JPH10231710A - Gas turbine generator - Google Patents
Gas turbine generatorInfo
- Publication number
- JPH10231710A JPH10231710A JP3348097A JP3348097A JPH10231710A JP H10231710 A JPH10231710 A JP H10231710A JP 3348097 A JP3348097 A JP 3348097A JP 3348097 A JP3348097 A JP 3348097A JP H10231710 A JPH10231710 A JP H10231710A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- gas
- turbine
- water
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 239000000498 cooling water Substances 0.000 claims abstract description 23
- 238000007872 degassing Methods 0.000 claims abstract description 10
- 238000010248 power generation Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 abstract description 14
- 239000007789 gas Substances 0.000 description 32
- 238000010586 diagram Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- UZHDGDDPOPDJGM-UHFFFAOYSA-N Stigmatellin A Natural products COC1=CC(OC)=C2C(=O)C(C)=C(CCC(C)C(OC)C(C)C(C=CC=CC(C)=CC)OC)OC2=C1O UZHDGDDPOPDJGM-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
(57)【要約】
【課題】 冷却水量を補給水量以上に増大することな
く、大量の熱量を中間冷却することができ、これにより
従来以上の高い熱効率を達成することができるガスター
ビン発電装置を提供する。
【解決手段】 複数の圧縮機1a,1bの中間に気液熱
交換器12と蒸気発生器13からなる中間冷却器14を
備え、低圧側圧縮機1aによる圧縮空気を蒸気発生器、
気液熱交換器の順で冷却し、気液熱交換器で冷却水を予
熱し、次いで少なくともその一部を蒸気発生器で蒸発さ
せ、発生した蒸気をタービン5bに供給する。また、気
液熱交換器12で加熱した冷却水の一部をボイラー給水
として脱気給水加熱器15に送り、蒸気発生器で発生し
た蒸気の一部を脱気給水加熱器に送り、これによりボイ
ラー給水を飽和温度まで加熱して脱気する。蒸気を供給
するタービンは、ガスタービン又は蒸気タービンであ
る。
(57) [Problem] To provide a gas turbine generator capable of intercooling a large amount of heat without increasing the amount of cooling water to more than the amount of make-up water, thereby achieving higher thermal efficiency than ever before. provide. SOLUTION: An intermediate cooler 14 comprising a gas-liquid heat exchanger 12 and a steam generator 13 is provided between a plurality of compressors 1a and 1b, and compressed air from the low-pressure side compressor 1a is supplied to a steam generator.
The cooling is performed in the order of the gas-liquid heat exchanger, the cooling water is preheated by the gas-liquid heat exchanger, and at least a part thereof is evaporated by the steam generator, and the generated steam is supplied to the turbine 5b. Further, a part of the cooling water heated by the gas-liquid heat exchanger 12 is sent to the degassing feedwater heater 15 as boiler feedwater, and a part of the steam generated by the steam generator is sent to the degassing feedwater heater. The boiler feed water is heated to the saturation temperature and degassed. The turbine that supplies steam is a gas turbine or a steam turbine.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガスタービン発電
装置に係わり、更に詳しくは、中間冷却と蒸気噴射を行
うガスタービン発電装置に関する。The present invention relates to a gas turbine power generator, and more particularly, to a gas turbine power generator for performing intermediate cooling and steam injection.
【0002】[0002]
【従来の技術】ガスタービンを用いた発電装置におい
て、空気又は燃焼ガスに水蒸気を噴射して性能を向上さ
せる蒸気噴射型ガスタービンサイクル(Steam-Injected
Gas Turbine:STIG サイクル又はCHENサイクル) 、及び
更に中間冷却器を備え中間冷却と蒸気噴射を行うガスタ
ービンサイクル(Intercooled and Steam-Injected Gas
Turbine:ISTIGサイクル) が知られている(例えば、"A
n Assessment of the Thermodynamic Performance of M
ixed Gas-Steam Cycles:Part A-Intercooled and Steam
-Injected Cycles", Journal of Engineering for Gas
Turbine, Vol. 117,July 1995) 。2. Description of the Related Art In a power generating apparatus using a gas turbine, a steam-injected gas turbine cycle (Steam-Injected) for improving performance by injecting steam into air or combustion gas.
Gas Turbine: STIG cycle or CHEN cycle), and a gas turbine cycle (Intercooled and Steam-Injected Gas) equipped with an intercooler to perform intercooling and steam injection
Turbine: ISTIG cycle) is known (for example, "A
n Assessment of the Thermodynamic Performance of M
ixed Gas-Steam Cycles: Part A-Intercooled and Steam
-Injected Cycles ", Journal of Engineering for Gas
Turbine, Vol. 117, July 1995).
【0003】図3は、中間冷却器を用いた再燃式のCH
ATサイクルの一例であり、空気Aが圧縮機1a,1
b,1c,1dで圧縮され、サチュレータ2で水分を含
み、排熱回収装置3で予熱されて燃焼器4a,4bに供
給され、別途予熱された燃料Fを燃焼させて高温ガスE
を発生させ、この高温ガスEにより高圧タービン5aと
低圧タービン5bを回転駆動して発電し、更に排熱回収
装置3で排熱を回収するようになっている。このサイク
ルでは、圧縮機1b,1c,1dの間に中間冷却器6を
備え、低圧ガスタービンの入口温度が1394℃の場合
で54.7%の熱効率を達成している。なお、この図で
9は、発電機である。FIG. 3 shows a recombustion type CH using an intercooler.
This is an example of an AT cycle in which air A is supplied to the compressors 1a and 1a.
b, 1c, 1d, contains moisture in the saturator 2, is preheated in the exhaust heat recovery device 3, is supplied to the combustors 4a, 4b, and burns the separately preheated fuel F to produce a high-temperature gas E
The high-temperature gas E causes the high-pressure turbine 5a and the low-pressure turbine 5b to rotate to generate power, and the exhaust heat recovery device 3 recovers exhaust heat. In this cycle, an intercooler 6 is provided between the compressors 1b, 1c and 1d, and achieves a thermal efficiency of 54.7% when the inlet temperature of the low-pressure gas turbine is 1394 ° C. In addition, in this figure, 9 is a generator.
【0004】また図4は、上述した文献に報告されてい
るISTIGサイクルの一例である。図4(A)に示す
ように、このサイクルは中間冷却器6の他に蒸気タービ
ン7を備えたコンバインドサイクルであり、混合器8で
水蒸気を混合した空気を燃焼器4に供給して熱効率を改
善するようになっている。その他の基本構成は、サチュ
レータおよび低圧燃焼器がない点を除き、図3のCHA
Tサイクルとほぼ同様である。このISTIGサイクル
では、図4(B)に示すように、ガスタービン入口温度
が1500℃の場合で約53%の熱効率を達成してい
る。FIG. 4 shows an example of the ISTIG cycle reported in the above-mentioned document. As shown in FIG. 4 (A), this cycle is a combined cycle including a steam turbine 7 in addition to the intercooler 6, and the air mixed with steam in the mixer 8 is supplied to the combustor 4 to improve the thermal efficiency. It is supposed to improve. The other basic configuration is similar to that of FIG. 3 except that there is no saturator and low pressure combustor.
It is almost the same as the T cycle. In this ISTIG cycle, as shown in FIG. 4B, when the gas turbine inlet temperature is 1500 ° C., a thermal efficiency of about 53% is achieved.
【0005】更に図5は、中間冷却を行う次世代コンバ
インドサイクルの一例であり、図4と同様に中間冷却器
6と蒸気タービン7を備え、ガスタービン5bと蒸気タ
ービン7の両方でそれぞれ発電するようになっている。
なお、図3〜図5の他に、中間冷却器を用いずに圧縮空
気に水を直接噴射する場合もある。FIG. 5 shows an example of a next-generation combined cycle for performing intercooling. As shown in FIG. 4, an intercooler 6 and a steam turbine 7 are provided, and power is generated by both the gas turbine 5b and the steam turbine 7, respectively. It has become.
Note that, in addition to FIGS. 3 to 5, water may be directly injected into the compressed air without using an intercooler.
【0006】[0006]
【発明が解決しようとする課題】上述したCHATサイ
クル、ISTIGサイクル及び次世代コンバインドサイ
クルは、既存のガスタービン発電装置に比較して高い熱
効率(ガスタービン入口温度1500℃で約53%)を
達成している。しかし、これらの中間冷却器では圧縮空
気が冷却水(補給水や外部冷却水)によって冷却され、
補給水はタービンへの噴射蒸気として用いられ、タービ
ンで仕事を終えた後、大気放出される。この量は通常吸
入空気量の10〜15wt%程度であり、低圧圧縮機の
出口温度が100℃以下であれば、この量で燃焼器に供
給する空気を約40〜50℃まで冷却することができ
る。しかし、サイクル効率を改善するために低圧圧縮機
の圧縮率を高めると出口温度が150℃以上となり、そ
の分、外部冷却水の量を増して出口空気温度を下げる必
要があり、大気放出量が増して熱損失量が増大する。ま
た、補給水をそのままで使用すると出口温度が高くなっ
て中間冷却の効果を十分に得られない。更に、水を直接
噴射注入する手段では冷却はできるが水蒸気が加わるた
め高圧圧縮機の駆動動力が増大する問題が生じる。The above-described CHAT cycle, ISTIG cycle, and next-generation combined cycle achieve higher thermal efficiency (about 53% at a gas turbine inlet temperature of 1500 ° C.) as compared with existing gas turbine power generators. ing. However, in these intercoolers, the compressed air is cooled by cooling water (make-up water or external cooling water),
Make-up water is used as steam injected into the turbine and is released to the atmosphere after completing work in the turbine. This amount is usually about 10 to 15% by weight of the intake air amount. If the outlet temperature of the low-pressure compressor is 100 ° C or less, the amount of air supplied to the combustor can be cooled to about 40 to 50 ° C. it can. However, when the compression ratio of the low-pressure compressor is increased to improve the cycle efficiency, the outlet temperature becomes 150 ° C. or more, and accordingly, it is necessary to increase the amount of external cooling water to lower the outlet air temperature, and the amount of air discharged is reduced. The amount of heat loss increases. Further, if the makeup water is used as it is, the outlet temperature becomes high and the effect of the intermediate cooling cannot be sufficiently obtained. Further, the means for directly injecting and injecting water can cool the device, but adds steam, which causes a problem that the driving power of the high-pressure compressor increases.
【0007】本発明は、上述した問題点を解決するため
に創案されたものである。すなわち本発明の目的は、冷
却水量(補給水量)を増大することなく、大量の熱量を
中間冷却することができ、これにより従来以上の高い熱
効率を達成することができるガスタービン発電装置を提
供することにある。The present invention has been made to solve the above-mentioned problems. That is, an object of the present invention is to provide a gas turbine power generator capable of intercooling a large amount of heat without increasing the amount of cooling water (amount of makeup water), thereby achieving higher thermal efficiency than ever before. It is in.
【0008】[0008]
【課題を解決するための手段】本発明によれば、複数の
圧縮機の中間に気液熱交換器と蒸気発生器からなる中間
冷却器を備え、低圧側圧縮機による圧縮空気を蒸気発生
器、気液熱交換器の順で冷却し、気液熱交換器で冷却水
を予熱し、次いで少なくともその一部を蒸気発生器で蒸
発させ、発生した蒸気をタービンに供給する、ことを特
徴とするガスタービン発電装置が提供される。According to the present invention, an intermediate cooler comprising a gas-liquid heat exchanger and a steam generator is provided in the middle of a plurality of compressors, and compressed air from the low-pressure side compressor is supplied to the steam generator. Cooling in the order of the gas-liquid heat exchanger, preheating the cooling water with the gas-liquid heat exchanger, then evaporating at least a part of the cooling water with the steam generator, and supplying the generated steam to the turbine. Is provided.
【0009】本発明は、補給水(冷却水)での顕熱冷却
に加えて、その一部を蒸気発生器に導き空気側の冷却効
果を高めかつ発生蒸気をタービンに導入し出力を増加さ
せることを特徴とするものである。すなわち、中間冷却
器を蒸気発生器と気液熱交換器で構成し、低圧圧縮機を
出た圧縮空気を先ず蒸気発生器に導入し、蒸気発生器を
出た圧縮空気は気液熱交換器に入り、補給水で更に冷却
されて、高圧圧縮機に入る。この構成により、少ない冷
却水(補給水)の顕熱だけで冷却し切れない分を水の潜
熱(蒸発熱)を利用して更に冷却することができる。According to the present invention, in addition to sensible heat cooling with make-up water (cooling water), a part thereof is led to a steam generator to enhance the cooling effect on the air side, and the generated steam is introduced into the turbine to increase the output. It is characterized by the following. That is, the intercooler is composed of a steam generator and a gas-liquid heat exchanger, and the compressed air exiting the low-pressure compressor is first introduced into the steam generator, and the compressed air exiting the steam generator is supplied to the gas-liquid heat exchanger. And further cooled by make-up water before entering the high-pressure compressor. With this configuration, the part that cannot be completely cooled by only the sensible heat of the small amount of cooling water (supply water) can be further cooled by using the latent heat (evaporation heat) of water.
【0010】一方、供給された冷却水(補給水)は気液
熱交換器で予熱され、気液熱交換器を出た補給水の一部
が蒸気発生器で蒸発し、タービンに導入されるので、圧
縮空気の冷却により発生した蒸気から動力回収ができ、
これにより、プラントの効率を更に向上することが可能
となる。On the other hand, the supplied cooling water (make-up water) is preheated by a gas-liquid heat exchanger, and a part of the make-up water exiting the gas-liquid heat exchanger is evaporated by a steam generator and introduced into a turbine. Therefore, power can be recovered from the steam generated by cooling the compressed air,
Thereby, the efficiency of the plant can be further improved.
【0011】本発明の好ましい実施形態によれば、気液
熱交換器で加熱した冷却水(補給水)の一部をボイラー
給水として脱気給水加熱器に送り、蒸気発生器で発生し
た蒸気の一部を脱気給水加熱器に送り、これにより前記
のボイラー給水を飽和温度まで加熱して脱気し、蒸気発
生器を出た残りの蒸気をタービンに供給する。すなわ
ち、気液熱交換器で加熱した冷却水(補給水)の大部分
を脱気給水加熱器に送り、更に蒸気発生器で発生した蒸
気の一部を脱気給水加熱器に送ることにより、この蒸気
によりボイラー給水を飽和温度まで加熱してボイラー給
水を脱気することができ、圧縮空気の冷却により発生し
た蒸気を、動力回収のみならず、脱気器の加熱にも用い
ることができ、従来必要であった蒸気を節約し、プラン
トの効率を更に向上させることができる。According to a preferred embodiment of the present invention, a part of the cooling water (make-up water) heated by the gas-liquid heat exchanger is sent to the degassing feedwater heater as boiler feedwater, and the steam generated by the steam generator is removed. A portion is sent to a degassing feedwater heater, which heats the boiler feedwater to a saturation temperature to degas, and supplies the remaining steam leaving the steam generator to a turbine. That is, by sending most of the cooling water (make-up water) heated by the gas-liquid heat exchanger to the degassing feedwater heater, and further sending a part of the steam generated by the steam generator to the degassing feedwater heater, This steam can be used to heat the boiler feedwater to the saturation temperature and degas the boiler feedwater, and the steam generated by cooling the compressed air can be used not only for power recovery but also for heating the deaerator, The conventionally required steam can be saved, and the efficiency of the plant can be further improved.
【0012】蒸気を供給する前記タービンは、ガスター
ビン又は蒸気タービンである。すなわち、発生蒸気を導
入し出力を増加させるタービンをガスタービンとするこ
とにより、蒸気タービンのないガスタービン発電装置の
効率を高めることができ、或いは蒸気タービンに供給す
ることによりコンバインドサイクルの効率を高めること
もできる。The turbine for supplying steam is a gas turbine or a steam turbine. In other words, the efficiency of a gas turbine power generator without a steam turbine can be increased by using a gas turbine as a turbine that introduces generated steam to increase the output, or the efficiency of a combined cycle can be increased by supplying the gas turbine to a steam turbine. You can also.
【0013】[0013]
【発明の実施の形態】以下に本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し重複した説明を省略す
る。図1は、本発明によるガスタービン発電装置の構成
図である。この図において、本発明のガスタービン発電
装置10は、複数の圧縮機(低圧圧縮機1aと高圧圧縮
機1b)の中間に気液熱交換器12と蒸気発生器13か
らなる中間冷却器14を備えている。この図に示すよう
に、気液熱交換器12と蒸気発生器13は、圧縮空気の
流れに対して向流になるように配置されており、低圧側
圧縮機1aによる圧縮空気を蒸気発生器13、気液熱交
換器12の順で冷却し、気液熱交換器12で冷却水を予
熱し、次いで少なくともその一部を蒸気発生器13で蒸
発させるようになっている。気液熱交換器12と蒸気発
生器13は、プレートフィン熱交換器であるのがよい
が、通常のシェルアンドチューブ型熱交換器であっても
よい。Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a configuration diagram of a gas turbine power generation device according to the present invention. In this figure, a gas turbine power generator 10 of the present invention includes an intercooler 14 including a gas-liquid heat exchanger 12 and a steam generator 13 between a plurality of compressors (a low-pressure compressor 1a and a high-pressure compressor 1b). Have. As shown in this figure, the gas-liquid heat exchanger 12 and the steam generator 13 are arranged so as to be countercurrent to the flow of the compressed air, and the compressed air generated by the low-pressure side compressor 1a is supplied to the steam generator. 13. The cooling is performed in the order of the gas-liquid heat exchanger 12, the cooling water is preheated by the gas-liquid heat exchanger 12, and then at least a part thereof is evaporated by the steam generator 13. The gas-liquid heat exchanger 12 and the steam generator 13 are preferably plate-fin heat exchangers, but may be ordinary shell-and-tube heat exchangers.
【0014】図1において、15はディアレータ(脱気
給水加熱器)、15aはベントコンデンサ、16a,1
6bは熱交換器、17a,17bは予熱された給水ライ
ン、18a,18bは蒸気ライン、19はスタック(煙
突)である。この実施形態では、気液熱交換器12で加
熱した冷却水(補給水)の一部を給水ライン17aを介
してボイラー給水として脱気給水加熱器15に送り、蒸
気発生器13で発生した蒸気の一部を蒸気ライン18b
を介して同じく脱気給水加熱器15に送り、これにより
前記のボイラー給水を飽和温度まで加熱して脱気し、蒸
気発生器13を出た残りの蒸気を蒸気ライン18aを介
して低圧タービン5bに供給するようになっている。In FIG. 1, reference numeral 15 denotes a deaerator (a degassing feed water heater), 15a denotes a vent condenser, and 16a, 1
6b is a heat exchanger, 17a and 17b are preheated water supply lines, 18a and 18b are steam lines, and 19 is a stack (chimney). In this embodiment, a part of the cooling water (make-up water) heated by the gas-liquid heat exchanger 12 is sent to the deaerated water heater 15 as boiler water via the water supply line 17a, and the steam generated by the steam generator 13 Part of the steam line 18b
To the deaeration / feed water heater 15 through which the boiler feed water is heated to the saturation temperature to be deaerated, and the remaining steam exiting the steam generator 13 is passed through the steam line 18a to the low-pressure turbine 5b. To be supplied.
【0015】図1に示したガスタービン発電装置10の
ヒートバランスを試算した結果、高圧タービン入口温度
が約1500℃の場合に、発電出力179MW、熱効率
55.3%を達成できることが確認された。すなわち、
図3〜図5に示した従来のガスタービン発電装置に比較
して、同一のガスタービン入口温度1500℃で約0.
6〜2%以上の高い熱効率を達成することができる。As a result of trial calculation of the heat balance of the gas turbine power generator 10 shown in FIG. 1, it was confirmed that when the high-pressure turbine inlet temperature was about 1500 ° C., a power generation output of 179 MW and a thermal efficiency of 55.3% could be achieved. That is,
As compared with the conventional gas turbine power generator shown in FIGS.
High thermal efficiency of 6 to 2% or more can be achieved.
【0016】なおこの場合に、補給水145トンのう
ち、129トンが給水ライン17aを介して脱気給水加
熱器15に送られ、残りのうち15トンが蒸気ライン1
8aを介して低圧タービン5bに供給され、残りの約
0.6トンを脱気給水加熱器15に供給した。In this case, 129 tons of the 145 tons of make-up water are sent to the deaerated water heater 15 via the water supply line 17a, and the remaining 15 tons of the steam line 1
The remaining approximately 0.6 ton was supplied to the deaeration / feed water heater 15 through the low pressure turbine 5b via 8a.
【0017】図2は、本発明による別のガスタービン発
電装置の構成図である。この実施形態では、ガスタービ
ン発電装置10は、蒸気タービン7を備えたコンバイン
ドサイクルであり、蒸気発生器13を出た蒸気の一部が
蒸気ライン18aを介して蒸気タービン7に供給するよ
うになっている。その他の構成は、図1と同様である。
この構成により、図1と同様に高い熱効率を達成するこ
とができる共に、蒸気タービンに供給することによりコ
ンバインドサイクルの効率を高めることもできる。FIG. 2 is a configuration diagram of another gas turbine power generator according to the present invention. In this embodiment, the gas turbine power generator 10 is a combined cycle including the steam turbine 7, and a part of the steam exiting the steam generator 13 is supplied to the steam turbine 7 via the steam line 18a. ing. Other configurations are the same as those in FIG.
With this configuration, high thermal efficiency can be achieved as in FIG. 1, and the efficiency of the combined cycle can be increased by supplying the heat to the steam turbine.
【0018】上述したように、本発明は、補給水(冷却
水)での顕熱冷却に加えて、その一部を蒸気発生器に導
き空気側の冷却効果を高めかつ発生蒸気をタービンに導
入し出力を増加させるものである。すなわち、中間冷却
器14を蒸気発生器12と気液熱交換器13で構成し、
低圧圧縮機1aを出た圧縮空気を先ず蒸気発生器13に
導入し、蒸気発生器13を出た圧縮空気は気液熱交換器
12に入り、補給水で更に冷却されて、高圧圧縮機に入
る。この構成により、少ない冷却水(補給水)の顕熱だ
けで冷却し切れない分を水の潜熱(蒸発熱)を利用して
更に冷却することができる。As described above, according to the present invention, in addition to sensible heat cooling with make-up water (cooling water), part of the sensible heat is guided to a steam generator to enhance the cooling effect on the air side and introduce the generated steam into the turbine. And to increase the output. That is, the intercooler 14 is constituted by the steam generator 12 and the gas-liquid heat exchanger 13,
The compressed air that has exited the low-pressure compressor 1a is first introduced into the steam generator 13, and the compressed air that has exited the steam generator 13 enters the gas-liquid heat exchanger 12, where it is further cooled with make-up water, and enter. With this configuration, the part that cannot be completely cooled by only the sensible heat of the small amount of cooling water (supply water) can be further cooled by using the latent heat (evaporation heat) of water.
【0019】一方、供給された冷却水(補給水)は気液
熱交換器12で予熱され、気液熱交換器12を出た補給
水の一部(ライン17b)が蒸気発生器13で蒸発し、
タービン(ガスタービン5b又は蒸気タービン7)に導
入されるので、圧縮空気の冷却により発生した蒸気から
動力回収ができ、これにより、プラントの効率を更に向
上することが可能となる。On the other hand, the supplied cooling water (supplementary water) is preheated in the gas-liquid heat exchanger 12, and a part of the make-up water (line 17 b) exiting the gas-liquid heat exchanger 12 is evaporated in the steam generator 13. And
Since the steam is introduced into the turbine (the gas turbine 5b or the steam turbine 7), power can be recovered from the steam generated by cooling the compressed air, whereby the efficiency of the plant can be further improved.
【0020】また、気液熱交換器12で加熱した冷却水
(補給水)の大部分をボイラー給水として脱気給水加熱
器15に送り、更に蒸気発生器13で発生した蒸気の一
部を脱気給水加熱器15に送ることにより、この蒸気に
よりボイラー給水を飽和温度まで加熱してボイラー給水
を脱気することができ、圧縮空気の冷却により発生した
蒸気を、動力回収のみならず、脱気器の加熱にも用いる
ことができ、従来必要であった蒸気を節約し、プラント
の効率を更に向上させることができる。Most of the cooling water (make-up water) heated by the gas-liquid heat exchanger 12 is sent to the deaeration water heater 15 as boiler water, and a part of the steam generated by the steam generator 13 is removed. By sending the steam to the gas feed water heater 15, the steam can heat the boiler feed water to the saturation temperature to degas the boiler feed water. The steam generated by cooling the compressed air can be used not only for power recovery but also for degassing. It can also be used to heat the vessel, saving the steam previously required and further improving the efficiency of the plant.
【0021】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.
【0022】[0022]
【発明の効果】上述したように、本発明のガスタービン
発電装置は、冷却水量を補給水量以上に増大することな
く、大量の熱量を中間冷却することができ、これにより
従来以上の高い熱効率を達成することができる等の優れ
た効果を有する。As described above, the gas turbine power generator of the present invention can intercool a large amount of heat without increasing the amount of cooling water to more than the amount of makeup water, thereby achieving higher thermal efficiency than conventional ones. It has excellent effects such as can be achieved.
【図1】本発明によるガスタービン発電装置の構成図で
ある。FIG. 1 is a configuration diagram of a gas turbine power generator according to the present invention.
【図2】本発明による別のガスタービン発電装置の構成
図である。FIG. 2 is a configuration diagram of another gas turbine power generation device according to the present invention.
【図3】中間冷却器を用いたCHATサイクルの構成図
である。FIG. 3 is a configuration diagram of a CHAT cycle using an intercooler.
【図4】ISTIGサイクルの構成図である。FIG. 4 is a configuration diagram of an ISTIG cycle.
【図5】中間冷却を行う次世代コンバインドサイクルの
構成図である。FIG. 5 is a configuration diagram of a next-generation combined cycle for performing intermediate cooling.
1a,1b,1c,1d 圧縮機 2 サチュレータ 3 排熱回収装置 4,4a,4b 燃焼器 5,5a,5b タービン 6 中間冷却器 7 蒸気タービン 8 混合器 9 発電機 10 ガスタービン発電装置 12 気液熱交換器 13 蒸気発生器 14 中間冷却器 15 ディアレータ(脱気給水加熱器) 15a ディアレータの冷却器 16a,16b 熱交換器 17a,17b 予熱された給水ライン 18a,18b 蒸気ライン 19 スタック(煙突) 1a, 1b, 1c, 1d Compressor 2 Saturator 3 Exhaust heat recovery device 4, 4a, 4b Combustor 5, 5a, 5b Turbine 6 Intercooler 7 Steam turbine 8 Mixer 9 Generator 10 Gas turbine generator 12 Gas-liquid Heat exchanger 13 Steam generator 14 Intercooler 15 Deaerator (degasified feed water heater) 15a Deaerator cooler 16a, 16b Heat exchanger 17a, 17b Preheated water supply line 18a, 18b Steam line 19 Stack (chimney)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 7/143 F02C 7/143 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI F02C 7/143 F02C 7/143
Claims (3)
気発生器からなる中間冷却器を備え、低圧側圧縮機によ
る圧縮空気を蒸気発生器、気液熱交換器の順で冷却し、
気液熱交換器で冷却水(補給水)を予熱し、次いで少な
くともその一部を蒸気発生器で蒸発させ、発生した蒸気
をタービンに供給する、ことを特徴とするガスタービン
発電装置。An intermediate cooler comprising a gas-liquid heat exchanger and a steam generator is provided between a plurality of compressors, and the compressed air from the low-pressure side compressor is cooled in the order of a steam generator and a gas-liquid heat exchanger. And
A gas turbine power generator, wherein a cooling water (supplementary water) is preheated by a gas-liquid heat exchanger, then at least a part thereof is evaporated by a steam generator, and the generated steam is supplied to a turbine.
水)の一部をボイラー給水として脱気給水加熱器に送
り、蒸気発生器で発生した蒸気の一部を脱気給水加熱器
に送り、これにより前記のボイラー給水を飽和温度まで
加熱して脱気し、蒸気発生器を出た残りの蒸気をタービ
ンに供給する、ことを特徴とする請求項1に記載のガス
タービン発電装置。2. A part of the cooling water (make-up water) heated by the gas-liquid heat exchanger is sent to the degassing feedwater heater as boiler feedwater, and a part of the steam generated by the steam generator is sent to the degassing feedwater heater. The gas turbine generator according to claim 1, wherein the steam is supplied to the steam generator, whereby the boiler feed water is heated to a saturation temperature and deaerated, and the remaining steam exiting the steam generator is supplied to a turbine. .
ービン又は蒸気タービンである、ことを特徴とする請求
項1又は2に記載のガスタービン発電装置。3. The gas turbine power generation apparatus according to claim 1, wherein the turbine that supplies steam is a gas turbine or a steam turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03348097A JP3778225B2 (en) | 1997-02-18 | 1997-02-18 | Gas turbine power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03348097A JP3778225B2 (en) | 1997-02-18 | 1997-02-18 | Gas turbine power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10231710A true JPH10231710A (en) | 1998-09-02 |
JP3778225B2 JP3778225B2 (en) | 2006-05-24 |
Family
ID=12387723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03348097A Expired - Fee Related JP3778225B2 (en) | 1997-02-18 | 1997-02-18 | Gas turbine power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3778225B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004360700A (en) * | 2003-06-06 | 2004-12-24 | General Electric Co <Ge> | Method and device for operating gas turbine engine |
JP2006526736A (en) * | 2003-05-30 | 2006-11-24 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
AT503533B1 (en) * | 2006-04-24 | 2009-02-15 | Falkinger Walter Ing | INCREASE IN USE BY HUMIDITY GAS FLOWS IN GAS TURBINES |
JP2012002498A (en) * | 2010-06-18 | 2012-01-05 | General Electric Co <Ge> | Fin and tube heat exchanger |
CN102606237A (en) * | 2012-03-06 | 2012-07-25 | 广东电网公司电力科学研究院 | Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine |
CN104204427A (en) * | 2012-04-05 | 2014-12-10 | 川崎重工业株式会社 | Gas turbine engine system equipped with rankine cycle engine |
-
1997
- 1997-02-18 JP JP03348097A patent/JP3778225B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006526736A (en) * | 2003-05-30 | 2006-11-24 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
JP4705018B2 (en) * | 2003-05-30 | 2011-06-22 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
JP2004360700A (en) * | 2003-06-06 | 2004-12-24 | General Electric Co <Ge> | Method and device for operating gas turbine engine |
AT503533B1 (en) * | 2006-04-24 | 2009-02-15 | Falkinger Walter Ing | INCREASE IN USE BY HUMIDITY GAS FLOWS IN GAS TURBINES |
JP2012002498A (en) * | 2010-06-18 | 2012-01-05 | General Electric Co <Ge> | Fin and tube heat exchanger |
CN102606237A (en) * | 2012-03-06 | 2012-07-25 | 广东电网公司电力科学研究院 | Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine |
CN104204427A (en) * | 2012-04-05 | 2014-12-10 | 川崎重工业株式会社 | Gas turbine engine system equipped with rankine cycle engine |
US9453434B2 (en) | 2012-04-05 | 2016-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Gas turbine engine system equipped with Rankine cycle engine |
Also Published As
Publication number | Publication date |
---|---|
JP3778225B2 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6684643B2 (en) | Process for the operation of a gas turbine plant | |
US5513488A (en) | Power process utilizing humidified combusted air to gas turbine | |
US5687560A (en) | Steam raising apparatus for performance enhanced gas turbine powerplants | |
JPH08510311A (en) | High efficiency multi-axis reheat turbine using intercooling and recuperation | |
US4250704A (en) | Combined gas-steam power plant with a fuel gasification device | |
CN102472120B (en) | Cogeneration plant and cogeneration method | |
US5678408A (en) | Performance enhanced gas turbine powerplants | |
EP0676532B1 (en) | Steam injected gas turbine system with topping steam turbine | |
US8833080B2 (en) | Arrangement with a steam turbine and a condenser | |
US8943836B2 (en) | Combined cycle power plant | |
JP2015514179A (en) | Combined cycle power plant and method for operating a combined cycle power plant | |
JPH04228832A (en) | Gas turbine and operation method therefor | |
JPH08296410A (en) | Cogeneration equipment and combined cycle generation equipment | |
JPH0713474B2 (en) | Power generation method using combustion gas turbine and combustion method of gas for power generation | |
JP2000000078U (en) | Gas / steam power generation equipment | |
JPH11247669A (en) | Gas turbine combined cycle | |
JP3778225B2 (en) | Gas turbine power generator | |
JPS6267239A (en) | Gas turbine power generation method | |
US6588196B1 (en) | Gas and steam turbine system | |
JP2002129977A (en) | Gas turbine equipment | |
JP2004169696A (en) | Composite power generation facility | |
JPH10325336A (en) | Gas turbine power generating system | |
JP3095680B2 (en) | Hydrogen-oxygen combustion turbine plant | |
JP2000291445A (en) | Gas turbine plant and operating method for the same | |
JP2004044533A (en) | Turbine equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050804 |
|
A521 | Written amendment |
Effective date: 20050930 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A521 | Written amendment |
Effective date: 20051004 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20060208 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060221 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |