JPH1026369A - Air conditioning system and control method - Google Patents
Air conditioning system and control methodInfo
- Publication number
- JPH1026369A JPH1026369A JP20315896A JP20315896A JPH1026369A JP H1026369 A JPH1026369 A JP H1026369A JP 20315896 A JP20315896 A JP 20315896A JP 20315896 A JP20315896 A JP 20315896A JP H1026369 A JPH1026369 A JP H1026369A
- Authority
- JP
- Japan
- Prior art keywords
- air
- desiccant
- heat
- regenerated
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1028—Rotary wheel combined with a spraying device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空調システムに係
り、特にデシカントによる水分の吸着処理とヒートポン
プによるデシカントの再生処理を連続的に行えるように
した空調システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a heat pump desiccant regeneration process.
【0002】[0002]
【従来の技術】図3は、USP4,430,864に開
示された従来技術であり、これは、処理空気経路Aと、
再生空気経路Bと、2つのデシカントベッド103A,
103Bと、デシカントの再生及び処理空気の冷却を行
うヒートポンプ200とを有している。このヒートポン
プ200は、2つのデシカントベッド103A,103
Bに埋設された熱交換器210,220を高低熱源とし
て用いるもので、一方のデシカントベッドは処理空気を
通過させて吸着工程を行い、他方のデシカントは再生空
気を通過させて再生工程を行う。この空気処理が所定時
間行われた後、4方切り換え弁105,106を切り換
えて、再生及び処理空気を逆のデシカントベッドに流し
て逆の工程を行う。FIG. 3 shows a prior art disclosed in US Pat. No. 4,430,864, in which a processing air path A and
Regeneration air path B and two desiccant beds 103A,
103B, and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A and 103A.
The heat exchangers 210 and 220 buried in B are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After this air treatment has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air through the opposite desiccant bed to perform the reverse process.
【0003】[0003]
【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られない。In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, it is not possible to obtain the effect of simply increasing the complexity of the device.
【0004】そこで、このような問題点を解決するため
に、図4に示すように、再生空気経路Bにヒートポンプ
の高温熱源220を配して再生空気を加熱し、処理空気
経路Aにヒートポンプの低温熱源210を配して処理空
気を冷却するとともに、デシカント103通過後の処理
空気とデシカント103通過前の再生空気との間で顕熱
交換を行う熱交換器104を設けることが考えられる。
ここでは、デシカント103が、処理空気経路Aと再生
空気経路Bの双方にまたがって回転するデシカントロー
タを用いている。Therefore, in order to solve such a problem, as shown in FIG. 4, a high-temperature heat source 220 of a heat pump is disposed in a regeneration air path B to heat regeneration air, and a heat pump It is conceivable to provide a low-temperature heat source 210 to cool the processing air, and to provide a heat exchanger 104 for performing sensible heat exchange between the processing air after passing through the desiccant 103 and the regeneration air before passing through the desiccant 103.
Here, the desiccant 103 uses a desiccant rotor that rotates over both the processing air path A and the regeneration air path B.
【0005】これにより、図5の湿り空気線図に示すよ
うに、ヒートポンプによる冷却効果の他に、処理空気と
再生空気の間の顕熱交換による冷却効果を併せた冷却効
果(ΔQ)を得ることができるので、コンパクトな構成
で図3の空調システムより高い効率を得ることができ
る。Thus, as shown in the psychrometric chart of FIG. 5, in addition to the cooling effect of the heat pump, a cooling effect (ΔQ) combining the cooling effect of the sensible heat exchange between the processing air and the regeneration air is obtained. Therefore, it is possible to obtain higher efficiency than the air conditioning system of FIG. 3 with a compact configuration.
【0006】しかしながら、この構成の空調システムに
おいても、システムの長期停止後の運転開始時のような
場合で、デシカントが自然吸湿してしまって吸湿能力が
低下してしまっているような場合、図5中で点線で示す
ように運転当初は処理空気から十分な吸湿ができず、デ
シカント出口はあまり温度が上昇しない(状態(L))。
そのため、顕熱熱交換器104における処理空気と再生
空気の温度差が小さく、交換熱量が小さくなって、再生
空気を十分に加熱できず、再生空気のヒートポンプの高
温熱源220入口温度も低くなる(状態(R))。このよ
うな状態からヒートポンプを運転しても、再生空気を十
分に加熱できず(状態(T))、従ってデシカントの吸湿
能力が回復しないためシステムの立ち上がりが遅くなる
問題があった。However, even in the air-conditioning system having such a configuration, when the desiccant naturally absorbs moisture and the moisture absorbing ability is reduced in a case such as when the system is started after a long-term stoppage of the system, FIG. As indicated by the dotted line in Fig. 5, at the beginning of the operation, sufficient moisture could not be absorbed from the treated air, and the temperature at the desiccant outlet did not rise much (state (L)).
For this reason, the temperature difference between the processing air and the regeneration air in the sensible heat exchanger 104 is small, the amount of exchange heat is small, the regeneration air cannot be heated sufficiently, and the inlet temperature of the high-temperature heat source 220 of the heat pump for the regeneration air also decreases. State (R)). Even if the heat pump is operated from such a state, the regeneration air cannot be sufficiently heated (state (T)), and therefore, there is a problem that the desiccant does not recover its moisture absorbing ability, so that the start-up of the system is delayed.
【0007】本発明は上記課題に鑑み、デシカントの吸
湿能力の速やかな回復を可能にして、始動特性に優れた
空調システムを提供することを目的とするものである。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an air conditioning system which is capable of quickly recovering the desiccant's moisture absorbing ability and has excellent starting characteristics.
【0008】[0008]
【課題を解決するための手段】本発明は上記目的を解決
するためになされたもので、請求項1に記載の発明は、
処理空気経路において処理空気中の水分を吸着し、再生
空気経路において再生空気により再生されるデシカント
と、圧縮機、選択的に切り換え可能な2つの蒸発器及び
凝縮器を有する蒸気圧縮式の冷凍サイクルとを備え、前
記2つの蒸発器のうち一方がデシカント通過後の再生空
気と熱交換関係をなし、他の一方がデシカント通過後の
処理空気と熱交換関係をなし、かつ凝縮器がデシカント
通過前の再生空気と熱交換関係をなすように接続され、
デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱するか、もしくは
デシカント通過後の処理空気と熱交換関係をなす蒸発器
を作用させてデシカント通過前の処理空気から熱回収し
てデシカント通過前の再生空気を加熱するかを選択可能
に構成したことを特徴とする空調システムである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned object.
A vapor compression refrigeration cycle having a desiccant that adsorbs moisture in the processing air in the processing air path and is regenerated by the regeneration air in the regeneration air path, and a compressor, two selectively switchable evaporators and a condenser. One of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, the other has a heat exchange relationship with the treated air after desiccant passage, and the condenser has a heat exchange relationship before desiccant passage. Connected in a heat exchange relationship with the regeneration air
An evaporator, which has a heat exchange relationship with the regenerated air after passing the desiccant, acts to recover heat from the regenerated air after passing the desiccant and heat the regenerated air before passing the desiccant, or exchanges heat with the processed air after passing the desiccant An air conditioning system characterized in that it is possible to select whether to recover heat from the processing air before passing through the desiccant and heat the regenerated air before passing through the desiccant by operating the related evaporator.
【0009】このように、デシカント通過後の処理空気
から顕熱を回収してデシカント通過前の再生空気の加熱
を行う通常の運転形態即ち第1の運転形態と、デシカン
ト通過後の再生空気から顕熱を回収してデシカント通過
前の再生空気を加熱することによって、始動前のデシカ
ント再生能力を高める始動前の準備をする第2の運転形
態の2つの運転形態に対応することができる。As described above, the normal operation mode in which sensible heat is recovered from the treated air after passing through the desiccant to heat the regeneration air before passing through the desiccant, that is, the first operation mode, and the sensible heat is recovered from the regeneration air after passing through the desiccant. By recovering the heat and heating the regeneration air before desiccant passage, it is possible to cope with the two operation modes of the second operation mode for preparing before starting to increase the desiccant regeneration capability before starting.
【0010】請求項2に記載の発明は、再生空気のデシ
カントの上流側でかつ凝縮器の下流側に補助加熱手段を
設け、デシカント通過後の再生空気から熱回収してデシ
カント通過前の再生空気を加熱する場合に該補助加熱手
段によって再生空気を加熱することを特徴とする請求項
1に記載の空調システムである。このように、補助加熱
手段を適切な位置に設けることによって、エネルギー効
率に優れたヒートポンプの加熱能力を十分に利用しつ
つ、補助加熱手段によって始動前のデシカントの吸着能
力を速やかに高めることができる。According to a second aspect of the present invention, an auxiliary heating means is provided on the upstream side of the desiccant of the regeneration air and on the downstream side of the condenser to recover heat from the regeneration air after passing through the desiccant and regenerate the regeneration air before passing through the desiccant. The air-conditioning system according to claim 1, wherein when the air is heated, the regeneration air is heated by the auxiliary heating means. Thus, by providing the auxiliary heating means at an appropriate position, the auxiliary heating means can quickly increase the desiccant adsorption capacity before starting while sufficiently utilizing the heating capacity of the heat pump excellent in energy efficiency. .
【0011】請求項3に記載の発明は、補助加熱手段が
電気ヒータであることを特徴とする請求項2に記載の空
調システムである。請求項4に記載の発明は、補助加熱
手段が蒸気を熱源とする熱交換器であることを特徴とす
る請求項2に記載の空調システムである。請求項5に記
載の発明は、補助加熱手段が温水を熱源とする熱交換器
であることを特徴とする請求項2に記載の空調システム
である。The invention according to claim 3 is the air conditioning system according to claim 2, wherein the auxiliary heating means is an electric heater. The invention according to claim 4 is the air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using steam as a heat source. The invention according to claim 5 is the air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using hot water as a heat source.
【0012】請求項6に記載の発明は、処理空気経路に
おいて処理空気中の水分を吸着し、再生空気経路におい
て再生空気により再生されるデシカントと、圧縮機、選
択的に切り換え可能な2つの蒸発器及び凝縮器を有する
蒸気圧縮式の冷凍サイクルとを備え、前記2つの蒸発器
のうち一方がデシカント通過後の再生空気と熱交換関係
をなし、他の一方がデシカント通過後の処理空気と熱交
換関係をなし、かつ凝縮器がデシカント通過前の再生空
気と熱交換関係をなすように接続された空調システムの
運転方法において、デシカント通過後の再生空気と熱交
換関係をなす蒸発器を作用させてデシカント通過後の再
生空気から熱回収してデシカント通過前の再生空気を加
熱する場合には再生空気の送風機を運転するとともに処
理空気の送風機を停止し、デシカント通過後の処理空気
と熱交換関係をなす蒸発器を作用させてデシカント通過
前の処理空気から熱回収してデシカント通過前の再生空
気を加熱する場合には再生空気の送風機および処理空気
の送風機の双方を運転することを特徴とする空調システ
ムの制御方法である。According to a sixth aspect of the present invention, there is provided a desiccant which adsorbs moisture in the processing air in the processing air path and is regenerated by the regenerating air in the regenerating air path, and a compressor which is selectively switched between two evaporators. And a vapor compression refrigeration cycle having a condenser and a condenser. One of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, and the other has a heat exchange relationship with the treated air after desiccant passage. In an operation method of an air conditioning system having an exchange relationship and connected so that the condenser has a heat exchange relationship with the regeneration air before desiccant passage, the evaporator having a heat exchange relationship with regeneration air after desiccant passage is operated. When the heat is recovered from the regenerated air after passing through the desiccant and the regenerated air before passing through the desiccant is heated, the blower for the regenerated air is operated and the In the case where the evaporator is turned off and heat is exchanged with the treated air after passing through the desiccant to act to recover heat from the treated air before passing through the desiccant and heat the regenerated air before passing through the desiccant, the blower and treatment of the regenerated air A method for controlling an air conditioning system, wherein both air blowers are operated.
【0013】このように、通常の冷房運転においては、
再生空気および処理空気の両方の駆動系統を運転してデ
シカント通過後の処理空気から顕熱を回収してデシカン
ト通過前の再生空気の加熱を行う第1の運転形態を選択
し、始動前においては再生空気の駆動系統のみ運転して
デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱する第2の運転形
態を選択することによって、始動時のデシカントの吸着
能力を高めて、始動特性に優れた空調システムを提供す
ることができるとともに、始動後は第1の運転形態でデ
シカント通過後の処理空気と熱交換関係をなす蒸発器を
作用させてデシカント通過前の処理空気から熱回収して
デシカント通過前の再生空気を加熱することによって、
処理空気の冷却と再生空気の加熱を同時に実現すること
ができるためエネルギー効率が高い空調システムを提供
することができる。Thus, in a normal cooling operation,
The first operation mode in which the drive system of both the regeneration air and the processing air is operated to recover the sensible heat from the processing air after the desiccant and heat the regeneration air before the desiccant, is selected. Only the drive system of the regeneration air is operated to actuate an evaporator that has a heat exchange relationship with the regeneration air after the desiccant has passed, to recover heat from the regeneration air after the desiccant has passed, and to heat the regeneration air before the desiccant has passed. By selecting the operation mode, the desiccant adsorption capacity at the time of starting can be enhanced, and an air conditioning system having excellent starting characteristics can be provided, and after the start, the processing air after desiccant passing in the first operation mode can be provided. By operating the evaporator having a heat exchange relationship to recover heat from the treated air before desiccant passage and heating the regenerated air before desiccant passage,
Since the cooling of the processing air and the heating of the regeneration air can be realized at the same time, an air conditioning system with high energy efficiency can be provided.
【0014】[0014]
【実施例】以下、本発明に係るデシカント空調装置の一
実施例を図面を参照して説明する。図1は本発明に係る
空調システムの基本構成を示す図であり、このうち蒸気
圧縮式ヒートポンプ200の部分の構成は、圧縮機26
0、切替弁270により選択的に切り換え可能な2つの
蒸発器240Aおよび240B、凝縮器220を構成機
器として蒸気圧縮式冷凍サイクルを形成し、かつ該2つ
の蒸発器のうち一方240Aがデシカント103通過後
の再生空気と熱交換関係をなし、他の一方240Bがデ
シカント103通過後の処理空気と熱交換関係をなし、
かつ凝縮器220がデシカント103通過前の再生空気
と熱交換関係をなすサイクルを形成している。この冷凍
サイクルによってデシカント103通過後の再生空気と
熱交換関係をなす蒸発器240Aを作用させてデシカン
ト103通過後の再生空気から熱回収してデシカント1
03通過前の再生空気を加熱するか、もしくはデシカン
ト103通過後の処理空気と熱交換関係をなす蒸発器2
40Bを作用させてデシカント103通過前の処理空気
から熱回収してデシカント103通過前の再生空気を加
熱するかを切替弁370の切り換えによって選択可能に
構成している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a basic configuration of an air conditioning system according to the present invention.
0, a vapor compression refrigeration cycle is formed using the two evaporators 240A and 240B selectively switchable by the switching valve 270 and the condenser 220 as components, and one of the two evaporators 240A passes through the desiccant 103 The other side 240B has a heat exchange relationship with the treated air after passing through the desiccant 103,
In addition, a cycle is formed in which the condenser 220 has a heat exchange relationship with the regeneration air before passing through the desiccant 103. By this refrigeration cycle, the evaporator 240A, which has a heat exchange relationship with the regenerated air after passing through the desiccant 103, is actuated to recover heat from the regenerated air after passing through the desiccant 103 so that the desiccant 1
03 evaporator 2 which heats the regenerated air before passing through, or heat exchanges with the processing air after passing through desiccant 103
By operating the switching valve 370, it is possible to select whether to recover heat from the processing air before passing through the desiccant 103 and heat the regenerated air before passing through the desiccant 103 by operating the switching valve 370.
【0015】デシカントロータ103は、図4において
説明したものと同じように、デシカントが、処理空気経
路Aと再生空気経路Bの双方に跨がって所定のサイクル
で回転するよう構成されている。処理空気経路Aは、空
調空間と還気導入用の送風機102の吸い込み口と経路
107を介して接続し、送風機102の吐出口はデシカ
ントロータ103と経路108を介して接続し、デシカ
ントロータ103の処理空気の出口は再生空気と熱交換
関係にある顕熱熱交換器104と経路109を介して接
続し、顕熱熱交換機104の処理空気の出口は蒸発器
(冷却器)240Bと経路110を介して接続し、冷却
器240Bの処理空気の出口は加湿器105と経路11
1を介して接続し、加湿器105の処理空気の出口は給
気口となる処理空気出口と経路112を介して接続して
処理空気のサイクルを形成する。The desiccant rotor 103 is configured so that the desiccant rotates in a predetermined cycle across both the processing air path A and the regenerating air path B, as described with reference to FIG. The processing air path A is connected to the air-conditioned space and the suction port of the blower 102 for introducing return air through a path 107, the discharge port of the blower 102 is connected to the desiccant rotor 103 via a path 108, The outlet of the processing air is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via a path 109. The outlet of the processing air of the sensible heat exchanger 104 is connected to the evaporator (cooler) 240B and the path 110. The outlet of the processing air of the cooler 240B is connected to the humidifier 105 and the path 11
1 and a processing air outlet of the humidifier 105 is connected to a processing air outlet serving as an air supply port via a path 112 to form a processing air cycle.
【0016】一方、再生空気経路Bは、再生空気となる
外気導入用の送風機140の吸い込み口と経路124を
介して接続し、送風機140の吐出口は処理空気と熱交
換関係にある顕熱熱交換器104と接続し、顕熱熱交換
器104の再生空気の出口は凝縮器(加熱器)220と
経路126を介して接続し、凝縮器(加熱器)220の
再生空気の出口は補助加熱手段310と経路127を介
して接続し、補助加熱手段310の再生空気の出口はデ
シカントロータ103の再生空気入口と経路128を介
して接続し、デシカントロータ103の再生空気の出口
は蒸発器(冷却器)240Aと経路129を介して接続
し、蒸発器(冷却器)240Aの出口は再生空気の出口
である外部空間と経路130を介して接続して再生空気
を外部から取り入れて、外部に排気するサイクルを形成
する。なお図中、丸で囲ったアルファベットK〜Vは、
図2と対応する空気の状態を示す記号である。On the other hand, the regeneration air path B is connected via a path 124 to a suction port of a blower 140 for introducing outside air which becomes regeneration air, and a discharge port of the blower 140 has a sensible heat heat exchange relation with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the condenser (heater) 220 via the path 126, and the outlet of the regeneration air of the condenser (heater) 220 is connected to the auxiliary heating. And the outlet of the regeneration air of the auxiliary heating means 310 is connected to the regeneration air inlet of the desiccant rotor 103 via the path 128, and the exit of the regeneration air of the desiccant rotor 103 is connected to the evaporator (cooling). Unit) 240A via a path 129, and the outlet of the evaporator (cooler) 240A is connected to the external space, which is the outlet of the regeneration air, via a path 130 to take in regeneration air from outside. Te form a cycle that exhausted to the outside. In the figure, alphabets K to V circled are
It is a symbol showing the state of air corresponding to FIG.
【0017】前記補助加熱手段310は、本実施例で
は、短時間に再生能力を回復させる場合のみに使用する
ために、安価で制御が容易であるような電気ヒータを採
用しており、該加熱手段310の電源320の電気接点
330を制御するコントローラ350が設けられてい
る。このコントローラ350は、また上述した切替弁2
70の動作をも制御するようになっている。In the present embodiment, the auxiliary heating means 310 employs an electric heater which is inexpensive and easy to control, since it is used only when the regeneration capability is recovered in a short time. A controller 350 for controlling the electrical contacts 330 of the power supply 320 of the means 310 is provided. The controller 350 is also provided with the switching valve 2 described above.
70 is also controlled.
【0018】上述のように構成されたデシカント空調装
置の蒸気圧縮式冷凍サイクル部分のサイクルを次に説明
する。切替弁270の動作により、デシカント103通
過後の再生空気と熱交換関係をなす蒸発器240Aを作
用させた場合は、冷媒は蒸発器(冷却器)240Aでデ
シカント103を出た再生空気から蒸発潜熱を奪って蒸
発し、経路205A,206を経て圧縮機260に吸引
され圧縮された後、経路201を経て凝縮器(加熱器)
220に流入し凝縮熱をデシカント103に流入前の再
生空気に放出して凝縮する。凝縮した冷媒は経路202
を経て切替弁270に至り、切替弁270によって選択
された経路203Aを経て、膨張弁250Aに至りそこ
で減圧膨張した後、蒸発器(冷却器)240Aに還流す
る。Next, the cycle of the vapor compression refrigeration cycle of the desiccant air conditioner constructed as described above will be described. When the operation of the switching valve 270 causes the evaporator 240A, which has a heat exchange relationship with the regenerated air after passing through the desiccant 103, to act as the refrigerant, the evaporator (cooler) 240A separates the regenerated air from the regenerated air exiting the desiccant 103 from the latent heat of evaporation. And evaporates, is sucked and compressed by the compressor 260 through the paths 205A and 206, and then is condensed (heated) through the path 201.
After flowing into 220, the heat of condensation is released to the regenerated air before flowing into desiccant 103 and condensed. The condensed refrigerant passes through path 202
, Through the path 203A selected by the switching valve 270, to the expansion valve 250A, where it is decompressed and expanded, and then returned to the evaporator (cooler) 240A.
【0019】一方、デシカント103通過後の処理空気
と熱交換関係をなす蒸発器240Bを作用させた場合
は、冷媒は蒸発器(冷却器)240Bでデシカント10
3を出た処理空気から蒸発潜熱を奪って蒸発し、経路2
05B,206を経て圧縮機260に吸引され圧縮され
た後、経路201を経て凝縮器(加熱器)220に流入
し凝縮熱をデシカント103に流入前の再生空気に放出
して凝縮する。凝縮した冷媒は経路202を経て切替弁
270に至り、切替弁270によって選択された経路2
03Bを経て、膨張弁250Bに至りそこで減圧膨張し
た後、蒸発器(冷却器)240Bに還流する。On the other hand, when the evaporator 240B, which has a heat exchange relationship with the processing air after passing through the desiccant 103, is operated, the refrigerant is passed through the evaporator (cooler) 240B.
Evaporating latent heat of vaporization from the processing air exiting from step 3
After being sucked and compressed by the compressor 260 through the heaters 05B and 206, the refrigerant flows into the condenser (heater) 220 through the path 201 and discharges the heat of condensation into the regenerated air before flowing into the desiccant 103 to be condensed. The condensed refrigerant reaches the switching valve 270 via the path 202, and the path 2 selected by the switching valve 270
After passing through 03B, it reaches expansion valve 250B, where it is decompressed and expanded, and then returned to evaporator (cooler) 240B.
【0020】次に前述のように構成されたヒートポンプ
を熱源とするデシカント空調システムのデシカント10
3通過後の再生空気と熱交換関係をなす蒸発器240A
を作用させた場合の動作を図2の湿り空気線図を参照し
て説明する。このような運転形態は、システムの長期停
止後の運転開始時のような場合で、デシカントが自然吸
湿して吸湿能力が低下しているような場合に始動前に行
うものである。この運転形態では、再生空気の送風機を
運転し、かつ処理空気の送風機を停止する。また、コン
トローラ350を介して電気接点330を閉じて補助加
熱手段310を動作させ、また、冷凍サイクルは切替弁
270を動作して再生空気と熱交換関係にある蒸発器2
40Aが選択されている。Next, the desiccant 10 of the desiccant air-conditioning system using the heat pump configured as described above as a heat source.
Evaporator 240A having a heat exchange relationship with the regenerated air after three passes
The operation in the case where is applied will be described with reference to the psychrometric chart of FIG. Such an operation mode is performed before starting when the desiccant absorbs moisture spontaneously and the moisture absorbing ability is reduced, for example, when the system is started after a long-term stop of the system. In this operation mode, the blower for the regeneration air is operated and the blower for the processing air is stopped. In addition, the electric contact 330 is closed via the controller 350 to operate the auxiliary heating means 310, and the refrigeration cycle operates the switching valve 270 to operate the evaporator 2 having a heat exchange relationship with the regeneration air.
40A is selected.
【0021】再生空気として用いられる外気(状態
(Q))は経路124を経て送風機140に吸引され昇圧
されて顕熱熱交換機104に送られる。顕熱熱交換器1
04では、処理空気が流動していないため熱交換は行わ
れず、そのまま通過する。顕熱熱交換器104を出た再
生空気は経路126を経て凝縮器(加熱器)220に送
られて、ヒートポンプ200によって加熱されて温度上
昇する(状態(S))。さらに凝縮器(加熱器)220を
出た再生空気は経路127を経て補助加熱手段310に
おいて加熱されて最終的に60〜80℃まで温度上昇し
(状態(T))、相対湿度が低下する。補助加熱手段31
0を出て相対湿度が低下した再生空気はデシカントロー
タ103を通過してデシカントロータの水分を除去し再
生作用をする。デシカントロータ103を通過した再生
空気は経路129を経て蒸発器240Aに流入し、ヒー
トポンプによって熱回収され冷却された(状態(V))
後、経路130を経て排気として外部に捨てられる。External air used as regeneration air (condition
(Q)) is sucked into the blower 140 via the path 124, is pressurized, and is sent to the sensible heat exchanger 104. Sensible heat exchanger 1
In 04, since the processing air is not flowing, heat exchange is not performed and the processing air passes as it is. The regenerated air that has exited the sensible heat exchanger 104 is sent to the condenser (heater) 220 via the path 126, and is heated by the heat pump 200 to increase the temperature (state (S)). Further, the regenerated air exiting the condenser (heater) 220 is heated by the auxiliary heating means 310 via the path 127, and finally rises in temperature to 60 to 80 ° C. (state (T)), and the relative humidity decreases. Auxiliary heating means 31
The regeneration air having a relative humidity lowered after exiting 0 passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation. The regenerated air that has passed through the desiccant rotor 103 flows into the evaporator 240A via the path 129, where the heat is recovered and cooled by the heat pump (state (V)).
Thereafter, it is discarded as exhaust gas through the path 130.
【0022】このようにして、始動前にデシカント10
3の吸湿能力が低下してしまっている場合に、具備して
いるヒートポンプ200のサイクル選択によってデシカ
ント通過後の再生空気から熱回収して、熱を汲み上げデ
シカント103通過前の再生空気を加熱することができ
る。そのため、わずかなイニシャルコストの追加で済む
とともに、ヒートポンプは公知の通り、動作係数COP
が電気ヒータに比べて3〜4倍あるため、省エネルギー
であり、運転経費も安く、また補助加熱手段の容量を軽
減できるため、イニシャルコスト及びランニングコスト
が安く、始動立ち上がり特性に優れた空調システムを提
供することができる。In this way, before starting, the desiccant 10
In the case where the moisture absorption capacity of the fuel cell 3 is reduced, heat is recovered from the regenerated air after passing through the desiccant by selecting the cycle of the heat pump 200 provided, and heat is pumped up to heat the regenerated air before passing through the desiccant 103. Can be. As a result, the heat pump requires a small initial cost, and the heat pump has an operating coefficient COP, as is well known.
Is three to four times as large as an electric heater, which saves energy, lowers operating costs, and reduces the capacity of auxiliary heating means, thereby reducing the initial cost and running cost, and providing an air conditioning system with excellent startup characteristics. Can be provided.
【0023】なお、本実施例では、補助加熱手段310
として電気ヒータを採用したが、この他に、蒸気を熱源
とする熱交換器や温水を熱源とする熱交換器を採用して
も差し支えなく、この場合には、電気接点330の代わ
りに電磁弁や電動弁を採用してコントローラ350で制
御するように構成する。また、ヒートポンプ200に比
べて電気ヒータのような補助加熱手段は高温が得やす
く、逆にヒートポンプで高温を得ようとすると、圧縮機
の圧縮比が過大になってしまうため、補助加熱装置は再
生空気のデシカントの上流側でかつ凝縮器の下流側に設
けることが望ましい。In this embodiment, the auxiliary heating means 310
However, in addition to the above, an electric heater using steam as a heat source or a heat exchanger using hot water as a heat source may be used. In this case, an electromagnetic valve is used instead of the electric contact 330. The controller 350 employs a motor and a motor-operated valve. In addition, compared to the heat pump 200, the auxiliary heating means such as an electric heater can easily obtain a high temperature. Conversely, if the heat pump attempts to obtain a high temperature, the compression ratio of the compressor becomes excessively large. Preferably, it is provided upstream of the air desiccant and downstream of the condenser.
【0024】一方、このように構成されたヒートポンプ
200を熱源とするデシカント空調システムのデシカン
ト103通過後の処理空気と熱交換関係をなす蒸発器2
40Bを作用させた場合の作用は、図5に示す湿り空気
線図の実線で示した過程と同じであり、以下のように作
動する。このような運転形態は、上記の始動前のデシカ
ント再生のための運転が完了し、デシカントの吸湿能力
が回復した後で行う。On the other hand, the evaporator 2 having a heat exchange relationship with the processing air after passing through the desiccant 103 of the desiccant air-conditioning system using the heat pump 200 having such a configuration as a heat source.
The operation when 40B is applied is the same as the process shown by the solid line in the psychrometric chart shown in FIG. 5, and operates as follows. Such an operation mode is performed after the operation for desiccant regeneration before the start is completed and the desiccant's moisture absorbing ability is restored.
【0025】導入される還気(処理空気:状態(K))は
経路107を経て送風機102に吸引され昇圧されて経
路108を経てデシカントロータ103に送られデシカ
ントロータの吸湿剤で空気中の水分を吸着され絶対湿度
が低下するとともに吸着熱によって空気は温度上昇する
(状態(L))。湿度が下がり温度上昇した空気は経路1
09を経て顕熱熱交換器104に送られ外気(再生空
気)と熱交換して冷却される(状態(M))。冷却された
空気は経路110を経て蒸発器(冷却器)240Bを通
過して冷却される(状態(N))。冷却された処理空気は
加湿器105に送られ水噴射または気化式加湿によって
等エンタルピ過程で温度低下し(状態(P))、経路11
2を経て給気として空調空間に戻される。The return air (process air: state (K)) to be introduced is sucked into the blower 102 via the path 107, is pressurized, is sent to the desiccant rotor 103 via the path 108, and is sent to the desiccant rotor 103 by the moisture absorbent of the desiccant rotor. And the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state (L)). Air with decreased humidity and increased temperature is route 1
After passing through the heat exchanger 09, it is sent to the sensible heat exchanger 104 and exchanges heat with outside air (regenerated air) to be cooled (state (M)). The cooled air passes through the path 110, passes through the evaporator (cooler) 240B, and is cooled (state (N)). The cooled processing air is sent to the humidifier 105 and its temperature is reduced in the isenthalpy process by water injection or vaporization humidification (state (P)), and the path 11
After that, the air is returned to the air-conditioned space as air supply.
【0026】デシカントロータの再生は次のように行わ
れる。再生空気として用いられる外気(状態(Q))は経
路124を経て送風機140に吸引され昇圧されて顕熱
熱交換器104に送られ、処理空気を冷却して自らは温
度上昇し(状態(R))、経路126を経て凝縮器(加熱
器)220に送られて、ヒートポンプによって加熱され
て温度上昇する(状態(S))。さらに凝縮器(加熱器)
220を出た再生空気は経路127を経て補助加熱手段
210に送られるが補助加熱手段210は作用していな
いため、状態(S)と(T)は同じ状態で、最終的に60〜
80℃まで温度上昇し(状態(T))、相対湿度が低下す
る。相対湿度が低下した再生空気はデシカントロータ1
03を通過してデシカントロータの水分を除去し再生作
用をする。デシカントロータ103を通過した再生空気
は経路129を経て蒸発器240Aに流入するが蒸発器
240Aは作用しておらず、冷却されることなく(状態
(U)=状態(V))経路130を経て排気として外部に捨
てられる。The regeneration of the desiccant rotor is performed as follows. The outside air (state (Q)) used as the regenerating air is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature (state (R)). )), Is sent to a condenser (heater) 220 via a path 126, and is heated by a heat pump to increase the temperature (state (S)). Further condenser (heater)
The regeneration air that has exited 220 is sent to the auxiliary heating means 210 via the path 127, but since the auxiliary heating means 210 is not acting, the states (S) and (T) are the same, and
The temperature rises to 80 ° C. (state (T)), and the relative humidity decreases. The regenerated air whose relative humidity has decreased is desiccant rotor 1
Passing through 03, moisture of the desiccant rotor is removed and a regenerating action is performed. The regenerated air that has passed through the desiccant rotor 103 flows into the evaporator 240A via the path 129, but the evaporator 240A is not operating and is not cooled (state).
(U) = state (V)) It is discarded as exhaust gas through the path 130.
【0027】このようにしてデシカント103通過後の
処理空気と熱交換関係をなす蒸発器240Bを作用させ
る場合には、デシカントの再生と処理空気の除湿、冷却
を繰り返し行うことによって、デシカントによる空調を
行うことができる。なお再生用空気として室内換気にと
もなう排気を用いる方法も従来からデシカント空調では
広く行われているが、本発明においても室内からの排気
を再生用空気として使用しても差し支えなく、本実施例
と同様の効果が得られる。When the evaporator 240B, which has a heat exchange relationship with the processing air after passing through the desiccant 103, is operated in this way, the desiccant regeneration and the dehumidification and cooling of the processing air are repeatedly performed, so that the air conditioning by the desiccant is performed. It can be carried out. In addition, although the method of using the exhaust accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, the exhaust from the room may be used as the regeneration air in the present invention. Similar effects can be obtained.
【0028】[0028]
【発明の効果】以上説明したように本発明によれば、デ
シカントによる水分の吸着処理とヒートポンプによるデ
シカントの再生処理を連続的に行えるようにした空調シ
ステムにおいて、ヒートポンプと再生空気の駆動系統を
始動前に運転してデシカント通過後の処理空気から顕熱
を回収してデシカント通過前の再生空気の加熱を行うこ
とによって、始動時のデシカントの吸着能力を高め、始
動特性を向上させるとともに、省エネルギーであり、ま
た補助加熱手段の容量を軽減できるため、イニシャルコ
ストも安い空調システムを提供することができる。As described above, according to the present invention, the drive system for the heat pump and the regeneration air is started in the air conditioning system in which the desiccant adsorption process of the desiccant and the desiccant regeneration process by the heat pump can be continuously performed. By operating before and recovering the sensible heat from the treated air after passing through the desiccant and heating the regenerated air before passing through the desiccant, the desiccant adsorption capacity at startup is improved, and the starting characteristics are improved and energy saving is achieved. In addition, since the capacity of the auxiliary heating means can be reduced, an air conditioning system with low initial cost can be provided.
【図1】本発明に係る空調システムの一実施例の基本構
成を示す説明図である。FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of an air conditioning system according to the present invention.
【図2】図1の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。FIG. 2 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air-conditioning system of FIG. 1 in a psychrometric chart.
【図3】従来の空調システムの基本構成を示す説明図で
ある。FIG. 3 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.
【図4】仮想的な空調システムの構成を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a configuration of a virtual air conditioning system.
【図5】図4の例に係る空調システムの基本構成を示す
説明図である。FIG. 5 is an explanatory diagram showing a basic configuration of an air conditioning system according to the example of FIG.
102,140 送風機 103 デシカントロータ 104 顕熱熱交換器 200 ヒートポンプ 220 蒸発器 240A,240B 凝縮器 260 圧縮機 270 切替弁 310 補助加熱手段 350 コントローラ A 処理空気経路 B 再生空気経路 102, 140 Blower 103 Desiccant rotor 104 Sensible heat exchanger 200 Heat pump 220 Evaporator 240A, 240B Condenser 260 Compressor 270 Switching valve 310 Auxiliary heating means 350 Controller A Processing air path B Regeneration air path
【手続補正書】[Procedure amendment]
【提出日】平成8年9月9日[Submission date] September 9, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 空調システムおよび制御方法Patent application title: Air conditioning system and control method
【特許請求の範囲】[Claims]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、空調システムに係
り、特にデシカントによる水分の吸着処理とヒートポン
プによるデシカントの再生処理を連続的に行えるように
した空調システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a heat pump desiccant regeneration process.
【0002】[0002]
【従来の技術】図3は、USP4,430,864に開
示された従来技術であり、これは、処理空気経路Aと、
再生空気経路Bと、2つのデシカントベッド103A,
103Bと、デシカントの再生及び処理空気の冷却を行
うヒートポンプ200とを有している。このヒートポン
プ200は、2つのデシカントベッド103A,103
Bに埋設された熱交換器210,220を高低熱源とし
て用いるもので、一方のデシカントベッドは処理空気を
通過させて吸着工程を行い、他方のデシカントは再生空
気を通過させて再生工程を行う。この空気処理が所定時
間行われた後、4方切り換え弁105,106を切り換
えて、再生及び処理空気を逆のデシカントベッドに流し
て逆の工程を行う。FIG. 3 shows a prior art disclosed in US Pat. No. 4,430,864, in which a processing air path A and
Regeneration air path B and two desiccant beds 103A,
103B, and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A and 103A.
The heat exchangers 210 and 220 buried in B are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After this air treatment has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air through the opposite desiccant bed to perform the reverse process.
【0003】[0003]
【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られない。In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, it is not possible to obtain the effect of simply increasing the complexity of the device.
【0004】そこで、このような問題点を解決するため
に、図4に示すように、再生空気経路Bにヒートポンプ
の高温熱源220を配して再生空気を加熱し、処理空気
経路Aにヒートポンプの低温熱源210を配して処理空
気を冷却するとともに、デシカント103通過後の処理
空気とデシカント103通過前の再生空気との間で顕熱
交換を行う熱交換器104を設けることが考えられる。
ここでは、デシカント103が、処理空気経路Aと再生
空気経路Bの双方にまたがって回転するデシカントロー
タを用いている。Therefore, in order to solve such a problem, as shown in FIG. 4, a high-temperature heat source 220 of a heat pump is disposed in a regeneration air path B to heat regeneration air, and a heat pump It is conceivable to provide a low-temperature heat source 210 to cool the processing air, and to provide a heat exchanger 104 for performing sensible heat exchange between the processing air after passing through the desiccant 103 and the regeneration air before passing through the desiccant 103.
Here, the desiccant 103 uses a desiccant rotor that rotates over both the processing air path A and the regeneration air path B.
【0005】これにより、図5の湿り空気線図に示すよ
うに、ヒートポンプによる冷却効果の他に、処理空気と
再生空気の間の顕熱交換による冷却効果を併せた冷却効
果(ΔQ)を得ることができるので、コンパクトな構成
で図3の空調システムより高い効率を得ることができ
る。Thus, as shown in the psychrometric chart of FIG. 5, in addition to the cooling effect of the heat pump, a cooling effect (ΔQ) combining the cooling effect of the sensible heat exchange between the processing air and the regeneration air is obtained. Therefore, it is possible to obtain higher efficiency than the air conditioning system of FIG. 3 with a compact configuration.
【0006】しかしながら、この構成の空調システムに
おいても、システムの長期停止後の運転開始時のような
場合で、デシカントが自然吸湿してしまって吸湿能力が
低下してしまっているような場合、図5中で点線で示す
ように運転当初は処理空気から十分な吸湿ができず、デ
シカント出口はあまり温度が上昇しない(状態
(L))。そのため、顕熱熱交換器104における処理
空気と再生空気の温度差が小さく、交換熱量が小さくな
って、再生空気を十分に加熱できず、再生空気のヒート
ポンプの高温熱源220入口温度も低くなる(状態
(R))。このような状態からヒートポンプを運転して
も、再生空気を十分に加熱できず(状態(T))、従っ
てデシカントの吸湿能力が回復しないためシステムの立
ち上がりが遅くなる問題があった。However, even in the air-conditioning system having such a configuration, when the desiccant naturally absorbs moisture and the moisture absorbing ability is reduced in a case such as when the system is started after a long-term stoppage of the system, FIG. As indicated by the dotted line in Fig. 5, at the beginning of the operation, sufficient moisture could not be absorbed from the processing air, and the temperature at the desiccant outlet did not rise much (state (L)). For this reason, the temperature difference between the processing air and the regeneration air in the sensible heat exchanger 104 is small, the amount of exchange heat is small, the regeneration air cannot be heated sufficiently, and the inlet temperature of the high-temperature heat source 220 of the heat pump for the regeneration air also decreases. State (R)). Even if the heat pump is operated in such a state, the regeneration air cannot be sufficiently heated (state (T)), and therefore, there is a problem that the system startup is delayed because the desiccant's ability to absorb moisture is not recovered.
【0007】本発明は上記課題に鑑み、デシカントの吸
湿能力の速やかな回復を可能にして、始動特性に優れた
空調システムを提供することを目的とするものである。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an air conditioning system which is capable of quickly recovering the desiccant's moisture absorbing ability and has excellent starting characteristics.
【0008】[0008]
【課題を解決するための手段】本発明は上記目的を解決
するためになされたもので、請求項1に記載の発明は、
処理空気経路において処理空気中の水分を吸着し、再生
空気経路において再生空気により再生されるデシカント
と、圧縮機、選択的に切り換え可能な2つの蒸発器及び
凝縮器を有する蒸気圧縮式の冷凍サイクルとを備え、前
記2つの蒸発器のうち一方がデシカント通過後の再生空
気と熱交換関係をなし、他の一方がデシカント通過後の
処理空気と熱交換関係をなし、かつ凝縮器がデシカント
通過前の再生空気と熱交換関係をなすように接続され、
デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱するか、もしくは
デシカント通過後の処理空気と熱交換関係をなす蒸発器
を作用させてデシカント通過前の処理空気から熱回収し
てデシカント通過前の再生空気を加熱するかを選択可能
に構成したことを特徴とする空調システムである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned object.
A vapor compression refrigeration cycle having a desiccant that adsorbs moisture in the processing air in the processing air path and is regenerated by the regeneration air in the regeneration air path, and a compressor, two selectively switchable evaporators and a condenser. One of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, the other has a heat exchange relationship with the treated air after desiccant passage, and the condenser has a heat exchange relationship before desiccant passage. Connected in a heat exchange relationship with the regeneration air
An evaporator, which has a heat exchange relationship with the regenerated air after passing the desiccant, acts to recover heat from the regenerated air after passing the desiccant and heat the regenerated air before passing the desiccant, or exchanges heat with the processed air after passing the desiccant An air conditioning system characterized in that it is possible to select whether to recover heat from the processing air before passing through the desiccant and heat the regenerated air before passing through the desiccant by operating the related evaporator.
【0009】このように、デシカント通過後の処理空気
から顕熱を回収してデシカント通過前の再生空気の加熱
を行う通常の運転形態即ち第1の運転形態と、デシカン
ト通過後の再生空気から顕熱を回収してデシカント通過
前の再生空気を加熱することによって、始動前のデシカ
ント再生能力を高める始動前の準備をする第2の運転形
態の2つの運転形態に対応することができる。As described above, the normal operation mode in which sensible heat is recovered from the treated air after passing through the desiccant to heat the regeneration air before passing through the desiccant, that is, the first operation mode, and the sensible heat is recovered from the regeneration air after passing through the desiccant. By recovering the heat and heating the regeneration air before desiccant passage, it is possible to cope with the two operation modes of the second operation mode for preparing before starting to increase the desiccant regeneration capability before starting.
【0010】請求項2に記載の発明は、再生空気のデシ
カントの上流側でかつ凝縮器の下流側に補助加熱手段を
設け、デシカント通過後の再生空気から熱回収してデシ
カント通過前の再生空気を加熱する場合に該補助加熱手
段によって再生空気を加熱することを特徴とする請求項
1に記載の空調システムである。このように、補助加熱
手段を適切な位置に設けることによって、エネルギー効
率に優れたヒートポンプの加熱能力を十分に利用しつ
つ、補助加熱手段によって始動前のデシカントの吸着能
力を速やかに高めることができる。According to a second aspect of the present invention, an auxiliary heating means is provided on the upstream side of the desiccant of the regeneration air and on the downstream side of the condenser to recover heat from the regeneration air after passing through the desiccant and regenerate the regeneration air before passing through the desiccant. The air-conditioning system according to claim 1, wherein when the air is heated, the regeneration air is heated by the auxiliary heating means. Thus, by providing the auxiliary heating means at an appropriate position, the auxiliary heating means can quickly increase the desiccant adsorption capacity before starting while sufficiently utilizing the heating capacity of the heat pump excellent in energy efficiency. .
【0011】請求項3に記載の発明は、補助加熱手段が
電気ヒータであることを特徴とする請求項2に記載の空
調システムである。請求項4に記載の発明は、補助加熱
手段が蒸気を熱源とする熱交換器であることを特徴とす
る請求項2に記載の空調システムである。請求項5に記
載の発明は、補助加熱手段が温水を熱源とする熱交換器
であることを特徴とする請求項2に記載の空調システム
である。The invention according to claim 3 is the air conditioning system according to claim 2, wherein the auxiliary heating means is an electric heater. The invention according to claim 4 is the air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using steam as a heat source. The invention according to claim 5 is the air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using hot water as a heat source.
【0012】請求項6に記載の発明は、処理空気経路に
おいて処理空気中の水分を吸着し、再生空気経路におい
て再生空気により再生されるデシカントと、圧縮機、選
択的に切り換え可能な2つの蒸発器及び凝縮器を有する
蒸気圧縮式の冷凍サイクルとを備え、前記2つの蒸発器
のうち一方がデシカント通過後の再生空気と熱交換関係
をなし、他の一方がデシカント通過後の処理空気と熱交
換関係をなし、かつ凝縮器がデシカント通過前の再生空
気と熱交換関係をなすように接続された空調システムの
運転方法において、デシカント通過後の再生空気と熱交
換関係をなす蒸発器を作用させてデシカント通過後の再
生空気から熱回収してデシカント通過前の再生空気を加
熱する場合には再生空気の送風機を運転するとともに処
理空気の送風機を停止し、デシカント通過後の処理空気
と熱交換関係をなす蒸発器を作用させてデシカント通過
前の処理空気から熱回収してデシカント通過前の再生空
気を加熱する場合には再生空気の送風機および処理空気
の送風機の双方を運転することを特徴とする空調システ
ムの制御方法である。According to a sixth aspect of the present invention, there is provided a desiccant which adsorbs moisture in the processing air in the processing air path and is regenerated by the regenerating air in the regenerating air path, and a compressor which is selectively switched between two evaporators. And a vapor compression refrigeration cycle having a condenser and a condenser. One of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, and the other has a heat exchange relationship with the treated air after desiccant passage. In an operation method of an air conditioning system having an exchange relationship and connected so that the condenser has a heat exchange relationship with the regeneration air before desiccant passage, the evaporator having a heat exchange relationship with regeneration air after desiccant passage is operated. When the heat is recovered from the regenerated air after passing through the desiccant and the regenerated air before passing through the desiccant is heated, the blower for the regenerated air is operated and the blower for the treated air is turned on. In the case where the evaporator is turned off and heat is exchanged with the treated air after passing through the desiccant to act to recover heat from the treated air before passing through the desiccant and heat the regenerated air before passing through the desiccant, the blower and treatment of the regenerated air A method for controlling an air conditioning system, wherein both air blowers are operated.
【0013】このように、通常の冷房運転においては、
再生空気および処理空気の両方の駆動系統を運転してデ
シカント通過後の処理空気から顕熱を回収してデシカン
ト通過前の再生空気の加熱を行う第1の運転形態を選択
し、始動前においては再生空気の駆動系統のみ運転して
デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱する第2の運転形
態を選択することによって、始動時のデシカントの吸着
能力を高めて、始動特性に優れた空調システムを提供す
ることができるとともに、始動後は第1の運転形態でデ
シカント通過後の処理空気と熱交換関係をなす蒸発器を
作用させてデシカント通過前の処理空気から熱回収して
デシカント通過前の再生空気を加熱することによって、
処理空気の冷却と再生空気の加熱を同時に実現すること
ができるためエネルギー効率が高い空調システムを提供
することができる。Thus, in a normal cooling operation,
The first operation mode in which the drive system of both the regeneration air and the processing air is operated to recover the sensible heat from the processing air after the desiccant and heat the regeneration air before the desiccant, is selected. Only the drive system of the regeneration air is operated to actuate an evaporator that has a heat exchange relationship with the regeneration air after the desiccant has passed, to recover heat from the regeneration air after the desiccant has passed, and to heat the regeneration air before the desiccant has passed. By selecting the operation mode, the desiccant adsorption capacity at the time of starting can be enhanced, and an air conditioning system having excellent starting characteristics can be provided, and after the start, the processing air after desiccant passing in the first operation mode can be provided. By operating the evaporator having a heat exchange relationship to recover heat from the treated air before desiccant passage and heating the regenerated air before desiccant passage,
Since the cooling of the processing air and the heating of the regeneration air can be realized at the same time, an air conditioning system with high energy efficiency can be provided.
【0014】[0014]
【実施例】以下、本発明に係るデシカント空調装置の一
実施例を図面を参照して説明する。図1は本発明に係る
空調システムの基本構成を示す図であり、このうち蒸気
圧縮式ヒートポンプ200の部分の構成は、圧縮機26
0、切替弁270により選択的に切り換え可能な2つの
蒸発器240Aおよび240B、凝縮器220を構成機
器として蒸気圧縮式冷凍サイクルを形成し、かつ該2つ
の蒸発器のうち一方240Aがデシカント103通過後
の再生空気と熱交換関係をなし、他の一方240Bがデ
シカント103通過後の処理空気と熱交換関係をなし、
かつ凝縮器220がデシカント103通過前の再生空気
と熱交換関係をなすサイクルを形成している。この冷凍
サイクルによってデシカント103通過後の再生空気と
熱交換関係をなす蒸発器240Aを作用させてデシカン
ト103通過後の再生空気から熱回収してデシカント1
03通過前の再生空気を加熱するか、もしくはデシカン
ト103通過後の処理空気と熱交換関係をなす蒸発器2
40Bを作用させてデシカント103通過前の処理空気
から熱回収してデシカント103通過前の再生空気を加
熱するかを切替弁370の切り換えによって選択可能に
構成している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a basic configuration of an air conditioning system according to the present invention.
0, a vapor compression refrigeration cycle is formed using the two evaporators 240A and 240B selectively switchable by the switching valve 270 and the condenser 220 as components, and one of the two evaporators 240A passes through the desiccant 103 The other side 240B has a heat exchange relationship with the treated air after passing through the desiccant 103,
In addition, a cycle is formed in which the condenser 220 has a heat exchange relationship with the regeneration air before passing through the desiccant 103. By this refrigeration cycle, the evaporator 240A, which has a heat exchange relationship with the regenerated air after passing through the desiccant 103, is actuated to recover heat from the regenerated air after passing through the desiccant 103 so that the desiccant 1
03 evaporator 2 which heats the regenerated air before passing through, or heat exchanges with the processing air after passing through desiccant 103
By operating the switching valve 370, it is possible to select whether to recover heat from the processing air before passing through the desiccant 103 and heat the regenerated air before passing through the desiccant 103 by operating the switching valve 370.
【0015】デシカントロータ103は、図4において
説明したものと同じように、デシカントが、処理空気経
路Aと再生空気経路Bの双方に跨がって所定のサイクル
で回転するよう構成されている。処理空気経路Aは、空
調空間と還気導入用の送風機102の吸い込み口と経路
107を介して接続し、送風機102の吐出口はデシカ
ントロータ103と経路108を介して接続し、デシカ
ントロータ103の処理空気の出口は再生空気と熱交換
関係にある顕熱熱交換器104と経路109を介して接
続し、顕熱熱交換機104の処理空気の出口は蒸発器
(冷却器)240Bと経路110を介して接続し、冷却
器240Bの処理空気の出口は加湿器105と経路11
1を介して接続し、加湿器105の処理空気の出口は給
気口となる処理空気出口と経路112を介して接続して
処理空気のサイクルを形成する。The desiccant rotor 103 is configured so that the desiccant rotates in a predetermined cycle across both the processing air path A and the regenerating air path B, as described with reference to FIG. The processing air path A is connected to the air-conditioned space and the suction port of the blower 102 for introducing return air through a path 107, the discharge port of the blower 102 is connected to the desiccant rotor 103 via a path 108, The outlet of the processing air is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via a path 109. The outlet of the processing air of the sensible heat exchanger 104 is connected to the evaporator (cooler) 240B and the path 110. The outlet of the processing air of the cooler 240B is connected to the humidifier 105 and the path 11
1 and a processing air outlet of the humidifier 105 is connected to a processing air outlet serving as an air supply port via a path 112 to form a processing air cycle.
【0016】一方、再生空気経路Bは、再生空気となる
外気導入用の送風機140の吸い込み口と経路124を
介して接続し、送風機140の吐出口は処理空気と熱交
換関係にある顕熱熱交換器104と接続し、顕熱熱交換
器104の再生空気の出口は凝縮器(加熱器)220と
経路126を介して接続し、凝縮器(加熱器)220の
再生空気の出口は補助加熱手段310と経路127を介
して接続し、補助加熱手段310の再生空気の出口はデ
シカントロータ103の再生空気入口と経路128を介
して接続し、デシカントロータ103の再生空気の出口
は蒸発器(冷却器)240Aと経路129を介して接続
し、蒸発器(冷却器)240Aの出口は再生空気の出口
である外部空間と経路130を介して接続して再生空気
を外部から取り入れて、外部に排気するサイクルを形成
する。なお図中、丸で囲ったアルファベットK〜Vは、
図2と対応する空気の状態を示す記号である。On the other hand, the regeneration air path B is connected via a path 124 to a suction port of a blower 140 for introducing outside air which becomes regeneration air, and a discharge port of the blower 140 has a sensible heat heat exchange relation with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the condenser (heater) 220 via the path 126, and the outlet of the regeneration air of the condenser (heater) 220 is connected to the auxiliary heating. And the outlet of the regeneration air of the auxiliary heating means 310 is connected to the regeneration air inlet of the desiccant rotor 103 via the path 128, and the exit of the regeneration air of the desiccant rotor 103 is connected to the evaporator (cooling). Unit) 240A via a path 129, and the outlet of the evaporator (cooler) 240A is connected to the external space, which is the outlet of the regeneration air, via a path 130 to take in regeneration air from outside. Te form a cycle that exhausted to the outside. In the figure, alphabets K to V circled are
It is a symbol showing the state of air corresponding to FIG.
【0017】前記補助加熱手段310は、本実施例で
は、短時間に再生能力を回復させる場合のみに使用する
ために、安価で制御が容易であるような電気ヒータを採
用しており、該加熱手段310の電源320の電気接点
330を制御するコントローラ350が設けられてい
る。このコントローラ350は、また上述した切替弁2
70の動作をも制御するようになっている。In the present embodiment, the auxiliary heating means 310 employs an electric heater which is inexpensive and easy to control, since it is used only when the regeneration capability is recovered in a short time. A controller 350 for controlling the electrical contacts 330 of the power supply 320 of the means 310 is provided. The controller 350 is also provided with the switching valve 2 described above.
70 is also controlled.
【0018】上述のように構成されたデシカント空調装
置の蒸気圧縮式冷凍サイクル部分のサイクルを次に説明
する。切替弁270の動作により、デシカント103通
過後の再生空気と熱交換関係をなす蒸発器240Aを作
用させた場合は、冷媒は蒸発器(冷却器)240Aでデ
シカント103を出た再生空気から蒸発潜熱を奪って蒸
発し、経路205A,206を経て圧縮機260に吸引
され圧縮された後、経路201を経て凝縮器(加熱器)
220に流入し凝縮熱をデシカント103に流入前の再
生空気に放出して凝縮する。凝縮した冷媒は経路202
を経て切替弁270に至り、切替弁270によって選択
された経路203Aを経て、膨張弁250Aに至りそこ
で減圧膨張した後、蒸発器(冷却器)240Aに還流す
る。Next, the cycle of the vapor compression refrigeration cycle of the desiccant air conditioner constructed as described above will be described. When the operation of the switching valve 270 causes the evaporator 240A, which has a heat exchange relationship with the regenerated air after passing through the desiccant 103, to act as the refrigerant, the evaporator (cooler) 240A separates the regenerated air from the regenerated air exiting the desiccant 103 from the latent heat of evaporation. And evaporates, is sucked and compressed by the compressor 260 through the paths 205A and 206, and then is condensed (heated) through the path 201.
After flowing into 220, the heat of condensation is released to the regenerated air before flowing into desiccant 103 and condensed. The condensed refrigerant passes through path 202
, Through the path 203A selected by the switching valve 270, to the expansion valve 250A, where it is decompressed and expanded, and then returned to the evaporator (cooler) 240A.
【0019】一方、デシカント103通過後の処理空気
と熱交換関係をなす蒸発器240Bを作用させた場合
は、冷媒は蒸発器(冷却器)240Bでデシカント10
3を出た処理空気から蒸発潜熱を奪って蒸発し、経路2
05B,206を経て圧縮機260に吸引され圧縮され
た後、経路201を経て凝縮器(加熱器)220に流入
し凝縮熱をデシカント103に流入前の再生空気に放出
して凝縮する。凝縮した冷媒は経路202を経て切替弁
270に至り、切替弁270によって選択された経路2
03Bを経て、膨張弁250Bに至りそこで減圧膨張し
た後、蒸発器(冷却器)240Bに還流する。On the other hand, when the evaporator 240B, which has a heat exchange relationship with the processing air after passing through the desiccant 103, is operated, the refrigerant is passed through the evaporator (cooler) 240B.
Evaporating latent heat of vaporization from the processing air exiting from step 3
After being sucked and compressed by the compressor 260 through the heaters 05B and 206, the refrigerant flows into the condenser (heater) 220 through the path 201 and discharges the heat of condensation into the regenerated air before flowing into the desiccant 103 to be condensed. The condensed refrigerant reaches the switching valve 270 via the path 202, and the path 2 selected by the switching valve 270
After passing through 03B, it reaches expansion valve 250B, where it is decompressed and expanded, and then returned to evaporator (cooler) 240B.
【0020】次に前述のように構成されたヒートポンプ
を熱源とするデシカント空調システムのデシカント10
3通過後の再生空気と熱交換関係をなす蒸発器240A
を作用させた場合の動作を図2の湿り空気線図を参照し
て説明する。このような運転形態は、システムの長期停
止後の運転開始時のような場合で、デシカントが自然吸
湿して吸湿能力が低下しているような場合に始動前に行
うものである。この運転形態では、再生空気の送風機を
運転し、かつ処理空気の送風機を停止する。また、コン
トローラ350を介して電気接点330を閉じて補助加
熱手段310を動作させ、また、冷凍サイクルは切替弁
270を動作して再生空気と熱交換関係にある蒸発器2
40Aが選択されている。Next, the desiccant 10 of the desiccant air-conditioning system using the heat pump configured as described above as a heat source.
Evaporator 240A having a heat exchange relationship with the regenerated air after three passes
The operation in the case where is applied will be described with reference to the psychrometric chart of FIG. Such an operation mode is performed before starting when the desiccant absorbs moisture spontaneously and the moisture absorbing ability is reduced, for example, when the system is started after a long-term stop of the system. In this operation mode, the blower for the regeneration air is operated and the blower for the processing air is stopped. In addition, the electric contact 330 is closed via the controller 350 to operate the auxiliary heating means 310, and the refrigeration cycle operates the switching valve 270 to operate the evaporator 2 having a heat exchange relationship with the regeneration air.
40A is selected.
【0021】再生空気として用いられる外気(状態Q)
は経路124を経て送風機140に吸引され昇圧されて
顕熱熱交換機104に送られる。顕熱熱交換器104で
は、処理空気が流動していないため熱交換は行われず、
そのまま通過する。顕熱熱交換器104を出た再生空気
は経路126を経て凝縮器(加熱器)220に送られ
て、ヒートポンプ200によって加熱されて温度上昇す
る(状態S)。さらに凝縮器(加熱器)220を出た再
生空気は経路127を経て補助加熱手段310において
加熱されて最終的に60〜80℃まで温度上昇し(状態
T)、相対湿度が低下する。補助加熱手段310を出て
相対湿度が低下した再生空気はデシカントロータ103
を通過してデシカントロータの水分を除去し再生作用を
する。デシカントロータ103を通過した再生空気は経
路129を経て蒸発器240Aに流入し、ヒートポンプ
によって熱回収され冷却された(状態V)後、経路13
0を経て排気として外部に捨てられる。Outside air used as regeneration air (state Q )
Is sucked by the blower 140 via the path 124, is pressurized, and sent to the sensible heat exchanger 104. In the sensible heat exchanger 104, no heat exchange is performed because the processing air is not flowing,
Pass as it is. The regenerated air exiting the sensible heat exchanger 104 is sent to the condenser (heater) 220 via the path 126, and is heated by the heat pump 200 to increase the temperature (state S2 ). Further, the regenerated air that has exited the condenser (heater) 220 is heated by the auxiliary heating means 310 via the path 127 and finally rises in temperature to 60 to 80 ° C. (state).
T ), the relative humidity decreases. The regenerated air having a lower relative humidity after exiting the auxiliary heating means 310 is supplied to the desiccant rotor 103.
Pass through to remove water from the desiccant rotor and perform a regeneration action. The regenerated air that has passed through the desiccant rotor 103 flows into the evaporator 240A via the path 129, and is recovered and cooled by the heat pump (state V 2 ).
After passing through 0, it is discarded outside as exhaust gas.
【0022】このようにして、始動前にデシカント10
3の吸湿能力が低下してしまっている場合に、具備して
いるヒートポンプ200のサイクル選択によってデシカ
ント通過後の再生空気から熱回収して、熱を汲み上げデ
シカント103通過前の再生空気を加熱することができ
る。そのため、わずかなイニシャルコストの追加で済む
とともに、ヒートポンプは公知の通り、動作係数COP
が電気ヒータに比べて3〜4倍あるため、省エネルギー
であり、運転経費も安く、また補助加熱手段の容量を軽
減できるため、イニシャルコスト及びランニングコスト
が安く、始動立ち上がり特性に優れた空調システムを提
供することができる。In this way, before starting, the desiccant 10
In the case where the moisture absorption capacity of the fuel cell 3 is reduced, heat is recovered from the regenerated air after passing through the desiccant by selecting the cycle of the heat pump 200 provided, and heat is pumped up to heat the regenerated air before passing through the desiccant 103. Can be. As a result, the heat pump requires a small initial cost, and the heat pump has an operating coefficient COP, as is well known.
Is three to four times as large as an electric heater, which saves energy, lowers operating costs, and reduces the capacity of auxiliary heating means, thereby reducing the initial cost and running cost, and providing an air conditioning system with excellent startup characteristics. Can be provided.
【0023】なお、本実施例では、補助加熱手段310
として電気ヒータを採用したが、この他に、蒸気を熱源
とする熱交換器や温水を熱源とする熱交換器を採用して
も差し支えなく、この場合には、電気接点330の代わ
りに電磁弁や電動弁を採用してコントローラ350で制
御するように構成する。また、ヒートポンプ200に比
べて電気ヒータのような補助加熱手段は高温が得やす
く、逆にヒートポンプで高温を得ようとすると、圧縮機
の圧縮比が過大になってしまうため、補助加熱装置は再
生空気のデシカントの上流側でかつ凝縮器の下流側に設
けることが望ましい。In this embodiment, the auxiliary heating means 310
However, in addition to the above, an electric heater using steam as a heat source or a heat exchanger using hot water as a heat source may be used. In this case, an electromagnetic valve is used instead of the electric contact 330. The controller 350 employs a motor and a motor-operated valve. In addition, compared to the heat pump 200, the auxiliary heating means such as an electric heater can easily obtain a high temperature. Conversely, if the heat pump attempts to obtain a high temperature, the compression ratio of the compressor becomes excessively large. Preferably, it is provided upstream of the air desiccant and downstream of the condenser.
【0024】一方、このように構成されたヒートポンプ
200を熱源とするデシカント空調システムのデシカン
ト103通過後の処理空気と熱交換関係をなす蒸発器2
40Bを作用させた場合の作用は、図5に示す湿り空気
線図の実線で示した過程と同じであり、以下のように作
動する。このような運転形態は、上記の始動前のデシカ
ント再生のための運転が完了し、デシカントの吸湿能力
が回復した後で行う。On the other hand, the evaporator 2 having a heat exchange relationship with the processing air after passing through the desiccant 103 of the desiccant air-conditioning system using the heat pump 200 having such a configuration as a heat source.
The operation when 40B is applied is the same as the process shown by the solid line in the psychrometric chart shown in FIG. 5, and operates as follows. Such an operation mode is performed after the operation for desiccant regeneration before the start is completed and the desiccant's moisture absorbing ability is restored.
【0025】導入される還気(処理空気:状態K)は経
路107を経て送風機102に吸引され昇圧されて経路
108を経てデシカントロータ103に送られデシカン
トロータの吸湿剤で空気中の水分を吸着され絶対湿度が
低下するとともに吸着熱によって空気は温度上昇する
(状態L)。湿度が下がり温度上昇した空気は経路10
9を経て顕熱熱交換器104に送られ外気(再生空気)
と熱交換して冷却される(状態M)。冷却された空気は
経路110を経て蒸発器(冷却器)240Bを通過して
冷却される(状態N)。冷却された処理空気は加湿器1
05に送られ水噴射または気化式加湿によって等エンタ
ルピ過程で温度低下し(状態P)、経路112を経て給
気として空調空間に戻される。The introduced return air (processed air: state K ) is sucked into the blower 102 via the path 107, is pressurized, is sent to the desiccant rotor 103 via the path 108, and adsorbs moisture in the air with the desiccant rotor's moisture absorbent. Then, the absolute humidity decreases and the temperature of the air rises due to the heat of adsorption (state L 2 ). The air whose humidity has decreased and the temperature has increased
9 and sent to the sensible heat exchanger 104 to open air (regenerated air)
Is cooled by heat exchange (state M 2 ). The cooled air is cooled by passing through the evaporator (cooler) 240B via the path 110 (state N 2 ). The cooled processing air is supplied to the humidifier 1
The temperature is reduced by an isenthalpy process by water injection or vaporization type humidification (state P 2 ), and is returned to the air-conditioned space via a path 112 as air supply.
【0026】デシカントロータの再生は次のように行わ
れる。再生空気として用いられる外気(状態Q)は経路
124を経て送風機140に吸引され昇圧されて顕熱熱
交換器104に送られ、処理空気を冷却して自らは温度
上昇し(状態R)、経路126を経て凝縮器(加熱器)
220に送られて、ヒートポンプによって加熱されて温
度上昇する(状態S)。さらに凝縮器(加熱器)220
を出た再生空気は経路127を経て補助加熱手段210
に送られるが補助加熱手段210は作用していないた
め、状態SとTは同じ状態で、最終的に60〜80℃ま
で温度上昇し(状態T)、相対湿度が低下する。相対湿
度が低下した再生空気はデシカントロータ103を通過
してデシカントロータの水分を除去し再生作用をする。
デシカントロータ103を通過した再生空気は経路12
9を経て蒸発器240Aに流入するが蒸発器240Aは
作用しておらず、冷却されることなく(状態U=状態
V)経路130を経て排気として外部に捨てられる。The regeneration of the desiccant rotor is performed as follows. The outside air (state Q 2 ) used as the regenerating air is sucked by the blower 140 via the path 124, pressurized and sent to the sensible heat exchanger 104, and cools the processing air to increase its temperature (state R 2 ). Condenser (heater) via 126
It is sent to 220 and heated by the heat pump to increase the temperature (state S 2 ). Further, a condenser (heater) 220
The regenerated air that has exited via the auxiliary heating means 210 via a path 127
However, since the auxiliary heating means 210 is not operating, the states S and T remain the same, and the temperature eventually rises to 60 to 80 ° C. (state T 2 ), and the relative humidity decreases. The regeneration air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation.
The regenerated air that has passed through the desiccant rotor 103
9, flows into the evaporator 240A, but the evaporator 240A is not operating and is not cooled (state U = state
V ) It is discarded outside as exhaust gas through the path 130.
【0027】このようにしてデシカント103通過後の
処理空気と熱交換関係をなす蒸発器240Bを作用させ
る場合には、デシカントの再生と処理空気の除湿、冷却
を繰り返し行うことによって、デシカントによる空調を
行うことができる。なお再生用空気として室内換気にと
もなう排気を用いる方法も従来からデシカント空調では
広く行われているが、本発明においても室内からの排気
を再生用空気として使用しても差し支えなく、本実施例
と同様の効果が得られる。When the evaporator 240B, which has a heat exchange relationship with the processing air after passing through the desiccant 103, is operated in this way, the desiccant regeneration and the dehumidification and cooling of the processing air are repeatedly performed, so that the air conditioning by the desiccant is performed. It can be carried out. In addition, although the method of using the exhaust accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, the exhaust from the room may be used as the regeneration air in the present invention. Similar effects can be obtained.
【0028】[0028]
【発明の効果】以上説明したように本発明によれば、デ
シカントによる水分の吸着処理とヒートポンプによるデ
シカントの再生処理を連続的に行えるようにした空調シ
ステムにおいて、ヒートポンプと再生空気の駆動系統を
始動前に運転してデシカント通過後の処理空気から顕熱
を回収してデシカント通過前の再生空気の加熱を行うこ
とによって、始動時のデシカントの吸着能力を高め、始
動特性を向上させるとともに、省エネルギーであり、ま
た補助加熱手段の容量を軽減できるため、イニシャルコ
ストも安い空調システムを提供することができる。As described above, according to the present invention, the drive system for the heat pump and the regeneration air is started in the air conditioning system in which the desiccant adsorption process of the desiccant and the desiccant regeneration process by the heat pump can be continuously performed. By operating before and recovering the sensible heat from the treated air after passing through the desiccant and heating the regenerated air before passing through the desiccant, the desiccant adsorption capacity at startup is improved, and the starting characteristics are improved and energy saving is achieved. In addition, since the capacity of the auxiliary heating means can be reduced, an air conditioning system with low initial cost can be provided.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明に係る空調システムの一実施例の基本構
成を示す説明図である。FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of an air conditioning system according to the present invention.
【図2】図1の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。FIG. 2 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air-conditioning system of FIG. 1 in a psychrometric chart.
【図3】従来の空調システムの基本構成を示す説明図で
ある。FIG. 3 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.
【図4】仮想的な空調システムの構成を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a configuration of a virtual air conditioning system.
【図5】図4の例に係る空調システムの基本構成を示す
説明図である。FIG. 5 is an explanatory diagram showing a basic configuration of an air conditioning system according to the example of FIG.
【符号の説明】 102,140 送風機 103 デシカントロータ 104 顕熱熱交換器 200 ヒートポンプ 220 蒸発器 240,240B 凝縮器 260 圧縮機 270 切替弁 310 補助加熱手段 350 コントローラ A 処理空気経路 B 再生空気経路[Description of Signs] 102, 140 Blower 103 Desiccant rotor 104 Sensible heat exchanger 200 Heat pump 220 Evaporator 240, 240B Condenser 260 Compressor 270 Switching valve 310 Auxiliary heating means 350 Controller A Processing air path B Regeneration air path
Claims (6)
を吸着し、再生空気経路において再生空気により再生さ
れるデシカントと、 圧縮機、選択的に切り換え可能な2つの蒸発器及び凝縮
器を有する蒸気圧縮式の冷凍サイクルとを備え、 前記2つの蒸発器のうち一方がデシカント通過後の再生
空気と熱交換関係をなし、他の一方がデシカント通過後
の処理空気と熱交換関係をなし、かつ凝縮器がデシカン
ト通過前の再生空気と熱交換関係をなすように接続さ
れ、 デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱するか、もしくは
デシカント通過後の処理空気と熱交換関係をなす蒸発器
を作用させてデシカント通過前の処理空気から熱回収し
てデシカント通過前の再生空気を加熱するかを選択可能
に構成したことを特徴とする空調システム。1. A desiccant that adsorbs moisture in process air in a process air path and is regenerated by regenerating air in a regenerating air path; and a steam having a compressor, two selectively switchable evaporators and a condenser. A compression refrigeration cycle, wherein one of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, and the other has a heat exchange relationship with the treated air after desiccant passage, and is condensed. Is connected in a heat exchange relationship with the regenerated air before passing through the desiccant, and the evaporator that makes a heat exchange relationship with the regenerated air after passing through the desiccant acts to recover heat from the regenerated air after passing through the desiccant and pass through the desiccant. Heat the previous regenerated air or use an evaporator that has a heat exchange relationship with the treated air after desiccant passage to recover heat from the treated air before desiccant passage. An air conditioning system characterized in that it is possible to select whether to heat the regeneration air before passing through the desiccant.
縮器の下流側に補助加熱手段を設け、デシカント通過後
の再生空気から熱回収してデシカント通過前の再生空気
を加熱する場合に該補助加熱手段によって再生空気を加
熱することを特徴とする請求項1に記載の空調システ
ム。2. An auxiliary heating means is provided upstream of the desiccant of the regenerated air and downstream of the condenser to recover heat from the regenerated air after passing the desiccant and to heat the regenerated air before passing the desiccant. The air conditioning system according to claim 1, wherein the regeneration air is heated by a heating unit.
特徴とする請求項2に記載の空調システム。3. The air conditioning system according to claim 2, wherein the auxiliary heating means is an electric heater.
器であることを特徴とする請求項2に記載の空調システ
ム。4. The air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using steam as a heat source.
器であることを特徴とする請求項2に記載の空調システ
ム。5. The air conditioning system according to claim 2, wherein the auxiliary heating means is a heat exchanger using hot water as a heat source.
を吸着し、再生空気経路において再生空気により再生さ
れるデシカントと、 圧縮機、選択的に切り換え可能な2つの蒸発器及び凝縮
器を有する蒸気圧縮式の冷凍サイクルとを備え、 前記2つの蒸発器のうち一方がデシカント通過後の再生
空気と熱交換関係をなし、他の一方がデシカント通過後
の処理空気と熱交換関係をなし、かつ凝縮器がデシカン
ト通過前の再生空気と熱交換関係をなすように接続され
た空調システムの運転方法において、 デシカント通過後の再生空気と熱交換関係をなす蒸発器
を作用させてデシカント通過後の再生空気から熱回収し
てデシカント通過前の再生空気を加熱する場合には再生
空気の送風機を運転するとともに処理空気の送風機を停
止し、 デシカント通過後の処理空気と熱交換関係をなす蒸発器
を作用させてデシカント通過前の処理空気から熱回収し
てデシカント通過前の再生空気を加熱する場合には再生
空気の送風機および処理空気の送風機の双方を運転する
ことを特徴とする空調システムの制御方法。6. A desiccant that adsorbs moisture in the processing air in the processing air path and is regenerated by the regeneration air in the regeneration air path; and a steam having a compressor, two selectively switchable evaporators and a condenser. A compression refrigeration cycle, wherein one of the two evaporators has a heat exchange relationship with the regenerated air after desiccant passage, and the other has a heat exchange relationship with the treated air after desiccant passage, and is condensed. In an operation method of an air conditioning system in which a heat exchanger is connected to the regenerated air before desiccant passage, the evaporator having a heat exchange relationship with regenerated air after desiccant is actuated to generate regenerated air after desiccant passage. When heating the regenerated air before passing the desiccant by recovering heat from the desiccant, operate the regenerated air blower and stop the process air When an evaporator that has a heat exchange relationship with the subsequent processing air is actuated to recover heat from the processing air before passing through the desiccant and heat the regeneration air before passing through the desiccant, both the blower of the regeneration air and the blower of the processing air A method for controlling an air conditioning system, comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20315896A JPH1026369A (en) | 1996-07-12 | 1996-07-12 | Air conditioning system and control method |
US08/780,276 US5816065A (en) | 1996-01-12 | 1997-01-09 | Desiccant assisted air conditioning system |
CNB971003912A CN1175215C (en) | 1996-01-12 | 1997-01-13 | Air-conditioning system of drying-agent assisting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20315896A JPH1026369A (en) | 1996-07-12 | 1996-07-12 | Air conditioning system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1026369A true JPH1026369A (en) | 1998-01-27 |
Family
ID=16469403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20315896A Pending JPH1026369A (en) | 1996-01-12 | 1996-07-12 | Air conditioning system and control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1026369A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000774A1 (en) * | 1998-06-30 | 2000-01-06 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
WO2000016016A1 (en) * | 1998-09-16 | 2000-03-23 | Ebara Corporation | Dehumidifying air conditioner and dehumidifying air conditioning system |
US7013655B2 (en) * | 2004-06-17 | 2006-03-21 | Entrodyne Corporation | Method and systems to provide pre-engineered components and custom designed components to satisfy the requirements of an engineered air conditioning system |
US7318320B2 (en) | 2002-02-04 | 2008-01-15 | Daikin Industries, Ltd. | Humidity control apparatus |
JP2010078304A (en) * | 2008-09-01 | 2010-04-08 | Mitsubishi Electric Corp | Air conditioner, method of operating the same, and air conditioning system |
JP2012215334A (en) * | 2011-03-31 | 2012-11-08 | Osaka Gas Co Ltd | Air conditioning system |
CN103017269A (en) * | 2012-12-14 | 2013-04-03 | 东南大学常州研究院 | Solution dehumidification/regeneration heat and moisture independent treatment air conditioning device and energy-saving operation method thereof |
CN105371393A (en) * | 2016-01-11 | 2016-03-02 | 北京格瑞力德空调科技有限公司 | Full-air air conditioning unit provided with all cold/heat sources without auxiliary heat dissipation device and capable of preparing cold/hot water simultaneously |
CN105371394A (en) * | 2015-10-28 | 2016-03-02 | 北京格瑞力德空调科技有限公司 | Full-air unit provided with cold/heat sources without auxiliary heat dissipation device and capable of outputting refrigerant/heat medium |
JP2017020715A (en) * | 2015-07-10 | 2017-01-26 | ダイダン株式会社 | Waste heat utilization dehumidification system |
-
1996
- 1996-07-12 JP JP20315896A patent/JPH1026369A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000774A1 (en) * | 1998-06-30 | 2000-01-06 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
US6442951B1 (en) | 1998-06-30 | 2002-09-03 | Ebara Corporation | Heat exchanger, heat pump, dehumidifier, and dehumidifying method |
WO2000016016A1 (en) * | 1998-09-16 | 2000-03-23 | Ebara Corporation | Dehumidifying air conditioner and dehumidifying air conditioning system |
US6370900B1 (en) | 1998-09-16 | 2002-04-16 | Ebara Corporation | Dehumidifying air-conditioning apparatus and dehumidifying air-conditioning system |
US7318320B2 (en) | 2002-02-04 | 2008-01-15 | Daikin Industries, Ltd. | Humidity control apparatus |
US7013655B2 (en) * | 2004-06-17 | 2006-03-21 | Entrodyne Corporation | Method and systems to provide pre-engineered components and custom designed components to satisfy the requirements of an engineered air conditioning system |
JP2010078304A (en) * | 2008-09-01 | 2010-04-08 | Mitsubishi Electric Corp | Air conditioner, method of operating the same, and air conditioning system |
JP2012215334A (en) * | 2011-03-31 | 2012-11-08 | Osaka Gas Co Ltd | Air conditioning system |
CN103017269A (en) * | 2012-12-14 | 2013-04-03 | 东南大学常州研究院 | Solution dehumidification/regeneration heat and moisture independent treatment air conditioning device and energy-saving operation method thereof |
CN103017269B (en) * | 2012-12-14 | 2015-06-24 | 东南大学常州研究院 | Solution dehumidification/regeneration heat and moisture independent treatment air conditioning device and energy-saving operation method thereof |
JP2017020715A (en) * | 2015-07-10 | 2017-01-26 | ダイダン株式会社 | Waste heat utilization dehumidification system |
CN105371394A (en) * | 2015-10-28 | 2016-03-02 | 北京格瑞力德空调科技有限公司 | Full-air unit provided with cold/heat sources without auxiliary heat dissipation device and capable of outputting refrigerant/heat medium |
CN105371394B (en) * | 2015-10-28 | 2018-05-25 | 北京格瑞力德空调科技有限公司 | Carry Cooling and Heat Source and the full air unit without auxiliary radiating device and outer defeated cold and hot matchmaker |
CN105371393A (en) * | 2016-01-11 | 2016-03-02 | 北京格瑞力德空调科技有限公司 | Full-air air conditioning unit provided with all cold/heat sources without auxiliary heat dissipation device and capable of preparing cold/hot water simultaneously |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5816065A (en) | Desiccant assisted air conditioning system | |
US5761923A (en) | Air conditioning system | |
JP2994303B2 (en) | Air conditioning system and operating method thereof | |
JP5068235B2 (en) | Refrigeration air conditioner | |
US6199392B1 (en) | Air conditioning system | |
KR101015640B1 (en) | Vehicle air conditioning system | |
JP3585308B2 (en) | Desiccant air conditioner | |
JPH1026369A (en) | Air conditioning system and control method | |
JPH1054586A (en) | Air-conditioning system | |
JPH10205821A (en) | Air conditioner and air conditioning system | |
JP2002162130A (en) | Air conditioner | |
JPH10288487A (en) | Air-conditioning system and its operating method | |
JP3434109B2 (en) | Desiccant air conditioner | |
JPH09318129A (en) | Air-conditioning system | |
JPH1026434A (en) | Air conditioning system | |
JP3037648B2 (en) | Dehumidification air conditioning system | |
JPH1026433A (en) | Air conditioning system | |
JP2000329375A (en) | Air conditioner, air conditioning/refrigerating system and operating method for air conditioner | |
JP3743581B2 (en) | Heat pump and operation method thereof | |
JP2008096069A (en) | Dehumidification air conditioner | |
JP2002130738A (en) | Air conditioner | |
JP2968230B2 (en) | Air conditioning system | |
JP3743580B2 (en) | heat pump | |
JP3434110B2 (en) | Desiccant air conditioner | |
JP2972834B2 (en) | Desiccant air conditioner |