JPH1019418A - Freezer refrigerator - Google Patents
Freezer refrigeratorInfo
- Publication number
- JPH1019418A JPH1019418A JP8173801A JP17380196A JPH1019418A JP H1019418 A JPH1019418 A JP H1019418A JP 8173801 A JP8173801 A JP 8173801A JP 17380196 A JP17380196 A JP 17380196A JP H1019418 A JPH1019418 A JP H1019418A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- double
- refrigerant
- heat exchanger
- refrigerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【課題】 エネルギー消費効率の向上を図り、絞り装置
の詰りや小型化を図る。また、起動時の冷却性能と、運
転時の冷却効率の向上を図る。
【解決手段】 圧縮機1から吐出された冷媒が、凝縮器
5、絞り装置9、蒸発器11を通り、再び圧縮機に戻る
冷凍サイクルを構成し、前記冷媒には炭化水素系冷媒又
はHFC系冷媒を用いる。凝縮器5から吐出される高圧
の冷媒と、蒸発器11から吐出される低圧の冷媒が内側
と外側を流れることで熱交換が行なわれる二重管熱交換
器23を設ける一方、前記絞り装置9を、絞り作用の大
きな圧力低減機能と、絞り作用の小さな冷媒流量低減機
能を備えた構造とする。
(57) [Summary] [PROBLEMS] To improve the energy consumption efficiency and to reduce the size and the size of the expansion device. Further, the cooling performance at the time of startup and the cooling efficiency at the time of operation are improved. SOLUTION: The refrigerant discharged from a compressor 1 constitutes a refrigeration cycle which returns to a compressor through a condenser 5, a throttle device 9, and an evaporator 11, and the refrigerant includes a hydrocarbon-based refrigerant or an HFC-based refrigerant. Use refrigerant. A double-pipe heat exchanger 23 is provided, in which heat exchange is performed by the high-pressure refrigerant discharged from the condenser 5 and the low-pressure refrigerant discharged from the evaporator 11 flowing inside and outside. Are provided with a pressure reducing function having a large throttle action and a refrigerant flow reducing function having a small throttle action.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、冷媒に、地球環
境に悪影響を与えるといわれるHCFC系以外の冷媒を
用いるようにした冷凍冷蔵庫に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator which uses a refrigerant other than the HCFC system, which is considered to adversely affect the global environment.
【0002】[0002]
【従来の技術】一般に、冷凍冷蔵庫は、圧縮機から吐出
された冷媒が、凝縮器、絞り装置、蒸発器を通り、再び
圧縮機に戻る冷凍サイクルを構成する。冷凍サイクルを
流れる冷媒は、蒸発器において蒸発器を通過する空気と
の間で熱交換が行なわれ、冷却された空気は庫内へ送り
込まれるようになる。2. Description of the Related Art Generally, a refrigerator comprises a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser, a throttle device, and an evaporator and returns to the compressor again. The refrigerant flowing through the refrigeration cycle exchanges heat with the air passing through the evaporator in the evaporator, and the cooled air is sent into the refrigerator.
【0003】[0003]
【発明が解決しようとする課題】冷凍冷蔵庫において、
現在は省エネ化に伴い、高効率化が求められ、例えば、
エネルギー消費効率の向上を図るために、凝縮器出口冷
媒と、圧縮機に送り込まれる蒸発器出口冷媒の熱交換量
を大きくする熱交換部が形成されている。この熱交換部
は、凝縮器の出口側に接続され、絞り装置となるキャピ
ラリーチューブと、蒸発器の出口側に接続されたサクシ
ョンパイプとを一緒に半田付けした構造となっている。
これにより、凝縮器出口の高圧の冷媒と、蒸発器出口の
低圧の冷媒との間で、パイプを介して熱交換が行なわれ
ることで、熱交換量の大きさに応じたエネルギー消費効
率が望めるようになる。SUMMARY OF THE INVENTION In a refrigerator-freezer,
At present, high efficiency is required along with energy saving. For example,
In order to improve the energy consumption efficiency, a heat exchange section is formed to increase the amount of heat exchange between the condenser outlet refrigerant and the evaporator outlet refrigerant sent to the compressor. The heat exchange section is connected to the outlet side of the condenser, and has a structure in which a capillary tube serving as a throttle device and a suction pipe connected to the outlet side of the evaporator are soldered together.
Thereby, heat exchange is performed between the high-pressure refrigerant at the condenser outlet and the low-pressure refrigerant at the evaporator outlet via the pipe, so that energy consumption efficiency according to the amount of heat exchange can be expected. Become like
【0004】この場合、図12に示す如く従来のR22
等のHCFC系の冷媒にあっては、熱交換量は認められ
るものの例えば、圧縮機吸込温度が−30℃〜60℃ま
でほぼ水平で、あまり大きなエネルギー消費効率の向上
が望めなくないのが現状である。In this case, as shown in FIG.
Although the amount of heat exchange is recognized in the HCFC-based refrigerants such as the above, for example, the compressor suction temperature is almost horizontal from -30 ° C to 60 ° C, and it is not possible to expect a great improvement in energy consumption efficiency. It is.
【0005】また、減圧過程における液冷媒の比率が高
いため、絞り装置として通常のキャピラリーチューブを
使用すると、キャピラリーチューブが極端に長くなり大
型化を招来する。反面、絞り作用の強い細いキャピラリ
ーチューブを用いると、詰りや、立上りの悪化を招く問
題があった。[0005] Further, since the ratio of the liquid refrigerant in the depressurization process is high, if a normal capillary tube is used as the expansion device, the capillary tube becomes extremely long, resulting in an increase in size. On the other hand, when a thin capillary tube having a strong squeezing action is used, there has been a problem that clogging and rising of the tube are deteriorated.
【0006】そこで、この発明は、大型化や詰りを招く
ことはなく、しかも、冷却性能、冷却効率の向上を図る
ようにした冷凍冷蔵庫を提供することを目的とする。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a refrigerator-freezer which does not cause an increase in size or clogging, and which improves the cooling performance and cooling efficiency.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機から吐出された冷媒が、凝縮
器、絞り装置、蒸発器を通り、再び圧縮機に戻る冷凍サ
イクルを構成する冷凍冷蔵庫において、前記冷媒に炭化
水素系冷媒又はHFC系冷媒を用いると共に、凝縮器か
ら吐出される高圧の冷媒と、蒸発器から吐出される低圧
の冷媒が内側と外側を流れることで熱交換が行なわれる
二重管熱交換器を設ける一方、前記絞り装置を、大きな
圧力低減機能と、小さな冷媒流量低減機能を備えた構造
とする。In order to achieve the above object, the present invention provides a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser, a throttle device, and an evaporator, and returns to the compressor again. In a refrigerating refrigerator, a hydrocarbon-based refrigerant or an HFC-based refrigerant is used as the refrigerant, and the high-pressure refrigerant discharged from the condenser and the low-pressure refrigerant discharged from the evaporator flow inside and outside to exchange heat. While the double-pipe heat exchanger is performed, the expansion device has a structure having a large pressure reduction function and a small refrigerant flow reduction function.
【0008】そして、好ましい実施形態として絞り装置
は、上流側に膨脹弁を下流側にキャピラリーチューブを
直列に配置した構造とする。In a preferred embodiment, the expansion device has a structure in which an expansion valve is arranged on the upstream side and a capillary tube is arranged in series on the downstream side.
【0009】あるいは、上流側に細いキャピラリーチュ
ーブを、下流側に太いキャピラリーチューブを直列に配
置した構造とする。Alternatively, a structure in which a thin capillary tube is arranged on the upstream side and a thick capillary tube is arranged in series on the downstream side.
【0010】また、二重管熱交換器を、内側パイプ管と
外側パイプ管の二重構造とし、二重管熱交換器領域内に
おいて、低圧の冷媒が流れる一方のパイプ管のパイプ径
を途中から太くすることで、冷媒が加熱されることによ
って比体積が大きくなるために起こる圧力損失の低減を
図る。Further, the double-pipe heat exchanger has a double structure of an inner pipe pipe and an outer pipe pipe, and the pipe diameter of one of the pipe pipes through which the low-pressure refrigerant flows in the double-pipe heat exchanger area. By increasing the thickness, the pressure loss caused by heating the refrigerant to increase the specific volume is reduced.
【0011】あるいは、内側パイプ管と外側パイプ管の
二重構造とし、二重管熱交換器領域内において、高圧の
冷媒が流れる一方のパイプ管のパイプ径を途中から細く
することで、液冷媒の状態で圧力降下させて、冷媒の温
度レベルを変えないで流速を早くする。Alternatively, a liquid refrigerant is formed by forming a double structure of an inner pipe pipe and an outer pipe pipe, and reducing the pipe diameter of one of the pipe pipes through which the high-pressure refrigerant flows in the double pipe heat exchanger region. In this state, the pressure is reduced to increase the flow velocity without changing the temperature level of the refrigerant.
【0012】あるいは、高圧の冷媒が流れる内側パイプ
管と低圧の冷媒が流れる外側パイプ管の二重構造とする
ことで、冷媒封入冷媒量の削減を図り、安全性を高め
る。Alternatively, by adopting a double structure of an inner pipe pipe through which a high-pressure refrigerant flows and an outer pipe pipe through which a low-pressure refrigerant flows, it is possible to reduce the amount of refrigerant charged in the refrigerant and enhance safety.
【0013】あるいは、低圧の冷媒が流れる内側パイプ
管と高圧の冷媒が流れる外側の二重構造とすることで、
冷凍サイクル内への熱の侵入を低減する。[0013] Alternatively, by adopting a double structure of an inner pipe pipe through which a low-pressure refrigerant flows and an outer pipe through which a high-pressure refrigerant flows,
Reduces heat penetration into the refrigeration cycle.
【0014】あるいは、二重管熱交換器の内側パイプ管
の内側と外側に伝熱促進用の加工面及び加工部材を設け
る。Alternatively, a processing surface and a processing member for promoting heat transfer are provided inside and outside the inner pipe tube of the double tube heat exchanger.
【0015】かかる冷凍冷蔵庫によれば、圧縮機から吐
出された冷媒は、凝縮器、絞り装置、蒸発器を通り、再
び圧縮機に戻る冷凍サイクルを構成する。この場合、冷
媒に炭化水素系冷媒又はHFC系冷媒を用いるため、二
重管熱交換器において大きな熱交換量を得ることによっ
て、エネルギー消費効率が従来のHCFC系冷媒に比べ
て大巾に向上する。According to such a refrigerator, the refrigerant discharged from the compressor constitutes a refrigeration cycle which returns to the compressor after passing through the condenser, the throttle device, and the evaporator. In this case, since a hydrocarbon-based refrigerant or an HFC-based refrigerant is used as the refrigerant, a large heat exchange amount is obtained in the double-tube heat exchanger, so that the energy consumption efficiency is greatly improved as compared with the conventional HCFC-based refrigerant. .
【0016】また、減圧過程の液相を占める部分、上流
側は細いキャピラリーチューブあるいは減圧効果の大き
な膨脹弁により、また気・液二相域に入ってからの下流
側は、太いキャピラリーチューブあるいは減圧効果の小
さい膨脹弁により、立上り時の冷媒流量は大、安定時は
絞られて小となるため、詰りを招来することがなくな
る。しかも、起動時の冷却性能、定常時の冷却効率の向
上が図れる。A portion occupying the liquid phase in the depressurization process, the upstream side is a thin capillary tube or an expansion valve having a large decompression effect, and the downstream side after entering the gas-liquid two-phase region is a thick capillary tube or a decompression portion. Due to the expansion valve having a small effect, the flow rate of the refrigerant at the time of rising is large, and the refrigerant flow is narrowed and small at the time of stable operation. In addition, the cooling performance at the time of startup and the cooling efficiency at the time of steady operation can be improved.
【0017】[0017]
【発明の実施の形態】以下、図1乃至図9の図面を参照
しながら、この発明の実施の形態を具体的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below with reference to FIGS.
【0018】図1において、1は冷凍冷蔵庫3の圧縮機
を示しており、圧縮機1から吐出された冷媒は、防露パ
イプ5aを有する凝縮器5,ドライヤ7,絞り装置9,
蒸発器11を通り、再び圧縮機1に戻る冷凍サイクルを
構成する。In FIG. 1, reference numeral 1 denotes a compressor of the refrigerator-freezer 3, and a refrigerant discharged from the compressor 1 is supplied to a condenser 5 having a dew-proof pipe 5a, a dryer 7, a throttle device 9,
A refrigeration cycle that returns to the compressor 1 through the evaporator 11 is configured.
【0019】冷媒には、R290,R600aのような
炭化水素系冷媒又はR410A,R134aのようなH
FC系冷媒を用いる。The refrigerant may be a hydrocarbon-based refrigerant such as R290, R600a or H-type refrigerant such as R410A, R134a.
Use FC-based refrigerant.
【0020】圧縮機1は、吸込口1aに送り込まれた冷
媒を高温・高圧のガスとして取出口1bから吐出するよ
う機能する。The compressor 1 functions to discharge the refrigerant sent into the inlet 1a as a high-temperature and high-pressure gas from the outlet 1b.
【0021】凝縮器5は圧縮機1からの高温・高圧ガス
を、凝縮ファン13による空気によって熱交換が行なわ
れることでガス状態から液冷媒とするよう機能する。The condenser 5 functions to convert the high-temperature and high-pressure gas from the compressor 1 from a gaseous state to a liquid refrigerant by performing heat exchange with air by a condensing fan 13.
【0022】ドライヤ7は、水分を取除き気体と液体と
に分離し一時的に貯えるよう機能する。The dryer 7 functions to remove water, separate into gas and liquid, and temporarily store them.
【0023】絞り装置9は、上流側に最小に絞れる減圧
効果の大きい膨脹弁15を、下流側に減圧効果の小さい
管径の太いキャピラリーチューブ17を直列に配置した
構造となっている。この場合、図7に示す如く上流側の
膨脹弁15にかえ、細いキャピラリーチューブ18を用
いてもよい。あるいは、図8に示す如く、絞り装置9を
小さい絞り量から大きな絞り量まで制御可能な電動式膨
脹弁18としてもよい。The expansion device 9 has a structure in which an expansion valve 15 having a large pressure reducing effect capable of being throttled to the minimum at the upstream side and a thick capillary tube 17 having a small diameter at the downstream side having a small pressure reducing effect are arranged in series. In this case, a thin capillary tube 18 may be used instead of the upstream expansion valve 15 as shown in FIG. Alternatively, as shown in FIG. 8, the expansion device 9 may be an electric expansion valve 18 that can control a small throttle amount to a large throttle amount.
【0024】蒸発器11は、蒸発ファン19による空気
によって冷媒との間で熱交換が行なわれ、冷媒は低圧・
低温の気体となり、空気は冷却されて庫内へ送り込まれ
るようになる。蒸発器11から送り出された気体冷媒
は、アキュームレータ21において、一緒に流れる液冷
媒は貯留され、気体冷媒のみ取出され、二重管熱交換器
23において、熱交換された後、逆止弁25,マフラ2
7を介して圧縮機1の吸込口1aに送り込まれるように
なっている。The evaporator 11 exchanges heat with the refrigerant by the air from the evaporating fan 19, and the refrigerant has a low pressure.
The gas becomes a low-temperature gas, and the air is cooled and sent into the storage. The gaseous refrigerant sent out from the evaporator 11 is stored in the accumulator 21 with the liquid refrigerant flowing therewith, and only the gaseous refrigerant is taken out. In the double tube heat exchanger 23, heat exchange is performed. Muffler 2
The compressor 7 is fed into the suction port 1a of the compressor 1 through the same.
【0025】二重管熱交換器23は、内側パイプ管29
と外側パイプ管31とから成り、内側パイプ管29の一
端はドライヤ7を介して凝縮器5の出口側と、他端は膨
脹弁15とそれぞれ接続している。また、外側パイプ管
31の一端は、アキュームレータ21を介して蒸発器1
1の出口側と、他端は、逆止弁25,マフラ27を介し
圧縮機1の吸込口1a側とそれぞれ接続している。The double pipe heat exchanger 23 has an inner pipe pipe 29
And one end of the inner pipe 29 is connected to the outlet side of the condenser 5 via the dryer 7, and the other end is connected to the expansion valve 15. One end of the outer pipe tube 31 is connected to the evaporator 1 via the accumulator 21.
The other end of the compressor 1 is connected to the suction port 1a of the compressor 1 via a check valve 25 and a muffler 27.
【0026】このように構成された冷凍冷蔵庫によれ
ば、圧縮機1から吐出された冷媒は、凝縮器5,絞り装
置9,蒸発器11を通り、再び圧縮機1に戻る冷凍サイ
クルを構成する。この場合、冷媒に炭化水素系冷媒又は
HFC系冷媒を用いているため、二重管熱交換器23に
おいて図2に示す如く熱交換量に応じて変化する圧縮機
吸込温度に対して、右肩上がりの傾斜を示すエネルギー
消費効率が得られることがわかる。According to the refrigerating refrigerator configured as described above, the refrigerant discharged from the compressor 1 forms a refrigeration cycle that returns to the compressor 1 through the condenser 5, the expansion device 9, and the evaporator 11 again. . In this case, since the hydrocarbon-based refrigerant or the HFC-based refrigerant is used as the refrigerant, the double-tube heat exchanger 23 has a right shoulder with respect to the compressor suction temperature that changes according to the heat exchange amount as shown in FIG. It can be seen that energy consumption efficiency indicating a rising slope can be obtained.
【0027】これにより、エネルギー消費効率の向上が
図れる。Thus, the energy consumption efficiency can be improved.
【0028】この場合、図3と図4に示す如く内側パイ
プ管29の外周に伝熱促進用の加工溝33、又はフィン
35を設けた加工面としたり、あるいは図5と図6に示
す如く内側パイプ管29の内面に加工溝33あるいは伝
熱部材となるねじれ伝熱テープ37を設けるようにする
ことで、さらに熱伝達率の向上を図ることが可能とな
る。あるいは、二重管熱交換器23において、内側パイ
プ管29に高圧の冷媒が、外側パイプ管31に低圧の冷
媒がそれぞれ流れるようにすることで、冷媒封入冷媒量
の消滅を図り、安全性を高められる。あるいは、内側パ
イプ管29に低圧の冷媒が、外側パイプ管31に高圧の
冷媒がそれぞれ流れるようにすることで冷凍サイクル内
への熱の侵入を低減することができる。In this case, as shown in FIGS. 3 and 4, a processing surface provided with a processing groove 33 or a fin 35 for promoting heat transfer is provided on the outer periphery of the inner pipe tube 29, or as shown in FIGS. 5 and 6. By providing the processing groove 33 or the twisted heat transfer tape 37 serving as a heat transfer member on the inner surface of the inner pipe pipe 29, it is possible to further improve the heat transfer coefficient. Alternatively, in the double-pipe heat exchanger 23, the high-pressure refrigerant flows through the inner pipe pipe 29 and the low-pressure refrigerant flows through the outer pipe pipe 31, thereby reducing the amount of refrigerant in the refrigerant and improving safety. Enhanced. Alternatively, the intrusion of heat into the refrigeration cycle can be reduced by allowing the low-pressure refrigerant to flow through the inner pipe pipe 29 and the high-pressure refrigerant to flow through the outer pipe pipe 31, respectively.
【0029】また、絞り装置9において、気・液二相の
内、液冷媒が多く占める部分となる上流側は、膨脹弁1
5により圧力低減効果が大きく、または、下流側は、細
いキャピラリーチューブ17によって冷媒流量低減効果
が小さくなるため、立上り時の冷媒流量は大、安定時は
絞られて小となるため、詰りを招来することがなくな
る。しかも、起動時の冷却性能、定常時の冷却効率の向
上が図れる。In the expansion device 9, the upstream side of the gas-liquid two-phase, which is the portion occupied by the liquid refrigerant, is the expansion valve 1.
5, the pressure reduction effect is large, or the refrigerant flow reduction effect is small on the downstream side due to the thin capillary tube 17, so that the refrigerant flow rate at the start-up is large, and the refrigerant flow is narrowed and small at the time of stability, resulting in clogging. Will not be done. In addition, the cooling performance at the time of startup and the cooling efficiency at the time of steady operation can be improved.
【0030】一方、図9に示す冷凍サイクルの如く凝縮
領域α1において、高圧側冷媒入口をほぼ飽和液、ま
た、蒸発器領域α2において、低圧側冷媒入口をほぼ飽
和蒸気となるよう絞り装置9を設定することで、凝縮器
5,蒸発器11内の冷媒を二相域に保ち、冷媒側熱伝達
率を向上させることができるため、冷凍サイクルのエネ
ルギー消費効率の向上が図れる。On the other hand, in the condensing area α1, as in the refrigeration cycle shown in FIG. 9, the throttle device 9 is set so that the high-pressure side refrigerant inlet is almost saturated liquid, and in the evaporator area α2, the low-pressure side refrigerant inlet is almost saturated vapor. By setting, the refrigerant in the condenser 5 and the evaporator 11 can be kept in the two-phase region and the heat transfer coefficient on the refrigerant side can be improved, so that the energy consumption efficiency of the refrigeration cycle can be improved.
【0031】図10は二重管熱交換器23の別の実施形
態を示したものである。即ち、二重管熱交換器23の蒸
発器11の出口側となる外管パイプ管31のパイプ径a
とbを途中から太くa>bする形状とするものである。FIG. 10 shows another embodiment of the double tube heat exchanger 23. That is, the pipe diameter a of the outer pipe pipe 31 which is the outlet side of the evaporator 11 of the double pipe heat exchanger 23
And b are made thicker in the middle such that a> b.
【0032】なお、他の構成要素は、図1と同一のため
同一の符号を符して詳細な説明を省略する。The other components are the same as those shown in FIG. 1 and the same reference numerals are used, and detailed description is omitted.
【0033】したがって、この実施形態によれば、前記
効果に加えて蒸発器11の出口側の外側パイプ管31の
パイプ径を途中から太くしたため、冷媒蒸気が加熱され
ることによって比体積が大きくなるため流速が早くなる
ことによって起こる圧力損失を低減することができる。Therefore, according to this embodiment, in addition to the above-described effects, since the pipe diameter of the outer pipe 31 on the outlet side of the evaporator 11 is increased from the middle, the specific volume is increased by heating the refrigerant vapor. Therefore, it is possible to reduce the pressure loss caused by increasing the flow velocity.
【0034】図11は二重管熱交換器23の別の実施形
態を示したものである。即ち、凝縮器5の出口側の内側
のパイプ管29のパイプ径c,dを途中から細くc<d
する形状をするものである。FIG. 11 shows another embodiment of the double tube heat exchanger 23. That is, the pipe diameters c and d of the inner pipe pipe 29 on the outlet side of the condenser 5 are reduced from the middle to c <d.
It has a shape that changes.
【0035】なお、他の構成要素は図1と同一のため同
一符号を付して詳細な説明を省略する。The other components are the same as those shown in FIG.
【0036】かかる実施形態によれば、凝縮器5の出口
側の内側パイプ管29を途中から細くすることによっ
て、液冷媒の状態で圧力が降下し、温度レベルを変えな
いで流速を早くできる。これにより液冷媒の熱伝達率を
向上し、伝熱量の増加が図れる。According to this embodiment, by reducing the inner pipe pipe 29 on the outlet side of the condenser 5 from the middle, the pressure drops in the state of the liquid refrigerant, and the flow velocity can be increased without changing the temperature level. Thereby, the heat transfer coefficient of the liquid refrigerant is improved, and the amount of heat transfer can be increased.
【0037】[0037]
【発明の効果】以上、説明したように、この発明の冷凍
冷蔵庫によれば、次のような効果を奏する。As described above, according to the refrigerator-freezer of the present invention, the following effects can be obtained.
【0038】(1)冷凍サイクルのエネルギー消費効率
の向上を図ることができる。(1) The energy consumption efficiency of the refrigeration cycle can be improved.
【0039】(2)圧縮機への液戻りを防ぐことがで
き、効率のよい圧縮運転が行なえる。(3)絞り装置の
小型化が図れる。(2) Liquid return to the compressor can be prevented, and efficient compression operation can be performed. (3) The size of the aperture device can be reduced.
【0040】(4)起動時の冷却性能と運転時の冷却効
率の向上が図れる。(4) The cooling performance at the time of startup and the cooling efficiency at the time of operation can be improved.
【0041】(5)二重管熱交換器内のガス冷媒の圧縮
損失の低減と熱伝達率の向上が図れる。(5) The compression loss of the gas refrigerant in the double tube heat exchanger can be reduced and the heat transfer coefficient can be improved.
【0042】(6)二重管熱交換器内の液冷媒の熱伝達
率の向上が図れる。(6) The heat transfer coefficient of the liquid refrigerant in the double tube heat exchanger can be improved.
【図1】この発明にかかる冷凍冷蔵庫の回路図を示した
全体の説明図。FIG. 1 is an overall explanatory diagram showing a circuit diagram of a refrigerator-freezer according to the present invention.
【図2】各冷媒における熱交換量に対するエネルギー消
費効率の説明図。FIG. 2 is an explanatory diagram of energy consumption efficiency with respect to a heat exchange amount of each refrigerant.
【図3】内側パイプ管の外周に加工溝を設けた一部分の
説明図。FIG. 3 is an explanatory view of a part in which a processing groove is provided on the outer periphery of an inner pipe tube.
【図4】内側パイプ管の外周にフィンを設けた一部分の
説明図。FIG. 4 is an explanatory view of a part in which fins are provided on the outer periphery of an inner pipe tube.
【図5】内側パイプ管の内周に加工溝を設けた一部分の
説明図。FIG. 5 is an explanatory view of a part in which a processing groove is provided on the inner periphery of the inner pipe tube.
【図6】内側パイプ管の内部にねじれ伝熱テープを設け
た一部分の説明図。FIG. 6 is an explanatory view of a part in which a twisted heat transfer tape is provided inside the inner pipe tube.
【図7】絞り装置の別の実施形態を示した図1と同様の
説明図。FIG. 7 is an explanatory view similar to FIG. 1, showing another embodiment of the diaphragm device.
【図8】絞り装置の別の実施形態を示した図1と同様の
説明図。FIG. 8 is an explanatory view similar to FIG. 1, showing another embodiment of the aperture device.
【図9】冷媒の冷凍サイクルを示した説明図。FIG. 9 is an explanatory view showing a refrigeration cycle of a refrigerant.
【図10】二重管熱交換器の別の実施形態を示した冷凍
冷蔵庫の全体の回路説明図。FIG. 10 is an overall circuit explanatory diagram of a refrigerator-freezer showing another embodiment of the double-tube heat exchanger.
【図11】二重管熱交換器の別の実施形態を示した図1
0と同様の回路説明図。FIG. 11 shows another embodiment of the double tube heat exchanger.
Circuit explanatory diagram similar to FIG.
【図12】熱交換量に対する従来冷媒のエネルギー消費
効率を示した説明図。FIG. 12 is an explanatory diagram showing the energy consumption efficiency of the conventional refrigerant with respect to the amount of heat exchange.
1 圧縮機 5 凝縮器 9 絞り装置 11 蒸発器 23 二重管熱交換器 DESCRIPTION OF SYMBOLS 1 Compressor 5 Condenser 9 Throttling device 11 Evaporator 23 Double tube heat exchanger
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F28D 7/10 F28D 7/10 A (72)発明者 明神 一寿 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location F28D 7/10 F28D 7/10 A (72) Inventor Kazutoshi Myojin 3-3-9 Shimbashi, Minato-ku, Tokyo Toshiba Abu E Co., Ltd.
Claims (8)
絞り装置、蒸発器を通り、再び圧縮機に戻る冷凍サイク
ルを構成する冷凍冷蔵庫において、前記冷媒に炭化水素
系冷媒又はHFC系冷媒を用いると共に、凝縮器から吐
出される高圧の冷媒と、蒸発器から吐出される低圧の冷
媒が内側と外側を流れることで熱交換が行なわれる二重
管熱交換器を設ける一方、前記絞り装置を、大きな圧力
低減機能と、小さな冷媒流量低減機能を備えた構造とす
ることを特徴とする冷凍冷蔵庫。The refrigerant discharged from the compressor is supplied to a condenser,
In a refrigerating refrigerator constituting a refrigerating cycle passing through a throttle device and an evaporator and returning to a compressor again, a hydrocarbon-based refrigerant or an HFC-based refrigerant is used as the refrigerant, and a high-pressure refrigerant discharged from a condenser and an evaporator. A double-pipe heat exchanger in which heat exchange is performed by the low-pressure refrigerant discharged from the inside and the outside flowing therethrough, while the expansion device is provided with a large pressure reduction function and a small refrigerant flow reduction function. A refrigerator-freezer characterized by the following.
キャピラリーチューブを直列に配置した構造であること
を特徴とする請求項1記載の冷凍冷蔵庫。2. The refrigerator according to claim 1, wherein the expansion device has a structure in which an expansion valve is arranged in series on an upstream side and a capillary tube is arranged in series on a downstream side.
チューブを、下流側に太いキャピラリーチューブを直列
に配置した構造であることを特徴とする冷凍冷蔵庫。3. The refrigerator according to claim 3, wherein the expansion device has a structure in which a thin capillary tube is arranged in series on the upstream side and a thick capillary tube is arranged in series on the downstream side.
パイプ管の二重構造とし、二重管熱交換器領域内におい
て、低圧の冷媒が流れる一方のパイプ管のパイプ径を途
中から太くすることを特徴とする請求項1記載の冷凍冷
蔵庫。4. The double-pipe heat exchanger has a double structure of an inner pipe pipe and an outer pipe pipe, and in the area of the double-pipe heat exchanger, the pipe diameter of one of the pipe pipes through which the low-pressure refrigerant flows is halfway. 2. The refrigerator according to claim 1, wherein the thickness of the refrigerator is increased.
パイプ管の二重構造とし、二重管熱交換器領域内におい
て、高圧の冷媒が流れる一方のパイプ管のパイプ径を途
中から細くすることを特徴とする請求項1記載の冷凍冷
蔵庫。5. The double-pipe heat exchanger has a double structure of an inner pipe pipe and an outer pipe pipe, and in the double-pipe heat exchanger region, the pipe diameter of one of the pipe pipes through which the high-pressure refrigerant flows is halfway. 2. The refrigerator according to claim 1, wherein the thickness of the refrigerator is reduced.
内側パイプ管と低圧の冷媒が流れる外側パイプ管の二重
構造としたことを特徴とする請求項1記載の冷凍冷蔵
庫。6. The refrigerator according to claim 1, wherein the double-pipe heat exchanger has a double structure of an inner pipe pipe through which high-pressure refrigerant flows and an outer pipe pipe through which low-pressure refrigerant flows.
内側パイプ管と高圧の冷媒が流れる外側の二重構造とし
たことを特徴とする請求項1記載の冷凍冷蔵庫。7. The refrigerator according to claim 1, wherein the double-pipe heat exchanger has a double structure of an inner pipe through which a low-pressure refrigerant flows and an outer pipe through which a high-pressure refrigerant flows.
と、外側とに伝熱促進用の加工面又は加工部材を設ける
ことを特徴とする請求項1,4,5,6,7記載の冷凍
冷蔵庫。8. A processing surface or a processing member for promoting heat transfer is provided inside and outside the inner pipe tube of the double tube heat exchanger. A refrigerator as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8173801A JPH1019418A (en) | 1996-07-03 | 1996-07-03 | Freezer refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8173801A JPH1019418A (en) | 1996-07-03 | 1996-07-03 | Freezer refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1019418A true JPH1019418A (en) | 1998-01-23 |
Family
ID=15967417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8173801A Pending JPH1019418A (en) | 1996-07-03 | 1996-07-03 | Freezer refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1019418A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001091103A (en) * | 1999-09-20 | 2001-04-06 | Behr Gmbh & Co | Air conditioning apparatus provided with inner heat exchanger |
JP2003004315A (en) * | 2001-06-20 | 2003-01-08 | Fujitsu General Ltd | Air conditioner |
JP2003510546A (en) * | 1999-09-20 | 2003-03-18 | ベール ゲーエムベーハー ウント コー | Air conditioner with internal heat exchanger |
JP2005083741A (en) * | 2003-09-05 | 2005-03-31 | Lg Electronics Inc | Air conditioner having heat exchanger and refrigerant switching means |
JP2006145056A (en) * | 2004-11-16 | 2006-06-08 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2006522310A (en) * | 2003-03-31 | 2006-09-28 | ミョン−ブン ハン | Energy efficiency improvement device for refrigeration cycle |
JP2007298196A (en) * | 2006-04-28 | 2007-11-15 | Denso Corp | Piping with internal heat exchanger and refrigerating cycle device comprising the same |
KR100785116B1 (en) | 2006-01-03 | 2007-12-11 | 엘지전자 주식회사 | Refrigerator |
WO2009044771A1 (en) * | 2007-10-03 | 2009-04-09 | Sanden Corporation | Refrigeration circuit |
JP2009525453A (en) * | 2006-02-03 | 2009-07-09 | エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cooling system |
JP2009186063A (en) * | 2008-02-05 | 2009-08-20 | Tokyo Forming Kk | Heat exchanger and its manufacturing method |
JP2010526982A (en) * | 2007-05-11 | 2010-08-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Heat exchange method in a vapor compression heat transfer system and a vapor compression heat exchange system including an intermediate heat exchanger using a double row evaporator or double row condenser |
JP2010249493A (en) * | 1999-01-12 | 2010-11-04 | Xdx Inc | Vapor compression device and method |
JP2014181870A (en) * | 2013-03-21 | 2014-09-29 | Panasonic Corp | Refrigeration cycle device |
WO2017169925A1 (en) * | 2016-03-29 | 2017-10-05 | 日本電気株式会社 | Cooling system and cooling method |
JP2019163866A (en) * | 2018-03-19 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water generating device including the same |
CN110360771A (en) * | 2019-07-23 | 2019-10-22 | 青岛海尔空调器有限总公司 | Household appliance |
KR102081416B1 (en) * | 2019-06-14 | 2020-02-25 | 농업회사법인주식회사팜텍 | A Dehumidifier for drying foods |
-
1996
- 1996-07-03 JP JP8173801A patent/JPH1019418A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249493A (en) * | 1999-01-12 | 2010-11-04 | Xdx Inc | Vapor compression device and method |
JP2003510546A (en) * | 1999-09-20 | 2003-03-18 | ベール ゲーエムベーハー ウント コー | Air conditioner with internal heat exchanger |
JP2001091103A (en) * | 1999-09-20 | 2001-04-06 | Behr Gmbh & Co | Air conditioning apparatus provided with inner heat exchanger |
JP2003004315A (en) * | 2001-06-20 | 2003-01-08 | Fujitsu General Ltd | Air conditioner |
JP2006522310A (en) * | 2003-03-31 | 2006-09-28 | ミョン−ブン ハン | Energy efficiency improvement device for refrigeration cycle |
JP2005083741A (en) * | 2003-09-05 | 2005-03-31 | Lg Electronics Inc | Air conditioner having heat exchanger and refrigerant switching means |
JP2006145056A (en) * | 2004-11-16 | 2006-06-08 | Matsushita Electric Ind Co Ltd | Heat exchanger |
KR100785116B1 (en) | 2006-01-03 | 2007-12-11 | 엘지전자 주식회사 | Refrigerator |
JP2009525453A (en) * | 2006-02-03 | 2009-07-09 | エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cooling system |
JP2007298196A (en) * | 2006-04-28 | 2007-11-15 | Denso Corp | Piping with internal heat exchanger and refrigerating cycle device comprising the same |
JP2010526982A (en) * | 2007-05-11 | 2010-08-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Heat exchange method in a vapor compression heat transfer system and a vapor compression heat exchange system including an intermediate heat exchanger using a double row evaporator or double row condenser |
US11624534B2 (en) | 2007-05-11 | 2023-04-11 | The Chemours Company Fc, Llc | Method for exchanging heat in vapor compression heat transfer systems and vapor compression heat transfer systems comprising intermediate heat exchangers with dual-row evaporators or condensers |
WO2009044771A1 (en) * | 2007-10-03 | 2009-04-09 | Sanden Corporation | Refrigeration circuit |
JP2009186063A (en) * | 2008-02-05 | 2009-08-20 | Tokyo Forming Kk | Heat exchanger and its manufacturing method |
JP2014181870A (en) * | 2013-03-21 | 2014-09-29 | Panasonic Corp | Refrigeration cycle device |
WO2017169925A1 (en) * | 2016-03-29 | 2017-10-05 | 日本電気株式会社 | Cooling system and cooling method |
JP2019163866A (en) * | 2018-03-19 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water generating device including the same |
KR102081416B1 (en) * | 2019-06-14 | 2020-02-25 | 농업회사법인주식회사팜텍 | A Dehumidifier for drying foods |
CN110360771A (en) * | 2019-07-23 | 2019-10-22 | 青岛海尔空调器有限总公司 | Household appliance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3045382B2 (en) | Refrigeration cycle device with two evaporation temperatures | |
JPH1019418A (en) | Freezer refrigerator | |
JP2865844B2 (en) | Refrigeration system | |
US6185957B1 (en) | Combined evaporator/accumulator/suctionline heat exchanger | |
US6658888B2 (en) | Method for increasing efficiency of a vapor compression system by compressor cooling | |
US6460371B2 (en) | Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil | |
JP2001221517A (en) | Supercritical refrigeration cycle | |
JP2001255023A (en) | Effective increasing method for vapor compression freezing cycle and high efficiency freezing system | |
US20070180853A1 (en) | Refrigerator | |
CN111219903B (en) | A two-stage condensation evaporation heat exchange system used in a cascade refrigeration system/phase change heat transfer cooling system | |
KR20170109462A (en) | Dual pipe structure for internal heat exchanger | |
JP2011214753A (en) | Refrigerating device | |
JP2003329336A (en) | Gas-liquid separator for steam-compression type refrigerating cycle and ejector cycle | |
JP2002188865A (en) | Multiple stage compression type refrigerating machine | |
JP4352327B2 (en) | Ejector cycle | |
JPH06272998A (en) | Refrigerator | |
CN115014003B (en) | Regenerator, refrigerating system and refrigerating equipment | |
JP4356146B2 (en) | Refrigeration equipment | |
JP2000292016A (en) | Refrigerating cycle | |
JPH1144461A (en) | refrigerator | |
JP2002061966A (en) | Air conditioner | |
JP2003279197A (en) | Heat exchanger for condensation of freezer-refrigerator system | |
JPH109714A (en) | Refrigeration equipment | |
CN222012355U (en) | Refrigeration system and air conditioner | |
JP3256856B2 (en) | Refrigeration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050621 |