JPH10270613A - Semiconductor circuit board using gradient functional material - Google Patents
Semiconductor circuit board using gradient functional materialInfo
- Publication number
- JPH10270613A JPH10270613A JP9068776A JP6877697A JPH10270613A JP H10270613 A JPH10270613 A JP H10270613A JP 9068776 A JP9068776 A JP 9068776A JP 6877697 A JP6877697 A JP 6877697A JP H10270613 A JPH10270613 A JP H10270613A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor circuit
- circuit board
- ceramic
- heat sink
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 29
- 239000000919 ceramic Substances 0.000 claims abstract description 47
- 230000001052 transient effect Effects 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 29
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 239000008204 material by function Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- 229910000679 solder Inorganic materials 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 5
- 229910001080 W alloy Inorganic materials 0.000 abstract description 4
- 238000009413 insulation Methods 0.000 abstract 2
- 239000010949 copper Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/05—Insulated conductive substrates, e.g. insulated metal substrate
- H05K1/053—Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
- Die Bonding (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヒートシンク乃至
ヒートシンクベースとセラミックス絶縁基板とを一体的
に備える傾斜機能材料を用いた半導体回路基板に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor circuit board using a functionally graded material integrally provided with a heat sink or a heat sink base and a ceramic insulating substrate.
【0002】[0002]
【従来の技術】一般的に、半導体回路では、半導体特性
の安定化のために、前記半導体回路をセラミックス絶縁
基板に搭載し、該半導体回路に発生する熱を外部に効率
よく排出する工夫が施されている。2. Description of the Related Art Generally, in a semiconductor circuit, in order to stabilize semiconductor characteristics, the semiconductor circuit is mounted on a ceramic insulating substrate, and a device for efficiently discharging heat generated in the semiconductor circuit to the outside is provided. Have been.
【0003】特に、最近、大電力制御、高速スイッチン
グおよび高集積化が図られており、半導体回路の高集積
化、高容量化および高周波数化の傾向が著しい。このた
め、半導体回路に発生する熱に起因して、回路性能の低
下、制御の暴走、誤動作または回路破壊等が生じること
を防ぐべく、放熱を確実に行うことが望まれている。そ
こで、セラミックス絶縁基板に銅やアルミニウムのヒー
トシンクやヒートシンクベースをろう付けや半田付けす
る工夫が施されている。In particular, recently, high power control, high-speed switching, and high integration have been attempted, and the tendency of semiconductor circuits to have high integration, high capacity, and high frequency has been remarkable. For this reason, it is desired to reliably dissipate heat so as to prevent a decrease in circuit performance, a runaway control, a malfunction or a circuit breakdown due to heat generated in the semiconductor circuit. Therefore, a device for brazing or soldering a heat sink or a heat sink base made of copper or aluminum to a ceramic insulating substrate has been devised.
【0004】ここで、セラミックス絶縁基板は、半導体
回路の特性を高く維持するために、高熱伝導性が必要と
されるとともに、絶縁性、遮光性および低誘電性等が要
求されている。一方、ヒートシンクにも高い熱伝導性が
要求されており、通常、セラミックス絶縁基板および前
記ヒートシンクは、ともに150W/mK以上の熱伝導
性を有し、さらに熱膨張係数も半導体チップの熱膨張係
数に近似するように設定されている。[0004] Here, in order to maintain high characteristics of a semiconductor circuit, a ceramic insulating substrate is required to have high thermal conductivity, and is required to have insulating properties, light shielding properties, low dielectric properties, and the like. On the other hand, a heat sink is also required to have high thermal conductivity. Generally, both the ceramic insulating substrate and the heat sink have a thermal conductivity of 150 W / mK or more, and the thermal expansion coefficient is also lower than that of the semiconductor chip. It is set to approximate.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、セラミ
ックス絶縁基板とヒートシンクを結合するためのろう材
や半田材は、熱膨張係数がセラミックス絶縁基板やヒー
トシンクの2倍以上であるとともに、熱伝導率が20W
/mK〜70W/mK以下であって、前記セラミックス
絶縁基板や前記ヒートシンクの1/2〜1/7という低
い値となっている。このため、ろう材や半田材が設けら
れた接合部は、熱伝導率が低く、他の部分に比べて熱膨
張が大きくなり、この接合部に相当に大きな応力が発生
して接合信頼性が低下するという問題が指摘されてい
る。However, the brazing material and the soldering material for connecting the ceramic insulating substrate and the heat sink have a thermal expansion coefficient of at least twice that of the ceramic insulating substrate and the heat sink and a thermal conductivity of 20 W.
/ MK to 70 W / mK or less, which is a low value of 1/2 to 1/7 of the ceramic insulating substrate and the heat sink. For this reason, the joint where the brazing material or the solder material is provided has a low thermal conductivity and a larger thermal expansion than other parts, and a considerably large stress is generated in this joint, and the joint reliability is reduced. It has been pointed out that the problem is reduced.
【0006】しかも、接合部に熱が溜まり易く、ヒート
シンクの機能を有効に発揮させることができないという
おそれもある。これにより、相当に大きなヒートシンク
や放熱フィンを設け、常に熱勾配を大きくしておく必要
があり、小型化の要請に対応することができないという
問題がある。In addition, heat tends to accumulate in the joint, and the function of the heat sink may not be effectively exhibited. Accordingly, it is necessary to provide a considerably large heat sink and heat radiation fins to always increase the thermal gradient, and there is a problem that it is not possible to cope with a demand for miniaturization.
【0007】本発明は、この種の問題を解決するもので
あり、ヒートシンク乃至ヒートシンクベースとセラミッ
クス絶縁基板とを一体化するとともに、接合信頼性が高
く、しかも境界熱伝導がなく高熱伝導性を有する傾斜機
能材料を用いた半導体回路基板を提供することを目的と
する。The present invention solves this kind of problem and integrates a heat sink or a heat sink base with a ceramic insulating substrate, has high bonding reliability, and has high thermal conductivity without boundary heat conduction. It is an object of the present invention to provide a semiconductor circuit board using a functionally gradient material.
【0008】[0008]
【課題を解決するための手段】前記の課題を解決するた
めに、本発明に係る傾斜機能材料を用いた半導体回路基
板では、傾斜機能材料製部材が、ヒートシンク乃至ヒー
トシンクベースを構成する金属側組成と、セラミックス
絶縁基板を構成するセラミックス側組成とを一体的に有
しており、このセラミックス側組成からこの金属側組成
に向かって組成および特性が滑らかに変化し、接合部が
存在しない。これにより、ヒートシンク乃至ヒートシン
クベースとセラミックス絶縁基板との間に境界熱伝導が
生じることがなく、熱の伝達抵抗を可及的に極小化する
ことが可能になって放熱性に優れ、熱的信頼性が向上す
る。In order to solve the above-mentioned problems, in a semiconductor circuit board using a functionally graded material according to the present invention, a member made of a functionally graded material has a metal side composition constituting a heat sink or a heat sink base. And the ceramic-side composition constituting the ceramic insulating substrate, and the composition and properties change smoothly from the ceramic-side composition to the metal-side composition, and there is no joint. As a result, boundary heat conduction does not occur between the heat sink or the heat sink base and the ceramic insulating substrate, the heat transfer resistance can be minimized as much as possible, and excellent heat dissipation and excellent thermal reliability can be achieved. The performance is improved.
【0009】傾斜機能材料製部材としては、熱伝導率や
熱膨張率を考慮して、金属側組成を銅−タングステン合
金、銅−モリブデン合金等の銅合金やアルミニウム合金
とする一方、セラミックス側組成を窒化アルミニウムと
する。ここで、金属側組成の熱膨張係数とセラミックス
側組成の熱膨張係数とは、それぞれの組成を選択するこ
とにより変更可能である。The member made of a functionally graded material is made of a copper-tungsten alloy, a copper-molybdenum alloy or other copper alloy or an aluminum alloy while taking into account the thermal conductivity and the coefficient of thermal expansion. Is aluminum nitride. Here, the thermal expansion coefficient of the metal-side composition and the thermal expansion coefficient of the ceramic-side composition can be changed by selecting the respective compositions.
【0010】すなわち、表1には、金属側組成としてタ
ングステンと銅(W−Cu)およびモリブデンと銅(M
o−Cu)の組み合わせを用い、それぞれの組成比を変
化させた際における熱膨張係数の変化が示されている。That is, Table 1 shows that tungsten and copper (W-Cu) and molybdenum and copper (M
The change of the thermal expansion coefficient when each composition ratio is changed using the combination of (o-Cu) is shown.
【0011】[0011]
【表1】 [Table 1]
【0012】一方、セラミックス側組成の熱膨張係数
は、表2に示すように、セラミックス側組成として金属
アルミニウム、窒化アルミニウムおよび他の添加剤を用
い、それぞれの組成比を変化させることにより変更可能
である。On the other hand, as shown in Table 2, the coefficient of thermal expansion of the ceramic side composition can be changed by using metallic aluminum, aluminum nitride and other additives as the ceramic side composition and changing the respective composition ratios. is there.
【0013】[0013]
【表2】 [Table 2]
【0014】上記の傾斜機能材料製部材は、平均熱伝導
率が200W/mK以上に達し、優れた熱伝導性を得る
ことができる。さらに、セラミックス側組成における熱
膨張係数は、通常用いられているセラミックス絶縁基板
と同等の値を有し、半導体チップの実装時の信頼性を有
効に維持することが可能になる。さらにまた、タングス
テンやモリブデン等の同時メタライズも可能であり、信
頼性が一層向上することになる。The above-mentioned member made of a functionally graded material has an average thermal conductivity of 200 W / mK or more, and can obtain excellent thermal conductivity. Further, the coefficient of thermal expansion in the composition on the ceramic side has a value equivalent to that of a commonly used ceramics insulating substrate, and the reliability at the time of mounting a semiconductor chip can be effectively maintained. Furthermore, simultaneous metallization of tungsten, molybdenum, or the like is possible, and the reliability is further improved.
【0015】この傾斜機能材料製部材上に半導体回路を
形成して半導体回路基板を構成すると、過渡熱抵抗で従
来の1/10、平均熱伝導率で従来の約2倍まで向上す
る。これにより、従来、放熱性の問題からコンパクト化
や高容量化が困難であった動力制御用トランジスタのI
GBTやGTO、ハイパワートランジスタのSCRやF
ET、高速制御回路のQFP等に応用することが可能で
あり、それらの性能を飛躍的に向上させることができ
る。When a semiconductor circuit board is formed by forming a semiconductor circuit on the functionally graded material member, the transient thermal resistance is improved to 1/10 of the conventional and the average thermal conductivity is improved to about twice the conventional. As a result, it is difficult to reduce the size and the capacity of the power control transistor due to the problem of heat radiation.
GBT, GTO, SCR and F of high power transistor
The present invention can be applied to ET, QFP of a high-speed control circuit, and the like, and their performance can be dramatically improved.
【0016】[0016]
【発明の実施の形態】図1は、本発明の実施形態に係る
傾斜機能材料を用いた半導体回路基板10の概略説明図
である。半導体回路基板10は、傾斜機能材料製部材1
2と、この傾斜機能材料製部材12上に形成される半導
体回路14とを備える。FIG. 1 is a schematic explanatory view of a semiconductor circuit board 10 using a functionally graded material according to an embodiment of the present invention. The semiconductor circuit board 10 includes a member 1 made of a functionally graded material.
2 and a semiconductor circuit 14 formed on the functionally graded material member 12.
【0017】傾斜機能材料製部材12は、ヒートシンク
を構成する金属組成層16と、セラミックス絶縁基板を
構成するセラミックス組成層18と、前記金属組成層1
6および前記セラミックス組成層18の境界部位に設け
られる複合組成層20とから一体的に構成される。The functionally graded material member 12 includes a metal composition layer 16 forming a heat sink, a ceramic composition layer 18 forming a ceramic insulating substrate, and the metal composition layer 1.
6 and a composite composition layer 20 provided at the boundary of the ceramic composition layer 18.
【0018】金属組成層16は、銅−タングステン合金
を主成分とし、セラミックス組成層18は、窒化アルミ
ニウムを主成分とし、複合組成層20は、セラミックス
と金属とが相互拡散して界面が識別不能となっている。
傾斜機能材料製部材12のセラミックス組成層18の表
面には、銅のメタライズ層22が設けられるとともに、
このメタライズ層22にニッケルめっきが施された後、
SiチップやGaAsチップ等の半導体チップ24が半
導体回路14として半田付けされている。The metal composition layer 16 is mainly composed of a copper-tungsten alloy, the ceramic composition layer 18 is mainly composed of aluminum nitride, and the composite composition layer 20 is such that the interface between the ceramic and the metal is indistinguishable. It has become.
A copper metallized layer 22 is provided on the surface of the ceramic composition layer 18 of the functionally graded material 12,
After nickel plating is applied to this metallized layer 22,
A semiconductor chip 24 such as a Si chip or a GaAs chip is soldered as the semiconductor circuit 14.
【0019】そこで、図2に示す従来の半導体回路基板
1を比較例として用い、この半導体回路基板1と本実施
形態に係る半導体回路基板10とを用いて、それぞれの
過渡熱抵抗(伝熱抵抗)および平均熱伝導率を測定する
実験を行った。Therefore, using the conventional semiconductor circuit board 1 shown in FIG. 2 as a comparative example, using the semiconductor circuit board 1 and the semiconductor circuit board 10 according to the present embodiment, the respective transient thermal resistances (heat transfer resistances). ) And average thermal conductivity were measured.
【0020】従来の半導体回路基板1は、厚さが0.6
35mmのセラミックス絶縁基板2を有し、このセラミ
ックス絶縁基板2の両面に、それぞれ厚さが0.3mm
および0.25mmに設定された銅の第1および第2メ
タライズ層3、4が設けられた。第1メタライズ層3に
は、ニッケルめっきが施された後、半田により半導体チ
ップ5が接合される一方、第2メタライズ層4には、同
様にニッケルめっきが施された後、銅製ヒートシンク6
が半田により接合された。The conventional semiconductor circuit board 1 has a thickness of 0.6
The ceramic insulating substrate 2 has a thickness of 0.3 mm on both sides of the ceramic insulating substrate 2.
And first and second metallization layers 3, 4 of copper set to 0.25 mm. After the first metallized layer 3 is nickel-plated, the semiconductor chip 5 is joined by solder, while the second metallized layer 4 is similarly nickel-plated, and then has a copper heat sink 6.
Were joined by solder.
【0021】本実施形態に係る半導体回路基板10で
は、セラミックス組成層18の厚さが0.6mmであ
り、複合組成層20の厚さが1.5mmであり、傾斜機
能材料製部材12全体の厚さは、従来のセラミックス絶
縁基板2にヒートシンク6を接合した厚さと同一に設定
された。セラミックス組成層18の表面には、銅のメタ
ライズ層22が0.3mmの厚さに設けられ、このメタ
ライズ層22の表面にニッケルめっきが施された後、半
田により半導体チップ24が接合された。In the semiconductor circuit board 10 according to this embodiment, the thickness of the ceramic composition layer 18 is 0.6 mm, the thickness of the composite composition layer 20 is 1.5 mm, and The thickness was set to be the same as the thickness of the heat sink 6 joined to the conventional ceramic insulating substrate 2. On the surface of the ceramic composition layer 18, a copper metallized layer 22 having a thickness of 0.3 mm was provided. After the surface of the metallized layer 22 was plated with nickel, the semiconductor chip 24 was joined by soldering.
【0022】そこで、本実施形態に係る半導体回路基板
10と従来の半導体回路基板1とを用い、半導体回路の
性能低下の分岐点と考えられる45℃において、それぞ
れの過渡熱抵抗および平均熱伝導率を測定した。その結
果が、図3および図4に示されている。なお、従来の半
導体回路基板1では、セラミックス絶縁基板2としてア
ルミナや窒化アルミニウム等の種々の異なる熱伝導率を
有するものを用いて比較した。Therefore, using the semiconductor circuit board 10 according to the present embodiment and the conventional semiconductor circuit board 1, the respective transient thermal resistances and average thermal conductivities at 45.degree. Was measured. The results are shown in FIGS. 3 and 4. In the conventional semiconductor circuit board 1, a comparison was made using various ceramics insulating substrates 2 having different thermal conductivity such as alumina and aluminum nitride.
【0023】これにより、従来の半導体回路基板1で
は、セラミックス絶縁基板2の熱伝導率が向上するのに
従って、過渡熱抵抗が0.3〜0.16K/Wに低下し
た。しかしながら、セラミックス絶縁基板2の熱伝導率
が150W/mKを超える範囲では、その低下の程度が
小さくなり、過渡熱抵抗とセラミックス絶縁基板2の熱
伝導率との関係が、200W/mKで飽和する傾向にあ
ることがわかった。As a result, in the conventional semiconductor circuit substrate 1, as the thermal conductivity of the ceramic insulating substrate 2 increases, the transient thermal resistance decreases to 0.3 to 0.16 K / W. However, when the thermal conductivity of the ceramic insulating substrate 2 exceeds 150 W / mK, the degree of the decrease is small, and the relationship between the transient thermal resistance and the thermal conductivity of the ceramic insulating substrate 2 is saturated at 200 W / mK. It turns out that there is a tendency.
【0024】これに対して、本実施形態に係る半導体回
路基板10では、過渡熱抵抗が0.006〜0.01K
/Wまで一挙に低下し、従来の半導体回路基板1の1/
10以下にまで低減した。On the other hand, in the semiconductor circuit board 10 according to the present embodiment, the transient thermal resistance is 0.006 to 0.01K.
/ W, which is reduced to 1 / W of the conventional semiconductor circuit board 1
Reduced to 10 or less.
【0025】また、平均熱伝導率については、従来の半
導体回路基板1では、セラミックス絶縁基板2の熱伝導
率を向上させると、次第に平均熱伝導率も向上したが、
200W/mKの熱伝導率を有するセラミックス絶縁基
板2であっても、その平均熱伝導率が120W/mK程
度に過ぎなかった。これは、半田等の影響が非常に大き
かったからである。さらに、過渡熱抵抗と同様に、セラ
ミックス絶縁基板2の熱伝導率と平均熱伝導率の関係が
200W/mKで飽和する傾向にあった。With respect to the average thermal conductivity, in the conventional semiconductor circuit board 1, when the thermal conductivity of the ceramic insulating substrate 2 is improved, the average thermal conductivity is gradually improved.
Even with the ceramic insulating substrate 2 having a thermal conductivity of 200 W / mK, the average thermal conductivity was only about 120 W / mK. This is because the influence of solder and the like was very large. Further, similarly to the transient thermal resistance, the relationship between the thermal conductivity and the average thermal conductivity of the ceramic insulating substrate 2 tended to be saturated at 200 W / mK.
【0026】これに対して、本実施形態に係る半導体回
路基板10では、平均熱伝導率が190〜220W/m
Kとなり、比較例の最高値の2倍近い値となった。On the other hand, in the semiconductor circuit board 10 according to the present embodiment, the average thermal conductivity is 190 to 220 W / m.
K, which is almost twice the maximum value of the comparative example.
【0027】すなわち、従来の半導体回路基板1では、
ヒートシンク6として高熱伝導の銅を用いても、このヒ
ートシンク6をセラミックス絶縁基板2に接合するため
の半田接合部の存在により、境界熱伝導が発生してしま
った。That is, in the conventional semiconductor circuit board 1,
Even when copper having high thermal conductivity is used as the heat sink 6, boundary heat conduction occurs due to the presence of a solder joint for joining the heat sink 6 to the ceramic insulating substrate 2.
【0028】一方、本実施形態に係る半導体回路基板1
0では、銅−タングステン合金である金属組成層16が
ヒートシンクとして傾斜機能材料製部材12に一体的に
設けられた。このため、境界熱伝導である半田接合部が
存在せず、伝熱抵抗を一挙に低減して平均熱伝導率を約
2倍にすることができ、半導体チップ24の性能向上に
大きく貢献するとともに、熱的信頼性を有効に向上する
ことが可能となった。On the other hand, the semiconductor circuit board 1 according to this embodiment
In No. 0, the metal composition layer 16 made of a copper-tungsten alloy was provided integrally with the member made of a functionally graded material 12 as a heat sink. For this reason, there is no solder joint which is boundary heat conduction, and the heat transfer resistance can be reduced at once, and the average thermal conductivity can be approximately doubled, which greatly contributes to the improvement of the performance of the semiconductor chip 24 and Thus, the thermal reliability can be effectively improved.
【0029】従って、本実施形態では、半導体回路のコ
ンパクト化、高機能化、大容量化および高速化を図るこ
とができ、通常、放熱性の問題から適用不能であったI
GBT、QFP、FET、GTOまたはSCR等に有効
に使用することができるという効果が得られる。Therefore, in the present embodiment, the semiconductor circuit can be made compact, high-performance, large-capacity, and high-speed, and cannot be applied because of the problem of heat radiation.
The effect of being able to be effectively used for GBT, QFP, FET, GTO, SCR, etc. is obtained.
【0030】なお、本実施形態では、半導体回路基板1
0にヒートシンクとして金属組成層16を設けている
が、このヒートシンクに代替してヒートシンクベースを
構成することも可能である。In this embodiment, the semiconductor circuit board 1
Although the metal composition layer 16 is provided as a heat sink in FIG. 0, a heat sink base can be configured instead of the heat sink.
【0031】[0031]
【発明の効果】以上のように、本発明に係る傾斜機能材
料を用いた半導体回路基板では、ヒートシンク乃至ヒー
トシンクベースを構成する金属側組成と、セラミックス
絶縁基板を構成するセラミックス側組成とが一体的に設
けられた傾斜機能材料製部材を用いることにより、セラ
ミックスと金属との接合部、すなわち、低熱伝導部がな
く、熱の伝達抵抗が一挙に極小化される。これにより、
過渡熱抵抗を一挙に低減し得るとともに、平均熱伝導率
が向上し、熱的信頼性が向上して半導体回路の高集積
化、コンパクト化、高速化および高機能化が達成され
る。As described above, in the semiconductor circuit board using the functionally graded material according to the present invention, the metal side composition forming the heat sink or the heat sink base and the ceramic side composition forming the ceramic insulating substrate are integrated. By using the member made of a functionally graded material provided in the above, there is no joint between the ceramic and the metal, that is, a low heat conducting part, and the heat transfer resistance is minimized at once. This allows
The transient thermal resistance can be reduced at once, the average thermal conductivity is improved, the thermal reliability is improved, and high integration, compactness, high speed, and high functionality of the semiconductor circuit are achieved.
【図1】本発明の実施形態に係る半導体回路基板の概略
説明図である。FIG. 1 is a schematic explanatory view of a semiconductor circuit board according to an embodiment of the present invention.
【図2】従来の半導体回路基板の概略説明図である。FIG. 2 is a schematic explanatory view of a conventional semiconductor circuit board.
【図3】セラミックス絶縁基板の熱伝導率と伝熱抵抗と
の関係を示す図である。FIG. 3 is a diagram showing the relationship between the thermal conductivity and the heat transfer resistance of a ceramic insulating substrate.
【図4】セラミックス絶縁基板の熱伝導率と平均熱伝導
率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the thermal conductivity and the average thermal conductivity of a ceramic insulating substrate.
10…半導体回路基板 12…傾斜機能材
料製部材 14…半導体回路 16…金属組成層 18…セラミックス組成層 20…複合組成層DESCRIPTION OF SYMBOLS 10 ... Semiconductor circuit board 12 ... Functional gradient material member 14 ... Semiconductor circuit 16 ... Metal composition layer 18 ... Ceramic composition layer 20 ... Composite composition layer
Claims (4)
ンクベースを構成する金属側組成と、 セラミックス絶縁基板を構成するセラミックス側組成
と、 を一体的に有することを特徴とする傾斜機能材料を用い
た半導体回路基板。1. A functionally graded material member, and a semiconductor circuit formed on the functionally graded material member, wherein: the functionally graded material member has a metal-side composition constituting a heat sink or a heat sink base; A semiconductor circuit board using a functionally graded material, comprising: a ceramic side composition constituting a ceramic insulating substrate;
前記半導体回路の過渡熱抵抗は、45℃において0.1
K/W以下であることを特徴とする傾斜機能材料を用い
た半導体回路基板。2. The semiconductor circuit board according to claim 1, wherein
The transient thermal resistance of the semiconductor circuit is 0.1
A semiconductor circuit board using a functionally graded material, wherein the semiconductor circuit board has a K / W or less.
おいて、前記半導体回路は、IGBT、QFP、FE
T、GTOまたはSCRを含むことを特徴とする傾斜機
能材料を用いた半導体回路基板。3. The semiconductor circuit board according to claim 1, wherein said semiconductor circuit comprises an IGBT, a QFP, and an FE.
A semiconductor circuit board using a functionally graded material, characterized by containing T, GTO or SCR.
導体回路基板において、前記金属側組成は、銅合金であ
り、 前記セラミックス側組成は、窒化アルミニウムであるこ
とを特徴とする傾斜機能材料を用いた半導体回路基板。4. The semiconductor circuit board according to claim 1, wherein the metal-side composition is a copper alloy, and the ceramic-side composition is aluminum nitride. Semiconductor circuit boards using functional materials.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9068776A JPH10270613A (en) | 1997-03-21 | 1997-03-21 | Semiconductor circuit board using gradient functional material |
US09/042,650 US6124635A (en) | 1997-03-21 | 1998-03-17 | Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof |
CA002232425A CA2232425C (en) | 1997-03-21 | 1998-03-18 | Functionally gradient material and its use in a semiconductor circuit substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9068776A JPH10270613A (en) | 1997-03-21 | 1997-03-21 | Semiconductor circuit board using gradient functional material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10270613A true JPH10270613A (en) | 1998-10-09 |
Family
ID=13383485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9068776A Pending JPH10270613A (en) | 1997-03-21 | 1997-03-21 | Semiconductor circuit board using gradient functional material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10270613A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007119571A1 (en) * | 2006-04-17 | 2007-10-25 | Dowa Electronics Materials Co., Ltd. | Solder layer, substrate for device junction utilizing the same, and process for manufacturing the substrate |
JP2009224715A (en) * | 2008-03-18 | 2009-10-01 | Toyota Central R&D Labs Inc | Heat dissipation plate, and module equipped with the same |
CN101925999A (en) * | 2008-01-22 | 2010-12-22 | 罗伯特.博世有限公司 | Heat sink and method for producing heat sink |
JP2012038875A (en) * | 2010-08-06 | 2012-02-23 | Toshiba Corp | Package for high frequency semiconductor and method of manufacturing the same |
US8747579B2 (en) | 2007-02-27 | 2014-06-10 | Dowa Electronics Materials Co., Ltd. | Solder layer and device bonding substrate using the same and method for manufacturing such a substrate |
JP2014116402A (en) * | 2012-12-07 | 2014-06-26 | Kansai Electric Power Co Inc:The | Automatic voltage regulator |
WO2014156507A1 (en) * | 2013-03-27 | 2014-10-02 | 日本碍子株式会社 | Composite substrate and elastic wave device |
JPWO2020184371A1 (en) * | 2019-03-08 | 2021-12-23 | 京セラ株式会社 | Joined body and light source device |
-
1997
- 1997-03-21 JP JP9068776A patent/JPH10270613A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5120653B2 (en) * | 2006-04-17 | 2013-01-16 | Dowaエレクトロニクス株式会社 | Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate |
JPWO2007119571A1 (en) * | 2006-04-17 | 2009-08-27 | Dowaエレクトロニクス株式会社 | Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate |
WO2007119571A1 (en) * | 2006-04-17 | 2007-10-25 | Dowa Electronics Materials Co., Ltd. | Solder layer, substrate for device junction utilizing the same, and process for manufacturing the substrate |
US8516692B2 (en) | 2006-04-17 | 2013-08-27 | Dowa Electronics Materials Co., Ltd. | Solder layer, substrate for device joining utilizing the same and method of manufacturing the substrate |
US8747579B2 (en) | 2007-02-27 | 2014-06-10 | Dowa Electronics Materials Co., Ltd. | Solder layer and device bonding substrate using the same and method for manufacturing such a substrate |
CN101925999A (en) * | 2008-01-22 | 2010-12-22 | 罗伯特.博世有限公司 | Heat sink and method for producing heat sink |
JP2011510502A (en) * | 2008-01-22 | 2011-03-31 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Heat sink and method for manufacturing the heat sink |
JP2009224715A (en) * | 2008-03-18 | 2009-10-01 | Toyota Central R&D Labs Inc | Heat dissipation plate, and module equipped with the same |
JP2012038875A (en) * | 2010-08-06 | 2012-02-23 | Toshiba Corp | Package for high frequency semiconductor and method of manufacturing the same |
US8759838B2 (en) | 2010-08-06 | 2014-06-24 | Kabushiki Kaisha Toshiba | Package and fabrication method of the same |
JP2014116402A (en) * | 2012-12-07 | 2014-06-26 | Kansai Electric Power Co Inc:The | Automatic voltage regulator |
WO2014156507A1 (en) * | 2013-03-27 | 2014-10-02 | 日本碍子株式会社 | Composite substrate and elastic wave device |
JP5615472B1 (en) * | 2013-03-27 | 2014-10-29 | 日本碍子株式会社 | Composite substrate and acoustic wave device |
US9159901B2 (en) | 2013-03-27 | 2015-10-13 | Ngk Insulators, Ltd. | Composite substrate and elastic wave device |
JPWO2020184371A1 (en) * | 2019-03-08 | 2021-12-23 | 京セラ株式会社 | Joined body and light source device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7786486B2 (en) | Double-sided package for power module | |
CA2232425C (en) | Functionally gradient material and its use in a semiconductor circuit substrate | |
JP2592308B2 (en) | Semiconductor package and computer using the same | |
CN102593081B (en) | Comprise the semiconductor device of radiator | |
US7005734B2 (en) | Double-sided cooling isolated packaged power semiconductor device | |
CN112543016B (en) | DC Solid State Switches | |
US20200075455A1 (en) | Circuit Cooled on Two Sides | |
JPH06296084A (en) | Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof | |
JPH10270613A (en) | Semiconductor circuit board using gradient functional material | |
US20230075200A1 (en) | Power module and method for manufacturing same | |
JP3387221B2 (en) | High thermal conductive ceramic package for semiconductor | |
JP2000269392A (en) | Semiconductor module and heat-radiating insulating plate | |
JP2000277953A (en) | Ceramic circuit board | |
EP4456129A1 (en) | Electrically isolated discrete package with high performance ceramic substrate | |
JPH10284655A (en) | Gradient functional member for semiconductor circuit substrate | |
US12230614B2 (en) | Multi-typed integrated passive device (IPD) components and devices and processes implementing the same | |
CN219246663U (en) | Package substrate and semiconductor package structure | |
JP2521624Y2 (en) | Semiconductor device | |
JPH0763080B2 (en) | Semiconductor package structure | |
JPH01151252A (en) | Ceramic package and its manufacture | |
Roy | Ceramic packaging for electronics | |
JPH05114665A (en) | Heat radiative substrate | |
KR100216731B1 (en) | A power device modules using a petyllia dbc substrate | |
JP2509428B2 (en) | Ultra-small electronic package | |
JPH04130757A (en) | Ceramic package for semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050329 |