JPH10260092A - Magnetostriction memberane for magentosriction type trque sensor - Google Patents
Magnetostriction memberane for magentosriction type trque sensorInfo
- Publication number
- JPH10260092A JPH10260092A JP6462097A JP6462097A JPH10260092A JP H10260092 A JPH10260092 A JP H10260092A JP 6462097 A JP6462097 A JP 6462097A JP 6462097 A JP6462097 A JP 6462097A JP H10260092 A JPH10260092 A JP H10260092A
- Authority
- JP
- Japan
- Prior art keywords
- magnetostrictive
- film
- magnetostrictive film
- magnetostriction
- torque sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035699 permeability Effects 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims abstract description 3
- 229910017709 Ni Co Inorganic materials 0.000 claims description 2
- 229910003267 Ni-Co Inorganic materials 0.000 claims description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 claims description 2
- 229910003298 Ni-Ni Inorganic materials 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 12
- 238000012360 testing method Methods 0.000 abstract description 6
- 239000012528 membrane Substances 0.000 abstract 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 230000008859 change Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 5
- 229910003271 Ni-Fe Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910018106 Ni—C Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シャフト表面に被
着された磁気異方性の磁歪膜により、シャフトの捻れに
応じた磁歪膜の磁気特性(透磁率)の変化を磁気的に非
接触検出する磁歪式トルクセンサの磁歪膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetically anisotropic magnetostrictive film adhered to a shaft surface, the magnetic characteristic of which is changed according to the twist of the shaft (permeability). The present invention relates to a magnetostrictive film for detecting a magnetostrictive torque sensor.
【0002】[0002]
【従来の技術】従来の磁歪膜の製法としては、スパッタ
リングやイオンプレーティングなどのPVD法(例えば
特開昭60−42628号公報や特開平6−13798
1号公報)、めっき法(例えば特開昭62−20642
1号公報)、プラズマ溶射法などの溶射法(例えば特開
平5−52678号公報、特開平6−160209号公
報)が提案されている。2. Description of the Related Art Conventional methods for producing a magnetostrictive film include PVD methods such as sputtering and ion plating (for example, JP-A-60-42628 and JP-A-6-13798).
No. 1), a plating method (for example, Japanese Unexamined Patent Publication No.
No. 1) and a thermal spraying method such as a plasma spraying method (for example, JP-A-5-52678, JP-A-6-160209) has been proposed.
【0003】特開平6−160209号公報は、Niが
40〜80wt%のNi−Fe膜、このNi−Fe膜に
Alなどを7wt%以下含有させた膜、Alが8〜15
wt%のFe−Al膜、このFe−Al膜にNiなどを
5wt%以下含有させた膜を提案している。また、特開
平6−137981号公報は、90%Ni−Fe膜を上
記磁歪膜として用いることを開示している。JP-A-6-160209 discloses a Ni-Fe film containing 40 to 80 wt% of Ni, a film containing 7 wt% or less of Al or the like in the Ni-Fe film, and a film containing 8 to 15 wt% of Al.
A wt% Fe-Al film, and a film in which Ni or the like is contained in the Fe-Al film in an amount of 5 wt% or less have been proposed. Japanese Patent Application Laid-Open No. Hei 6-137811 discloses that a 90% Ni—Fe film is used as the magnetostrictive film.
【0004】更に、特開平5−52678号公報は、F
e−Co(Co、30〜60wt%)合金を用い、添加
元素としてMn、V、Nbの少なくとも一種以上を5w
t%以下とし、含有酸素量が0.2wt以下としたプラ
ズマ溶射法による磁歪膜を採用することを提案してい
る。Further, Japanese Patent Application Laid-Open No. 5-52678 discloses an F
An e-Co (Co, 30 to 60 wt%) alloy is used, and at least one of Mn, V, and Nb is added as an additive element in 5w.
It has been proposed to employ a magnetostrictive film formed by a plasma spraying method in which the content of oxygen is set to t% or less and the content of oxygen is set to 0.2 wt or less.
【0005】[0005]
【発明が解決しようとする課題】上記したように、磁歪
式トルクセンサの磁歪膜の製造方法及びその組成につい
ては、種々、提案されているが、磁歪膜における最も重
要なファクターである磁歪感度に優れた磁歪膜をどのよ
うに選択するかについては、従来全く知られておらず、
ただ、少しずつ組成比を変更しつつ作製、テストを重ね
てその磁歪感度を求める以外に有効な手段がなかった。As described above, various methods have been proposed for manufacturing a magnetostrictive film of a magnetostrictive torque sensor and its composition. However, the most important factor in the magnetostrictive film is magnetostriction sensitivity. How to select an excellent magnetostrictive film has never been known before,
However, there was no effective means other than obtaining the magnetostriction sensitivity by repeatedly manufacturing and testing while changing the composition ratio little by little.
【0006】例えば、上記従来技術が提案する組成範囲
においても、どの組成点において最も高感度の磁歪膜が
得られるかどうかについては、全く不明であり、ただこ
の程度が良いと示唆しているに過ぎない。これは、磁歪
膜が2以上の主要構成元素からなり、各主要構成元素の
組成比を一々変更して磁歪式トルクセンサを一々作製
し、試験することは、多大な手間、時間、費用を必要と
し、困難であるためである。For example, even in the composition range proposed by the above-mentioned prior art, it is completely unclear at which composition point the most sensitive magnetostrictive film can be obtained, but it is suggested that this degree is only good. Not just. This means that the magnetostrictive film is composed of two or more main constituent elements, and it is enormous labor, time and cost to manufacture and test each magnetostrictive torque sensor by changing the composition ratio of each main constituent element one by one. Because it is difficult.
【0007】この問題に鑑み、本発明者らは簡単に高感
度の磁歪膜を選択する手法を見出し、それにより各成分
系の磁歪膜において、高感度の磁歪膜の選択を可能とし
た。従って、本発明の目的は、高感度の磁歪膜を有する
磁歪式トルクセンサの提供を、その目的としている。In view of this problem, the present inventors have found a technique for easily selecting a high-sensitivity magnetostrictive film, and thereby have made it possible to select a high-sensitivity magnetostrictive film among the magnetostrictive films of the respective component systems. Accordingly, an object of the present invention is to provide a magnetostrictive torque sensor having a highly sensitive magnetostrictive film.
【0008】[0008]
【課題を解決するための手段】請求項1記載の磁歪式ト
ルクセンサの磁歪膜によれば、金属からなるシャフトの
外周面に磁歪膜が被着された磁歪式トルクセンサの磁歪
膜選択方法において、比透磁率をμs、ヤング率をE、
磁歪定数をλとする場合に、(μs・E)1/2・λの絶
対値が5×104以上である組成の磁歪膜が選択され
る。このようにすれば、簡素な物性データ試験又は既有
の物性データ表を用いて、高感度の磁歪膜を推定するこ
とが可能となる。According to the first aspect of the present invention, there is provided a method for selecting a magnetostrictive film of a magnetostrictive torque sensor, wherein the outer peripheral surface of a shaft made of a metal is covered with the magnetostrictive film. , Relative permeability μs, Young's modulus E,
When the magnetostriction constant is λ, a magnetostrictive film having a composition in which the absolute value of (μs · E) 1/2 · λ is 5 × 10 4 or more is selected. This makes it possible to estimate a highly sensitive magnetostrictive film using a simple physical property data test or an existing physical property data table.
【0009】請求項2記載の磁歪式トルクセンサの磁歪
膜によれば請求項1記載の磁歪式トルクセンサの磁歪膜
において更に、比透磁率μsが170以上、ヤング率E
が14000以上、磁歪定数λが30以上であり、Ni
を85wt%以上含むNi系磁歪膜が採用される。この
ようにすれば、高感度の磁歪膜を実現することができ
た。According to the magnetostrictive film of the magnetostrictive torque sensor of claim 2, the magnetostrictive film of the magnetostrictive torque sensor of claim 1 further has a relative magnetic permeability μs of 170 or more and a Young's modulus E
Is 14000 or more, the magnetostriction constant λ is 30 or more, and Ni
Of 85 wt% or more is adopted. In this way, a highly sensitive magnetostrictive film could be realized.
【0010】請求項3記載の磁歪式トルクセンサの磁歪
膜によれば請求項2記載の磁歪式トルクセンサの磁歪膜
において更に、Cを0.01〜2wt%含むNi−C系
磁歪膜が採用される。このようにすれば、高感度の磁歪
膜を実現することができた。請求項4記載の磁歪式トル
クセンサの磁歪膜によれば請求項1記載の磁歪式トルク
センサの磁歪膜において更に、透磁率μsが350以
上、ヤング率Eが18000以上、磁歪定数λが17以
上であり、Niを30〜90wt%、Alを0.1〜1
5wt%むNi−Fe−Al系磁歪膜が採用される。こ
のようにすれば、高感度の磁歪膜を実現することができ
た。According to the magnetostrictive film of the magnetostrictive torque sensor of the third aspect, the magnetostrictive film of the magnetostrictive torque sensor of the second aspect further employs a Ni-C-based magnetostrictive film containing 0.01 to 2 wt% of C. Is done. In this way, a highly sensitive magnetostrictive film could be realized. According to the magnetostrictive film of the magnetostrictive torque sensor according to claim 4, the magnetostrictive film of the magnetostrictive torque sensor according to claim 1 further has a magnetic permeability μs of 350 or more, a Young's modulus E of 18000 or more, and a magnetostriction constant λ of 17 or more. And 30 to 90% by weight of Ni and 0.1 to 1% of Al.
A 5 wt% Ni-Fe-Al-based magnetostrictive film is employed. In this way, a highly sensitive magnetostrictive film could be realized.
【0011】請求項5記載の磁歪式トルクセンサの磁歪
膜によれば請求項4記載の磁歪式トルクセンサの磁歪膜
において更に、Cを0.01〜2wt%含むNi−Fe
−Al−C系磁歪膜が採用される。このようにすれば、
高感度の磁歪膜を実現することができた。請求項6記載
の磁歪式トルクセンサの磁歪膜によれば請求項1記載の
磁歪式トルクセンサの磁歪膜において更に、比透磁率μ
sが150以上、ヤング率Eが15000以上、磁歪定
数λの絶対値が25以上であり、Niを80〜98wt
%含むNi−Co系磁歪膜が採用される。このようにす
れば、高感度の磁歪膜を実現することができた。According to the magnetostrictive film of the magnetostrictive torque sensor according to claim 5, the magnetostrictive film of the magnetostrictive torque sensor according to claim 4 further includes Ni-Fe further containing 0.01 to 2 wt% of C.
-An Al-C magnetostrictive film is employed. If you do this,
A highly sensitive magnetostrictive film was realized. According to the magnetostrictive film of the magnetostrictive torque sensor according to claim 6, the magnetostrictive film of the magnetostrictive torque sensor according to claim 1 further has a relative magnetic permeability μ.
s is 150 or more, Young's modulus E is 15000 or more, the absolute value of magnetostriction constant λ is 25 or more, and Ni is 80 to 98 wt.
% Is adopted. In this way, a highly sensitive magnetostrictive film could be realized.
【0012】[0012]
【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。磁歪膜として用いるN
i−Co系系合金としては、更に好ましくはNiを90
〜95wt%含むことが好ましい。その他、含まれるこ
とができる補助添加元素については、Mn、Mo、S
i、Cr、Cuがなどを0.1〜10wt%程度添加す
ることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples. N used as a magnetostrictive film
As the i-Co-based alloy, Ni is more preferably 90%.
It is preferable to contain 含 む 95 wt%. Other auxiliary additive elements that can be included include Mn, Mo, S
i, Cr, Cu, etc. can be added in an amount of about 0.1 to 10 wt%.
【0013】磁歪膜として用いるNi−Fe−Al−C
系磁歪膜としては、更に好ましくはNiを40〜80w
t%、Alは5〜10wt%含むことが好ましい。その
他、含まれることができる補助添加元素については、M
n、Mo、Si、Cr、Cuがなどを0.1〜10wt
%程度添加することができる。シャフトとしては、SC
r、SCMなどの合金鋼や炭素鋼更には非磁性のステン
レス鋼などを採用することができる。Ni--Fe--Al--C used as a magnetostrictive film
As the system magnetostrictive film, Ni is more preferably 40 to 80 watts.
It is preferable that t% and Al contain 5 to 10 wt%. Other auxiliary additive elements that can be included include M
n, Mo, Si, Cr, Cu, etc. 0.1 to 10 wt.
% Can be added. As the shaft, SC
Alloy steel such as r and SCM, carbon steel, and non-magnetic stainless steel can be used.
【0014】[0014]
(実施例1)実験に用いた磁歪式トルクセンサの磁歪膜
の形状を図1に示す。1はシャフト、2はシャフト1に
微少な隙間を介して嵌着されたボビンである。Embodiment 1 FIG. 1 shows the shape of a magnetostrictive film of a magnetostrictive torque sensor used in an experiment. Reference numeral 1 denotes a shaft, and 2 denotes a bobbin fitted to the shaft 1 with a small gap.
【0015】ボビン2は軸方向前後に一対のコイル溝を
有しており、両コイル溝の上部には励磁コイル3、4が
個別に巻装され、両コイル溝の下部には検出コイル5、
6が個別に巻装されている。一方のコイル溝にボビン2
を挟んで対面するシャフト1の外周面には第一の磁歪膜
7が被着され、他方のコイル溝にボビン2を挟んで対面
するシャフト1の外周面には第二の磁歪膜8が被着され
ている。両励磁コイル3、4のターン数は等しく、両検
出コイル5、6のターン数は等しく設定されている。The bobbin 2 has a pair of coil grooves in the front and rear directions in the axial direction. Excitation coils 3 and 4 are individually wound above the two coil grooves, and a detection coil 5 and a detection coil 5 are provided below the both coil grooves.
6 are individually wound. Bobbin 2 in one coil groove
A first magnetostrictive film 7 is attached to the outer peripheral surface of the shaft 1 facing the other, and a second magnetostrictive film 8 is applied to the outer peripheral surface of the shaft 1 facing the bobbin 2 to the other coil groove. Is being worn. The number of turns of both excitation coils 3 and 4 is equal, and the number of turns of both detection coils 5 and 6 is set equal.
【0016】図2に検出回路の構成を示す。所定周波数
の正弦波交流電圧(ここでは50kHz)が直列に接続
された励磁コイル3、4に印加されると、シャフト1に
かかる捻り応力に応じて磁歪膜7、8が交流磁界を変調
する。すると、両検出コイル5、6に誘導される信号電
圧が逆方向に変化するので、両検出コイル5、6の信号
電圧をそれぞれ検波器9、10で検波し、電圧増幅器1
1、12で増幅し、両信号電圧の差を差動増幅器13で
求めれば、ほぼシャフト1の応力すなわちトルクに比例
する信号電圧が得られる。FIG. 2 shows the configuration of the detection circuit. When a sine wave AC voltage of a predetermined frequency (here, 50 kHz) is applied to the exciting coils 3 and 4 connected in series, the magnetostrictive films 7 and 8 modulate the AC magnetic field according to the torsional stress applied to the shaft 1. Then, since the signal voltages induced in the two detection coils 5 and 6 change in the opposite direction, the signal voltages of the two detection coils 5 and 6 are detected by the detectors 9 and 10, respectively, and the voltage amplifier 1
If the signal is amplified by 1 and 12, and the difference between the two signal voltages is obtained by the differential amplifier 13, a signal voltage substantially proportional to the stress of the shaft 1, that is, the torque, can be obtained.
【0017】磁歪膜7、8は、プラズマ溶射により形成
され、その後、切削加工により、図1に示すように互い
に反対に向きかつ軸方向に対して45度の方向に平行に
伸びる多数の短い帯により構成される。上記説明したこ
れらの構成は、磁歪式トルクセンサ構造として一般的で
あり、よく知られているので、詳細な説明は省略する。The magnetostrictive films 7 and 8 are formed by plasma spraying, and thereafter, by cutting, a number of short strips extending in directions opposite to each other and parallel at 45 degrees to the axial direction as shown in FIG. It consists of. These configurations described above are general as a magnetostrictive torque sensor structure, and are well known, so detailed description will be omitted.
【0018】シャフト1の直径は17mm、長さは12
0mmであり、SCr420を素材として加工形成され
たものを準備し、その外周面をブラスト処理した後、プ
ラズマ溶射を行った。プラズマ溶射は、大気中で実施
し、シャフト1の外周面に厚さ0.3mmの磁歪膜を形
成した。次に、シャフト1をCO(一酸化炭素)雰囲気
で950℃で3h保持し、その後、850℃で1.5h
r保持した後、130℃まで油焼入れし、その後、18
0℃で2h保持した後、空冷して焼戻しを行なう浸炭熱
処理を行った。The diameter of the shaft 1 is 17 mm and the length is 12
A sample having a thickness of 0 mm and processed using SCr420 as a raw material was prepared, the outer peripheral surface thereof was blasted, and plasma spraying was performed. The plasma spraying was performed in the atmosphere, and a 0.3 mm thick magnetostrictive film was formed on the outer peripheral surface of the shaft 1. Next, the shaft 1 is held at 950 ° C. for 3 hours in a CO (carbon monoxide) atmosphere, and then at 850 ° C. for 1.5 hours.
and then oil quenching to 130 ° C.
After holding at 0 ° C. for 2 hours, a carburizing heat treatment for air cooling and tempering was performed.
【0019】次に、この磁歪膜に図1のようにシエブロ
ンパターン形状膜すなわち上記した多数の帯を形成すべ
く、加工処理を実施した。各帯の横幅は約2.2mm、
長さ10mm、膜厚0.2mmで軸の右半分は長手方向
に対して+45°、左半分は−45℃に傾き、各12本
づつ形成した。各帯間の間隔は約2.2mmとした。上
記磁歪膜の組成を決定するために、以下の理論解析を行
った。 (磁歪感度と磁歪膜の各物性値との関連に関する理論解
析)磁界H、磁束密度B、応力σ、ひずみeが微小な変
化をしている場合、各変化量の関係は以下のように示さ
れる。Next, as shown in FIG. 1, a processing process was performed on the magnetostrictive film to form a film having a Chevron pattern shape, that is, a large number of the above-described bands. The width of each band is about 2.2mm,
The length was 10 mm, the film thickness was 0.2 mm, the right half of the axis was inclined at + 45 ° with respect to the longitudinal direction, and the left half was inclined at −45 ° with respect to the longitudinal direction. The interval between the bands was about 2.2 mm. The following theoretical analysis was performed to determine the composition of the magnetostrictive film. (Theoretical Analysis on Relationship between Magnetostrictive Sensitivity and Each Physical Property Value of Magnetostrictive Film) When the magnetic field H, the magnetic flux density B, the stress σ, and the strain e slightly change, the relationship between the respective changes is shown as follows. It is.
【0020】まず、BはHとσとの関数であるから、B
=B(H、σ)とし、eもHとσとの関数であるからe
=(H、σ)として、 ただし、μsは応力一定条件での偏微分係数で表される
比透磁率であり、μoは真空透磁率であり、Eはヤング
率である。 ただし、dは磁歪変換定数、d’は逆磁歪変換定数であ
る。ここで、B、△eなどを単にB、eと記すことにす
れば、 と書き直すことができる。次に、B、Hの微小な変化に
よって磁気的に与えられたエネルギーのうち、弾性エネ
ルギーに変換されて、物質内にたくわえられたエネルギ
ーの割合をk2 とすると となる。ここで、kは電気機械変換定数である。また、
マックスウエルの関係式よりd=d’と考えられるか
ら、上記式を用いて、 B=(1−k2)μsμo・H+(μsμo・E)1/2
・e・k が得られる。ここで、(1−k2)μsμo・Hは、外
部磁界変化にもとづく磁束密度変化であり、(μsμo
・E)1/2 ・e・kは、磁歪にもとづく磁束密度変化と
考えられる。更に、等方磁歪を仮定し、静的磁歪定数を
λとすれば、上記磁歪にもとづく磁束密度変化は、 ただし、lは長さ、dlはその変化量である。結局、磁
歪にもとづく磁束密度変化、即ち、センサー感度は、
(μsμo・E)1/2 ・λをαと仮定すれば、透磁率
(比透磁率×真空透磁率)、ヤング率、磁歪変換定数、
電気機械結合定数とα・kという関係を有することが判
明した。電気機械変換定数kのトルク印加前後の変化を
無視すれば、センサー感度は、比透磁率μs、ヤング率
E、磁歪変換定数λに対して、αの関係をもつものと見
なせることが判明した。First, since B is a function of H and σ, B
= B (H, σ), and e is also a function of H and σ.
= (H, σ), Here, μs is a relative magnetic permeability expressed by a partial differential coefficient under a constant stress condition, μo is a vacuum magnetic permeability, and E is a Young's modulus. Here, d is a magnetostriction conversion constant, and d 'is an inverse magnetostriction conversion constant. Here, if B and △ e are simply written as B and e, Can be rewritten. Next, assuming that the ratio of the energy which is converted into elastic energy and is stored in the substance is k 2 among the magnetically applied energy due to minute changes in B and H, Becomes Here, k is an electromechanical conversion constant. Also,
Since it is considered that d = d ′ from the Maxwell relational expression, using the above expression, B = (1−k 2 ) μsμo · H + (μsμo · E) 1/2
・ Ek is obtained. Here, (1−k 2 ) μs μo · H is a magnetic flux density change based on an external magnetic field change, and (μs μo
E) 1/2 · e · k is considered to be a change in magnetic flux density based on magnetostriction. Furthermore, assuming isotropic magnetostriction and letting the static magnetostriction constant be λ, the change in magnetic flux density based on the magnetostriction is Here, 1 is the length and dl is the amount of change. After all, the change in magnetic flux density based on magnetostriction, that is, the sensor sensitivity,
(Μsμo · E) Assuming that 1/2 · λ is α, magnetic permeability (relative magnetic permeability × vacuum magnetic permeability), Young's modulus, magnetostriction conversion constant,
It was found that there was a relationship between the electromechanical coupling constant and α · k. It was found that if the change in the electromechanical conversion constant k before and after the application of the torque was ignored, the sensor sensitivity could be regarded as having a relationship α with respect to the relative permeability μs, the Young's modulus E, and the magnetostriction conversion constant λ.
【0021】また、センサー感度と各種磁性材料の磁気
特性とで、多変量解析による重回帰分析にて因果関係を
調べたところ、センサー感度は初期の磁歪の立ち上がり
と、透磁率とに深い相関をもつこともわかった。次に、
本発明者らは上記知見に基づき、3種類の成分系の溶射
磁歪膜について、予め知られている物性値μs、E、λ
がともに大きい組成のものを選択して実施例磁歪膜(a
〜c)を形成し、感度を調べた。また、比較のために合
計4種類の比較例磁歪膜(d〜g)についても感度を調
べた。その結果を図3に示す。図3から、異なる成分系
の多数の磁歪膜において、αと感度(出力)とが極めて
強い比例関係を持つことが実証された。なお、図3の特
性は、図1及び図2に示す磁歪式トルクセンサにおい
て、測定周波数は50KHz、励磁電圧2Vで測定した
ものであり、図3の縦軸の値(出力)は、回路の電圧増
幅分を除いた実力値を示す。When a causal relationship was examined by multiple regression analysis using multivariate analysis between the sensor sensitivity and the magnetic properties of various magnetic materials, the sensor sensitivity showed a deep correlation between the initial rise of magnetostriction and the magnetic permeability. I also knew it had. next,
Based on the above findings, the present inventors have previously known physical property values μs, E, and λ for three types of component sprayed magnetostrictive films.
Are selected from the compositions having large compositions.
~ C) was formed and the sensitivity was examined. For comparison, the sensitivity was also examined for a total of four types of comparative magnetostrictive films (d to g). The result is shown in FIG. FIG. 3 demonstrates that α and sensitivity (output) have an extremely strong proportional relationship in many magnetostrictive films of different component systems. The characteristics shown in FIG. 3 are measured at a measurement frequency of 50 KHz and an excitation voltage of 2 V in the magnetostrictive torque sensor shown in FIGS. 1 and 2, and the value (output) on the vertical axis in FIG. The ability value excluding the voltage amplification is shown.
【0022】その結果、優れた磁歪感度(出力)が得ら
れる組成範囲が各成分系について判明した。その結果を
表1に示す。As a result, the composition range in which excellent magnetostriction sensitivity (output) was obtained was found for each component system. Table 1 shows the results.
【0023】[0023]
【表1】 以下、上記各膜について更に詳細に説明する。[Table 1] Hereinafter, each of the above films will be described in more detail.
【0024】Ni−C溶射膜すなわち実施例品aは、上
記説明した製造工程で作製されたものであり、原料を1
00wt%ニッケルとしたものであり、カーボンCは、
還元熱処理にて約1wt%添加されたものである。Ni
−Fe−Al−C溶射膜すなわち実施例品bは、上記説
明した製造工程で作製されたものであり、磁歪膜組成
は、Niが43wt%、Alが1wt%、Cが2wt
%、残部がほぼFeとなっている。なお、添加元素とし
て、Co、Mo、Si、Cu、Mn、B、Crなどを合
計10wt%程度含有することもできる。The Ni—C sprayed film, ie, the product a of the embodiment, is manufactured by the above-described manufacturing process.
00 wt% nickel, and carbon C is
Approximately 1 wt% is added by reduction heat treatment. Ni
The Fe-Al-C sprayed film, that is, the product of Example b was manufactured by the above-described manufacturing process, and the composition of the magnetostrictive film was 43 wt% of Ni, 1 wt% of Al, and 2 wt% of C.
%, And the balance is almost Fe. In addition, Co, Mo, Si, Cu, Mn, B, Cr, and the like may be contained as a total of about 10 wt% as an additional element.
【0025】Ni−Co膜すなわち実施例品cは、鋳鍛
造法にて作製したバルク膜であり、95wt%のNiを
含有する。SCr膜すなわち非溶射比較例品dは、市販
の丸棒から作製したバルク膜であり、0.9〜1.2w
t%のCrを含有する。Coバルク膜すなわち比較例品
e、及び、Niバルク膜すなわち比較例品fも鋳鍛法に
て作製したそれぞれ100wt%のバルク膜である。The Ni—Co film, ie, Example product c, is a bulk film produced by the casting and forging method, and contains 95 wt% of Ni. The SCr film, ie, the non-sprayed comparative example product d, is a bulk film made from a commercially available round bar, and has a thickness of 0.9 to 1.2 watts.
Contains t% Cr. The Co bulk film, ie, the comparative example product e, and the Ni bulk film, ie, the comparative example product f, are also 100 wt% bulk films produced by the casting and forging method.
【0026】Ni溶射膜すなわち比較例品gは、上記説明
した製造工程のうち溶射完了後の還元熱処理工程以降を
省略したものである。この試験を含む各種試験及び上記
理論解析から、以下のことがわかった。Ni系磁歪膜で
は、比透磁率μsが170以上、ヤング率Eが1400
0以上、磁歪定数λが30以上であり、Niを85wt
%以上含む組成の材料、Ni−C系磁歪膜では、上記N
i系磁歪膜においいて更にCを0.01〜2wt%含む
組成の材料、Ni−Fe−Al系磁歪膜では、比透磁率
μsが350以上、ヤング率Eが18000以上、磁歪
定数λが17以上であり、Niを30〜90wt%、A
lを0.1〜15wt%含む組成の材料、Ni−Fe−
Al−C系磁歪膜では、上記Ni−Fe−Al系磁歪膜
において更にCを0.1〜2wt%含む組成の材料、N
i−Co系バルク磁歪膜では、比透磁率μsが180以
上、ヤング率Eが18000以上、磁歪定数λの絶対値
が25以上であり、Niを80〜98wt%含む組成の
材料。The Ni sprayed film, ie, the comparative example g, is obtained by omitting the reduction heat treatment step after the completion of the thermal spraying in the manufacturing steps described above. From various tests including this test and the above theoretical analysis, the following was found. The Ni-based magnetostrictive film has a relative magnetic permeability μs of 170 or more and a Young's modulus E of 1400.
0 or more, the magnetostriction constant λ is 30 or more, and Ni is 85 wt.
% Of a material having a composition containing at least
A material having a composition further containing 0.01 to 2 wt% of C in the i-based magnetostrictive film, and a Ni—Fe—Al-based magnetostrictive film having a relative magnetic permeability μs of 350 or more, a Young's modulus E of 18000 or more, and a magnetostriction constant λ of 17 As described above, 30 to 90 wt% of Ni, A
material containing 0.1 to 15 wt% of Ni, Ni-Fe-
In the Al—C magnetostrictive film, a material having a composition further containing 0.1 to 2 wt% of C in the above Ni—Fe—Al magnetostrictive film;
A material having a relative magnetic permeability μs of 180 or more, a Young's modulus E of 18000 or more, an absolute value of the magnetostriction constant λ of 25 or more, and a composition containing 80 to 98 wt% of Ni in the i-Co-based bulk magnetostrictive film.
【図1】実験に用いた磁歪式トルクセンサの磁歪膜及び
シャフトの形状を示す模式図である。FIG. 1 is a schematic diagram showing shapes of a magnetostrictive film and a shaft of a magnetostrictive torque sensor used in an experiment.
【図2】実験に用いた磁歪式トルクセンサの検出回路の
構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of a detection circuit of a magnetostrictive torque sensor used in an experiment.
【図3】各試料の出力電圧(感度)と複合物性パラメー
タαとの関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between an output voltage (sensitivity) of each sample and a composite physical property parameter α.
1はシャフト、7、8は磁歪膜 1 is a shaft, 7 and 8 are magnetostrictive films
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 厚直 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsunao Ito 2-1-1 Asahi-cho, Kariya-shi, Aichi Pref. Aisin Seiki Co., Ltd.
Claims (6)
を被着する磁歪式トルクセンサの磁歪膜において、 比透磁率をμs、ヤング率をE、磁歪定数をλとする
時、(μs・E)1/2・λの絶対値が5×104以上であ
る組成の磁歪膜であることを特徴とする磁歪式トルクセ
ンサの磁歪膜。1. A magnetostrictive film of a magnetostrictive torque sensor in which a magnetostrictive film is attached to an outer peripheral surface of a shaft made of metal. When a relative magnetic permeability is μs, a Young's modulus is E, and a magnetostriction constant is λ, (μs · E) 1/2 · λ absolute value magnetostrictive film of the magnetostrictive torque sensor, which is a magnetostrictive film in which the composition 5 × 10 4 or more.
膜において、 前記磁歪膜は、比透磁率μsが170以上、ヤング率E
が14000以上、磁歪定数λが30以上であり、Ni
を85wt%以上含むNi系磁歪膜からなることを特徴
とする磁歪式トルクセンサの磁歪膜。2. The magnetostrictive film according to claim 1, wherein said magnetostrictive film has a relative magnetic permeability μs of 170 or more and a Young's modulus E.
Is 14000 or more, the magnetostriction constant λ is 30 or more, and Ni
Of a Ni-based magnetostrictive film containing at least 85 wt% of Ni.
膜において、 前記磁歪膜は、更にCを0.01〜2wt%含むNi−
C系磁歪膜からなることを特徴とする磁歪式トルクセン
サの磁歪膜。3. The magnetostrictive film of a magnetostrictive torque sensor according to claim 2, wherein said magnetostrictive film further contains 0.01% to 2% by weight of Ni-Ni.
A magnetostrictive film for a magnetostrictive torque sensor, comprising a C-based magnetostrictive film.
膜において、 前記磁歪膜は、比透磁率μsが350以上、ヤング率E
が18000以上、磁歪定数λが17以上であり、Ni
を30〜90wt%、Alを0.1〜15wt%含むN
i−Fe−Al系磁歪膜からなることを特徴とする磁歪
式トルクセンサの磁歪膜。4. The magnetostrictive film according to claim 1, wherein said magnetostrictive film has a relative magnetic permeability μs of 350 or more and a Young's modulus E.
Is 18000 or more, the magnetostriction constant λ is 17 or more, and Ni
Containing 30 to 90 wt% of Al and 0.1 to 15 wt% of Al
A magnetostrictive film for a magnetostrictive torque sensor, comprising an i-Fe-Al-based magnetostrictive film.
膜において、 前記磁歪膜は、更にCを0.1〜2wt%含むNi−F
e−Al−C系磁歪膜からなることを特徴とする磁歪式
トルクセンサの磁歪膜。5. A magnetostrictive film for a magnetostrictive torque sensor according to claim 4, wherein said magnetostrictive film further contains 0.1 to 2 wt% of C.
A magnetostrictive film for a magnetostrictive torque sensor, comprising an e-Al-C-based magnetostrictive film.
膜において、 前記磁歪膜は、比透磁率μsが150以上、ヤング率E
が15000以上、磁歪定数λの絶対値が25以上であ
り、Niを80〜98wt%含むNi−Co系磁歪膜か
らなることを特徴とする磁歪式トルクセンサの磁歪膜。6. The magnetostrictive film according to claim 1, wherein said magnetostrictive film has a relative magnetic permeability μs of 150 or more and a Young's modulus E.
Is 15000 or more, the absolute value of the magnetostriction constant λ is 25 or more, and a magnetostrictive film of a magnetostrictive torque sensor comprising a Ni—Co-based magnetostrictive film containing 80 to 98 wt% of Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6462097A JPH10260092A (en) | 1997-03-18 | 1997-03-18 | Magnetostriction memberane for magentosriction type trque sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6462097A JPH10260092A (en) | 1997-03-18 | 1997-03-18 | Magnetostriction memberane for magentosriction type trque sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10260092A true JPH10260092A (en) | 1998-09-29 |
Family
ID=13263495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6462097A Pending JPH10260092A (en) | 1997-03-18 | 1997-03-18 | Magnetostriction memberane for magentosriction type trque sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10260092A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007093244A (en) * | 2005-09-27 | 2007-04-12 | Honda Motor Co Ltd | Magnetostrictive torque sensor and electric steering device |
JP2007101422A (en) * | 2005-10-05 | 2007-04-19 | Honda Motor Co Ltd | Magnetostrictive torque sensor, and electric power steering device using it |
-
1997
- 1997-03-18 JP JP6462097A patent/JPH10260092A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007093244A (en) * | 2005-09-27 | 2007-04-12 | Honda Motor Co Ltd | Magnetostrictive torque sensor and electric steering device |
JP2007101422A (en) * | 2005-10-05 | 2007-04-19 | Honda Motor Co Ltd | Magnetostrictive torque sensor, and electric power steering device using it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Amorphous metallic glass biosensors | |
Saiz et al. | Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems | |
SE529789C8 (en) | Measuring device comprising a layer of a magnetoelastic alloy and method for manufacturing the measuring device | |
Jarrahi et al. | An investigation into the applicability of Barkhausen noise technique in evaluation of machining properties of high carbon steel parts with different degrees of spheroidization | |
JPH11337527A (en) | Barkhausen noise detection method | |
JPH10260092A (en) | Magnetostriction memberane for magentosriction type trque sensor | |
US5652394A (en) | Stress sensor fabricated from a material having precipitated granular carbides | |
Kwun et al. | Nondestructive measurement of stress in ferromagnetic steels using harmonic analysis of induced voltage | |
Kashefi et al. | Decoupling the effect of stress and microstructure on MBN response in cast Q1N steel | |
JPH05231967A (en) | Magnetostrictive torque sensor | |
Niu et al. | Non-contact torque sensor based on magnetostrictive Fe30Co70 alloy | |
Augustyniak et al. | Nondestructive characterization of 2Cr-1Mo steel quality using magnetoacoustic emission | |
JP3024817B2 (en) | Magnetostrictive detector for magnetostrictive torque sensor and method of manufacturing the same | |
JPH04155232A (en) | Manufacture of magnetostrictive detector for torque sensor | |
JPH04221726A (en) | Manufacture of magnetostriction detector for torque sensor | |
Lasheras et al. | Development of nanocrystallized magnetoelastic sensors with self-biased effect and improved mass sensitivity | |
Liu et al. | Comparison in magnetic properties of ferritic stainless steels measured using bar and ring samples | |
Dybała et al. | Non-destructive evaluation of deformation in carbon steel based on magnetic method | |
Schröder | Magnetic Barkhausen effect and its application | |
JPH11183278A (en) | Highly sensitive magnetostrictive material for torque sensor, sensor shaft and method of manufacturing the same | |
JPH10227705A (en) | Magnetostrictive strain sensor and its manufacture | |
Boley et al. | The effects of chromium concentration on magnetically polarized heat-treated steel torque transducer shafts | |
Xu et al. | Torque Measurement Technology by Using a Magnetostrictive Ring and Multiple Magnets. Actuators 2021, 10, 124 | |
Kaplan et al. | Nondestructive evaluation of ferromagnetic materials by a ‘magnetometer like’experimental arrangement: Journal of Nondestructive Evaluation, Vol. 6, No. 2, pp. 73–80 (Jun. 1987) | |
Dhar et al. | Flux density dependence of magneto‐acoustic emission in pipeline steel |