[go: up one dir, main page]

JPH10214944A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH10214944A
JPH10214944A JP9018018A JP1801897A JPH10214944A JP H10214944 A JPH10214944 A JP H10214944A JP 9018018 A JP9018018 A JP 9018018A JP 1801897 A JP1801897 A JP 1801897A JP H10214944 A JPH10214944 A JP H10214944A
Authority
JP
Japan
Prior art keywords
film
lower electrode
tin
barrier layer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9018018A
Other languages
Japanese (ja)
Inventor
Takao Kinoshita
多賀雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9018018A priority Critical patent/JPH10214944A/en
Publication of JPH10214944A publication Critical patent/JPH10214944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent separation of a Pt layer of a lower electrode from a barrier layer (TiN layer) by a method wherein, after the barrier layer and lower electrode are sequentially formed, they are heat treated in the nitrogen or inactive gas atmosphere, and an interface between the barrier layer and lower electrode is alloyed, and thereafter a ferroelectric film is formed on the lower electrode. SOLUTION: After switching transistors 11 are coated with an interlayer insulation film 2, surfaces of the interlayer insulation film 2 and a polysilicon plug 3 are flatted and a TiN film serving as a barrier layer 7 is formed using a sputter method, and a TiN/Ti film is formed, and continuously a Pt film is deposited to form a lower electrode. Next, they are heat-treated (annealed) in the inactive gas atmosphere of nitrogen, argon and the like, and a Pt/TiN/Ti lamination film is alloyed to form lamination films 5a, 6a. Further, after a PZT7 film is formed using a sol-gel method and crystallized, an insulation film 8 is deposited and a contact hole is formed on an upper part of a ferroelectric film. Thereafter, a Pt upper electrode 13 is formed. A film separation is hard to occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体薄膜や高
誘電体薄膜を使用する半導体装置の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device using a ferroelectric thin film or a high dielectric thin film.

【0002】[0002]

【従来の技術】近年、シリコン酸化膜に比べて大きな誘
電率を有する高誘電体薄膜や、自発分極を有する強誘電
体薄膜を利用したDRAMやDSRAM等の半導体素子
が盛んに研究されている。これらの誘電体薄膜はその多
くが酸化物であり、形成時に高温の熱処理を必要とする
ため耐熱性や耐酸化性等の点から下地電極材料としてP
tを主成分とする金属膜が下部電極として用いられてい
る。
2. Description of the Related Art In recent years, semiconductor devices such as DRAMs and DSRAMs using a high dielectric thin film having a higher dielectric constant than a silicon oxide film and a ferroelectric thin film having spontaneous polarization have been actively studied. Most of these dielectric thin films are oxides, and require high-temperature heat treatment during formation. Therefore, from the viewpoint of heat resistance and oxidation resistance, P is used as a base electrode material.
A metal film containing t as a main component is used as a lower electrode.

【0003】このPt又はPtを含む金属膜、例えばP
tを主成分とする金属膜(PtとRhとの合金等)を、
シリコン半導体領域と電気的に接続するには、Ptや誘
電体膜に含まれるPbやBiの導電性材料中やシリコン
中への拡散、並びに誘電体膜形成時の熱処理によるシリ
コン半導体領域と接続されている導電材料の酸化を防止
するために、TiN、Ta等の高融点金属又は高融点金
属を含む金属膜、例えば、高融点金属を主成分とする金
属膜が必要であり、自然酸化膜による導通不良を避ける
ためのTi膜と各高融点金属膜等との積層構造として使
用される。
The Pt or a metal film containing Pt, for example, P
a metal film containing t as a main component (such as an alloy of Pt and Rh)
In order to electrically connect to the silicon semiconductor region, Pt or Pb or Bi contained in the dielectric film is diffused into a conductive material or silicon, and is connected to the silicon semiconductor region by heat treatment when forming the dielectric film. In order to prevent oxidation of the conductive material, a high melting point metal such as TiN or Ta or a metal film containing a high melting point metal, for example, a metal film containing a high melting point metal as a main component is required. It is used as a laminated structure of a Ti film and each high melting point metal film for avoiding poor conduction.

【0004】以下、図2を用いて従来の高誘電体薄膜又
は強誘電薄膜を有した半導体メモリ素子の製造工程を説
明する。
Hereinafter, a manufacturing process of a conventional semiconductor memory device having a high dielectric thin film or a ferroelectric thin film will be described with reference to FIG.

【0005】まず、図2(a)に示すようにスイッチ用
トランジスタ11のMOSFET形成工程により形成し
層間絶縁膜2で覆った後、ビット線が基板の不純物拡散
領域12と接触する部分のみ公知のフォトリソグラフィ
法とドライエッチング法を用いてコンタクトホール4を
形成し、不純物を拡散したポリシリコンを埋め込んだ
後、公知のCMP法により層間絶縁膜とポリシリコンプ
ラグ3表面の平坦化を行う。
First, as shown in FIG. 2A, after a switching transistor 11 is formed by a MOSFET forming step and covered with an interlayer insulating film 2, only a portion where a bit line contacts an impurity diffusion region 12 of a substrate is known. A contact hole 4 is formed by using a photolithography method and a dry etching method, and polysilicon in which impurities are diffused is buried. Then, the surface of the interlayer insulating film and the surface of the polysilicon plug 3 are planarized by a known CMP method.

【0006】次に、図2(b)に示すように、ポリシリ
コンプラグ上にDCマグネトロンスパッタ法を用いて膜
厚が300〜500ÅのTi膜を形成し、更にマグネト
ロン反応性スパッタ法により膜厚が2000ÅのTiN
膜を成膜させることによりTiN/Ti膜5を形成す
る。続いてDCマグネトロンスパッタ法を用いて膜厚が
1000ÅのPt膜6を堆積し、下部電極を形成する。
Next, as shown in FIG. 2B, a Ti film having a thickness of 300 to 500 ° is formed on the polysilicon plug by using a DC magnetron sputtering method, and is further formed by a magnetron reactive sputtering method. 2000N TiN
By forming a film, a TiN / Ti film 5 is formed. Subsequently, a Pt film 6 having a thickness of 1000 ° is deposited by using a DC magnetron sputtering method to form a lower electrode.

【0007】更に、ゾルゲル法を用いて0.20μmの
PZT膜7を形成する。このPZT膜7は、まず、2−
メトキシエタノールを溶媒として酢酸鉛、チタン(I
V)イソプロポキシド、ジルコニウムイソプロポキシド
をそれぞれPb:Ti:Zr=100:52:48とな
るように溶解してゾルゲル原液溶液とし、この原液溶液
をスピナーを用いて回転数を3000rpmとして塗布
する。
Further, a 0.20 μm PZT film 7 is formed by using a sol-gel method. This PZT film 7 first has a 2-
Using methoxyethanol as a solvent, lead acetate, titanium (I
V) Isopropoxide and zirconium isopropoxide are respectively dissolved so that Pb: Ti: Zr = 100: 52: 48 to obtain a sol-gel stock solution, and the stock solution is applied using a spinner at a rotation speed of 3000 rpm. .

【0008】次に、大気中で150℃、10分間の乾燥
を行った後、更に大気中で30分間の乾燥を行った後、
大気中で400℃で30分間の仮焼結を行う。この後6
00〜650℃で30分間窒素と酸素の混合雰囲気(流
量比N2:O2=4:1)でPZT膜7の結晶化を行う。
次に、PZT/Pt/TiN/Ti層を公知のフォトリ
ソグラフィ法とドライエッチング法とを用いて図2
(b)に示すような形状とした。
Next, after drying in the air at 150 ° C. for 10 minutes, and further in the air for 30 minutes,
Temporary sintering is performed at 400 ° C. for 30 minutes in the air. After this 6
The PZT film 7 is crystallized in a mixed atmosphere of nitrogen and oxygen (flow ratio N 2 : O 2 = 4: 1) at 00 to 650 ° C. for 30 minutes.
Next, the PZT / Pt / TiN / Ti layer is formed by a known photolithography method and a dry etching method as shown in FIG.
The shape was as shown in FIG.

【0009】次に、図2(c)に示すように、PZT膜
7とシリコン酸化膜9との反応を防止するためのTiO
等の絶縁膜8を公知のスパッタ法により堆積し、続い
て、シリコン酸化膜9を公知のCVD法にて堆積し、強
誘電体膜上部に公知のフォトリソグラフィ法とドライエ
ッチング法とを用いてコンタクトホールを形成する。そ
の後、図2(d)に示すようにPt上部電極13を形成
する。
Next, as shown in FIG. 2C, TiO for preventing a reaction between the PZT film 7 and the silicon oxide film 9 is formed.
Or the like is deposited by a known sputtering method, then a silicon oxide film 9 is deposited by a known CVD method, and a known photolithography method and a dry etching method are formed on the ferroelectric film. Form a contact hole. After that, a Pt upper electrode 13 is formed as shown in FIG.

【0010】[0010]

【発明が解決しようとする課題】Ti等の密着層を有し
ない図2(d)の半導体メモリ素子では、窒素と酸素と
の混合雰囲気中での強誘電体膜の結晶化工程で、TiN
の表面が酸素によって酸化されたり、TiN層に塑性変
形を生じさせるストレスがかかる。これにより、Ptと
TiNとの間で膜はがれが生じるので、強誘電体膜の特
性を測定することが困難になる。
In the semiconductor memory device shown in FIG. 2D having no adhesion layer of Ti or the like, TiN is used in a crystallization step of a ferroelectric film in a mixed atmosphere of nitrogen and oxygen.
Stress is applied to oxidize the surface of the TiN layer with oxygen or cause plastic deformation of the TiN layer. As a result, film peeling occurs between Pt and TiN, which makes it difficult to measure the characteristics of the ferroelectric film.

【0011】このPtとTiNとのはがれを防止するた
め、図3に示すように、下部電極のPt層6とバリア層
7を構成するTiN層との間に密着層14を形成する技
術がある。このようなTi等の密着層14を用いると、
上記結晶化工程で密着層が酸化するが膜はがれが防止可
能となる。
In order to prevent the separation between Pt and TiN, there is a technique of forming an adhesion layer 14 between the Pt layer 6 of the lower electrode and the TiN layer forming the barrier layer 7, as shown in FIG. . When such an adhesion layer 14 of Ti or the like is used,
Although the adhesion layer is oxidized in the crystallization step, peeling of the film can be prevented.

【0012】しかし、密着層が酸化されることで抵抗が
高くなり、特性が測定できないという問題点を有する。
However, there is a problem that the resistance is increased due to the oxidation of the adhesion layer, and the characteristics cannot be measured.

【0013】尚、図2は第1の従来の強誘電体膜や高誘
電体膜を有する半導体メモリ素子の形成工程を示す図で
あり、図3は第2の従来の強誘電体膜や高誘電体膜を有
する半導体メモリ素子の断面図である。また、図2及び
図3において、1は半導体基板、10は素子分離部を示
す。
FIG. 2 is a view showing a process of forming a semiconductor memory device having a first conventional ferroelectric film or high dielectric film, and FIG. 3 is a view showing a second conventional ferroelectric film or high dielectric film. FIG. 3 is a cross-sectional view of a semiconductor memory device having a dielectric film. 2 and 3, reference numeral 1 denotes a semiconductor substrate, and reference numeral 10 denotes an element isolation portion.

【0014】[0014]

【課題を解決するための手段】請求項1記載の本発明の
半導体装置の製造方法は、トランジスタと高誘電体膜又
は強誘電体膜を有するキャパシタの、白金又は白金を主
成分とする合金から成る下部電極とを導電性材料からな
るプラグと高融点金属又は高融点金属化合物から成るバ
リア層とを介して電気的に接続した半導体装置の製造方
法において、上記バリア層と下部電極とを順次形成した
後、窒素又は不活性ガス雰囲気中で熱処理を行い、上記
バリア層と下部電極との界面を合金化し、その後、上記
下部電極上に上記高誘電体膜又は強誘電体膜を形成する
ことを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a transistor and a capacitor having a high dielectric film or a ferroelectric film from platinum or an alloy containing platinum as a main component. A lower electrode formed of a conductive material and a barrier layer made of a high melting point metal or a high melting point metal compound, the barrier layer and the lower electrode are sequentially formed. After that, heat treatment is performed in a nitrogen or inert gas atmosphere to alloy the interface between the barrier layer and the lower electrode, and then form the high dielectric film or the ferroelectric film on the lower electrode. It is a feature.

【0015】また、請求項2記載の本発明の半導体装置
の製造方法は、上記バリア層が窒化チタン膜から成り、
上記熱処理を窒素雰囲気中で行うことを特徴とする、請
求項1記載の半導体装置の製造方法である。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device, the barrier layer comprises a titanium nitride film,
2. The method according to claim 1, wherein the heat treatment is performed in a nitrogen atmosphere.

【0016】[0016]

【実施の形態】以下、一実施の形態に基づいて本発明に
ついて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on one embodiment.

【0017】図1は本発明の一実施の形態の半導体装置
の製造工程を示す図である。尚、図1において、10は
素子分離部を示す。
FIG. 1 is a diagram showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes an element isolation portion.

【0018】以下、図1を用いて本発明の一実施の形態
の高誘電体薄膜又は強誘電薄膜を有した半導体メモリ素
子の製造工程を説明する。
Hereinafter, a manufacturing process of a semiconductor memory device having a high dielectric thin film or a ferroelectric thin film according to an embodiment of the present invention will be described with reference to FIG.

【0019】まず、図1(a)に示すようにスイッチ用
トランジスタ11のMOSFET形成工程により形成し
層間絶縁膜2で覆った後、ビット線が半導体基板1の不
純物拡散領域12と接触する部分のみ公知のフォトリソ
グラフィ法とドライエッチング法を用いてコンタクトホ
ール4を形成し、不純物を拡散したポリシリコンを埋め
込んだ後、公知のCMP法により層間絶縁膜2とポリシ
リコンプラグ3表面の平坦化を行う。
First, as shown in FIG. 1A, after the switching transistor 11 is formed by the MOSFET forming step and covered with the interlayer insulating film 2, only the portion where the bit line contacts the impurity diffusion region 12 of the semiconductor substrate 1 is formed. A contact hole 4 is formed by using a known photolithography method and a dry etching method, and polysilicon in which impurities are diffused is buried. Then, the surfaces of the interlayer insulating film 2 and the polysilicon plug 3 are planarized by a known CMP method. .

【0020】次に、図1(b)に示すように、ポリシリ
コンプラグ3上にDCマグネトロンスパッタ法を用いて
膜厚が300〜500ÅのTi膜を形成し、更にマグネ
トロン反応性スパッタ法により膜厚が2000Åのバリ
ア層となるTiN膜を成膜させることによりTiN/T
i膜を形成する。ここで、バリア層を構成するTiN層
は熱処理時のガスである酸素、窒素、下部電極であるP
t、誘電体膜中に含まれるPb等のポリシリコンプラグ
3への拡散防止として働く。
Next, as shown in FIG. 1B, a Ti film having a thickness of 300 to 500 ° is formed on the polysilicon plug 3 by using a DC magnetron sputtering method, and further a film is formed by a magnetron reactive sputtering method. By forming a TiN film to be a barrier layer having a thickness of 2000 °, TiN / T
An i film is formed. Here, the TiN layer constituting the barrier layer is composed of oxygen and nitrogen, which are gases at the time of heat treatment, and P, which is a lower electrode.
At the same time, it works to prevent diffusion of Pb or the like contained in the dielectric film into the polysilicon plug 3.

【0021】続いてDCマグネトロンスパッタ法を用い
て膜厚が1000ÅのPt膜を堆積し、下部電極を形成
する。
Subsequently, a Pt film having a thickness of 1000 ° is deposited by using a DC magnetron sputtering method to form a lower electrode.

【0022】次に、窒素やアルゴン等の不活性ガス雰囲
気注で500〜600℃の温度で熱処理することによ
り、Pt/TiN/Ti積層膜を合金化させた(共晶と
塑性変化を起こさせた)積層膜5a、6bを形成する。
Pt膜の成膜はウエハ温度を450〜500℃に上げマ
クネトロン反応性スパッタにより行っているので、Pt
膜形成後の熱処理を500℃以下で行う必要はない。ま
た、熱処理温度が高くなり過ぎると(例えば、650
℃)、TiN膜の成膜条件によっては、TiN膜が割れ
るという問題を生じるため、強誘電体膜を有する半導体
装置が所望の特性を得るためには、500〜600℃で
熱処理を行う必要がある。また、バリア層にTiN膜を
用いた場合、窒素雰囲気中で熱処理すればTiN膜中の
未反応のTiと窒素とが反応し、TiNの窒化度が向上
するのでTiN膜の膜質を改善することができる。
Next, the Pt / TiN / Ti laminated film is alloyed by subjecting it to a heat treatment at a temperature of 500 to 600 ° C. in an atmosphere of an inert gas such as nitrogen or argon to cause eutectic and plastic change. A) forming the laminated films 5a and 6b;
Since the Pt film is formed by the magnetron reactive sputtering after raising the wafer temperature to 450 to 500 ° C.
It is not necessary to perform the heat treatment after the film formation at 500 ° C. or lower. If the heat treatment temperature is too high (for example, 650)
° C), depending on the film formation conditions of the TiN film, a problem that the TiN film is cracked may occur. Therefore, in order to obtain desired characteristics of the semiconductor device having the ferroelectric film, it is necessary to perform heat treatment at 500 to 600 ° C. is there. Also, when a TiN film is used for the barrier layer, if heat treatment is performed in a nitrogen atmosphere, unreacted Ti in the TiN film reacts with nitrogen, and the degree of nitridation of TiN is improved. Can be.

【0023】更に、ゾルゲル法を用いて0.20μmの
PZT膜7を形成する。このPZT膜7は、まず、2−
メトキシエタノールを溶媒として酢酸鉛、チタン(I
V)イソプロポキシド、ジルコニウムイソプロポキシド
をそれぞれPb:Ti:Zr=100:52:48とな
るように溶解してゾルゲル原液溶液とし、この原液溶液
をスピナーを用いて回転数を3000rpmとして塗布
する。
Further, a 0.20 μm PZT film 7 is formed by using a sol-gel method. This PZT film 7 first has a 2-
Using methoxyethanol as a solvent, lead acetate, titanium (I
V) Isopropoxide and zirconium isopropoxide are respectively dissolved so that Pb: Ti: Zr = 100: 52: 48 to obtain a sol-gel stock solution, and the stock solution is applied using a spinner at a rotation speed of 3000 rpm. .

【0024】次に、大気中で150℃、10分間の乾燥
を行った後、更に大気中で30分間の乾燥を行った後、
大気中で400℃で30分間の仮焼結を行う。この後6
00〜650℃で30分間窒素と酸素の混合雰囲気(流
量比N2:O2=4:1)でPZT膜の結晶化を行う。次
に、PZT/Pt/TiN/Ti層を公知のフォトリソ
グラフィ法とドライエッチング法とを用いて図1(b)
に示すような形状とした。
Next, after drying at 150 ° C. in the air for 10 minutes, and further drying in the air for 30 minutes,
Temporary sintering is performed at 400 ° C. for 30 minutes in the air. After this 6
The PZT film is crystallized in a mixed atmosphere of nitrogen and oxygen (flow rate ratio N 2 : O 2 = 4: 1) at 00 to 650 ° C. for 30 minutes. Next, the PZT / Pt / TiN / Ti layer is formed by a known photolithography method and a dry etching method as shown in FIG.
The shape was as shown in FIG.

【0025】次に、図1(c)に示すように、PZT膜
7とシリコン酸化膜9との反応を防止するためのTiO
等の絶縁膜8を公知のスパッタ法により堆積し、続い
て、シリコン酸化膜9を公知のCVD法にて堆積し、強
誘電体膜上部に公知のフォトリソグラフィ法とドライエ
ッチング法とを用いてコンタクトホールを形成する。そ
の後、図1(d)に示すようにPt上部電極13を形成
する。
Next, as shown in FIG. 1C, TiO for preventing a reaction between the PZT film 7 and the silicon oxide film 9 is formed.
Or the like is deposited by a known sputtering method, then a silicon oxide film 9 is deposited by a known CVD method, and a known photolithography method and a dry etching method are formed on the ferroelectric film. Form a contact hole. Thereafter, a Pt upper electrode 13 is formed as shown in FIG.

【0026】以上の工程により形成された半導体装置と
従来の半導体装置を比較すると、アニール無しの従来技
術では、膜はがれが生じたのに対し、窒素雰囲気で50
0℃、30分のアニール、同雰囲気での600℃、30
分のアニールを行う本発明では、膜はがれは生じなかっ
た。
A comparison between the semiconductor device formed by the above process and the conventional semiconductor device shows that in the prior art without annealing, the film peeled off, whereas the film peeled off in a nitrogen atmosphere.
0 ° C, 30 minutes annealing, 600 ° C, 30 minutes in the same atmosphere
In the present invention in which annealing was performed for a minute, film peeling did not occur.

【0027】また、バリア層にTa(タンタル)を用い
た場合、窒素と酸素の混合雰囲気の中のPZT膜の結晶
化のための熱処理工程で、Taが塑性変形したり、Ta
とPtとの界面での共晶によって、PtとTaとの膜は
がれが生じないように、下部電極となるPt電極形成後
に窒素雰囲気中で500〜600℃の熱処理を行っても
よい。尚、Taは酸化され易いのでPZT膜の結晶化時
に酸化されるが、該Taは酸化されても導電性を有する
という特徴を有するので、強誘電体膜の特性を測定する
際の問題はない。
In the case where Ta (tantalum) is used for the barrier layer, Ta may be plastically deformed in the heat treatment step for crystallization of the PZT film in a mixed atmosphere of nitrogen and oxygen, or Ta may be used.
After forming the Pt electrode serving as the lower electrode, a heat treatment at 500 to 600 ° C. may be performed in a nitrogen atmosphere so that the Pt and Ta films do not peel off due to the eutectic at the interface between Pt and Ta. Since Ta is easily oxidized, it is oxidized during the crystallization of the PZT film. However, since Ta has a characteristic that it has conductivity even if oxidized, there is no problem in measuring the characteristics of the ferroelectric film. .

【0028】[0028]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、半導体装置製造工程中で問題となる
PtとTiN間での膜はがれを密着層を用いることなく
防止し、且つ強誘電体薄膜や高誘電体薄膜をクラックの
発生なしに形成することが可能となるので、強誘電体膜
や高誘電体膜の特性を測定することができる。
As described above in detail, by using the present invention, the peeling of the film between Pt and TiN, which is a problem in the semiconductor device manufacturing process, can be prevented without using the adhesion layer, Since the dielectric thin film and the high dielectric thin film can be formed without generating cracks, the characteristics of the ferroelectric film and the high dielectric film can be measured.

【0029】請求項2記載の本発明を用いることによ
り、共晶形成のためのアニールで、バリア層を構成する
TiN膜の膜質改善ができる。
According to the second aspect of the present invention, the quality of the TiN film constituting the barrier layer can be improved by annealing for eutectic formation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の半導体装置の製造装置
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an apparatus for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】第1の従来の強誘電体膜や高誘電体膜を有する
半導体メモリ素子の形成工程を示す図である。
FIG. 2 is a view showing a process of forming a semiconductor memory device having a first conventional ferroelectric film or high-dielectric film.

【図3】第2の従来の強誘電体膜や高誘電体膜を有する
半導体メモリ素子の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor memory device having a second conventional ferroelectric film or high-dielectric film.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 層間絶縁膜 3 ポリシリコンプラグ 4 コンタクトホール 5 TiN/Ti膜 5a Ptと合金化されたTiN/Ti膜 6 Pt膜 6a TiNと合金化されたPt膜 7 PZT膜 8 絶縁膜 9 シリコン酸化膜 10 素子分離部 11 スイッチ用トランジスタ 12 不純物拡散領域 13 キャパシタの上部電極 Reference Signs List 1 semiconductor substrate 2 interlayer insulating film 3 polysilicon plug 4 contact hole 5 TiN / Ti film 5a TiN / Ti film alloyed with Pt 6 Pt film 6a Pt film alloyed with TiN 7 PZT film 8 insulating film 9 silicon Oxide film 10 Element isolation portion 11 Switching transistor 12 Impurity diffusion region 13 Upper electrode of capacitor

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/792 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/792

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トランジスタと高誘電体膜又は強誘電体
膜を有するキャパシタの、白金又は白金を主成分とする
合金から成る下部電極とを導電性材料からなるプラグと
高融点金属又は高融点金属化合物から成るバリア層とを
介して電気的に接続した半導体装置の製造方法におい
て、 上記バリア層と下部電極とを順次形成した後、窒素又は
不活性ガス雰囲気中で熱処理を行い、上記バリア層と下
部電極との界面を合金化し、その後、上記下部電極上に
上記高誘電体膜又は強誘電体膜を形成することを特徴と
する、半導体装置の製造方法。
A high-melting-point metal or a high-melting-point metal comprising a transistor and a capacitor having a high-dielectric film or a ferroelectric film, wherein a lower electrode made of platinum or an alloy containing platinum as a main component is formed of a plug made of a conductive material. In a method for manufacturing a semiconductor device electrically connected via a barrier layer made of a compound, after sequentially forming the barrier layer and the lower electrode, a heat treatment is performed in an atmosphere of nitrogen or an inert gas, and A method for manufacturing a semiconductor device, comprising: alloying an interface with a lower electrode; and thereafter, forming the high dielectric film or the ferroelectric film on the lower electrode.
【請求項2】上記バリア層が窒化チタン膜から成り、上
記熱処理を窒素雰囲気中で行うことを特徴とする、請求
項1記載の半導体装置の製造方法。
2. The method according to claim 1, wherein said barrier layer is made of a titanium nitride film, and said heat treatment is performed in a nitrogen atmosphere.
JP9018018A 1997-01-31 1997-01-31 Method for manufacturing semiconductor device Pending JPH10214944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018018A JPH10214944A (en) 1997-01-31 1997-01-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018018A JPH10214944A (en) 1997-01-31 1997-01-31 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH10214944A true JPH10214944A (en) 1998-08-11

Family

ID=11959938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018018A Pending JPH10214944A (en) 1997-01-31 1997-01-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH10214944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362179B1 (en) * 1999-12-30 2002-11-23 주식회사 하이닉스반도체 Semiconductor memory device having oxide and Ti double layer capable of preventing hydrogen diffusion and method for forming the same
JP2007042871A (en) * 2005-08-03 2007-02-15 Seiko Epson Corp Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory device
JP2007053179A (en) * 2005-08-17 2007-03-01 Seiko Epson Corp Manufacturing method of semiconductor device
US7514272B2 (en) 2006-03-14 2009-04-07 Seiko Epson Corporation Method of manufacturing ferroelectric memory device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362179B1 (en) * 1999-12-30 2002-11-23 주식회사 하이닉스반도체 Semiconductor memory device having oxide and Ti double layer capable of preventing hydrogen diffusion and method for forming the same
JP2007042871A (en) * 2005-08-03 2007-02-15 Seiko Epson Corp Ferroelectric capacitor, method of manufacturing the same, and ferroelectric memory device
US7547629B2 (en) 2005-08-03 2009-06-16 Seiko Epson Corporation Ferroelectric capacitor and its manufacturing method and ferroelectric memory device
JP2007053179A (en) * 2005-08-17 2007-03-01 Seiko Epson Corp Manufacturing method of semiconductor device
US7514272B2 (en) 2006-03-14 2009-04-07 Seiko Epson Corporation Method of manufacturing ferroelectric memory device

Similar Documents

Publication Publication Date Title
JP3804972B2 (en) Semiconductor device and manufacturing method thereof
US6214660B1 (en) Capacitor for integrated circuit and its fabrication method
US5789268A (en) Method of forming a electrode structure for ferroelectric capacitors for integrated circuits
JP3055791B2 (en) Electrodes for electrical ceramic oxide equipment
US5003428A (en) Electrodes for ceramic oxide capacitors
EP0448151A1 (en) Method of manufacturing a semiconductor device comprising capacitors which form memory elements and comprise a ferroelectric dielectric material
JPH09260600A (en) Method for manufacturing semiconductor memory device
JP2000138350A (en) Method for manufacturing semiconductor memory device
JP3251912B2 (en) Method of forming ferroelectric capacitor
JPH0563205A (en) Semiconductor device
JP2001505367A (en) Electrode structure of integrated circuit and manufacturing method thereof
JP3142457B2 (en) Method of manufacturing ferroelectric thin film capacitor
JPH11297964A (en) Method for manufacturing capacitor of semiconductor device having high dielectric constant dielectric film
JP3276351B2 (en) Method for manufacturing semiconductor device
US6379977B1 (en) Method of manufacturing ferroelectric memory device
JPH10214944A (en) Method for manufacturing semiconductor device
JP2000503725A (en) Method for producing dielectric layer or ferroelectric layer having high dielectric constant ε
JP3098923B2 (en) Semiconductor device and manufacturing method thereof
JP2751864B2 (en) Oxygen diffusion barrier electrode and its manufacturing method
JP3120568B2 (en) Thin film capacitors
JPH08293581A (en) Ferroelectric thin film capacitor
JP3248475B2 (en) Method of manufacturing ferroelectric nonvolatile memory cell structure
JP2645811B2 (en) Method for forming electrode of semiconductor device having diffusion barrier function
JPH0897382A (en) Semiconductor memory device
JP2000031428A (en) Method for forming capacitor of semiconductor device