[go: up one dir, main page]

JPH09293285A - Magneto-optical recording medium and its reproducing method - Google Patents

Magneto-optical recording medium and its reproducing method

Info

Publication number
JPH09293285A
JPH09293285A JP10510596A JP10510596A JPH09293285A JP H09293285 A JPH09293285 A JP H09293285A JP 10510596 A JP10510596 A JP 10510596A JP 10510596 A JP10510596 A JP 10510596A JP H09293285 A JPH09293285 A JP H09293285A
Authority
JP
Japan
Prior art keywords
layer
reproducing
mask
temperature
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10510596A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10510596A priority Critical patent/JPH09293285A/en
Publication of JPH09293285A publication Critical patent/JPH09293285A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain stable production and simultaneously a high signal level by providing the surface of a substrate with a reproducing layer consisting of an alloy magnetic material contg. rare earths and transition metal, intermediate layer, cutting layer and recording layer in this order and satisfying prescribed conditions. SOLUTION: The mask for the low-temp. part of this medium is formed by a change in the magnetic characteristics of the intermediate layer and the mask for the high-temp. part is formed as exchange bonding is cut off when the cutting layer exceeds a Curie temp. Consequently, the formation of the mask no longer depends upon the magnetic characteristics of the reproducing layer and the compsn. margin of the reproducing layer widens considerably. The higher signal level is obtd. particularly if the compsn. is so set that the magnetization of the reproducing layer in an aperture is made small. The Curie temp. of the cutting layer does not depend so much on the compsn. rate of the rare earth metals and transition metal of the cutting layer and, therefore, the stable formation of the mask of the high-temp. part is made possible in spite of a minor change in the compsn. of the cutting layer. The exchange bonding strength changes drastically near the Curie temp. and, therefore, the fluctuation of the mask diameter is small in spite of a minor change in the reproduction magnetic fields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体及びその
再生方法に関する。詳しくは、大容量の記録が可能な超
解像式光磁気記録媒体及びその再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium and a reproducing method thereof. More particularly, it relates to a super-resolution type magneto-optical recording medium capable of recording a large capacity and a reproducing method thereof.

【0002】[0002]

【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類金属と遷移金属のアモルファス合金の記録層を
用いた媒体は非常に優れた特性を示している。
2. Description of the Related Art A magneto-optical recording medium has been put to practical use as a high-density, low-cost rewritable information recording medium. In particular, a medium using a recording layer of an amorphous alloy of a rare earth metal and a transition metal shows very excellent characteristics.

【0003】光磁気ディスクは非常に大容量の記録媒体
であるが、社会の情報量の増大に伴いさらなる大容量化
が望まれている。光ディスクの記録密度は通常の場合、
その再生光のスポットの大きさで決ってしまう。スポッ
トの大きさはレーザーの波長が短いほど小さくすること
ができるため、レーザーの短波長化の検討が進められて
いるが、非常に困難を伴っている。
The magneto-optical disk is a recording medium having a very large capacity, and it is desired to further increase the capacity as the amount of information in society increases. If the recording density of the optical disk is normal,
It is determined by the size of the spot of the reproduction light. The size of the spot can be made smaller as the wavelength of the laser becomes shorter. Therefore, a study on making the wavelength of the laser shorter is under way, but it is very difficult.

【0004】一方、レーザーの波長によって決定される
以上の分解能を色々な工夫によって得ようとする、いわ
ゆる超解像技術の試みが近年行われている。その一つ
に、光磁気ディスクを用い、多層膜間の交換結合力を用
いた磁気誘導超解像(magnetically induced super re
solution以下MSR)が報告されている。
On the other hand, in recent years, so-called super-resolution techniques which attempt to obtain a resolution higher than that determined by the wavelength of the laser by various means have been attempted. One of them is using a magneto-optical disk and using magnetically induced super resolution using the exchange coupling force between multilayer films.
solution or MSR).

【0005】MSRの一つの形態として、再生スポット
内の高温部からの信号のみを再生するRAD(rear ape
rture detection)と呼ばれる方式がある。RADにおい
ては低温部の磁化を膜面に平行とするか、あるいは外部
磁界によって一方向に揃えることで低温部を情報を持っ
た信号を発生しない「マスク領域」となし、高温部にお
いて磁性体の磁気特性の温度変化により信号の再生を可
能な「アパーチャー領域」となすことにより信号再生を
高温部のみで行うものである。
As one form of MSR, a RAD (rear ape) for reproducing only a signal from a high temperature portion in a reproduction spot.
There is a method called rture detection). In RAD, the magnetization of the low temperature portion is made parallel to the film surface or is aligned in one direction by an external magnetic field to form the low temperature portion as a “mask area” that does not generate a signal having information, and the high temperature portion The signal reproduction is performed only in the high temperature portion by forming the "aperture area" in which the signal can be reproduced by the temperature change of the magnetic characteristics.

【0006】RADの効果は再生領域を高温部に限定す
ることで再生スポットを実効的に小さくなし、信号の分
解能を向上するという点と、隣接トラックもマスク領域
となるので隣接トラックからの信号の漏れ込み(クロス
トーク)が殆ど生じないという点である。RADの一形
態として、交換結合した再生層と記録層、及びその間の
中間層からなり、中間層の垂直磁気異方性が室温で小さ
く他の層と交換結合してない状態では面内磁化膜であ
り、温度が高くなるに従って垂直磁気異方性が大きくな
るような特性を持つような媒体を用いるものが提案され
ている。
The effect of RAD is that the reproduction spot is not effectively reduced by limiting the reproduction area to a high temperature portion and the signal resolution is improved, and since the adjacent track also becomes a mask area, the signal from the adjacent track is The point is that almost no leakage (crosstalk) occurs. As one form of RAD, an in-plane magnetized film is composed of an exchange-coupled reproducing layer and a recording layer, and an intermediate layer between them, and the perpendicular magnetic anisotropy of the intermediate layer is small at room temperature and is not exchange-coupled with other layers. Therefore, it is proposed to use a medium having such a characteristic that the perpendicular magnetic anisotropy increases as the temperature rises.

【0007】こういった媒体においては室温では再生層
と記録層の交換結合力が弱いため、再生層の保磁力が十
分小さければ適当な外部磁界を加えることにより再生層
の磁化方向を一方向に揃えることができる。再生光の加
熱により媒体が昇温した際には中間層の磁気異方性の増
加により再生層と記録層の間の交換結合力が増加して外
部磁界のもとでも再生層が記録層の磁区方向を転写す
る。
In such a medium, since the exchange coupling force between the reproducing layer and the recording layer is weak at room temperature, if the coercive force of the reproducing layer is sufficiently small, the magnetization direction of the reproducing layer is made unidirectional by applying an appropriate external magnetic field. Can be aligned. When the temperature of the medium rises due to the heating of the reproducing light, the exchange anisotropy between the reproducing layer and the recording layer increases due to the increase in the magnetic anisotropy of the intermediate layer, so that the reproducing layer is not affected by the external magnetic field. Transfer the magnetic domain direction.

【0008】この結果、再生信号は再生スポットの高温
部のみから得られる。再生層の組成を室温で遷移金属磁
化優勢あるいはわずかに希土類磁化優勢なものとしてお
けば、さらに温度が上がったとき、再生層の磁化の増加
に伴って再生層が受ける交換結合による実効的な磁界H
wが小さくなり再び再生層の磁化が外部磁界によって一
方向に揃えられる。
As a result, the reproduction signal is obtained only from the high temperature portion of the reproduction spot. If the composition of the reproducing layer is set to have a transition metal magnetization dominant or a slight rare earth magnetization dominant at room temperature, the effective magnetic field due to exchange coupling that the reproducing layer receives as the magnetization of the reproducing layer increases when the temperature further rises. H
As w becomes smaller, the magnetization of the reproducing layer is again aligned in one direction by the external magnetic field.

【0009】この結果、再生信号は低温部のマスクと高
温部のマスクに挟まれた狭い温度範囲からのみ発生する
ダブルマスクと呼ばれる再生方法をとる。ダブルマスク
ではアパーチャー領域がさらに狭くなるため、マスク領
域が一つの場合と比べてより高い信号分解能が得られ
る。MSRの方式には他に低温部のみを再生するFAD
等が提案されているが、上に述べたダブルマスクのRA
Dは再生信号の分解能が高く、かつクロストークが小さ
いという点で非常に優れたMSR方式である。
As a result, a reproduction method called a double mask is adopted in which a reproduction signal is generated only from a narrow temperature range sandwiched between a low temperature mask and a high temperature mask. Since the aperture area is further narrowed in the double mask, higher signal resolution can be obtained as compared with the case where there is one mask area. In addition to the MSR method, FAD that reproduces only the low temperature part
, Etc., but the double mask RA described above
D is a very excellent MSR system in that it has a high resolution of reproduced signals and a small crosstalk.

【0010】[0010]

【発明が解決しようとする課題】上記の3層の磁性層を
用いるダブルマスクRAD方式は、低温部と高温部のマ
スクを低磁界での生成するために中間層と再生層の組成
を厳密に制御する必要がある。特に高温部のマスクの生
成温度は再生層、中間層の組成に対し敏感である。
In the double mask RAD method using the above-mentioned three magnetic layers, the composition of the intermediate layer and the reproducing layer is strictly controlled in order to generate a mask for a low temperature part and a mask for a high temperature part in a low magnetic field. Need to control. In particular, the mask formation temperature in the high temperature portion is sensitive to the composition of the reproducing layer and the intermediate layer.

【0011】このため高温部、低温部の両マスクが良好
に形成できる組成の範囲は非常に狭いものであった。ま
た、高温部の磁化変化が温度に対して比較的緩やかであ
るので再生時の外部磁界の変化に対しても高温部のマス
ク径は敏感に変化する。このため現実的な組成マージン
と外部磁界のマージンを得るのが困難であった。
Therefore, the composition range in which both the high temperature portion mask and the low temperature portion mask can be satisfactorily formed is very narrow. Further, since the magnetization change in the high temperature portion is relatively gradual with respect to the temperature, the mask diameter in the high temperature portion changes sensitively to the change in the external magnetic field during reproduction. Therefore, it is difficult to obtain a realistic composition margin and an external magnetic field margin.

【0012】さらに高温で再生層の磁化が大きくなるよ
うな組成を用いるため、マスク付近で再生層の垂直磁気
異方性が低下し、アパーチャーからの信号が低下すると
いう問題があった。
Further, since the composition is such that the magnetization of the reproducing layer increases at a high temperature, there is a problem that the perpendicular magnetic anisotropy of the reproducing layer decreases near the mask and the signal from the aperture decreases.

【0013】[0013]

【課題を解決するための手段】本発明は、ダブルマスク
RAD再生において再生層に広い組成マージンを与え、
安定した生産を可能にすると同時により高い信号レベル
を得ることを可能にしたものである。本発明の要旨は、
希土類金属と遷移金属を含有する合金磁性体よりなる再
生層、中間層、切断層及び記録層がこの順に基板上に設
けられおり、室温において記録層の保磁力が再生層の保
磁力より大きく、中間層が希土類金属優勢の磁化を有し
ており、かつ切断層のキュリー温度が他のいずれの磁性
層のキュリー温度よりも低いことを特徴とする光磁気記
録媒体に存する。
The present invention provides a wide composition margin for a reproducing layer in reproducing a double mask RAD,
This enables stable production and at the same time obtains higher signal levels. The gist of the present invention is:
A reproducing layer made of an alloy magnetic material containing a rare earth metal and a transition metal, an intermediate layer, a cutting layer and a recording layer are provided in this order on the substrate, and the coercive force of the recording layer at room temperature is larger than that of the reproducing layer. A magneto-optical recording medium is characterized in that the intermediate layer has a rare earth metal-dominant magnetization, and the Curie temperature of the cutting layer is lower than the Curie temperature of any other magnetic layer.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面を用いて更に
詳細に説明する。図1は本発明の光磁気記録媒体の説明
図、図2は従来の光磁気記録媒体の説明図である。本発
明の光磁気記録媒体は図1に示すように、少なくとも再
生層、中間層、切断層、記録層の4層の磁性層を有す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is an explanatory diagram of a magneto-optical recording medium of the present invention, and FIG. 2 is an explanatory diagram of a conventional magneto-optical recording medium. As shown in FIG. 1, the magneto-optical recording medium of the present invention has at least four magnetic layers of a reproducing layer, an intermediate layer, a cutting layer and a recording layer.

【0015】本発明の媒体は低温においては中間層の磁
気異方性が低く、記録層と再生層の間の交換結合力が小
さいため交換結合により、磁壁が再生層に及ぼす実効的
な磁界Hwが小さい。このため再生層の保磁力Hc1が
十分小さければ適当な外部磁界のもとで再生層の磁化が
一方向に揃いマスクを形成する。
In the medium of the present invention, the magnetic anisotropy of the intermediate layer is low at a low temperature, and the exchange coupling force between the recording layer and the reproducing layer is small, so that the effective magnetic field Hw exerted by the domain wall on the reproducing layer by the exchange coupling. Is small. For this reason, if the coercive force Hc1 of the reproducing layer is sufficiently small, the magnetization of the reproducing layer is aligned in one direction under an appropriate external magnetic field to form a mask.

【0016】媒体温度が高い部分では、中間層の磁化が
減少することによる磁気異方性の向上により再生層と記
録層との交換結合が強くなり、外部磁界の下でも再生層
は記録層の磁化方向を転写できるようになり、アパーチ
ャーを形成する。さらに温度が高くなり切断層のキュリ
ー温度を越えると、再生層と記録層との交換結合はなく
なり、再生層の磁化は外部磁界によって再び一方向に揃
えられマスクを形成する。
In the portion where the medium temperature is high, the exchange coupling between the reproducing layer and the recording layer is strengthened due to the improvement of the magnetic anisotropy due to the decrease of the magnetization of the intermediate layer, and the reproducing layer is not affected by the recording layer even under an external magnetic field. It becomes possible to transfer the magnetization direction and form an aperture. When the temperature further rises and exceeds the Curie temperature of the cutting layer, exchange coupling between the reproducing layer and the recording layer disappears, and the magnetization of the reproducing layer is aligned in one direction again by the external magnetic field to form a mask.

【0017】このようにして、低温部及び高温部にダブ
ルマスクを形成することができる。すなわち低温部のマ
スクは中間層の磁気特性の変化によって生成し、高温部
のマスクは切断層がキュリー温度を越えて交換結合力が
切断されるために生成する。この結果マスクの生成に再
生層の磁気特性は依存しなくなり、再生層の組成マージ
ンは格段に広くなる。
In this way, the double mask can be formed in the low temperature part and the high temperature part. That is, the mask in the low temperature portion is generated by the change in the magnetic characteristics of the intermediate layer, and the mask in the high temperature portion is generated because the cutting layer exceeds the Curie temperature and the exchange coupling force is cut. As a result, the magnetic properties of the reproducing layer do not depend on the generation of the mask, and the composition margin of the reproducing layer is significantly widened.

【0018】特にアパーチャー内の再生層の磁化が小さ
くなるように組成を設定すれば従来の方式に比べより高
い信号レベルが得られる。また切断層のキュリー温度は
切断層の希土類金属と遷移金属の組成比にはあまり依存
しないので、切断層の組成が多少変化しても高温部のマ
スクを安定して形成することができる。
Particularly, if the composition is set so that the magnetization of the reproducing layer in the aperture becomes small, a higher signal level can be obtained as compared with the conventional method. Further, since the Curie temperature of the cutting layer does not depend so much on the composition ratio of the rare earth metal and the transition metal of the cutting layer, the mask in the high temperature portion can be stably formed even if the composition of the cutting layer changes to some extent.

【0019】キュリー温度付近では交換結合力は急激に
変化するので、再生磁界が多少変化してもマスク径の変
動は小さい。以下各層の望ましい特性を順を追って説明
する。本発明において、再生層は低温で再生磁界Hrに
よって初期化される。
Since the exchange coupling force changes rapidly near the Curie temperature, even if the reproducing magnetic field changes to some extent, the change in mask diameter is small. Hereinafter, desirable characteristics of each layer will be described in order. In the present invention, the reproducing layer is initialized at low temperature by the reproducing magnetic field Hr.

【0020】このため再生層の保磁力をHc1、再生層
が交換結合力により記録層の磁化から受ける実効的な磁
界をHw1とすると、 Hr>Hc1+Hw1 ・・・(A) という条件を満たす必要がある。さらに温度が上がると
主にHw1の増加に伴って(A)式が成り立たなくな
り、記録層の磁化方向を転写するアパーチャーを形成す
る。アパーチャーの形成には Hr<Hw1+Hc1 ・・・(B) の条件を満たせば良い。
Therefore, if the coercive force of the reproducing layer is Hc1 and the effective magnetic field that the reproducing layer receives from the magnetization of the recording layer by the exchange coupling force is Hw1, it is necessary to satisfy the condition of Hr> Hc1 + Hw1 (A). is there. When the temperature further rises, the formula (A) is not established mainly with the increase of Hw1, and an aperture for transferring the magnetization direction of the recording layer is formed. To form the aperture, it is sufficient to satisfy the condition of Hr <Hw1 + Hc1 (B).

【0021】アパーチャーを形成する遷移温度Tt1は
低過ぎれば低温マスクの形成が不十分であり、高過ぎれ
ばアパーチャーの形成が不十分となる。好ましい遷移温
度は50℃以上160℃以下の範囲であり、さらに好ま
しくは70℃以上140℃以下である。
If the transition temperature Tt1 for forming the aperture is too low, the formation of the low temperature mask is insufficient, and if it is too high, the formation of the aperture is insufficient. A preferable transition temperature is in the range of 50 ° C or higher and 160 ° C or lower, and more preferably 70 ° C or higher and 140 ° C or lower.

【0022】もちろん遷移温度はHrの関数でもある
が、通常のドライブにおいては小型化の要請からせいぜ
い200(Oe)〜800(Oe)程度であるので、こ
の磁界強度のいずれかの点において、遷移温度が上記の
温度範囲に入っていれば良い。Hrはなるべく小さくし
たいため、Hrが200(Oe)において遷移温度が上
記温度範囲であることが好ましい。情報を記録層から再
生層に転写するアパーチャーから、さらに温度が上がっ
て再び高温マスクとなる遷移温度Tt2は120℃以上
250℃以下が好ましい。さらに好ましくは150℃以
上230℃以下である。
Of course, the transition temperature is also a function of Hr, but in an ordinary drive, it is at most about 200 (Oe) to 800 (Oe) due to the demand for miniaturization, so the transition at any point of this magnetic field strength. It is sufficient that the temperature is within the above temperature range. Since Hr is desired to be as small as possible, it is preferable that the transition temperature is within the above temperature range when Hr is 200 (Oe). The transition temperature Tt2 at which the temperature further rises and becomes a high temperature mask again from the aperture for transferring the information from the recording layer to the reproducing layer is preferably 120 ° C. or higher and 250 ° C. or lower. More preferably, it is 150 ° C. or higher and 230 ° C. or lower.

【0023】この温度は切断層のキュリー温度によって
ほぼ決まる。このとき交換結合力が消失するので高温マ
スクが形成されるには Hr>Hc1 ・・・(C) という条件を満たせば良い。
This temperature is substantially determined by the Curie temperature of the cutting layer. Since the exchange coupling force disappears at this time, the condition of Hr> Hc1 ... (C) may be satisfied in order to form a high temperature mask.

【0024】従来の切断層を設けないRAD方式ではこ
のときまだ交換結合力が残っているため、マスクの生成
には(A)式を満たさなければならず、十分な温度範囲
で(B)式を成立させることとの両立から求められる条
件が非常に厳しくなる。ところが本発明の方式では
(C)式の簡単な条件を満たせば良い。すなわち、再生
層に例えばGdFeCoのような非常に保磁力の小さな
磁性体を用いれば、Hrを200〜300(Oe)とす
ることで(C)式は補償温度極近傍以外の殆どの温度範
囲において満足することができる。
In the conventional RAD method in which the cutting layer is not provided, since the exchange coupling force still remains at this time, the expression (A) must be satisfied for mask generation, and the expression (B) is satisfied within a sufficient temperature range. The conditions required to satisfy both the requirement and the requirement are extremely strict. However, in the method of the present invention, the simple condition of the expression (C) may be satisfied. That is, when a magnetic material having a very small coercive force such as GdFeCo is used for the reproducing layer, Hr is set to 200 to 300 (Oe), and then the expression (C) is obtained in most temperature ranges other than the vicinity of the compensation temperature. Can be satisfied.

【0025】従って再生層や中間層の磁気特性を考慮せ
ずに高温部のマスクを生成することができる。Tt1と
Tt2の間隔の温度は50℃以上150℃以下であるこ
とが好ましい。この温度間隔が狭過ぎると十分な再生信
号が得られなくなり、この温度間隔が広すぎると超解像
の効果が小さくなる。再生層に用いられる物質として
は、GdFeCo、GdCo、GdFe、GdDyF
e、GdDyCo、GdDyFeCo等が好ましく用い
られる。
Therefore, the mask in the high temperature portion can be generated without considering the magnetic characteristics of the reproducing layer and the intermediate layer. The temperature in the interval between Tt1 and Tt2 is preferably 50 ° C. or higher and 150 ° C. or lower. If this temperature interval is too narrow, a sufficient reproduction signal cannot be obtained, and if this temperature interval is too wide, the effect of super-resolution becomes small. Materials used for the reproducing layer include GdFeCo, GdCo, GdFe, and GdDyF.
e, GdDyCo, GdDyFeCo and the like are preferably used.

【0026】中でも、保磁力が小さくキュリー温度が高
いGdFeCoを主体たした合金が好ましく用いられ
る。 Gdx(FeyCo100-y100-x (原子%) と表した場合、19≦x≦27かつ0≦y≦90であることが好
ましい。さらに好ましくは21≦x≦27かつ5≦y≦85であ
る。さらに好ましくは22≦x≦26かつ5≦y≦85である。
ただし、Ti、Cr、Pt、Mo等の添加物を5原子%
以下程度添加しても良い。
Among them, an alloy mainly composed of GdFeCo having a small coercive force and a high Curie temperature is preferably used. When expressed as Gdx (FeyCo 100-y ) 100-x (atomic%), it is preferable that 19 ≦ x ≦ 27 and 0 ≦ y ≦ 90. More preferably, 21 ≦ x ≦ 27 and 5 ≦ y ≦ 85. More preferably, 22 ≦ x ≦ 26 and 5 ≦ y ≦ 85.
However, 5 atomic% of additives such as Ti, Cr, Pt, and Mo
You may add about the following.

【0027】室温(媒体使用環境の温度であり、本発明
では25℃とする)における再生層の好ましい体積磁化
率Ms1は250emu/cc以下であり、さらに好ましくは
200emu/cc以下である。Ms1が大きすぎるとアパー
チャで磁化が十分に立たず、再生信号が小さくなってし
まう。しかしMs1はある程度の大きさがあった方がH
w1が低下するので50emu/cc以上が好ましく、さらに
好ましくは80emu/cc以上である。中間層が希土類金属
優勢であるため、再生層の磁化が遷移金属優勢である場
合、外部磁界によって受ける力は逆方向となるので、再
生層の磁化は室温で希土類金属優勢である方が低温マス
クを形成するうえで好ましい。
The volume magnetic susceptibility Ms1 of the reproducing layer at room temperature (the temperature of the medium use environment, which is 25 ° C. in the present invention) is preferably 250 emu / cc or less, more preferably 200 emu / cc or less. If Ms1 is too large, the magnetization does not sufficiently rise in the aperture, and the reproduction signal becomes small. However, if Ms1 had a certain size H
Since w1 decreases, it is preferably 50 emu / cc or more, more preferably 80 emu / cc or more. Since the intermediate layer is predominantly rare earth metal, when the magnetization of the reproducing layer is predominantly transition metal, the force exerted by the external magnetic field is in the opposite direction.Therefore, the magnetization of the reproducing layer is predominantly rare earth metal at room temperature. Is preferable for forming

【0028】低温において(A)式を満たすには再生層
の保磁力Hc1が十分小さい必要がある。再生層の室温
における好ましい保磁力Hc1は500(Oe)以下で
あり、さらに好ましくは300(Oe)以下である。再
生層の膜厚が薄すぎる場合、再生光が透過してしまうの
でマスクの効果が薄れ、超解像能力が低下する。
The coercive force Hc1 of the reproducing layer must be sufficiently small to satisfy the expression (A) at low temperatures. The coercive force Hc1 of the reproducing layer at room temperature is preferably 500 (Oe) or less, more preferably 300 (Oe) or less. When the thickness of the reproducing layer is too thin, reproducing light is transmitted, so that the effect of the mask is weakened and the super-resolution capability is lowered.

【0029】また厚すぎるとHwが低下しアパーチャを
形成し難くなるうえ、感度が悪くなる。再生層の膜厚は
12nm以上、50nm以下であることが好ましい。さ
らに好ましくは15nm以上、40nm以下である。中
間層は室温で希土類金属優勢の磁化を有しており、温度
が上がるにつれ磁化が減少し、垂直磁気異方性が向上す
るようなものであることが望ましい。
On the other hand, if the thickness is too large, Hw is lowered to make it difficult to form an aperture and the sensitivity is deteriorated. The thickness of the reproducing layer is preferably 12 nm or more and 50 nm or less. More preferably, it is 15 nm or more and 40 nm or less. The intermediate layer preferably has a rare earth metal-dominant magnetization at room temperature, and the magnetization decreases as the temperature rises, and the perpendicular magnetic anisotropy improves.

【0030】室温において他の層と交換結合していない
再生層単独の状態では中間層は面内磁化膜となっている
ことが再生層と記録層の交換結合を低下させるうえで望
ましい。再生層と記録層間の交換結合力を充分に弱くす
るためには室温において200emu/cc以上の体積磁化率
を有することが好ましい。
In the state of the reproducing layer alone which is not exchange-coupled with other layers at room temperature, the intermediate layer is preferably an in-plane magnetized film in order to reduce the exchange coupling between the reproducing layer and the recording layer. In order to sufficiently weaken the exchange coupling force between the reproducing layer and the recording layer, it is preferable to have a volume magnetic susceptibility of 200 emu / cc or more at room temperature.

【0031】また、温度が上がった際に垂直磁気異方性
を充分向上するには体積磁化率が150emu/cc以下にな
る温度が50℃以上、160℃以下に存在することが好
ましい。中間層の物質としてはGdFe、GdFeC
o、GdDyFe、GdDyFeCo等が好ましく用い
られる。
Further, in order to sufficiently improve the perpendicular magnetic anisotropy when the temperature rises, it is preferable that the temperature at which the volume magnetic susceptibility is 150 emu / cc or less is 50 ° C. or more and 160 ° C. or less. GdFe, GdFeC as the material of the intermediate layer
O, GdDyFe, GdDyFeCo and the like are preferably used.

【0032】中でも、保磁力が小さくキュリー温度が高
いGdFeCoを主体たした合金が好ましく用いられ
る。 Gdx(FeyCo100-y100-x (原子%) と表した場合、28≦x≦36かつ80≦y≦100であることが
好ましい。さらに好ましくは30≦x≦34かつ85≦y≦100
である。ただし、Ti、Cr、Pt、Mo等の添加物を
5原子%以下程度添加しても良い。
Above all, an alloy mainly composed of GdFeCo having a small coercive force and a high Curie temperature is preferably used. When expressed as Gdx (FeyCo 100-y ) 100-x (atomic%), it is preferable that 28 ≦ x ≦ 36 and 80 ≦ y ≦ 100. More preferably 30 ≦ x ≦ 34 and 85 ≦ y ≦ 100
It is. However, additives such as Ti, Cr, Pt, and Mo may be added in an amount of about 5 atomic% or less.

【0033】切断層は、キュリー温度が再生層、中間層
や記録層のいずれと比べても小さいものである必要があ
る。切断層のキュリー温度は、100〜250℃程度が
好ましい。さらに好ましくは120〜230℃である。
切断層は垂直磁気異方性が高く、再生層の磁化に強い力
を発生させるものが好ましい。切断層の膜厚は切断層が
キュリー温度を越えた場合に交換結合力がほぼ完全に切
断される程度のものであることが必要である。
The cutting layer must have a Curie temperature lower than that of any of the reproducing layer, the intermediate layer and the recording layer. The Curie temperature of the cutting layer is preferably about 100 to 250 ° C. More preferably, it is 120 to 230 ° C.
It is preferable that the cutting layer has a high perpendicular magnetic anisotropy and generates a strong force in the magnetization of the reproducing layer. It is necessary that the film thickness of the cutting layer is such that the exchange coupling force is almost completely cut when the cutting layer exceeds the Curie temperature.

【0034】膜厚が厚過ぎると記録感度が劣化する。膜
厚は2nm以上、30nm以下であることが好ましい。
切断層に用いられる物質としては、TbFe、TbFe
Co、DyFeCo、DyFe、TbDyFeCo等が
好ましい。中でも、垂直磁気異方性の高いTbFeCo
を主体とした合金が好ましく用いられる。
If the film thickness is too thick, the recording sensitivity deteriorates. The film thickness is preferably 2 nm or more and 30 nm or less.
Materials used for the cutting layer include TbFe and TbFe
Co, DyFeCo, DyFe, TbDyFeCo and the like are preferable. Above all, TbFeCo with high perpendicular magnetic anisotropy
An alloy mainly composed of is preferably used.

【0035】 Tbx(FeyCo100-y100-x (原子%) と表した場合、21≦x≦30かつ80≦y≦100であることが
好ましい。さらに好ましくは23≦x≦28かつ85≦y≦95で
ある。ただし、Ti、Cr、Pt、Mo等の添加物を5
原子%以下程度添加しても良い。
When expressed as Tbx (FeyCo 100-y ) 100-x (atomic%), it is preferable that 21 ≦ x ≦ 30 and 80 ≦ y ≦ 100. More preferably, 23 ≦ x ≦ 28 and 85 ≦ y ≦ 95. However, if an additive such as Ti, Cr, Pt, or Mo is added to 5
You may add about atomic% or less.

【0036】記録層は、安定して記録を蓄えている層で
あるから、再生ビームで劣化しない大きさのキュリー温
度を有していることが必要である。キュリー温度の大き
さは、250〜350℃程度が好ましい。キュリー温度
が高すぎると、記録に要するレーザーのパワーが大きく
なりすぎてしまう。
Since the recording layer is a layer in which recording is stably stored, it is necessary that the recording layer has a Curie temperature of such a level that it is not deteriorated by the reproducing beam. The Curie temperature is preferably about 250 to 350 ° C. If the Curie temperature is too high, the laser power required for recording will be too high.

【0037】記録層は、高い垂直磁気異方性を持つこと
も、再生層の磁化に強い力を与えるために必要である。
記録層の物質としては、TbFeCo、TbCo、Dy
FeCo、TbDyFeCo、GdTbFe、GdTb
FeCo等が好ましく用いられる。
The recording layer also needs to have a high perpendicular magnetic anisotropy in order to give a strong force to the magnetization of the reproducing layer.
The material of the recording layer is TbFeCo, TbCo, Dy
FeCo, TbDyFeCo, GdTbFe, GdTb
FeCo and the like are preferably used.

【0038】記録層としては特に垂直磁気異方性の大き
いTbFeCoを主体とした合金が好ましく用いられ
る。中でも、 Tbx(FeyCo100-y100-x (いずれも原子%) と表した場合、18≦x≦26、70≦y≦85 であることが好
ましい。ただし、Ti、Cr、Pt、Mo等の添加物を
5原子%以下程度添加しても良い。
For the recording layer, an alloy mainly composed of TbFeCo, which has a large perpendicular magnetic anisotropy, is preferably used. Above all, when expressed as Tbx (FeyCo 100-y ) 100-x (both are atomic%), it is preferable that 18 ≦ x ≦ 26 and 70 ≦ y ≦ 85. However, additives such as Ti, Cr, Pt, and Mo may be added in an amount of about 5 atomic% or less.

【0039】記録層の膜厚は10nm以上、50nm以
下であることが好ましい。記録層の記録を安定に蓄えて
おくには記録層の保磁力は再生層の保磁力よりも大きい
ことが好ましい。記録層の保磁力は3kOe以上である
ことが好ましい。希土類金属と遷移金属の合金は非常に
酸化しやすいため、磁性層の両側に保護膜を着けた態様
をとることが好ましい。保護膜としては、酸化Si、酸
化Al、酸化Ta、酸化Ti、窒化Si、窒化Al、炭
化Siなどの単体あるいはそれらの混合物が好ましく用
いられる。保護膜の膜厚は50nm〜150nm程度が
好ましい。
The thickness of the recording layer is preferably 10 nm or more and 50 nm or less. In order to stably store the recording in the recording layer, the coercive force of the recording layer is preferably larger than the coercive force of the reproducing layer. The coercive force of the recording layer is preferably 3 kOe or more. Since an alloy of a rare earth metal and a transition metal is very likely to be oxidized, it is preferable to adopt a mode in which protective films are provided on both sides of the magnetic layer. As the protective film, simple substances such as Si oxide, Al oxide, Ta oxide, Ti oxide, Si nitride, Al nitride, and Si carbide, or a mixture thereof are preferably used. The thickness of the protective film is preferably about 50 nm to 150 nm.

【0040】基板側の保護膜を作製後、表面をプラズマ
エッチングすることで磁性層の磁気異方性を向上させる
ことができる。磁性層の記録層側に直接あるいは保護層
を介して、放熱層としてAl、Cu、Au、Ag等の単
体、あるいはそれを主体とした合金よりなる高熱伝導物
質を設けることは、再生時の熱分布を安定させるうえで
望ましい構成である。放熱層の膜厚は10nm〜100
nm程度が好ましい。
The magnetic anisotropy of the magnetic layer can be improved by plasma etching the surface after forming the substrate-side protective film. Providing a high heat-conducting substance made of a simple substance such as Al, Cu, Au, or Ag or an alloy mainly containing it as a heat dissipation layer on the recording layer side of the magnetic layer directly or through a protective layer is This is a desirable structure for stabilizing the distribution. The thickness of the heat radiation layer is 10 nm to 100
About nm is preferable.

【0041】再生を行う際にはマスクを形成するための
再生磁界を加えながら行う。再生磁界の大きさは200
(Oe)以下であることが好ましい。特に好ましくは1
50(Oe)以下である。また本発明の方式ではクロス
トークを非常に低く抑えられるため、通常のランド記録
あるいはグルーブ記録の他にランドとグルーブの両方に
記録を行うことも可能である。
When reproducing, the reproducing magnetic field for forming the mask is applied. The magnitude of the reproducing magnetic field is 200
It is preferably (Oe) or less. Particularly preferably, 1
It is 50 (Oe) or less. Since the method of the present invention can suppress the crosstalk to a very low level, it is possible to perform recording on both the land and the groove in addition to the normal land recording or the groove recording.

【0042】[0042]

【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 実施例1〜5 スパッタリング装置に1.0μmのトラックピッチの案
内溝を持ったポリカーボネート基板を導入し、5×10
-5 Pa以下の真空度まで排気を行った。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. Examples 1 to 5 A polycarbonate substrate having a guide groove with a track pitch of 1.0 μm was introduced into a sputtering device, and 5 × 10 5
Evacuation was performed to a vacuum degree of -5 Pa or less.

【0043】この後、保護層として基板上に反応性スパ
ッタリングを用い80nmの酸化Taを形成した。次に
酸化Ta上に、Gdx(Fe80Co20)1-xよりなる30
nmの再生層、Gd31Fe69よりなる10nmの中間
層、Tb23(Fe90Co10)よりなる10nmの切断
層、Tb23(Fe75Co25)77よりなる40nmの記録層
を設けた。
Thereafter, 80 nm of oxidized Ta was formed as a protective layer on the substrate by reactive sputtering. Next, on the oxidized Ta, 30 including Gdx (Fe 80 Co 20 ) 1-x is formed.
a reproducing layer of 10 nm, a 10 nm intermediate layer of Gd 31 Fe 69 , a 10 nm cutting layer of Tb 23 (Fe 90 Co 10 ), and a 40 nm recording layer of Tb 23 (Fe 75 Co 25 ) 77 .

【0044】最後にSiNよりなる50nmの保護層を
設けた。xの値は第1表の様に0.19〜0.27まで
変化させた。再生層、中間層、切断層、記録層のキュリ
ー温度を測定したところ、各々300℃以上、250
℃、200℃、300℃以上であった。また、中間層は
室温(25℃)において希土類金属の磁化が優勢であり
体積磁化率は260emu/ccであった。
Finally, a 50 nm protective layer made of SiN was provided. The value of x was changed from 0.19 to 0.27 as shown in Table 1. The Curie temperatures of the reproducing layer, the intermediate layer, the cutting layer, and the recording layer were measured and found to be 300 ° C or higher and 250 ° C, respectively.
The temperature was 200 ° C, 300 ° C or higher. At room temperature (25 ° C.), the magnetization of the rare earth metal was predominant in the intermediate layer, and the volume magnetic susceptibility was 260 emu / cc.

【0045】補償温度は190℃であった。体積磁化率
が150emu/ccになる温度は120℃であった。中間層
単独の状態では室温において面内磁化膜であった。切断
層、記録層は室温においてほぼ補償組成であり保磁力が
20kOe以上であった。
The compensation temperature was 190 ° C. The temperature at which the volume susceptibility reached 150 emu / cc was 120 ° C. When the intermediate layer was alone, it was an in-plane magnetized film at room temperature. The cutting layer and the recording layer had almost a compensating composition at room temperature and had a coercive force of 20 kOe or more.

【0046】このようにして作製したディスクを波長6
80nm、開口数0.55の評価機を用いて光変調記録
によりCNR(狭帯域の信号対雑音比)の評価を行っ
た。記録条件は線速7m/s、周波数9MHz、記録パ
ワー9mW、記録duty30%である。再生磁界Hrは3
00(Oe)とした。
The disc manufactured in this manner was used at a wavelength of 6
The CNR (narrow band signal-to-noise ratio) was evaluated by optical modulation recording using an evaluator having a numerical aperture of 80 nm and a numerical aperture of 0.55. Recording conditions are a linear velocity of 7 m / s, a frequency of 9 MHz, a recording power of 9 mW, and a recording duty of 30%. Reproduction magnetic field Hr is 3
It was set to 00 (Oe).

【0047】再生パワーを変えて測定を行ったところ、
いずれのディスクにおいても再生パワー1.6mW未満
では全く信号が観測されなかったが、1.6mW以上で
高温部の再生層に磁区の転写が生じ、超解像信号が発生
した。実施例3もディスクにおいては再生パワー2.2
mWでのCNRは46.5dBであった。
When the reproduction power was changed and the measurement was performed,
No signal was observed at a reproducing power of less than 1.6 mW in any of the discs, but at 1.6 mW or more, magnetic domains were transferred to the reproducing layer at a high temperature portion, and a super-resolution signal was generated. Example 3 also has a reproducing power of 2.2 for the disc.
The CNR at mW was 46.5 dB.

【0048】再生パワー2.4mW以上で高温部のマス
クが形成され、再生パワー2.6mWでCNRは49.
2dBとなった。再生パワー2.6mWにおけるCNR
を第1表にまとめた。また2MHzで記録を行ったとき
の隣接トラックで測定したクロストークも第1表にまと
めた。クロストークは記録トラックでの信号強度I1と隣
接トラックでの信号強度I2を用い、20log10(I2/I1)で定
義される。
When the reproducing power is 2.4 mW or more, a mask in a high temperature portion is formed, and when the reproducing power is 2.6 mW, the CNR is 49.
It became 2 dB. CNR at playback power of 2.6 mW
Are summarized in Table 1. Table 1 also shows the crosstalk measured on the adjacent tracks when recording was performed at 2 MHz. Crosstalk is defined as 20log 10 (I2 / I1) using the signal intensity I1 at the recording track and the signal intensity I2 at the adjacent track.

【0049】比較例1〜5 切断層を設けない以外は実施例1と同様にしてディスク
を作成した。このようにして作製したディスクを実施例
と同様に測定を行った結果を第1表に示す。
Comparative Examples 1 to 5 Discs were prepared in the same manner as in Example 1 except that the cutting layer was not provided. Table 1 shows the results of the measurement performed on the disk thus manufactured in the same manner as in the examples.

【0050】比較例6 同一の基板を用い、保護層として酸化Taを90nm、
記録層としてTb21(Fe93Co7)79 を28nm、中間
層としてSiNを30nm、反射層としてAlを40n
m設けた従来より用いられているディスクを作製した。
その後、実施例1と同条件で再生磁場を印可せず再生パ
ワーPr=2.0mWでCN比を測定したところ29d
Bであった。さらに実施例と同様にしてクロストークの
測定を行ったところ−18dBであった。
Comparative Example 6 Using the same substrate, Ta oxide having a thickness of 90 nm was used as a protective layer.
Tb 21 (Fe 93 Co 7 ) 79 is 28 nm as a recording layer, SiN is 30 nm as an intermediate layer, and Al is 40 n as a reflective layer.
A conventionally used disk provided with m was prepared.
Then, the CN ratio was measured under the same conditions as in Example 1 with no reproducing magnetic field applied and the reproducing power Pr = 2.0 mW.
B. Further, when the crosstalk was measured in the same manner as in the example, it was -18 dB.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明の光磁気記録媒体を用いることに
よって、高い超解像能力と低いクロストークを兼ね備え
たダブルマスクの超解像媒体においてCNRが向上で
き、しかも広い組成範囲にわたって得ることができるた
め生産性が著しく向上する。
By using the magneto-optical recording medium of the present invention, the CNR can be improved in a double mask super-resolution medium having both high super-resolution capability and low crosstalk, and can be obtained over a wide composition range. As a result, productivity is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のRAD光磁気記録媒体の縦断面説明図FIG. 1 is an explanatory view of a longitudinal section of a RAD magneto-optical recording medium of the present invention.

【図2】従来のRAD光磁気記録媒体の縦断面説明図FIG. 2 is a vertical cross-sectional explanatory view of a conventional RAD magneto-optical recording medium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希土類金属と遷移金属を含有する合金磁性
体よりなる再生層、中間層、切断層及び記録層がこの順
に基板上に設けられおり、室温において記録層の保磁力
が再生層の保磁力より大きく、中間層が希土類金属優勢
の磁化を有しており、かつ切断層のキュリー温度が他の
いずれの磁性層のキュリー温度よりも低いことを特徴と
する光磁気記録媒体。
1. A reproducing layer, an intermediate layer, a cutting layer, and a recording layer, which are made of an alloy magnetic material containing a rare earth metal and a transition metal, are provided in this order on a substrate, and the coercive force of the recording layer at room temperature is that of the reproducing layer. A magneto-optical recording medium, which has a coercive force larger than that of the magnetic layer, an intermediate layer having a rare earth metal-dominant magnetization, and a Curie temperature of a cutting layer lower than a Curie temperature of any other magnetic layer.
【請求項2】中間層が他の層と交換結合していない状態
では室温において面内磁化膜である請求項1に記載の光
磁気記録媒体。
2. The magneto-optical recording medium according to claim 1, wherein the intermediate layer is an in-plane magnetized film at room temperature when it is not exchange-coupled with other layers.
【請求項3】請求項1に記載の光磁気記録媒体の再生方
法において、再生光として媒体の最高到達温度が切断層
のキュリー温度を越えるパワーの再生光を用い、かつ室
温において再生層の磁化を一方向に揃えるのに十分な強
度の外部磁界を加えながら再生することを特徴とする光
磁気記録媒体の再生方法。
3. The reproducing method for a magneto-optical recording medium according to claim 1, wherein the reproducing light is a reproducing light having such a power that the maximum attainable temperature of the medium exceeds the Curie temperature of the cutting layer, and the reproducing layer is magnetized at room temperature. A reproducing method for a magneto-optical recording medium, characterized in that reproducing is performed while applying an external magnetic field having a sufficient intensity to align in one direction.
JP10510596A 1996-04-25 1996-04-25 Magneto-optical recording medium and its reproducing method Pending JPH09293285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10510596A JPH09293285A (en) 1996-04-25 1996-04-25 Magneto-optical recording medium and its reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10510596A JPH09293285A (en) 1996-04-25 1996-04-25 Magneto-optical recording medium and its reproducing method

Publications (1)

Publication Number Publication Date
JPH09293285A true JPH09293285A (en) 1997-11-11

Family

ID=14398591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10510596A Pending JPH09293285A (en) 1996-04-25 1996-04-25 Magneto-optical recording medium and its reproducing method

Country Status (1)

Country Link
JP (1) JPH09293285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000017120A (en) * 1998-08-07 2000-03-25 이데이 노부유끼 Magneto-optical recording medium, and magneto-optical recording/reproducing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000017120A (en) * 1998-08-07 2000-03-25 이데이 노부유끼 Magneto-optical recording medium, and magneto-optical recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
JP3477384B2 (en) Magneto-optical recording medium
JP3568787B2 (en) Magneto-optical recording medium and reproducing apparatus
US5502692A (en) Method and apparatus for recording, reproducing and overwriting information on or from a magnetooptic disk having three magnetic layers
US5240784A (en) Magnetooptical recording medium
JPH056588A (en) Magneto-optical recording medium and magneto-optical recording method
EP0385786B1 (en) Magnetooptical recording medium
US5547773A (en) Magnetooptic recording medium
JPH09293285A (en) Magneto-optical recording medium and its reproducing method
JP2000132879A (en) Magneto-optical recording medium
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2970323B2 (en) Magneto-optical recording medium for magnetic field modulation recording
JPH08212607A (en) Magneto-optical recording medium
JP3355759B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH11238264A (en) Magneto-optical record medium and its reproducing method
JP2000339788A (en) Magneto-optical recording medium and its reproducing method
JP3592399B2 (en) Magneto-optical recording medium
JPH08221819A (en) Magneto-optical recording medium
JP3756052B2 (en) Reproduction method of magneto-optical recording medium
JP2000173116A (en) Magneto-optical recording medium and reproducing device
JP2985641B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH10241218A (en) Magneto-optical recording medium
JPH08241543A (en) Magneto-optical recording medium
JP2001176140A (en) Magneto-optical recording medium and recording and reproducing method for the same
JPH08221818A (en) Magneto-optical recording medium