semiconductor device, and inspecting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees