[go: up one dir, main page]

JPH10261406A - Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode - Google Patents

Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode

Info

Publication number
JPH10261406A
JPH10261406A JP9100704A JP10070497A JPH10261406A JP H10261406 A JPH10261406 A JP H10261406A JP 9100704 A JP9100704 A JP 9100704A JP 10070497 A JP10070497 A JP 10070497A JP H10261406 A JPH10261406 A JP H10261406A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
electrode
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9100704A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP9100704A priority Critical patent/JPH10261406A/en
Publication of JPH10261406A publication Critical patent/JPH10261406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】 高負荷での充放電サイクル性能が良好で、低
温度下での高出力放電でも高いエネルギー密度が得ら
れ、充電状態で長期間放置してもエネルギー密度の低下
が少ない非水電解液二次電池を提供することを目的とす
る。 【構成】 炭素繊維と粒状炭素よりなる負極において、
任意のサイクル数における抵抗Rn(単位はmΩ)が下
記式で表わせられる炭素電極と、 Rn=R+α×n (Rは1サイクル目の抵抗mΩ、αは0≦α≦0.0
5の範囲内にある係数、nはサイクル数をそれぞれ表わ
す)前記炭素電極よりなる負極と、リチウム含有複合酸
化物よりなる正極とリチウム塩を有機溶媒に溶解してな
る電解液を有した二次電池。
(57) [Summary] [Purpose] Good charge / discharge cycle performance under high load, high energy density is obtained even at high power discharge at low temperature, and energy density decreases even if left in a charged state for a long time. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having a small amount. [Constitution] In a negative electrode composed of carbon fiber and granular carbon,
A carbon electrode whose resistance Rn (unit: mΩ) at an arbitrary number of cycles is represented by the following equation: Rn = R 1 + α × n (R 1 is the resistance mΩ in the first cycle, α is 0 ≦ α ≦ 0.0
A coefficient in the range of 5 and n represents the number of cycles, respectively.) A negative electrode composed of the carbon electrode, a positive electrode composed of the lithium-containing composite oxide, and an electrolytic solution obtained by dissolving a lithium salt in an organic solvent. battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池、特
にリチウムイオン二次電池に関するものであり、さらに
詳細には高電流下での充放電サイクル性能と、低温度下
での出力性能と、満充電時の放置特性に優れた非水電解
液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a lithium ion secondary battery, and more particularly, to a charge / discharge cycle performance under a high current and an output under a low temperature. The present invention relates to a non-aqueous electrolyte secondary battery that has excellent performance and storage characteristics when fully charged.

【0002】[0002]

【従来の技術】高いエネルギー密度を有する二次電池と
してリチウム二次電池が多大な注目を集めている。しか
し、金属リチウムを負極としたリチウム二次電池は、負
極自体が電解液中で電気化学的な可逆性に乏しく、また
安全性にも大きな課題を残している。そのような理由か
ら近年では負極に炭素材料を用い、正極にリチウム含有
複合酸化物を用いたリチウムイオン二次電池が広く実用
化されているのが現状である。
2. Description of the Related Art A lithium secondary battery has attracted much attention as a secondary battery having a high energy density. However, the lithium secondary battery using metal lithium as the negative electrode has poor electrochemical reversibility in the electrolytic solution itself, and has a great problem in safety. For such reasons, in recent years, lithium ion secondary batteries using a carbon material for the negative electrode and a lithium-containing composite oxide for the positive electrode have been widely put into practical use in recent years.

【0003】リチウムイオン二次電池の負極用炭素材料
としては、大きく分けて易黒鉛化炭素および難黒鉛化炭
素があげられる。易黒鉛化炭素は高温度下での熱処理を
することにより、黒鉛の結晶性が向上するため、放電容
量を高くすることが可能であり、またサイクル特性や高
負荷特性に優れる材料として知られている。現在リチウ
ムイオン二次電池の負極材料としては黒鉛系炭素が主と
して用いられている。
The carbon material for the negative electrode of the lithium ion secondary battery is roughly classified into graphitizable carbon and non-graphitizable carbon. Graphitizable carbon is known as a material with excellent cycle characteristics and high load characteristics because heat treatment at a high temperature improves the crystallinity of graphite, thereby increasing the discharge capacity. I have. At present, graphite-based carbon is mainly used as a negative electrode material of a lithium ion secondary battery.

【0004】前記黒鉛系炭素としては例えば天然黒鉛、
人造黒鉛、メソカーボンマイクロビーズ(MCMB)、
ピッチ系炭素繊維、気相成長炭素繊維などがあげられ
る。なかでも気相成長炭素繊維は、2800℃以上の高
温度で熱処理することにより、黒鉛の結晶子が十分に発
達するため、300〜360mAh/gの可逆容量を得
ることが可能である。さらには、繊維のアスペクト比や
比表面積などを調節することが可能であるため、それら
諸物性をコントロールすることにより、充填性やサイク
ル特性、負荷特性に優れる、という長所を持つ。
Examples of the graphite-based carbon include natural graphite,
Artificial graphite, mesocarbon microbeads (MCMB),
Pitch-based carbon fiber, vapor-grown carbon fiber and the like can be mentioned. Above all, the vapor-grown carbon fiber is heat-treated at a high temperature of 2800 ° C. or more, whereby graphite crystallites are sufficiently developed, so that a reversible capacity of 300 to 360 mAh / g can be obtained. Furthermore, since the aspect ratio and specific surface area of the fiber can be adjusted, by controlling those physical properties, there is an advantage that the filling property, cycle characteristics, and load characteristics are excellent.

【0005】[0005]

【発明が解決しようとする課題】リチウムイオン二次電
池は、正極および負極間を電解液を介してリチウムイオ
ンをやりとりすることにより作動する仕組みになってい
る。リチウムイオンは、水と反応するため、鉛蓄電池、
ニッケル・カドミウム二次電池などのように、水溶液系
の電解液は使えず、かわりに有機溶媒系の電解液が使わ
れる。水溶液系電解液と比較して有機溶媒系電解液はイ
オンの伝達率が悪く、そのため高電流で充放電をすると
電解液の抵抗が高いために例えば放電時では電圧の下降
が大きく、エネルギー密度を著しく低下させてしまって
いた。また、高い電流で充放電を繰り返すと、放電容量
の劣化が著しく、特に100サイクルまでの容量劣化は
かなり激しい。そして、電池の平均作動電圧(通常、リ
チウムイオン二次電池の平均作動電圧は3.6Vとされ
ている)もサイクル毎に急激に低下してしまうため、容
量だけでなく高い電圧を必要とする電気機器または電子
機器に対しては満足のいく性能を示すには至っていな
い。
A lithium ion secondary battery operates by exchanging lithium ions between a positive electrode and a negative electrode via an electrolytic solution. Since lithium ions react with water, lead-acid batteries,
Aqueous electrolytes such as nickel-cadmium secondary batteries cannot be used. Instead, organic solvent-based electrolytes are used. Compared with aqueous electrolytes, organic solvent electrolytes have a poor ion transmission rate, and when charged and discharged with a high current, the resistance of the electrolyte is high. Had been significantly reduced. Further, when charge and discharge are repeated at a high current, the discharge capacity deteriorates remarkably, and the capacity deterioration up to 100 cycles is particularly severe. In addition, the average operating voltage of the battery (the average operating voltage of the lithium ion secondary battery is usually set to 3.6 V) rapidly decreases with each cycle, so that not only the capacity but also a high voltage is required. No satisfactory performance has been achieved for electrical or electronic equipment.

【0006】また、電解液のイオン伝達率が低いため
に、例えば0℃などの低温度下では容量の低下および作
動電圧の低下が著しい。特に、低温度で比較的高い電流
で放電すると常温での放電に対してエネルギー密度の低
下はかなり著しい。
Further, since the ion transfer rate of the electrolytic solution is low, the capacity and the operating voltage are remarkably reduced at a low temperature such as 0 ° C. In particular, when discharging at a relatively high current at a low temperature, the decrease in energy density is quite remarkable compared to discharging at room temperature.

【0007】逆に、リチウムイオン二次電池は、電解液
のイオン伝達率が低いが故に、鉛蓄電池やニッケル・カ
ドミウム二次電池などの水溶液系電解液を有す電池と比
較して、自己放電率はかなり低い。それは、有機電解液
系二次電池の利点ではあるがリチウムイオン二次電池の
場合、活物質が化字的に活性の高いリチウムイオンなの
で電解液中の溶媒と反応しやすい。たとえば満充電をし
て1カ月以上の長期間放置しておくと前記副反応によ
り、放置前の容量に対して5〜10%ほど容量が低下す
るとともに、電池の平均作動電圧も低下してしまう。こ
の容量の低下は前述の水溶液系電解液の二次電池と比較
してけっして高いものではない。しかし、水溶液系二次
電池は、再度充電をすることにより、放置前の容量まで
復活するのに対し、リチウムイオン二次電池は容量が復
活することはない。つまり、リチウムイオンと電解液と
の副反応は、不可逆な反応であるため再度充電をして
も、一度副反応をしたリチウムイオンは副反応生成物と
化し、電池の充放電反応に寄与しなくなるためと考えら
れる。
[0007] Conversely, lithium ion secondary batteries have a lower self-discharge rate than batteries having aqueous electrolytes, such as lead-acid batteries and nickel-cadmium secondary batteries, due to the low ion conductivity of the electrolyte. The rates are quite low. Although this is an advantage of the organic electrolyte secondary battery, in the case of a lithium ion secondary battery, since the active material is lithium ion having a high chemical activity, it easily reacts with the solvent in the electrolyte. For example, if the battery is fully charged and left for one month or longer, the side reaction reduces the capacity by about 5 to 10% with respect to the capacity before leaving, and also reduces the average operating voltage of the battery. . This decrease in capacity is not high as compared with the above-mentioned secondary battery using an aqueous electrolyte. However, the aqueous secondary battery is restored to the capacity before being left by being recharged, whereas the capacity of the lithium ion secondary battery is not restored. That is, since the side reaction between lithium ions and the electrolyte is an irreversible reaction, even if the battery is recharged, the lithium ions that have once undergone a side reaction turn into side reaction products and do not contribute to the charge / discharge reaction of the battery. It is thought to be.

【0008】本発明は、以上の課題を解決するためにな
されたものである。すなわち、高い電流での充放電によ
る容量とエネルギー密度の劣化を抑制することと、低温
度下で高い電流で放電してもエネルギー密度の低下を少
なくすることおよび長期間の充電状態においてエネルギ
ー密度の低下を抑制したリチウムイオン二次電池を提供
するものである。
The present invention has been made to solve the above problems. That is, the capacity and energy density are prevented from deteriorating due to charging and discharging at a high current, the energy density is not reduced even when discharging at a high current at a low temperature, and the energy density is reduced in a long-term charging state. An object of the present invention is to provide a lithium ion secondary battery in which a decrease is suppressed.

【0009】[0009]

【課題を解決するための手段】鋭意検討した結果、充電
時に生成される不働態被膜の生成状態が前記課題に影響
することを見いだした。不働態被膜は、電解液中の溶媒
とリチウムイオンが反応して特に1サイクル目の充電時
において負極側で主に生成されるものである。生成した
被膜は、負極の電解液に対する保護膜となるため、2サ
イクル以降は電解液の分解反応が抑制される。ところ
が、分解反応から完全に保護されるわけではないので、
充放電の繰り返しにより被膜は負極側で徐々に成長して
いく。被膜の生成反応は不可逆な反応であるので、充放
電サイクル毎の放電容量劣化に起因することになる。ま
た被膜の成長により、負極側の抵抗が増大するため、そ
れが抵抗損(IRドロップともよばれる)に加わって電
池の作動電圧を低下させたり高負荷での充放電特性を悪
くする原因にもなる。不働態被膜の定性や定量化は様々
な手法が試みられているが、中でもインピーダンスメト
リーにより得られるコール・コールプロットから得られ
る負極側の抵抗から間接的に見積もる方法が好適であ
る。充放電のサイクルを繰り返した場合、この手法によ
り得られる負極側の抵抗はサイクル毎に増大するが、そ
の増大する割合がある範囲を越えなければ前記課題を改
善可能であることを見いだし本発明に至った。
As a result of intensive studies, it has been found that the state of formation of the passive film formed during charging affects the above-mentioned problems. The passive film is formed mainly on the negative electrode side during the charge of the first cycle, particularly when the solvent in the electrolytic solution reacts with lithium ions. The formed film serves as a protective film for the electrolyte of the negative electrode, so that the decomposition reaction of the electrolyte is suppressed after the second cycle. However, it is not completely protected from the decomposition reaction,
The film gradually grows on the negative electrode side by repeated charge and discharge. Since the reaction for forming the coating is an irreversible reaction, it is caused by the deterioration of the discharge capacity in each charge / discharge cycle. In addition, since the resistance of the negative electrode side increases due to the growth of the coating, the resistance increases in addition to the resistance loss (also referred to as IR drop), which lowers the operating voltage of the battery or deteriorates the charge / discharge characteristics under a high load. . Various methods have been tried for the qualitative and quantification of the passive film, and among them, a method of indirectly estimating from the resistance on the negative electrode side obtained from a Cole-Cole plot obtained by impedance measurement is preferable. When the charge-discharge cycle is repeated, the resistance on the negative electrode side obtained by this method increases with each cycle, but it is found that the above problem can be improved if the rate of increase does not exceed a certain range. Reached.

【0010】前記課題を解決するための請求項1に記載
の発明は、対極および参照極を金属リチウムとした電気
化学セルにおいて、交流インピーダンスメトリーにより
算出される任意の充放電サイクル数における抵抗Rn
(単位はmΩ)が、下記式で表わせられる炭素電極であ
り、 Rn=R+α×n (Rは1サイクル目の抵抗mΩ、αは0≦α≦0.0
5の範囲内にある係数、nはサイクル数をそれぞれ表わ
す)請求項2に記載の発明は充填密度が1.3〜1.8
g/cmである請求項1に記載の炭素電極であり、請
求項3に記載の発明は、アスペクト比が5〜10である
炭素繊維を10〜70重量パーセント含有する請求項1
に記載の炭素電極であり、請求項4に記載の発明は、前
記炭素電極よりなる負極と、リチウム含有複合酸化物よ
りなる正極と、環状炭酸エステルおよび鎖状炭酸エステ
ルよりなる溶媒にLiPFを溶解してなる電解液を有
した非水電解液二次電池である。
In order to solve the above-mentioned problem, the invention according to claim 1 provides an electrochemical cell in which a counter electrode and a reference electrode are made of metallic lithium in a resistance Rn at an arbitrary number of charge / discharge cycles calculated by AC impedance measurement.
(Unit: mΩ) is a carbon electrode represented by the following formula: Rn = R 1 + α × n (R 1 is the resistance mΩ in the first cycle, α is 0 ≦ α ≦ 0.0
And n represents the number of cycles, respectively.) The invention according to claim 2 has a packing density of 1.3 to 1.8.
g / cm 3 , wherein the carbon electrode according to claim 1 contains 10 to 70% by weight of carbon fibers having an aspect ratio of 5 to 10.
The invention according to claim 4, wherein the negative electrode comprising the carbon electrode, the positive electrode comprising a lithium-containing composite oxide, and a solvent comprising a cyclic carbonate and a chain carbonate, LiPF 6 is used. This is a non-aqueous electrolyte secondary battery having a dissolved electrolyte.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

《負極》本発明の負極は炭素材料より形成される。本発
明では、炭素繊維が前記負極炭素材料中に10〜70重
量パーセント含有されているものが好ましい。炭素繊維
としては従来既知なものが限定されることなく使用する
ことができるが、その中でも特に好ましいのは基板法あ
るいは流動気相法などにより製造される気相成長炭素繊
維である。その中でも好ましいのは、平均直径が1〜5
μmであり、平均繊維長さが5〜30μmであり、アス
ペクト比が5〜10の繊維である。そのような形状の繊
維は、繊維のからみあいが適度にあるため、電極という
一つの集合体とする場合、高い導電性を得るのに有利で
ある。アスペクト比が低すぎると高い導電性が得られに
くく、アスペクト比が高すぎると高い充填密度が得られ
なくなる。
<< Negative Electrode >> The negative electrode of the present invention is formed of a carbon material. In the present invention, it is preferable that carbon fibers are contained in the negative electrode carbon material in an amount of 10 to 70% by weight. As the carbon fiber, conventionally known carbon fibers can be used without limitation, and among them, particularly preferred is a vapor grown carbon fiber produced by a substrate method or a fluidized gas phase method. Among them, those having an average diameter of 1 to 5 are preferable.
μm, the average fiber length is 5 to 30 μm, and the aspect ratio is 5 to 10. Since the fibers having such a shape have a moderate degree of entanglement of the fibers, it is advantageous to obtain high conductivity when forming a single aggregate of electrodes. If the aspect ratio is too low, it is difficult to obtain high conductivity, and if the aspect ratio is too high, a high packing density cannot be obtained.

【0012】さらには、前記炭素繊維は、黒鉛化処理を
施されているものが好ましい。黒鉛化処理を施されてい
るものは、単位重量当たりの容量が高く、かつ真密度も
高いので高い容量をもつ電池を提供することができる。
さらにリチウムイオンの吸蔵過程における電位の変化が
リチウム極の電位に近い電位(リチウム極に対して0V
付近)で維持されるので、正極と組み合わせて電池とし
た場合の作動電圧を高くかつ平坦な電位として保持させ
ることができ、エネルギー密度の高い電池を提供するこ
とも可能である。黒鉛化処理は通常2800℃以上の不
活性ガス雰囲気下で行なわれる。黒鉛化した炭素繊維
は、X線回折により求められる炭素網面間隔距離、すな
わちd002が0.3354〜0.3375nmであ
り、より好ましくは0.3354〜0.3365nmで
あり、炭素網面と垂直な方向(c軸方向)の黒鉛結晶子
の大きさであるLcが50〜2500nmであり、より
好ましくは70〜2500nmである。なお、前記d
002およびLcは、学振法により求められる。
Further, it is preferable that the carbon fibers have been subjected to a graphitization treatment. Those subjected to the graphitization treatment have a high capacity per unit weight and a high true density, so that a battery having a high capacity can be provided.
Further, the change in potential during the process of occluding lithium ions is a potential close to the potential of the lithium electrode (0 V
(In the vicinity), the operating voltage when the battery is combined with the positive electrode can be maintained at a high and flat potential, and a battery with high energy density can be provided. The graphitization treatment is usually performed in an inert gas atmosphere at 2800 ° C. or higher. The graphitized carbon fiber has a carbon network spacing distance determined by X-ray diffraction, that is, d 002 is 0.3354 to 0.3375 nm, more preferably 0.3354 to 0.3365 nm, and the carbon network Lc, which is the size of the graphite crystallite in the vertical direction (c-axis direction), is 50 to 2500 nm, and more preferably 70 to 2500 nm. Note that d
002 and Lc are determined by the Gakushin method.

【0013】前記炭素繊維は、黒鉛仕処理をしたのち繊
維の切断処理を施すことにより前述した平均繊維長さ5
〜30μmの炭素繊維を得ることができる。繊維を切断
する方法としては、ボールミル、スタンプミル、ジェッ
トミルなど従来方法を用いても何らさしつかえないが、
より好ましくは、高衝撃力を利用した例えばハイブリダ
イザーによる切断方法あるいは静水圧等方プレスによる
繊維を圧縮することにより切断する方法などである。
[0013] The carbon fiber is subjected to a graphite finishing treatment and then a fiber cutting treatment to obtain the above-mentioned average fiber length of 5%.
-30 μm carbon fibers can be obtained. As a method of cutting fibers, ball mills, stamp mills, jet mills and other conventional methods can be used,
More preferably, there is a cutting method using a high impact force, for example, a method using a hybridizer, or a method using an isostatic press to compress fibers to compress the fibers.

【0014】本発明の負極を構成する炭素は、前述の炭
素繊維とは別の炭素も含有する。ここで言う別の炭素と
は、前記炭素繊維とは形状を異とする炭素であり、例え
ば天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ
(MCMB)、石油コークス、ハードカーボンなどであ
る。その中でも好ましいのは、平均粒径が5〜40μm
の炭素である。粒径が前記範囲内にあると、前記炭素繊
維の集合体の隙間を効率良く埋めて、高い充填密度を有
す炭索電極を得ることができる。前記炭索の含有量は前
記炭素繊維の量に応じて30〜90重量パーセントの中
から適宜選択される。
The carbon constituting the negative electrode of the present invention also contains carbon other than the carbon fibers described above. The different carbon mentioned here is carbon having a shape different from that of the carbon fiber, such as natural graphite, artificial graphite, mesocarbon microbeads (MCMB), petroleum coke, and hard carbon. Among them, preferred are those having an average particle size of 5 to 40 μm.
Of carbon. When the particle size is within the above range, the gap between the carbon fiber aggregates can be efficiently filled, and a coal cable electrode having a high packing density can be obtained. The content of the coal cord is appropriately selected from 30 to 90% by weight according to the amount of the carbon fiber.

【0015】前記炭素は、黒鉛化処理をされているもの
が好ましい。その理由は、前記炭素繊維の場合と同じで
ある。すなわちd002が0.3354〜0.3375
nmであり、より好ましくは0.3354〜0.336
5nmであり、Lcが50〜2500nmであり、より
好ましくは70〜2500nmである。
The carbon is preferably carbonized. The reason is the same as in the case of the carbon fiber. That is, d 002 is 0.3354 to 0.3375
nm, more preferably 0.3354 to 0.336.
5 nm, and Lc is 50 to 2500 nm, more preferably 70 to 2500 nm.

【0016】本発明の負極は、前記炭素繊維および前記
炭素を主体としてなる。炭素繊維と炭素の混合割合は、
重量比として炭素繊維:炭素=10〜70:90〜30
の中で適宜選択される。炭素繊維の含有量が低すぎると
電極の導電性が悪くなり、本発明の目的のうち、特に高
負荷でのサイクル性能の向上が達成できなくなる。炭素
繊維の含有量が高すぎると、電極の充填密度を高くする
ことが不可能となり、不働態被膜の生成が過剰になった
り、電池の容量を向上させることができなくなる。
[0016] The negative electrode of the present invention mainly comprises the carbon fiber and the carbon. The mixing ratio of carbon fiber and carbon is
Carbon fiber: carbon = 10-70: 90-30 as weight ratio
Are selected as appropriate. If the content of the carbon fiber is too low, the conductivity of the electrode becomes poor, and among the objects of the present invention, improvement in cycle performance particularly under high load cannot be achieved. If the content of the carbon fiber is too high, it becomes impossible to increase the packing density of the electrode, so that the formation of a passive film becomes excessive or the capacity of the battery cannot be improved.

【0017】前記炭素繊維および前記炭素の混合物は、
その比表面積が5m/gを越えないものが望ましく、
より望ましくは3m/gを越えないものである。比表
面積が高くなりすぎると、電解液との接触面積が大きく
なるため、充電容量と放電容量の比率を表わす充放電効
率が低くなる。これは不可逆な反応性が高いことを意味
し、その結果サイクル毎の容量を低下させてしまう。さ
らには、電解液との接触面積が大きいので、電池にくぎ
をさすなどの内部短絡時に電解液の分解反応をおこしや
すくする。分解反応により、ガスが発生して電池の内圧
を急激に高くするため、電池の破裂が生じることにな
る。なお、前記比表面積は、BET法により測定可能で
ある。
The carbon fiber and the mixture of the carbon are:
Those whose specific surface area does not exceed 5 m 2 / g are desirable,
More preferably, it does not exceed 3 m 2 / g. If the specific surface area is too high, the contact area with the electrolytic solution becomes large, so that the charge / discharge efficiency representing the ratio between the charge capacity and the discharge capacity decreases. This means that the irreversible reactivity is high, resulting in a decrease in capacity per cycle. Furthermore, since the contact area with the electrolytic solution is large, a decomposition reaction of the electrolytic solution is easily caused at the time of an internal short circuit such as nailing of the battery. Gas is generated by the decomposition reaction and the internal pressure of the battery is rapidly increased, so that the battery is ruptured. The specific surface area can be measured by a BET method.

【0018】前記炭素繊維および前記炭素の混合物のB
ET法により求められる比表面積が5m/gを越えな
いようにするには、前記炭素繊維と、前記炭素のそれぞ
れの比表面積は10m/gを越えないものがよく、よ
り好ましくは5m/gを越えないものである。混合し
た時に、混合物の比表面積が5m/gを越えないよう
に前記炭素繊維および前記炭素のそれぞれの比表面積と
混合割合を調節する。ただし混合割合は、前記炭素繊維
が10〜70重量パーセントの範囲になるよう選択され
る。
B of the mixture of the carbon fiber and the carbon
The specific surface area determined by ET method that does not exceed 5 m 2 / g, the said carbon fibers, each of the specific surface area of the carbon may have shall not exceed 10 m 2 / g, more preferably 5 m 2 / G. When mixed, the specific surface area and the mixing ratio of each of the carbon fiber and the carbon are adjusted so that the specific surface area of the mixture does not exceed 5 m 2 / g. However, the mixing ratio is selected so that the carbon fiber is in the range of 10 to 70% by weight.

【0019】前記炭素繊維および前記炭素の混合物は、
黒鉛化処理をされているものが好ましい。その理由は、
前記炭素繊維および前記炭素の場合と同じである。すな
わちd002が0.3354〜0.3375nmであ
り、Lcが50〜2500nmであるものが好ましい。
The carbon fiber and the mixture of carbon are:
Those subjected to a graphitization treatment are preferred. The reason is,
The same applies to the case of the carbon fiber and the carbon. That is, it is preferable that d 002 is 0.3354 to 0.3375 nm and Lc is 50 to 2500 nm.

【0020】本発明の負極には、前記炭素繊維および前
記炭素の他に、バインダーが添加されてもよい。前記バ
インダーは、炭素同士の結着性や集電体への結着性があ
ればその材質に特に制限はないが、好適にはポリフッ化
ビニリデンやポリテトラフロロエチレンなどのフッ化樹
脂、ポリエチレンやポリプロピレンなどのポリオレフィ
ン、ジエン系ゴム、カイロン6などのポリイミドがあげ
られる。
A binder may be added to the negative electrode of the present invention in addition to the carbon fiber and the carbon. The material of the binder is not particularly limited as long as it has a binding property between carbons and a binding property to a current collector.Preferably, the binder is a fluorinated resin such as polyvinylidene fluoride or polytetrafluoroethylene, polyethylene or the like. Examples thereof include polyolefin such as polypropylene, diene rubber, and polyimide such as Chiron 6.

【0021】本発明の負極は、例えば前記炭素繊維およ
び前記炭素よりなる混合炭素と、前記バインダーを溶媒
中に分散混合させたスラリーを、集電体に塗布すること
により形成される。前記溶媒には特に制限はないが、例
えばバインダーとしてポリフッ化ビニリデンを使用する
場合は、N−メチル−2−ピロリドン、ジメチルホルム
アミド、シクロペンタノンなどが好ましく、特にN−メ
チル−2−ピロリドンが好ましい。前記集電体には、金
属箔、金属板、金属メッシュ、金属多孔体が好適に用い
られ、負極の場合は電気化学的に還元されにくいものが
好ましく、例えば銅、チタン、ニッケルなどであり、一
般的には銅箔が用いられる。
The negative electrode of the present invention is formed by, for example, applying a slurry obtained by dispersing and mixing a mixed carbon comprising the carbon fiber and the carbon and the binder in a solvent to a current collector. The solvent is not particularly limited. For example, when polyvinylidene fluoride is used as a binder, N-methyl-2-pyrrolidone, dimethylformamide, cyclopentanone, and the like are preferable, and N-methyl-2-pyrrolidone is particularly preferable. . For the current collector, a metal foil, a metal plate, a metal mesh, a metal porous body is suitably used, and in the case of a negative electrode, those which are not easily reduced electrochemically are preferable, such as copper, titanium, and nickel. Generally, a copper foil is used.

【0022】前記集電体に前記スラリーを塗布したの
ち、例えば100〜150℃で乾燥して前記溶媒を蒸発
させることにより負極を得ることができる。そして本発
明を好適に実施するには、必要に応じてさらに前記負極
をプレスして前記炭素繊維および前記粒状炭索および前
記バインダーよりなる活物質層の充填密度を高めること
ができる。プレスの方法には制限がなく、従来既知の方
法が使用可能であるが、特に好ましいのは一定の間隙を
もった2本のロールよりなるロールプレス機によるもの
がよい。プレス後の活物質層の充填密度は、1.3〜
1.8g/cmであることが望ましい。充填密度が
1.3g/cmを下回ると、充放電を繰り返す毎の抵
抗の増大が著しく、請求項1に記載した数式中のα値の
範囲を越えてしまう。充填密度が低すぎると、負極の活
物質層内の空隙率が高く、また電解液の浸透性も高いの
で、生成した不働態被膜が膨張して負極の抵抗を高くし
てしまうと考えられる。充填密度が1.8g/cm
越えると、負極の活物質層内に電解液が浸透しにくくな
るため、電解液と負極間のイオンの伝達性が悪くなり、
やはり負極の抵抗を高めてしまうことになる。そして前
記α値の範囲を満足させることができない。また、前記
炭素繊維の混合割合を10〜70重量パーセントの範囲
におさめても、充填密度が1.3〜1.8g/cm
なければ、前記α値を所定の範囲におさめることができ
なくなることもある。負極の厚さは、抵抗を抑制する点
からなるべく薄くすることが望ましい。しかし、あまり
薄くすると活物質層の厚さに対して集電体の厚さの割合
が増すため、体積当たりの容量を著しく低下させてしま
う。実用的には100〜200μmの範囲内で選択され
る。
After the slurry is applied to the current collector, the slurry is dried at, for example, 100 to 150 ° C. to evaporate the solvent, thereby obtaining a negative electrode. In order to suitably carry out the present invention, the packing density of the active material layer composed of the carbon fiber, the granular coal cable, and the binder can be increased by pressing the negative electrode as needed. The pressing method is not limited, and a conventionally known method can be used. Particularly preferred is a method using a roll press machine composed of two rolls having a fixed gap. The packing density of the active material layer after pressing is 1.3 to
It is desirably 1.8 g / cm 3 . If the packing density is less than 1.3 g / cm 3 , the resistance will increase remarkably each time charging and discharging are repeated, and will exceed the range of the α value in the mathematical formula described in claim 1. If the packing density is too low, the porosity in the active material layer of the negative electrode is high, and the permeability of the electrolyte is high, so that the generated passive film is likely to expand and increase the resistance of the negative electrode. If the packing density exceeds 1.8 g / cm 3 , the electrolyte does not easily penetrate into the active material layer of the negative electrode, so that ion transfer between the electrolyte and the negative electrode deteriorates.
After all, the resistance of the negative electrode is increased. Then, the range of the α value cannot be satisfied. In addition, even if the mixing ratio of the carbon fibers is kept within the range of 10 to 70% by weight, the α value can be kept within the predetermined range unless the packing density is 1.3 to 1.8 g / cm 3. Sometimes it goes away. The thickness of the negative electrode is desirably as small as possible from the viewpoint of suppressing the resistance. However, if the thickness is too small, the ratio of the thickness of the current collector to the thickness of the active material layer increases, so that the capacity per volume is significantly reduced. Practically, it is selected in the range of 100 to 200 μm.

【0023】本発明における負極の抵抗は前記交流イン
ピーダンスメトリーにより得られるコール・コールプロ
ットから求められる。コール・コールプロットは、一定
の温度下で測定するならば従来既知の手法で得ることが
できる。すなわち、定出力下で周波数を掃引することに
より測定される。本発明は、任意のサイクル数での負極
の抵抗Rn(単位はmΩ)が下記式によるサイクルの関
数になっていることが特徴である。 Rn=R+α×n ここで、Rは1サイクル目の負極の抵抗mΩ、αは0
≦α≦0.05の範囲内にある係数、nはサイクル数を
それぞれ表わす。ここでαが0から0.05の範囲にあ
れば、本発明の目的である高負荷サイクル性能と、低温
度下での出力特性と、長期間の放置性能に優れた炭素電
極および二次電池を提供することができる。R≦Rn
であるから、αは0よりは高い数値になる。αが0.0
5より高くなると、負極の抵抗が増大しすぎて本発明の
目的を達成できない。
The resistance of the negative electrode in the present invention can be obtained from a Cole-Cole plot obtained by the AC impedance measurement. The Cole-Cole plot can be obtained by a conventionally known method if measured at a constant temperature. That is, it is measured by sweeping the frequency under a constant output. The present invention is characterized in that the resistance Rn (unit: mΩ) of the negative electrode at an arbitrary number of cycles is a function of the cycle according to the following equation. Rn = R 1 + α × n where R 1 is the resistance mΩ of the negative electrode in the first cycle, and α is 0
A coefficient in the range of ≦ α ≦ 0.05, and n represents the number of cycles. Here, when α is in the range of 0 to 0.05, the carbon electrode and the secondary battery which are excellent in high load cycle performance, output characteristics under low temperature, and long-term storage performance, which are the objects of the present invention, Can be provided. R 1 ≦ Rn
Therefore, α becomes a numerical value higher than 0. α is 0.0
If it is higher than 5, the resistance of the negative electrode will increase too much and the object of the present invention cannot be achieved.

【0024】《正極》正極活物質としては、従来既知の
リチウム含有複合酸化物が用いられる。例えばLiCo
、LiNiO、LiMnO、LiFeOや、
LiM1−x(ここで、MはFe、Co、Ni
のいずれかであり、Nは遷移金属であり、Xは、0≦X
≦1である)、LiMnや、LiMn2−Y
(ここで、Nは遷移金属であり、Yは、0≦Y≦2
である)、LiVなどである。
<< Positive Electrode >> As the positive electrode active material, a conventionally known lithium-containing composite oxide is used. For example, LiCo
O 2, LiNiO 2, LiMnO 2 , LiFeO 2 and,
LiM 1-x N x O 2 (where M is Fe, Co, Ni
Wherein N is a transition metal and X is 0 ≦ X
≦ 1), LiMn 2 O 4 , LiMn 2 -YN Y
O 4 (where N is a transition metal and Y is 0 ≦ Y ≦ 2
), LiV 2 O 5 and the like.

【0025】前記正極活物質は、一般的に導電性に乏し
いので、導電性を高めるために導電補助材料を添加する
のが望ましい。前記導電補助材料としては、導電性があ
れば特に制限はないが、中でも炭素質材料が好適であ
り、例えばアセチレンブラックを代表とした各種カーボ
ンブラック、天然黒鉛、人造黒鉛、石油コークスなどの
無定形炭素、難黒鉛化炭素、炭素繊維などである。
Since the positive electrode active material generally has poor conductivity, it is desirable to add a conductive auxiliary material to increase the conductivity. The conductive auxiliary material is not particularly limited as long as it has conductivity, and among them, a carbonaceous material is preferable.For example, various carbon blacks such as acetylene black, natural graphite, artificial graphite, and amorphous materials such as petroleum coke can be used. Examples include carbon, non-graphitizable carbon, and carbon fiber.

【0026】本発明の正極には、前記リチウム含有複合
酸化物および前記導電補助材料の他に、バインダーが添
加されてもよい。前記バインダーとしては、前記負極と
使用されるものと同様のものでよい。
A binder may be added to the positive electrode of the present invention in addition to the lithium-containing composite oxide and the conductive auxiliary material. The binder may be the same as that used for the negative electrode.

【0027】本発明の正極の製造方法は負極の場合と同
様に、前記リチウム含有複合酸化物と前記導電補助材料
と前記バインダーとを溶媒に分散混合して得られるスラ
リーを集電体に塗布および乾燥するものである。集電体
としては、負極と同様に金属箔が好適であるが、正極に
は電気化学的に酸化されにくいものが好ましく、例えば
アルミニウム、チタンなどであり、一般的にはアルミニ
ウム箔が使われる。塗布および乾燥したのち、必要に応
じて負極と同様にしてプレス処理を行なう。プレス後の
正極の活物質層の充填密度は2.5〜3.5g/cm
であることが望ましい。充填密度が低すぎると、リチウ
ムイオンの供給源であるリチウム含有複合酸化物の量が
減るので、電池容量を高くするのが困難である。充填密
度が高すぎると、負極同様、電解液の浸透性が悪く十分
な電池特性が得られない。正極の厚さは負極の場合と同
様、100〜200μmの範囲で適宜選択される。
In the method for producing a positive electrode according to the present invention, a slurry obtained by dispersing and mixing the lithium-containing composite oxide, the conductive auxiliary material and the binder in a solvent is applied to a current collector in the same manner as in the case of the negative electrode. It will dry. As the current collector, a metal foil is suitable as in the case of the negative electrode. However, a material which is not easily oxidized electrochemically is preferable for the positive electrode, for example, aluminum, titanium, and the like. Generally, an aluminum foil is used. After application and drying, if necessary, a press treatment is performed in the same manner as the negative electrode. The packing density of the active material layer of the positive electrode after pressing is 2.5 to 3.5 g / cm 3.
It is desirable that If the packing density is too low, the amount of the lithium-containing composite oxide, which is a source of lithium ions, decreases, so that it is difficult to increase the battery capacity. If the packing density is too high, as in the case of the negative electrode, the permeability of the electrolyte is poor and sufficient battery characteristics cannot be obtained. The thickness of the positive electrode is appropriately selected in the range of 100 to 200 μm, as in the case of the negative electrode.

【0028】《電解液》本発明の二次電池は有機溶媒系
の電解液が使われる。本発明の電解液はリチウム塩を有
機溶媒に溶解してなる。前記リチウム塩には、従来既知
のものが好適に使用される。例えば、LiPF、Li
ClO、LiBF、LiAsF、Li(CF
Nなどである。前記有機溶媒としては炭酸エス
テルよりなるものがよく、特に環状炭酸エステルと鎖状
炭酸エステルの混合溶媒が好適である。前記環状炭酸エ
ステルとしては、エチレンカーボネート、プロピレンカ
ーボネートおよびブチレンカーボネートなどがあげら
れ、これらを単独で用いても併用してもよい。前記鎖状
炭酸エステルとしては、ジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネートなどがあげ
られ、これらを単独で用いても併用してもよい。
<< Electrolyte >> The secondary battery of the present invention uses an organic solvent-based electrolyte. The electrolytic solution of the present invention is obtained by dissolving a lithium salt in an organic solvent. A conventionally known lithium salt is suitably used. For example, LiPF 6 , Li
ClO 4 , LiBF 4 , LiAsF 6 , Li (CF 3 S
O 2 ) 2 N and the like. The organic solvent is preferably one composed of a carbonate, and a mixed solvent of a cyclic carbonate and a chain carbonate is particularly preferable. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate, and these may be used alone or in combination. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like, and these may be used alone or in combination.

【0029】《二次電池》本発明の二次電池は以下の通
り製造される。すなわち、前記負極と前記正極とをセパ
レーターを介して巻き取りスパイラル状電極を作る。ス
パイラル状電極を電池缶におさめ、前記電解液を注入
し、キャップを取り付けシールして製造される。このよ
うに製造される本発明の二次電池の形状には特に制限が
なく、例えば円筒形、角形、コイン形、ボタン形などで
あり、大きさにも制限はない。
<< Secondary Battery >> The secondary battery of the present invention is manufactured as follows. That is, the negative electrode and the positive electrode are wound through a separator to form a spiral electrode. It is manufactured by placing the spiral electrode in a battery can, injecting the electrolytic solution, attaching a cap and sealing. There is no particular limitation on the shape of the secondary battery of the present invention manufactured as described above. For example, the shape is a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and the size is not limited.

【0030】[0030]

【実施例】以下、本発明を実施例により説明するが、こ
れら実施例により、本発明が制限されるものではない。 《実施例1》平均直径2μm、平均長さ80μmの気相
成長炭素繊維をアルゴンガス雰囲気中2800℃で30
分間黒鉛化処理をした。その後、得られた黒鉛化気相成
長炭素繊維をハイブリダイザー(奈良機械社製、NHS
−1)におさめ、4000rpmの回転数で2分間高衝
撃処理をした。得られた炭素繊維のd002は0.33
60nm、Lcは100nm、比表面積は1.4m
g、平均直径は2μm、平均長さ20μm、アスペクト
比は10であった。この炭素繊維に平均粒径20μm、
比表面積は0.7m/g、d002は0.3360n
m、Lcは100nmである球状炭素(メソカーボンマ
イクロビーズMCMB、大阪ガス社製)を、重量比で
1:1になるよう混合した。得られた混合炭素の比表面
積は1.1m/gであった。この混合炭素90重量部
に対して、ポリフッ化ビニリデンを10重量部加え、N
−メチル−2−ピロリドン中で十分混合分散し、スラリ
ーを得た。このスラリーを厚さ10μmの銅箔の両面に
塗布し、100℃で乾燥し、ロールプレスにかけて負極
を得た。充填密度は1.6g/cmであり、厚さは1
30μmであった。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited by these examples. Example 1 A vapor-grown carbon fiber having an average diameter of 2 μm and an average length of 80 μm was immersed in an argon gas atmosphere at 2800 ° C. for 30 minutes.
Graphitized for minutes. Then, the obtained graphitized vapor-grown carbon fiber was used as a hybridizer (Nara Machinery Co., Ltd., NHS
-1) and subjected to a high impact treatment at 4000 rpm for 2 minutes. The resulting d 002 of carbon fiber 0.33
60 nm, Lc is 100 nm, and the specific surface area is 1.4 m 2 /
g, the average diameter was 2 μm, the average length was 20 μm, and the aspect ratio was 10. This carbon fiber has an average particle size of 20 μm,
Specific surface area is 0.7 m 2 / g, d 002 is 0.3360 n
Spherical carbon (mesocarbon microbeads MCMB, manufactured by Osaka Gas Co., Ltd.) having m and Lc of 100 nm was mixed at a weight ratio of 1: 1. The specific surface area of the obtained mixed carbon was 1.1 m 2 / g. To 90 parts by weight of this mixed carbon, 10 parts by weight of polyvinylidene fluoride were added, and N was added.
The mixture was sufficiently mixed and dispersed in -methyl-2-pyrrolidone to obtain a slurry. This slurry was applied to both sides of a copper foil having a thickness of 10 μm, dried at 100 ° C., and roll-pressed to obtain a negative electrode. The packing density is 1.6 g / cm 3 and the thickness is 1
It was 30 μm.

【0031】作製された前記負極を作用極として、金属
リチウムを対極および参照極として3電極式のビーカー
セルを組み立てた。電解液には、LiPFを1.2モ
ル/リットルの濃度になるように、エチレンカーボネー
ト(EC)とプロピレンカーボネート(PC)とジメチ
ルカーボネート(DMC)よりなる混合溶媒(容積混合
比:EC:PC:DMC=3:3:4)に溶解したもの
を用いた。100mAの電流値で参照極に対して0Vに
なるまで充電(リチウムイオンを作用極に吸蔵させる反
応を意味する)し、100mAで参照極に対して2.5
Vになるまで放電することを1サイクルとして、各サイ
クル毎にインピーダンス測定(装置;ソーラトロン12
86&1250)をした。掃引周波数は、10kHzか
ら50mHzで測定温度は20℃とした。インピーダン
ス測定より得られた各サイクル毎の抵抗から前記α値を
算出した。結果を表1に示す。
A three-electrode beaker cell was assembled using the produced negative electrode as a working electrode, lithium metal as a counter electrode and a reference electrode. In the electrolyte, a mixed solvent of ethylene carbonate (EC), propylene carbonate (PC), and dimethyl carbonate (DMC) (volume mixing ratio: EC: PC) was used so that LiPF 6 had a concentration of 1.2 mol / liter. : DMC = 3: 3: 4). The battery was charged at a current value of 100 mA until the voltage reached 0 V with respect to the reference electrode (meaning a reaction for absorbing lithium ions into the working electrode).
Assuming that discharging to V is one cycle, impedance measurement (apparatus; Solartron 12) is performed for each cycle.
86 & 1250). The sweep frequency was 10 kHz to 50 mHz, and the measurement temperature was 20 ° C. The α value was calculated from the resistance for each cycle obtained from the impedance measurement. Table 1 shows the results.

【0032】平均粒径10μmのLiCoO90重量
部と、アセチレンプラック5重量部と、ポリフッ化ビニ
リデン5重量部とをN−メチル−2−ピロリドン中で十
分混合分散し、スラリーを得た。このスラリーを厚さ2
0μmのアルミニウム箔の両面に塗布し、100℃で乾
燥し、ロールプレスにかけて正極を得た。充填密度は
3.3g/cmであり、厚さは130μmであった。
90 parts by weight of LiCoO 2 having an average particle diameter of 10 μm, 5 parts by weight of acetylene plaque, and 5 parts by weight of polyvinylidene fluoride were sufficiently mixed and dispersed in N-methyl-2-pyrrolidone to obtain a slurry. Thick this slurry 2
It was applied to both sides of a 0 μm aluminum foil, dried at 100 ° C., and roll-pressed to obtain a positive electrode. The packing density was 3.3 g / cm 3 and the thickness was 130 μm.

【0033】以上得られた負極および正極をポリプロピ
レン製セパレーターを介して巻き取り、スパイラル状電
極を得た。この電極を直径17mm、高さ500mmの
円筒形電池缶におさめた。この電池缶内に、LiPF
を1.2モル/リットルの濃度になるように、エチレン
カーボネート(EC)とプロピレンカーボネート(P
C)とジメチルカーボネート(DMC)よりなる混合溶
媒(容積混合比:EC:PC:DMC=3:3:4)に
溶解して得られた電解液を注入した。そして正極キャッ
プをかしめ、密閉し二次電池を得た。
The thus obtained negative electrode and positive electrode were wound up through a polypropylene separator to obtain a spiral electrode. This electrode was placed in a cylindrical battery can having a diameter of 17 mm and a height of 500 mm. In this battery can, LiPF 6
To a concentration of 1.2 mol / liter with ethylene carbonate (EC) and propylene carbonate (P
C) and dimethyl carbonate (DMC), and an electrolytic solution obtained by dissolving in a mixed solvent (volume mixing ratio: EC: PC: DMC = 3: 3: 4) was injected. Then, the positive electrode cap was swaged and sealed to obtain a secondary battery.

【0034】得られた二次電池を、20℃の恒温槽内に
て、電流値3A、充電上限電圧4.1Vの定電流および
定電圧充電(充電時間2.5時間)をし、電流値3A、
放電下限電圧2.5Vの定電流放電を300回繰り返し
た。1サイクル、100サイクル、200サイクル、3
00サイクル目の放電容量を表2に示す。
The obtained secondary battery was charged at a constant current of 3 A and a constant current of a charging upper limit voltage of 4.1 V and a constant voltage (a charging time of 2.5 hours) in a thermostat at 20 ° C. 3A,
Constant current discharge at a discharge lower limit voltage of 2.5 V was repeated 300 times. 1 cycle, 100 cycles, 200 cycles, 3
Table 2 shows the discharge capacity at the 00th cycle.

【0035】得られた二次電池を、0℃の恒温槽内に
て、電流値1A、充電上限電圧4.1Vの定電流および
定電圧充電(充電時間2.5時間)をし、出力50W/
kg、100W/kg、200W/kgでそれぞれ定出
力放電をした。放電下限電圧は2.5Vとした。各出力
におけるエネルギー密度を表2に示す。
The obtained secondary battery was charged at a constant current of 1 A and a constant current of a charging upper limit voltage of 4.1 V and a constant voltage (a charging time of 2.5 hours) in a thermostat at 0 ° C., and the output was 50 W. /
A constant output discharge was performed at kg, 100 W / kg, and 200 W / kg, respectively. The lower discharge limit voltage was 2.5V. Table 2 shows the energy density at each output.

【0036】得られた二次電池を、20℃の恒温槽内に
て、電流値1A、充電上限電圧4.1Vの定電流および
定電圧充電(充電時間2.5時間)をし、電流値1A、
放電下限電圧2.5Vの定電流放電を30回繰り返し
た。再度充電したのち、45℃の恒温槽内に移して1カ
月間放置した。放置後、電流値1A、放電下限電圧2.
5Vの定電流放電をして放置後の放電容量を得た。放置
前の30サイクル目の放電容量および平均作動電圧から
求めたエネルギー密度と、放置後の放電容量および平均
作動電圧から求めたエネルギー密度の比を求めた。結果
を表3に示す。
The obtained secondary battery was charged in a constant temperature bath at 20 ° C. with a constant current of 1 A and a constant current of a charging upper limit voltage of 4.1 V and constant voltage charging (charging time: 2.5 hours), and the current value was increased. 1A,
The constant current discharge at a discharge lower limit voltage of 2.5 V was repeated 30 times. After charging again, it was transferred to a 45 ° C. constant temperature bath and left for one month. After leaving, the current value is 1A, the discharge lower limit voltage is 2.
The battery was discharged at a constant current of 5 V to obtain a discharge capacity after standing. The ratio of the energy density obtained from the discharge capacity and the average operating voltage at the 30th cycle before leaving, and the energy density obtained from the discharge capacity and the average operating voltage after leaving was obtained. Table 3 shows the results.

【0037】《実施例2》混合炭素のうち、炭素繊維と
粒状炭索の重量混合比を炭索繊維:粒状炭素=70:3
0とし、負極の充填密度を1.3g/cm、厚さを1
90μmとし、正極の充填密度を3.5g/cm、厚
さを180μmとした以外はすべて実施例1と同様にし
て負極および二次電池を作製した。実施例1と同様にし
て、負極抵抗の測定およびα値の算出、高負荷サイクル
試験、低温度での高出力放電試験および放置試験を実施
した。結果を表1〜4に示す。
Example 2 Of the mixed carbon, the weight mixing ratio between the carbon fiber and the granular coal cable was determined as follows: coal fiber: granular carbon = 70: 3.
0, the packing density of the negative electrode was 1.3 g / cm 3 , and the thickness was 1
A negative electrode and a secondary battery were produced in the same manner as in Example 1 except that the thickness was 90 μm, the packing density of the positive electrode was 3.5 g / cm 3 , and the thickness was 180 μm. In the same manner as in Example 1, the measurement of the negative electrode resistance, the calculation of the α value, the high load cycle test, the high output discharge test at a low temperature, and the standing test were performed. The results are shown in Tables 1 to 4.

【0038】《実施例3》混合炭素のうち、炭素繊維と
粒状炭素の重量混合比を炭素繊維:粒状炭素=10:9
0とし、負極の充填密度を1.8g/cm、厚さを1
10μmとし、正極活物質をLiMnとし、正極
の充填密度を2.5g/cm、厚さを200μmとし
た以外はすべて実施例1と同様にして負極および二次電
池を作製した。実施例1と同様にして、負極抵抗の測定
およびα値の算出、高負荷サイクル試験、低温度での高
出力放電試験および放置試験を実施した。結果を表1〜
4に示す。
Example 3 Of the mixed carbon, the weight mixing ratio between carbon fiber and granular carbon was determined as follows: carbon fiber: granular carbon = 10: 9.
0, the packing density of the negative electrode was 1.8 g / cm 3 , and the thickness was 1
A negative electrode and a secondary battery were produced in the same manner as in Example 1 except that the thickness was 10 μm, the positive electrode active material was LiMn 2 O 4 , the packing density of the positive electrode was 2.5 g / cm 3 , and the thickness was 200 μm. In the same manner as in Example 1, the measurement of the negative electrode resistance, the calculation of the α value, the high load cycle test, the high output discharge test at a low temperature, and the standing test were performed. Table 1 shows the results.
It is shown in FIG.

【0039】《比較例1》混合炭素のうち、炭素繊維と
粒状炭素の重量混合比を炭素繊維:粒状炭素=5:95
とし、負極の充填密度を1.1g/cm、厚さを21
0μmとし、正極の充填密度を3.8g/cm、厚さ
を150μmとした以外はすべて実施例1と同様にして
負極および二次電池を作製した。実施例1と同様にし
て、負極抵抗の測定およびα値の算出、高負荷サイクル
試験、低温度での高出力放電試験および放置試験を実施
した。結果を表1〜4に示す。
<< Comparative Example 1 >> Among the mixed carbon, the weight mixing ratio between carbon fiber and granular carbon was determined as follows: carbon fiber: granular carbon = 5: 95
The packing density of the negative electrode was 1.1 g / cm 3 and the thickness was 21.
A negative electrode and a secondary battery were produced in the same manner as in Example 1, except that the thickness was 0 μm, the packing density of the positive electrode was 3.8 g / cm 3 , and the thickness was 150 μm. In the same manner as in Example 1, the measurement of the negative electrode resistance, the calculation of the α value, the high load cycle test, the high output discharge test at a low temperature, and the standing test were performed. The results are shown in Tables 1 to 4.

【0040】《比較例2》混合炭素のうち、炭素繊維と
粒状炭素の重量混合比を炭素繊維:粒状炭素=80:2
0とし、負極の充填密度を1.9g/cm、厚さを9
0μmとし、正極の充填密度を3.8g/cm、厚さ
を150μmとした以外はすべて実施例1と同様にして
負極および二次電池を作製した。実施例1と同様にし
て、負極抵抗の測定およびα値の算出、高負荷サイクル
試験、低温度での高出力放電試験および放置試験を実施
した。結果を表1〜4に示す。
Comparative Example 2 The weight mixing ratio of carbon fiber and granular carbon in the mixed carbon was determined as follows: carbon fiber: granular carbon = 80: 2
0, the packing density of the negative electrode was 1.9 g / cm 3 , and the thickness was 9
A negative electrode and a secondary battery were produced in the same manner as in Example 1, except that the thickness was 0 μm, the packing density of the positive electrode was 3.8 g / cm 3 , and the thickness was 150 μm. In the same manner as in Example 1, the measurement of the negative electrode resistance, the calculation of the α value, the high load cycle test, the high output discharge test at a low temperature, and the standing test were performed. The results are shown in Tables 1 to 4.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【発明の効果】本発明によると、高負荷での充放電サイ
クル性能がよく、低温度での高出力放電でも高いエネル
ギー密度が得られ、長期間の充電状態での放置をして
も、大幅な容量劣化がなく、エネルギー密度の低下も少
ない二次電池を提供することができる。
According to the present invention, the charge / discharge cycle performance under a high load is good, a high energy density can be obtained even at a high output discharge at a low temperature, and even if the battery is left in a charged state for a long period of time, it has a significant effect. It is possible to provide a secondary battery that does not cause a significant capacity deterioration and a small decrease in energy density.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対極および参照極を金属リチウムとした
電気化学セルにおいて、交流インピーダンスメトリーに
より算出される任意の充放電サイクル数における抵抗R
n(単位はmΩ)が、下記式で表わせられる炭素電極。 Rn=R+α×n (Rは1サイクル目の抵抗mΩ、αは0≦α≦0.0
5の範囲内にある係数、nはサイクル数をそれぞれ表わ
す)
In an electrochemical cell using lithium metal as a counter electrode and a reference electrode, a resistance R at an arbitrary number of charge / discharge cycles calculated by AC impedance measurement.
A carbon electrode in which n (unit: mΩ) is represented by the following formula. Rn = R 1 + α × n (R 1 is the resistance mΩ in the first cycle, α is 0 ≦ α ≦ 0.0
A coefficient in the range of 5 and n represents the number of cycles, respectively)
【請求項2】 充填密度が1.3〜1.8g/cm
ある請求項1に記載の炭素電極。
2. The carbon electrode according to claim 1, wherein the packing density is 1.3 to 1.8 g / cm 3 .
【請求項3】 アスペクト比が5〜10である炭素繊維
を10〜70重量パーセント含有する請求項1に記載の
炭素電極。
3. The carbon electrode according to claim 1, comprising 10 to 70% by weight of carbon fibers having an aspect ratio of 5 to 10.
【請求項4】 前記炭素電極よりなる負極と、リチウム
含有複合酸化物よりなる正極と、環状炭酸エステルおよ
び鎖状炭酸エステルよりなる溶媒にLiPFを溶解し
てなる電解液とを有した非水電解液二次電池。
4. A non-aqueous solution comprising a negative electrode comprising the carbon electrode, a positive electrode comprising a lithium-containing composite oxide, and an electrolytic solution obtained by dissolving LiPF 6 in a solvent comprising a cyclic carbonate and a chain carbonate. Electrolyte secondary battery.
JP9100704A 1997-03-14 1997-03-14 Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode Pending JPH10261406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9100704A JPH10261406A (en) 1997-03-14 1997-03-14 Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9100704A JPH10261406A (en) 1997-03-14 1997-03-14 Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode

Publications (1)

Publication Number Publication Date
JPH10261406A true JPH10261406A (en) 1998-09-29

Family

ID=14281091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9100704A Pending JPH10261406A (en) 1997-03-14 1997-03-14 Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode

Country Status (1)

Country Link
JP (1) JPH10261406A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002025606A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002033104A (en) * 2000-07-18 2002-01-31 At Battery:Kk Non-aqueous electrolyte secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
JP2008084562A (en) * 2006-09-26 2008-04-10 Nec Tokin Corp Negative electrode for secondary battery, and secondary battery using it
KR101183937B1 (en) * 2003-07-28 2012-09-18 쇼와 덴코 가부시키가이샤 High density electrode and battery using the electrode
KR101183939B1 (en) * 2003-07-28 2012-09-19 쇼와 덴코 가부시키가이샤 High Density Electrode and Battery Using the Electrode
US8920977B2 (en) 2009-03-27 2014-12-30 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018026307A (en) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 Battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002025606A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002033104A (en) * 2000-07-18 2002-01-31 At Battery:Kk Non-aqueous electrolyte secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
KR101183937B1 (en) * 2003-07-28 2012-09-18 쇼와 덴코 가부시키가이샤 High density electrode and battery using the electrode
KR101183939B1 (en) * 2003-07-28 2012-09-19 쇼와 덴코 가부시키가이샤 High Density Electrode and Battery Using the Electrode
JP2008084562A (en) * 2006-09-26 2008-04-10 Nec Tokin Corp Negative electrode for secondary battery, and secondary battery using it
US8920977B2 (en) 2009-03-27 2014-12-30 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018026307A (en) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 Battery system

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP0688057B1 (en) Lithium ion secondary battery
JP5882516B2 (en) Lithium secondary battery
KR100415810B1 (en) Non-aqueous electrolyte secondary battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
KR20190030345A (en) Pre-lithiation method of negative electrode for secondary battery
KR20040081043A (en) Lithium Battery
CN101783401A (en) Cathode and Li-ion battery comprising same
JP4354723B2 (en) Method for producing graphite particles
JP4083040B2 (en) Lithium battery
JPH10261406A (en) Carbon electrode and non-aqueous electrolyte secondary battery using it as negative electrode
JP3140880B2 (en) Lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2004030939A (en) Manufacturing method of lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR100481229B1 (en) Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
JP2000123826A (en) Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same
JPH11312523A (en) Battery electrode and non-aqueous electrolyte battery
JP4080110B2 (en) Non-aqueous electrolyte battery
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
KR100635740B1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221