JPH10241218A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH10241218A JPH10241218A JP4074997A JP4074997A JPH10241218A JP H10241218 A JPH10241218 A JP H10241218A JP 4074997 A JP4074997 A JP 4074997A JP 4074997 A JP4074997 A JP 4074997A JP H10241218 A JPH10241218 A JP H10241218A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- recording
- magnetization
- intermediate layer
- reproducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 12
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 11
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 11
- 150000003624 transition metals Chemical class 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000000696 magnetic material Substances 0.000 claims abstract description 3
- 229910002546 FeCo Inorganic materials 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 7
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 145
- 230000005415 magnetization Effects 0.000 description 43
- 239000000203 mixture Substances 0.000 description 12
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Abstract
(57)【要約】
【課題】 CAD方式において、クロストーク低減、超
解像効果の向上と再生信号強度を全て満足する媒体を提
供する。
【解決手段】希土類金属と遷移金属を含有する合金磁性
体よりなる再生層、中間層及び記録層を基板上に設けて
なり、再生層として室温において膜面に実質的に平行に
磁化するものを用い、中間層として下記(1)式で表さ
れる合金を用いることを特徴とする光磁気記録媒体。
(RENGd100-N)MTM100-M
RE:Tb、Dyから選ばれる一種以上の元素
TM:Fe、Coから選ばれる一種以上の元素
10≦N≦100、26≦M≦35
(57) [Problem] To provide a medium that satisfies all of a reduction in crosstalk, an improvement in super-resolution effect, and a reproduction signal intensity in a CAD system. A reproducing layer, an intermediate layer, and a recording layer made of an alloy magnetic material containing a rare earth metal and a transition metal are provided on a substrate, and the reproducing layer is magnetized at room temperature substantially parallel to the film surface. A magneto-optical recording medium characterized by using an alloy represented by the following formula (1) as an intermediate layer. (RE N Gd 100-N ) M TM 100-M RE: One or more elements selected from Tb and Dy TM: One or more elements selected from Fe and Co 10 ≦ N ≦ 100, 26 ≦ M ≦ 35
Description
【0001】[0001]
【産業上の利用分野】本発明は光磁気記録媒体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium.
【0002】[0002]
【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類金属と遷移金属のアモルファス合金の記録層を
用いた媒体は非常に優れた特性を示している。2. Description of the Related Art A magneto-optical recording medium has been put to practical use as a high-density, low-cost rewritable information recording medium. In particular, a medium using a recording layer of an amorphous alloy of a rare earth metal and a transition metal shows very excellent characteristics.
【0003】光磁気ディスクは非常に大容量の記録媒体
であるが、社会の情報量の増大に伴いさらなる大容量化
が望まれている。光ディスクの記録密度は通常の場合、
その再生光のスポットの大きさで決ってしまう。スポッ
トの大きさはレーザーの波長が短いほど小さくすること
ができるため、レーザーの短波長化の検討が進められて
いるが、非常に困難を伴っている。[0003] Magneto-optical disks are extremely large-capacity recording media, but with the increase in the amount of information in society, a further increase in capacity is desired. The recording density of an optical disc is usually
It is determined by the size of the spot of the reproduction light. Since the spot size can be reduced as the laser wavelength becomes shorter, studies have been made to shorten the laser wavelength, but this is very difficult.
【0004】一方、レーザーの波長によって決定される
以上の分解能を色々な工夫によって得ようとする、いわ
ゆる超解像技術の試みが近年行われている。その一つ
に、光磁気ディスクを用い、多層膜間の交換結合力を用
いた磁気誘導超解像(magnetically induced super re
solution以下MSR)が報告されている。On the other hand, in recent years, so-called super-resolution techniques which attempt to obtain a resolution higher than that determined by the wavelength of the laser by various means have been attempted. One of them is using a magneto-optical disk and using magnetically induced super resolution using the exchange coupling force between multilayer films.
solution or MSR).
【0005】MSRの一つの形態として、CAD(Cent
er aperture detection)と呼ばれる方式がある。CAD
媒体は、記録層及び再生層の2層の磁性層を有する。再
生層は、室温付近では磁化が膜面に平行な面内磁化とな
り、信号を再生しない「マスク領域」を形成する。As one form of MSR, CAD (Cent
er aperture detection). CAD
The medium has two magnetic layers, a recording layer and a reproducing layer. In the reproducing layer, the magnetization becomes in-plane magnetization parallel to the film surface near room temperature, and forms a "mask region" in which no signal is reproduced.
【0006】一方高温になれば再生層の磁化が減少する
ことで垂直磁化となり、記録層の磁化を交換結合力で転
写する「アパーチャー領域」となる。再生時には再生ス
ポット内に温度分布ができるので、その高温部(アパー
チャー領域)からのみ信号を再生することになる。信号
再生領域を限定することで再生スポットが実効的に小さ
くなり、信号の分解能が向上する。On the other hand, when the temperature rises, the magnetization of the reproducing layer decreases and becomes perpendicular magnetization, and becomes an "aperture region" for transferring the magnetization of the recording layer by the exchange coupling force. At the time of reproduction, since a temperature distribution is formed in the reproduction spot, the signal is reproduced only from the high temperature part (aperture area). By limiting the signal reproduction area, the reproduction spot is effectively reduced, and the resolution of the signal is improved.
【0007】この結果高密度記録が可能となる。さらに
室温である隣接トラックもマスク領域となるので、隣接
トラックからの信号の漏れ込み(クロストーク)が殆ど
生じない。このため記録トラックの間隔も小さくするこ
とができる。As a result, high-density recording becomes possible. Further, since the adjacent track at room temperature also becomes a mask area, almost no signal leakage (crosstalk) from the adjacent track occurs. Therefore, the interval between the recording tracks can be reduced.
【0008】[0008]
【発明が解決しようとする課題】再生温度で記録層の記
録磁区を再生層に正確に転写するためには、アパーチャ
ー領域における交換結合力並びに再生層の垂直磁気異方
性が十分大きいものである必要がある。一方マスク領域
において再生層は交換結合力並びに垂直磁気異方性が低
く磁区を転写しない状態であることが好ましい。In order to accurately transfer the magnetic domains of the recording layer to the reproducing layer at the reproducing temperature, the exchange coupling force in the aperture region and the perpendicular magnetic anisotropy of the reproducing layer are sufficiently large. There is a need. On the other hand, in the mask region, the reproducing layer preferably has a low exchange coupling force and low perpendicular magnetic anisotropy, and is in a state where magnetic domains are not transferred.
【0009】従来は、室温において再生層内部で磁化を
垂直方向から面内方向に十分回転させるため、再生層の
膜厚を100nm程度まで厚くとる必要があった。この
場合、再生層があまりに厚いため、再生温度において再
生層の磁化が十分垂直にならずに、再生信号が低下する
という問題があった。さらに、膜厚が厚いことによる記
録感度の低下や成膜コストの上昇も問題であった。Conventionally, in order to sufficiently rotate the magnetization from the perpendicular direction to the in-plane direction inside the reproducing layer at room temperature, it was necessary to increase the thickness of the reproducing layer to about 100 nm. In this case, since the reproducing layer is too thick, there is a problem that the magnetization of the reproducing layer is not sufficiently perpendicular at the reproducing temperature, and the reproducing signal is reduced. Further, there is a problem that the recording sensitivity is lowered and the film formation cost is increased due to the large film thickness.
【0010】これを避けるため再生層の膜厚を落とす
と、室温で磁化が十分に面内方向に向かず、十分な超解
像効果が得られなかった。「Proceeding of MORIS'94,
p417」にCAD媒体においてGdFe中間層を挿入する
ことにより中間層で磁化回転を生じ、マスク領域を生成
するための再生層膜厚を減少可能であることが記載され
ている。しかし、この方式においても中間層の垂直磁気
異方性が低いため、アパーチャー領域で十分磁化が垂直
にならず、再生信号レベルが不十分であった。When the thickness of the reproducing layer is reduced to avoid this, the magnetization does not sufficiently turn in the in-plane direction at room temperature, and a sufficient super-resolution effect cannot be obtained. "Proceeding of MORIS'94,
p417 ”describes that by inserting a GdFe intermediate layer in a CAD medium, magnetization rotation occurs in the intermediate layer, and the thickness of a reproducing layer for generating a mask region can be reduced. However, even in this method, since the perpendicular magnetic anisotropy of the intermediate layer was low, the magnetization was not sufficiently perpendicular in the aperture region, and the reproduction signal level was insufficient.
【0011】[0011]
【課題を解決するための手段】本発明は、CAD方式に
おいて、クロストーク低減、超解像効果の向上と再生信
号強度を全て満足する媒体を提供するものである。本発
明の要旨は、希土類金属と遷移金属を含有する合金磁性
体よりなる再生層、中間層及び記録層を基板上に設けて
なり、再生層として室温において膜面に実質的に平行に
磁化するものを用い、中間層として下記(1)式で表さ
れる合金を用いることを特徴とする光磁気記録媒体に存
する。SUMMARY OF THE INVENTION The present invention provides a medium that satisfies all of the requirements of the cross-talk reduction, the super-resolution effect, and the reproduction signal strength in the CAD system. The gist of the present invention is that a reproducing layer, an intermediate layer, and a recording layer made of an alloy magnetic material containing a rare earth metal and a transition metal are provided on a substrate, and are magnetized substantially parallel to a film surface at room temperature as a reproducing layer. And a magneto-optical recording medium characterized by using an alloy represented by the following formula (1) as an intermediate layer.
【0012】[0012]
【数2】(RENGd100-N)MTM100-M RE:Tb、Dyから選ばれる一種以上の元素 TM:Fe、Coから選ばれる一種以上の元素 10≦N≦100、26≦M≦35(RE N Gd 100-N ) M TM 100-M RE: One or more elements selected from Tb and Dy TM: One or more elements selected from Fe and Co 10 ≦ N ≦ 100, 26 ≦ M ≤35
【0013】[0013]
【発明の実施の形態】以下、本発明の内容を詳細に説明
する。本発明の光磁気記録媒体は少なくとも再生層、中
間層、記録層の3層の磁性層を有する。通常のCAD媒
体においては、記録層上に直接再生層を設ける。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described in detail. The magneto-optical recording medium of the present invention has at least three magnetic layers of a reproducing layer, an intermediate layer, and a recording layer. In a normal CAD medium, a reproducing layer is provided directly on a recording layer.
【0014】しかし、本発明の場合は室温において希土
類金属が優勢な組成を持つ中間層を設ける。この中間層
は、Tb、Dyから選ばれる一種以上の元素を希土類元
素全体の10%以上含有し、かつ室温において希土類金
属磁化優勢の組成となっている。この様な中間層におい
ては、室温において磁化が大きいため、再生時のマスク
領域では比較的垂直磁気異方性が低く、室温以上では磁
化が減少してくるため、再生時のアパーチャー領域では
十分高い垂直磁気異方性が得られる。However, in the case of the present invention, an intermediate layer having a predominant composition of a rare earth metal at room temperature is provided. This intermediate layer contains one or more elements selected from Tb and Dy in an amount of 10% or more of the entire rare earth element, and has a composition in which rare earth metal magnetization is dominant at room temperature. In such an intermediate layer, since the magnetization is large at room temperature, the perpendicular magnetic anisotropy is relatively low in the mask region at the time of reproduction, and the magnetization decreases at room temperature or higher, and is sufficiently high in the aperture region at the time of reproduction. Perpendicular magnetic anisotropy is obtained.
【0015】中間層が希土類金属優勢であり、室温では
垂直磁気異方性が低いことで、記録層から再生層にかけ
ての磁化の回転が起こりやすくなる。この結果、再生層
はより薄い膜厚で磁化を面内に向けられる。一方再生温
度においては、中間層の磁化は低下し、十分高い垂直磁
気異方性を発生して記録層の磁化を再生層に転写する。Since the intermediate layer is predominantly of a rare earth metal and has low perpendicular magnetic anisotropy at room temperature, the rotation of the magnetization from the recording layer to the reproducing layer tends to occur. As a result, the reproducing layer can direct magnetization in a plane with a smaller film thickness. On the other hand, at the reproducing temperature, the magnetization of the intermediate layer decreases, and a sufficiently high perpendicular magnetic anisotropy is generated to transfer the magnetization of the recording layer to the reproducing layer.
【0016】このとき再生層の膜厚が従来よりも薄いた
め、再生層の磁化は十分膜面に垂直方向に向くことがで
き、高い再生信号レベルを得ることが可能である。これ
は、室温(マスク領域)において再生層における磁化回
転の一部を中間層で代替すると考えて良い。このため再
生層の膜厚を薄くできるのである。垂直磁気異方性K⊥
は、一軸異方性Kuと、反磁界エネルギー2πMs2(M
sは飽和体積磁化率)を用いて、At this time, since the thickness of the reproducing layer is smaller than the conventional one, the magnetization of the reproducing layer can be directed sufficiently in the direction perpendicular to the film surface, and a high reproduction signal level can be obtained. This can be considered that at room temperature (mask region), a part of the magnetization rotation in the reproducing layer is replaced by the intermediate layer. Therefore, the thickness of the reproducing layer can be reduced. Perpendicular magnetic anisotropy K⊥
Is the uniaxial anisotropy Ku and the demagnetizing field energy 2πMs 2 (M
s is the saturation volume susceptibility)
【0017】[0017]
【数3】 K⊥=Ku−2πMs2 ・・・(2)K⊥ = Ku−2πMs 2 (2)
【0018】で表される。中間層はTbないしDyを含
有しているため、本来の異方性Kuはかなり大きい。し
かしマスク領域ではMsが大きいため、反磁界エネルギ
ーのためK⊥は小さくなり、磁化の面内方向への回転を
生じる。一方アパーチャー領域においてはMsが減少
し、## EQU1 ## Since the intermediate layer contains Tb or Dy, the original anisotropic Ku is considerably large. However, since Ms is large in the mask region, K⊥ becomes small due to the demagnetizing field energy, and the magnetization rotates in the in-plane direction. On the other hand, in the aperture region, Ms decreases,
【0019】[0019]
【数4】 K⊥≒Ku ・・・(3)[Expression 4] K⊥ ≒ Ku (3)
【0020】となり、中間層の本来の高い異方性のた
め、磁化は膜面に垂直となる。従って、再生層の膜厚が
薄くなる分、再生層表面の磁化はより垂直に近くなり、
高い再生信号レベルを得ることが可能である。The magnetization is perpendicular to the film surface due to the inherently high anisotropy of the intermediate layer. Therefore, as the thickness of the reproducing layer becomes thinner, the magnetization of the reproducing layer surface becomes more perpendicular,
It is possible to obtain a high reproduction signal level.
【0021】先に述べたGdFeを用いた中間層を用い
る場合と比べると、アパーチャー部で中間層が高い垂直
磁気異方性を持つようになるので、より再生層の磁化が
垂直になり、より高い再生信号レベルを得ることができ
る。従来のCAD媒体では、再生層における磁化の温度
変化しか用いていなかったが、本発明では再生層、記録
層の2層の温度変化を用いる。Compared with the case where the intermediate layer using GdFe is used, the intermediate layer has a higher perpendicular magnetic anisotropy in the aperture portion, so that the magnetization of the reproducing layer becomes more perpendicular, and A high reproduction signal level can be obtained. In the conventional CAD medium, only the temperature change of the magnetization in the reproducing layer is used, but in the present invention, the temperature change of the two layers of the reproducing layer and the recording layer is used.
【0022】従って、温度に対しより急峻に磁化変化が
得られ、超解像特性が向上する。以下各層の好ましい特
性を順に説明する。再生層に用いられる物質としては、
GdFeCo、GdCo、GdFe、GdDyFe、G
dDyCo、GdDyFeCo等が好ましく用いられ
る。中でも、垂直磁気異方性が小さくキュリー温度が高
いGdFeCoが好ましく用いられる。Therefore, a change in magnetization is obtained more steeply with respect to temperature, and the super-resolution characteristic is improved. Hereinafter, preferable characteristics of each layer will be described in order. Materials used for the regeneration layer include:
GdFeCo, GdCo, GdFe, GdDyFe, G
dDyCo, GdDyFeCo and the like are preferably used. Among them, GdFeCo having small perpendicular magnetic anisotropy and high Curie temperature is preferably used.
【0023】[0023]
【数5】 Gdx(FeyCo100-y)100-x (いずれも原子%)## EQU00005 ## Gdx (FeyCo 100- y) 100- x (all in atomic%)
【0024】と表した場合、26≦x≦34、0≦y≦90であ
ることが好ましい。さらに好ましくは27≦x≦32かつ5≦
y≦85である。特に好ましくは28≦x≦31かつ30≦y≦70
である。ただし、Ti、Cr、Pt、Mo等の添加物を
5原子%以下程度添加しても良い。室温(媒体使用環境
の温度であり、本発明では25℃とする)における再生
層の好ましい体積磁化率Ms1は100emu/cc以上であ
り、さらに好ましくは150emu/cc以下である。In this case, it is preferable that 26 ≦ x ≦ 34 and 0 ≦ y ≦ 90. More preferably 27 ≦ x ≦ 32 and 5 ≦
y ≦ 85. Particularly preferably, 28 ≦ x ≦ 31 and 30 ≦ y ≦ 70
It is. However, additives such as Ti, Cr, Pt, and Mo may be added in an amount of about 5 atomic% or less. A preferable volume magnetic susceptibility Ms1 of the reproducing layer at room temperature (the temperature of the environment in which the medium is used, which is 25 ° C. in the present invention) is 100 emu / cc or more, and more preferably 150 emu / cc or less.
【0025】Ms1が小さすぎるとマスク領域で磁化が
十分に面内方向にならず、超解像の効果が小さくなって
しまう。しかしMs1は大きすぎると、アパーチャー領
域で磁化が十分垂直方向にならないので400emu/cc以
上が好ましく、さらに好ましくは350emu/cc以上であ
る。If Ms1 is too small, the magnetization in the mask region does not become sufficiently in-plane, and the effect of super-resolution is reduced. However, if Ms1 is too large, the magnetization is not sufficiently perpendicular in the aperture region, so that it is preferably 400 emu / cc or more, more preferably 350 emu / cc or more.
【0026】再生層の室温における好ましい保磁力Hc
1は500(Oe)以下であり、さらに好ましくは30
0(Oe)以下である。先に述べた様に再生層の膜厚が
厚すぎると、アパーチャ領域で磁化が十分垂直に立たな
くなる。従って再生層の膜厚は90nm以下であること
が好ましい。さらに好ましくは80nm以下である。特
に好ましくは70nm以下である。Preferred coercive force Hc of the reproducing layer at room temperature
1 is 500 (Oe) or less, and more preferably 30 (Oe).
0 (Oe) or less. As described above, if the thickness of the reproducing layer is too large, the magnetization does not stand sufficiently perpendicular in the aperture region. Therefore, the thickness of the reproducing layer is preferably 90 nm or less. More preferably, it is 80 nm or less. Particularly preferably, it is 70 nm or less.
【0027】再生層の膜厚が薄すぎる場合、マスク領域
で磁化が十分面内に向かず超解像能力が低下する。従っ
て再生層の膜厚は20nm以上が好ましい。さらに好ま
しくは30nm以上である。中間層は室温で希土類金属
優勢の磁化を有しており、温度が上がるにつれ磁化が減
少し、垂直磁気異方性が向上するようなものである。中
間層の物質としては以下の式を満たすものが用いられ
る。If the thickness of the reproducing layer is too small, the magnetization in the mask region is not sufficiently directed in the plane, and the super-resolution capability is reduced. Therefore, the thickness of the reproducing layer is preferably 20 nm or more. More preferably, it is 30 nm or more. The intermediate layer has a rare earth metal dominant magnetization at room temperature, such that the magnetization decreases with increasing temperature and the perpendicular magnetic anisotropy improves. A substance satisfying the following formula is used as the material of the intermediate layer.
【0028】[0028]
【数6】(RENGd100-N)MTM100-M (RE N Gd 100-N ) M TM 100-M
【0029】 RE:Tb、Dyから選ばれる一種以上の元素 TM:Fe、Coから選ばれる一種以上の元素 10≦N≦100、26≦M≦35 さらに好ましくは20≦N≦100であり、特に好まし
くは30≦N≦90である。RE: one or more elements selected from Tb and Dy TM: one or more elements selected from Fe and Co 10 ≦ N ≦ 100, 26 ≦ M ≦ 35 More preferably, 20 ≦ N ≦ 100, particularly preferably Preferably, 30 ≦ N ≦ 90.
【0030】具体的にはTbFe、TbFeCo、Dy
FeCo、TbDyFeCo、GdDyFe、GdDy
FeCo、GdTbDyFeCo等が好ましく用いられ
る。中でも、垂直磁気異方性が高いTbFeCoを主体
とした合金が好ましく用いられる。再生層と記録層間の
交換結合力を充分に弱くするためには室温において15
0emu/cc以上の体積磁化率を有することが好ましい。Specifically, TbFe, TbFeCo, Dy
FeCo, TbDyFeCo, GdDyFe, GdDy
FeCo, GdTbDyFeCo and the like are preferably used. Among them, an alloy mainly composed of TbFeCo having high perpendicular magnetic anisotropy is preferably used. In order to sufficiently reduce the exchange coupling force between the reproducing layer and the recording layer, at room temperature, 15
It preferably has a volume susceptibility of 0 emu / cc or more.
【0031】また、温度が上がった際に垂直磁気異方性
を充分向上するには体積磁化率が100emu/cc以下にな
る温度が50℃以上、200℃以下に存在することが好
ましい。ただし、室温において垂直磁気異方性を低下さ
せる効果を十分発揮するためには、室温においての磁化
が記録層の磁化よりも大きいことが好ましい。In order to sufficiently improve the perpendicular magnetic anisotropy when the temperature rises, it is preferable that the temperature at which the volume susceptibility becomes 100 emu / cc or less exists between 50 ° C. and 200 ° C. However, in order to sufficiently exhibit the effect of lowering the perpendicular magnetic anisotropy at room temperature, the magnetization at room temperature is preferably larger than the magnetization of the recording layer.
【0032】一般に遷移金属中のCo比率でが高い方
が、同一遷移金属含有量での磁化が大きくなる。この結
果、室温での垂直磁気異方性を下げることができる。従
って中間層の遷移金属全体に対するCoの比率は記録金
属より高い方が好ましい。室温における磁化を高くとる
ため、遷移金属中にCoの比率が20%以上であること
が好ましい。さらに好ましくは30%以上である。In general, the higher the Co ratio in the transition metal, the greater the magnetization at the same transition metal content. As a result, the perpendicular magnetic anisotropy at room temperature can be reduced. Therefore, the ratio of Co to the entire transition metal in the intermediate layer is preferably higher than that of the recording metal. In order to increase the magnetization at room temperature, the ratio of Co in the transition metal is preferably 20% or more. More preferably, it is 30% or more.
【0033】ただし、Ti、Cr、Pt、Mo等の添加
物を5原子%以下程度添加しても良い。中間層の膜厚は
3nm以上50nm以下であることが好ましい。さらに
好ましくは5nm以上40nm以下、特に好ましくは8
nm以上30nm以下である。中間層が薄過ぎれば本発
明の効果が無くなり、厚過ぎれば記録層からの磁区転写
が起こりにくくなる。However, additives such as Ti, Cr, Pt and Mo may be added in an amount of about 5 atomic% or less. The thickness of the intermediate layer is preferably 3 nm or more and 50 nm or less. More preferably, 5 nm or more and 40 nm or less, particularly preferably 8 nm or more.
nm or more and 30 nm or less. If the intermediate layer is too thin, the effect of the present invention is lost, and if it is too thick, magnetic domain transfer from the recording layer hardly occurs.
【0034】中間層の室温における保磁力は3kOe以
下であることが好ましい。さらに好ましくは2kOe以
下である。記録層は、安定して記録を蓄えている層であ
るから、再生ビームで劣化しない大きさのキュリー温度
を有していることが必要である。キュリー温度は、25
0〜350℃程度が好ましい。キュリー温度が高すぎる
と、記録に要するレーザーのパワーが大きくなりすぎて
しまう。The coercive force of the intermediate layer at room temperature is preferably 3 kOe or less. More preferably, it is 2 kOe or less. Since the recording layer is a layer in which recording is stably stored, it is necessary that the recording layer has a Curie temperature that does not deteriorate with a reproduction beam. Curie temperature is 25
About 0 to 350 ° C. is preferable. If the Curie temperature is too high, the laser power required for recording will be too high.
【0035】記録層は、高い垂直磁気異方性を持つこと
も、再生層の磁化に強い力を与えるために必要である。
記録層の物質としては、REx(FeCo)100-xよりな
り、16≦x≦26が好ましく用いられる。ただし、R
EはTb、Dyから選ばれる一種以上の元素である。The recording layer also needs to have high perpendicular magnetic anisotropy in order to give a strong force to the magnetization of the reproducing layer.
The material of the recording layer is made of RE x (FeCo) 100-x , and preferably 16 ≦ x ≦ 26. Where R
E is one or more elements selected from Tb and Dy.
【0036】具体的にはTbFeCo、TbCo、Dy
FeCo、TbDyFeCo、DyCoが好ましく用い
られる。記録層としては特に垂直磁気異方性の大きいT
bFeCoを主体とした合金が好ましく用いられる。中
でも、Specifically, TbFeCo, TbCo, Dy
FeCo, TbDyFeCo and DyCo are preferably used. As the recording layer, T having particularly large perpendicular magnetic anisotropy is used.
An alloy mainly composed of bFeCo is preferably used. Among them,
【0037】[0037]
【数7】 Tbx(FeyCo100-y)100-x (いずれも原子%)## EQU00007 ## Tbx (FeyCo 100- y) 100- x (all in atomic%)
【0038】と表した場合、16≦x≦26、60≦y≦90であ
ることが好ましい。さらに好ましくは、18≦x≦24、70
≦y≦85 である。本発明においては室温において中間層
を希土類金属磁化優勢の組成とする。このため、記録時
に記録領域周囲の中間層からの漏洩磁束が記録時に影響
し、記録磁場依存性を悪化させる可能性がある。In this case, it is preferable that 16 ≦ x ≦ 26 and 60 ≦ y ≦ 90. More preferably, 18 ≦ x ≦ 24, 70
≤ y ≤ 85. In the present invention, the intermediate layer has a composition in which rare earth metal magnetization is dominant at room temperature. For this reason, the leakage magnetic flux from the intermediate layer around the recording area at the time of recording influences at the time of recording, and there is a possibility that the recording magnetic field dependency is deteriorated.
【0039】そこで記録層は室温において遷移金属磁化
優勢の組成とし、中間層の漏洩磁界を打ち消すようにな
すのが好ましい。ただし、Ti、Cr、Pt、Mo等の
添加物を5原子%以下程度添加しても良い。記録層の膜
厚は20nm以上、70nm以下であることが好まし
い。記録層の膜厚は中間層の漏洩磁界を打ち消し、記録
磁界依存性が良好になるのに十分な膜厚であることが好
ましい。Therefore, it is preferable that the recording layer has a composition in which the transition metal magnetization is dominant at room temperature, so as to cancel the leakage magnetic field of the intermediate layer. However, additives such as Ti, Cr, Pt, and Mo may be added in an amount of about 5 atomic% or less. The thickness of the recording layer is preferably 20 nm or more and 70 nm or less. It is preferable that the film thickness of the recording layer is sufficient to cancel the leakage magnetic field of the intermediate layer and improve the recording magnetic field dependency.
【0040】記録層の記録を安定に蓄えておくには記録
層の保磁力は再生層の保磁力よりも大きいことが好まし
い。記録層の保磁力は3kOe以上であることが好まし
い。さらに好ましくは5kOe以上である。中間層と再
生層の間に、非磁性あるいはキュリー温度がいずれの層
よりも低く、再生時に高温部で交換結合を切断する切断
層を挿入する場合もある。In order to stably store the information recorded on the recording layer, it is preferable that the coercive force of the recording layer is larger than that of the reproducing layer. The coercive force of the recording layer is preferably 3 kOe or more. More preferably, it is 5 kOe or more. Between the intermediate layer and the reproducing layer, there may be a case where a cutting layer which cuts exchange coupling at a high temperature portion during reproduction is inserted between the intermediate layer and the reproducing layer because of its non-magnetic or Curie temperature lower than that of either layer.
【0041】この場合は、記録層から再生層への磁化方
向の転写は静磁結合力によって行われる。静磁結合によ
る転写を用いる場合でも中間層の存在により、低温では
中間層表面の磁化が傾くので再生層と記録層の間の結合
が低下し、かつ高温では中間層の垂直磁気異方性が上が
ることにより結合が強くなり高い超解像効果が得られ
る。この場合、再生層、記録層の各々はアパーチャー領
域において十分強い静磁結合力を得るのに十分な磁化を
有することが好ましい。In this case, the transfer of the magnetization direction from the recording layer to the reproduction layer is performed by a magnetostatic coupling force. Even when using transfer by magnetostatic coupling, due to the presence of the intermediate layer, the magnetization of the surface of the intermediate layer is inclined at low temperatures, so that the coupling between the reproducing layer and the recording layer is reduced. By raising, the coupling becomes stronger and a high super-resolution effect can be obtained. In this case, it is preferable that each of the reproducing layer and the recording layer has sufficient magnetization to obtain a sufficiently strong magnetostatic coupling force in the aperture region.
【0042】希土類金属と遷移金属の合金は非常に酸化
しやすいため、磁性層の両側に保護膜を着けた態様をと
ることが好ましい。保護膜としては、酸化Si、酸化A
l、酸化Ta、酸化Ti、窒化Si、窒化Al、炭化S
iなどの単体あるいはそれらの混合物が好ましく用いら
れる。保護膜の膜厚は50nm〜150nm程度が好ま
しい。基板側の保護膜を作製後、表面をプラズマエッチ
ングすることで磁性層の磁気異方性を向上させることが
できる。Since an alloy of a rare earth metal and a transition metal is very easily oxidized, it is preferable to adopt a mode in which protective films are provided on both sides of the magnetic layer. As the protective film, Si oxide, A oxide
1, Ta oxide, Ti oxide, Si nitride, Al nitride, Carbide S
A simple substance such as i or a mixture thereof is preferably used. The thickness of the protective film is preferably about 50 nm to 150 nm. After forming the protective film on the substrate side, the magnetic anisotropy of the magnetic layer can be improved by plasma etching the surface.
【0043】磁性層の記録層側に直接あるいは保護層を
介して、放熱層としてAl、Cu、Au、Ag等の単
体、あるいはそれを主体とした合金よりなる高熱伝導物
質を設けることは、再生時の熱分布を安定させるうえで
望ましい構成である。放熱層の膜厚は10nm〜100
nm程度が好ましい。本発明の方式ではクロストークを
非常に低く抑えられるため、通常のランド記録あるいは
グルーブ記録の他にランドとグルーブの両方に記録を行
うことも可能である。The provision of a high thermal conductive material made of Al, Cu, Au, Ag, or the like alone or an alloy mainly composed of Al, Cu, Au, or Ag as a heat radiation layer directly or through a protective layer on the recording layer side of the magnetic layer is not possible. This is a desirable configuration for stabilizing the heat distribution at the time. The thickness of the heat radiation layer is 10 nm to 100
About nm is preferable. In the method of the present invention, since the crosstalk can be suppressed to a very low level, it is possible to perform recording on both lands and grooves in addition to ordinary land recording or groove recording.
【0044】[0044]
【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention.
【0045】[0045]
【実施例1】スパッタリング装置に1.0μmのトラッ
クピッチの案内溝を持ったポリカーボネート基板を導入
し、5×10-5 Pa以下の真空度まで排気を行った。
この後、保護層として基板上に反応性スパッタリングを
用い80nmの酸化Taを形成した。Example 1 A polycarbonate substrate having a guide groove with a track pitch of 1.0 μm was introduced into a sputtering apparatus, and the vacuum was exhausted to a degree of vacuum of 5 × 10 −5 Pa or less.
Thereafter, 80 nm of Ta oxide was formed on the substrate as a protective layer by using reactive sputtering.
【0046】次に酸化Ta上に、Gd28(Fe50Co50)
72よりなる50nmの再生層、(TbNGd100-N)
M(Fe70Co30)100-Mよりなる20nmの中間層、T
b21(Fe75Co25)79よりなる50nmの記録層を設け
た。最後にSiNよりなる50nmの保護層を設けた。
Nの値は0〜100まで変化させた。Mの値は18〜38まで変
化させた。Next, Gd 28 (Fe 50 Co 50 ) is formed on Ta oxide.
50nm of the reproducing layer made of 72, (Tb N Gd 100- N)
M (Fe 70 Co 30 ) 100-M 20 nm intermediate layer, T
A 50 nm recording layer made of b 21 (Fe 75 Co 25 ) 79 was provided. Finally, a 50 nm protective layer made of SiN was provided.
The value of N was varied from 0 to 100. The value of M was varied from 18 to 38.
【0047】再生層、中間層、記録層のキュリー温度を
測定したところ、全て300℃以上であった。また、再
生層は室温(25℃)において希土類金属の磁化が優勢
であり体積磁化率は260emu/ccであった。補償温度は
190℃であった。体積磁化率が150emu/ccになる温
度は120℃であった。再生層は室温において面内磁化
膜であった。記録層は室温において遷移金属磁化優勢で
あり保磁力が12kOeであった。The Curie temperatures of the reproducing layer, the intermediate layer and the recording layer were all found to be 300 ° C. or higher. Further, in the reproducing layer, the magnetization of the rare earth metal was dominant at room temperature (25 ° C.), and the volume susceptibility was 260 emu / cc. The compensation temperature was 190 ° C. The temperature at which the volume susceptibility reached 150 emu / cc was 120 ° C. The reproducing layer was an in-plane magnetized film at room temperature. The recording layer had a transition metal magnetization dominance at room temperature and a coercive force of 12 kOe.
【0048】このようにして作製したディスクを波長6
80nm、開口数0.55の評価機を用いて光変調記録
によりCNR(狭帯域の信号対雑音比)の評価を行っ
た。記録条件は線速7m/s、周波数9MHz、再生パ
ワー3.0mW、記録パワー9mW、記録duty30%、
記録磁場300Oeである。結果を第3図にまとめた。The disk manufactured in this manner was set at wavelength 6
The CNR (narrow band signal-to-noise ratio) was evaluated by optical modulation recording using an evaluator having a numerical aperture of 80 nm and a numerical aperture of 0.55. The recording conditions were a linear velocity of 7 m / s, a frequency of 9 MHz, a reproduction power of 3.0 mW, a recording power of 9 mW, a recording duty of 30%,
The recording magnetic field is 300 Oe. The results are summarized in FIG.
【0049】また2MHzで記録を行ったときの隣接ト
ラックで測定したクロストークも第4図にまとめた。ク
ロストークは記録トラックでの信号強度I1と隣接トラッ
クでの信号強度I2を用い、20log10(I2/I1)で定義され
る。FIG. 4 also shows crosstalk measured on adjacent tracks when recording was performed at 2 MHz. Crosstalk is defined as 20log10 (I2 / I1) using the signal intensity I1 on the recording track and the signal intensity I2 on the adjacent track.
【0050】[0050]
【実施例2】中間層を(DyNGd100-N)M(Fe70C
o30)100-Mよりなる20nmの層とした以外は実施例
1と同様にディスクを作成した。xの値は0〜100まで変
化させた。yの値は18〜38まで変化させた。このように
して作製したディスクを実施例1と同様にCNRとクロ
ストークを測定した。結果を第5図、第6図に示す。EXAMPLE 2 The intermediate layer (Dy N Gd 100-N) M (Fe 70 C
o 30 ) A disc was prepared in the same manner as in Example 1 except that a 20 nm layer of 100-M was used. The value of x was varied from 0 to 100. The value of y varied from 18 to 38. The CNR and crosstalk of the disk thus manufactured were measured in the same manner as in Example 1. The results are shown in FIG. 5 and FIG.
【0051】[0051]
【実施例3】中間層を(Tb80Gd20)28(Fe70Co
30)72とし、膜厚DIを変化させた以外は実施例1と同
様にディスクを作成した。DIの値は0〜100nmま
で変化させた。このようにして作製したディスクを実施
例1と同様にCNRを測定した。結果を第7図に示す。Embodiment 3 The intermediate layer is made of (Tb 80 Gd 20 ) 28 (Fe 70 Co
30 ) A disk was prepared in the same manner as in Example 1 except that the film thickness was changed to 72 . The value of DI was varied from 0 to 100 nm. The CNR of the disc thus produced was measured in the same manner as in Example 1. The results are shown in FIG.
【0052】[0052]
【実施例4】中間層を(Tb80Dy20)28(Fe70Co
30)72よりなる20nmの層とし、再生層の膜厚DRを
変化させた以外は実施例1と同様にディスクを作成し
た。DRの値は第1表の様に30〜150nmまで変化
させた。このようにして作製したディスクを実施例1と
同様にCNRを測定した。結果を第8図に示す。Embodiment 4 The intermediate layer is made of (Tb 80 Dy 20 ) 28 (Fe 70 Co
30 ) A disc was prepared in the same manner as in Example 1 except that the layer was made of 72 and had a thickness of 20 nm, and the thickness DR of the reproducing layer was changed. The value of DR was varied from 30 to 150 nm as shown in Table 1. The CNR of the disc thus produced was measured in the same manner as in Example 1. The results are shown in FIG.
【0053】[0053]
【実施例5】中間層を20nmの(Tb80Gd20)
28(Fe70Co30)72とし、記録層をTbx(Fe75C
o25)100-xよりなる50nm層とした以外は実施例1
と同様にディスクを作成した。xの値は14〜32まで変化
させた。このようにして作製したディスクを用い、波長
680nm、開口数0.55の評価機を用いて光変調記
録によりCNR(狭帯域の信号対雑音比)の記録磁場依
存性の評価を行った。記録条件は線速7m/s、周波数
9MHz、再生パワー3.0mW、記録パワー9mW、
記録duty30%である。結果を第9図に示す。Embodiment 5 The intermediate layer was made of 20 nm (Tb 80 Gd 20 ).
28 (Fe 70 Co 30 ) 72 , and the recording layer is made of Tbx (Fe 75 C
o 25 ) Example 1 except that a 50 nm layer of 100- x was used.
A disc was created in the same way as. The value of x was varied from 14 to 32. Using the disc manufactured in this manner, the recording magnetic field dependence of CNR (narrow band signal-to-noise ratio) was evaluated by optical modulation recording using an evaluator having a wavelength of 680 nm and a numerical aperture of 0.55. The recording conditions were a linear velocity of 7 m / s, a frequency of 9 MHz, a reproduction power of 3.0 mW, a recording power of 9 mW,
The recording duty is 30%. The results are shown in FIG.
【0054】[0054]
【実施例6】中間層を20nmの(Tb80Gd20)
28(Fe70Co30)72とし、記録層をDyx(Fe75C
o25)100-xよりなる50nm層とした以外は実施例1
と同様にディスクを作成した。xの値は14〜32まで変化
させた。このようにして作製したディスクを用い、波長
680nm、開口数0.55の評価機を用いて光変調記
録によりCNR(狭帯域の信号対雑音比)の記録磁場依
存性の評価を行った。記録条件は線速7m/s、周波数
9MHz、再生パワー3.0mW、記録パワー9mW、
記録duty30%である。結果を第10図に示す。Embodiment 6 The intermediate layer is made of 20 nm (Tb 80 Gd 20 ).
28 (Fe 70 Co 30 ) 72 , and the recording layer is Dyx (Fe 75 C
o 25 ) Example 1 except that a 50 nm layer of 100- x was used.
A disc was created in the same way as. The value of x was varied from 14 to 32. Using the disc manufactured in this manner, the recording magnetic field dependence of CNR (narrow band signal-to-noise ratio) was evaluated by optical modulation recording using an evaluator having a wavelength of 680 nm and a numerical aperture of 0.55. The recording conditions were a linear velocity of 7 m / s, a frequency of 9 MHz, a reproduction power of 3.0 mW, a recording power of 9 mW,
The recording duty is 30%. The results are shown in FIG.
【0055】[0055]
【実施例7】中間層を(Tb80Gd20)28(FeyCo
1-y)72よりなる20nmの層とした以外は実施例1と
同様にディスクを作成した。yの値は0〜100まで変
化させた。このようにして作製したディスクを実施例1
と同様にCNRを測定した。結果を第11図に示す。Embodiment 7 The intermediate layer is made of (Tb 80 Gd 20 ) 28 (Fe y Co
1-y ) A disc was prepared in the same manner as in Example 1 except that the layer was made of 72 and had a thickness of 20 nm. The value of y was varied from 0 to 100. The disk manufactured in this manner was used in Example 1
The CNR was measured in the same manner as in. The results are shown in FIG.
【0056】[0056]
【発明の効果】本発明の光磁気記録媒体を用いることに
よって、高い再生信号レベルと低いクロストーク、高い
分解能を兼ね備えたCADの超解像媒体を得ることがで
きる。By using the magneto-optical recording medium of the present invention, it is possible to obtain a CAD super-resolution medium having both high reproduction signal level, low crosstalk and high resolution.
【図1】本発明のCAD光磁気記録媒体の縦断面説明図FIG. 1 is an explanatory longitudinal sectional view of a CAD magneto-optical recording medium of the present invention.
【図2】従来のCAD光磁気記録媒体の縦断面説明図FIG. 2 is an explanatory longitudinal sectional view of a conventional CAD magneto-optical recording medium.
【図3】GdTbFeCo中間層の組成とCNRの関係
のグラフFIG. 3 is a graph showing the relationship between the composition of a GdTbFeCo intermediate layer and CNR.
【図4】GdTbFeCo中間層の組成とクロストーク
の関係のグラフFIG. 4 is a graph showing the relationship between the composition of a GdTbFeCo intermediate layer and crosstalk.
【図5】GdDyFeCo中間層の組成とCNRの関係
のグラフFIG. 5 is a graph showing the relationship between the composition of the GdDyFeCo intermediate layer and the CNR.
【図6】GdDyFeCo中間層の組成とクロストーク
の関係のグラフFIG. 6 is a graph showing the relationship between the composition of a GdDyFeCo intermediate layer and crosstalk.
【図7】中間層の膜厚とCNRの関係のグラフFIG. 7 is a graph showing the relationship between the thickness of the intermediate layer and the CNR.
【図8】再生層の膜厚とCNRの関係のグラフFIG. 8 is a graph showing the relationship between the thickness of the reproducing layer and the CNR.
【図9】TbFeCo記録層の組成と記録磁場依存性の
関係のグラフFIG. 9 is a graph showing the relationship between the composition of the TbFeCo recording layer and the recording magnetic field dependence.
【図10】DyFeCo記録層の組成と記録磁場依存性
の関係のグラフFIG. 10 is a graph showing the relationship between the composition of a DyFeCo recording layer and the recording magnetic field dependence.
【図11】中間層のCo組成とCNRの関係のグラフFIG. 11 is a graph showing the relationship between Co composition and CNR of an intermediate layer.
Claims (3)
体よりなる再生層、中間層及び記録層を基板上に設けて
なり、再生層として室温において膜面に実質的に平行に
磁化するものを用い、中間層として下記(1)式で表さ
れる合金を用いることを特徴とする光磁気記録媒体。 【数1】 (RENGd100-N)MTM100-M ・・・(1) RE:Tb、Dyから選ばれる一種以上の元素 TM:Fe、Coから選ばれる一種以上の元素 10≦N≦100、26≦M≦351. A reproducing layer, an intermediate layer, and a recording layer comprising an alloy magnetic material containing a rare earth metal and a transition metal are provided on a substrate, and the reproducing layer is magnetized substantially parallel to the film surface at room temperature. A magneto-optical recording medium characterized by using an alloy represented by the following formula (1) as an intermediate layer. (RE N Gd 100-N ) M TM 100-M (1) RE: one or more elements selected from Tb and Dy TM: one or more elements selected from Fe and Co 10 ≦ N ≦ 100, 26 ≦ M ≦ 35
記載の光磁気記録媒体。2. The magneto-optical recording medium according to claim 1, wherein the reproducing layer is made of GdFeCo.
り、16≦x≦26である請求項1に記載の光磁気記録
媒体 RE:Tb、Dyから選ばれる一種以上の元素3. The magneto-optical recording medium according to claim 1, wherein the recording layer is made of RE x (FeCo) 100-x and 16 ≦ x ≦ 26.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4074997A JPH10241218A (en) | 1997-02-25 | 1997-02-25 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4074997A JPH10241218A (en) | 1997-02-25 | 1997-02-25 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10241218A true JPH10241218A (en) | 1998-09-11 |
Family
ID=12589292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4074997A Pending JPH10241218A (en) | 1997-02-25 | 1997-02-25 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10241218A (en) |
-
1997
- 1997-02-25 JP JP4074997A patent/JPH10241218A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0386952A (en) | Magneto-optical recording medium | |
JP3492525B2 (en) | Magneto-optical recording medium | |
JP3164975B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
JP3660072B2 (en) | Magneto-optical recording medium, recording method thereof, and magneto-optical recording apparatus | |
JP3626050B2 (en) | Magneto-optical recording medium and recording method thereof | |
US6430116B1 (en) | Magneto-optical storage medium having first and second recording layers | |
US6844083B2 (en) | Magneto-optical recording medium possessing a magnetic assist layer | |
JP3093340B2 (en) | Magneto-optical recording medium | |
JPH10241218A (en) | Magneto-optical recording medium | |
JP2000132879A (en) | Magneto-optical recording medium | |
JP2929918B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3995833B2 (en) | Magneto-optical recording medium | |
JP3075048B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH11238264A (en) | Magneto-optical recording medium and reproducing method thereof | |
JP2000339788A (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH09293285A (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH08212607A (en) | Magneto-optical recording medium | |
JP3355759B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH08241543A (en) | Magneto-optical recording medium | |
JP3592399B2 (en) | Magneto-optical recording medium | |
JP3516865B2 (en) | Magneto-optical recording medium and reproducing apparatus | |
JP2985641B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP2000222787A (en) | Magneto-optical recording medium | |
JP2001176140A (en) | Magneto-optical recording medium and recording / reproducing method thereof | |
JPH09293289A (en) | Recording method for magneto-optical recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040601 |