[go: up one dir, main page]

JP2014181870A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2014181870A
JP2014181870A JP2013057606A JP2013057606A JP2014181870A JP 2014181870 A JP2014181870 A JP 2014181870A JP 2013057606 A JP2013057606 A JP 2013057606A JP 2013057606 A JP2013057606 A JP 2013057606A JP 2014181870 A JP2014181870 A JP 2014181870A
Authority
JP
Japan
Prior art keywords
pressure side
refrigerant
low
heat exchanger
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013057606A
Other languages
Japanese (ja)
Inventor
Kazutaka Koishihara
一貴 小石原
Yoshiki Yamaoka
由樹 山岡
Osamu Aoyanagi
治 青柳
Shingo Fujibayashi
新五 藤林
Toshiyuki Nagae
俊之 長江
Naoto Yamamura
直人 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013057606A priority Critical patent/JP2014181870A/en
Publication of JP2014181870A publication Critical patent/JP2014181870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】内部熱交換器の高圧側配管と高圧側冷媒との伝熱面積を増加させることで、熱交換性能に優れた内部熱交換器を備えた冷凍サイクル装置を提供する。
【解決手段】圧縮機と、放熱器と、減圧手段と、蒸発器と、放熱器から減圧手段へと供給される高圧側冷媒と減圧手段により減圧された低圧側冷媒とが熱交換する内部熱交換器とを備え、内部熱交換器において高圧側冷媒が流れる高圧側配管131は、内表面に凹凸部134を有する冷凍サイクル装置で、高圧側配管131と高圧側配管131の内部を流れる高圧側冷媒との伝熱面積が増加するとともに、凹凸部134によって乱流促進効果が生じるので、高圧側配管131と高圧側配管131の内部を流れる高圧側冷媒との熱伝達率が向上することで、高圧側冷媒と低圧側冷媒との間の熱交換量を増加することができる。
【選択図】図2
A refrigeration cycle apparatus including an internal heat exchanger having excellent heat exchange performance by increasing a heat transfer area between a high-pressure side pipe of an internal heat exchanger and a high-pressure side refrigerant.
Internal heat exchanged between a compressor, a radiator, a decompressor, an evaporator, and a high-pressure refrigerant supplied from the radiator to the decompressor and a low-pressure refrigerant decompressed by the decompressor. The high-pressure side pipe 131 that includes the exchanger and in which the high-pressure side refrigerant flows in the internal heat exchanger is a refrigeration cycle device having an uneven portion 134 on the inner surface, and the high-pressure side that flows through the high-pressure side pipe 131 and the high-pressure side pipe 131. As the heat transfer area with the refrigerant increases and the turbulent flow promoting effect is produced by the uneven portion 134, the heat transfer coefficient between the high pressure side pipe 131 and the high pressure side refrigerant flowing inside the high pressure side pipe 131 is improved. The amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant can be increased.
[Selection] Figure 2

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来、この種の圧縮機、放熱器、減圧手段、蒸発器を冷媒配管で環状に接続して形成した冷凍サイクル装置に、前記放熱器を流出した冷媒と、前記蒸発器を流出した冷媒とを熱交換する内部熱交換器が配設されている場合があり、この内部熱交換器の概略図を図4に示す。   Conventionally, a refrigerant that has flowed out of the radiator and a refrigerant that has flowed out of the evaporator are connected to a refrigeration cycle apparatus formed by connecting a compressor, a radiator, a decompression unit, and an evaporator in a ring shape with a refrigerant pipe. An internal heat exchanger for heat exchange may be provided, and a schematic diagram of this internal heat exchanger is shown in FIG.

図4において、圧縮機、放熱器、減圧手段、蒸発器を冷媒配管で環状に接続して形成した冷凍サイクル装置において、内部熱交換器は、前記蒸発器を流出した低圧側冷媒が流れる低圧側配管132と、前記放熱器を流出した高圧側冷媒が流れる高圧側配管131とを備え、前記低圧側冷媒と前記高圧側冷媒とが熱交換できるように一体化して形成し、その周囲を断熱材135にて包囲する構成が開示されている(例えば、特許文献1参照)。   In FIG. 4, in the refrigeration cycle apparatus formed by connecting a compressor, a radiator, a decompression unit, and an evaporator in a ring shape with refrigerant piping, the internal heat exchanger has a low-pressure side through which the low-pressure refrigerant flowing out of the evaporator flows. A pipe 132 and a high-pressure pipe 131 through which the high-pressure refrigerant that has flowed out of the radiator flows, and is integrally formed so that the low-pressure refrigerant and the high-pressure refrigerant can exchange heat; A configuration surrounded by 135 is disclosed (for example, see Patent Document 1).

特開2004−85183号公報JP 2004-85183 A

しかしながら、前記従来の先行技術文献には、高圧側配管と低圧側配管の接触面積を適切に設定することにより、内部熱交換器での熱交換量が決定されることは開示されているが、配管と配管内を流れる冷媒と伝熱面積が、熱交換量に影響を与える旨の技術的事項は一切開示されていない。   However, the conventional prior art document discloses that the amount of heat exchange in the internal heat exchanger is determined by appropriately setting the contact area between the high-pressure side pipe and the low-pressure side pipe. No technical matter is disclosed that the pipe and the refrigerant flowing in the pipe and the heat transfer area affect the heat exchange amount.

本発明は、上記従来の課題を解決するものであり、内部熱交換器の高圧側配管と高圧側冷媒との伝熱面積を増加させることで、熱交換性能に優れた内部熱交換器を備えた冷凍サイクル装置を提供するものである。   The present invention solves the above-described conventional problems, and includes an internal heat exchanger with excellent heat exchange performance by increasing the heat transfer area between the high-pressure side piping and the high-pressure side refrigerant of the internal heat exchanger. A refrigeration cycle apparatus is provided.

上記目的を達成するために、本発明の冷凍サイクル装置は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記減圧手段により減圧された低圧側冷媒とが熱交換する内部熱交換器とを備え、前記内部熱交換器において高圧側冷媒が流れる高圧側配管は、内表面に凹凸部を有することを特徴とするものである。   In order to achieve the above object, a refrigeration cycle apparatus according to the present invention includes a compressor, a radiator, a decompression unit, an evaporator, a high-pressure side refrigerant supplied from the radiator to the decompression unit, and the decompression unit. An internal heat exchanger that exchanges heat with the low-pressure side refrigerant decompressed by the means, and the high-pressure side pipe through which the high-pressure side refrigerant flows in the internal heat exchanger has an uneven portion on the inner surface. It is.

これにより、高圧側配管と高圧側配管の内部を流れる高圧側冷媒との伝熱面積が増加するとともに、凹凸部によって乱流促進効果が生じるので、高圧側配管と高圧側配管の内部を流れる高圧側冷媒との熱伝達率が向上することで、高圧側冷媒と低圧側冷媒との間の熱交換量を増加することができる。   As a result, the heat transfer area between the high-pressure side pipe and the high-pressure side refrigerant flowing inside the high-pressure side pipe is increased, and a turbulent flow promoting effect is produced by the uneven portion, so that the high-pressure flowing inside the high-pressure side pipe and the high-pressure side pipe By improving the heat transfer coefficient with the side refrigerant, the amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant can be increased.

本発明によれば、内部熱交換器の高圧側配管と高圧側冷媒との伝熱面積を増加させることで、熱交換性能に優れた内部熱交換器を備えた冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigeration cycle apparatus provided with the internal heat exchanger excellent in heat exchange performance can be provided by increasing the heat transfer area of the high voltage | pressure side piping and high pressure side refrigerant | coolant of an internal heat exchanger.

本発明の実施の形態1の内部熱交換器の概要図Schematic diagram of internal heat exchanger according to Embodiment 1 of the present invention 図1のX−X断面図XX sectional view of FIG. 本発明の実施の形態1の冷凍サイクル装置の回路構成図1 is a circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 従来の内部熱交換器の概要図Overview of conventional internal heat exchanger

第1の発明は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記減圧手段により減圧された低圧側冷媒とが熱交換する内部熱交換器とを備え、前記内部熱交換器において高圧側冷媒が流れる高圧側配管は、内表面に凹凸部を有することを特徴とする冷凍サイクル装置である。   The first invention includes a compressor, a radiator, a decompression unit, an evaporator, a high-pressure side refrigerant supplied from the radiator to the decompression unit, and a low-pressure side refrigerant decompressed by the decompression unit. An internal heat exchanger for exchanging heat, and the high-pressure side pipe through which the high-pressure side refrigerant flows in the internal heat exchanger has a concavo-convex portion on the inner surface.

これにより、高圧側配管と高圧側配管の内部を流れる高圧側冷媒との伝熱面積が増加するとともに、凹凸部によって乱流促進効果が生じるので、高圧側配管と高圧側配管の内部を流れる高圧側冷媒との熱伝達率が向上することで、高圧側冷媒と低圧側冷媒との間の熱交換量を増加することができる。   As a result, the heat transfer area between the high-pressure side pipe and the high-pressure side refrigerant flowing inside the high-pressure side pipe is increased, and a turbulent flow promoting effect is produced by the uneven portion, so that the high-pressure flowing inside the high-pressure side pipe and the high-pressure side pipe By improving the heat transfer coefficient with the side refrigerant, the amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant can be increased.

また、高圧側配管の内表面に凹凸部を設けた、すなわち、内面溝付管にしたことにより、高圧側配管内を冷媒が流れたときには渦が発生し、エネルギー損失(圧力損失)が生じるが、高圧側冷媒は放熱器と減圧手段との間を流れるので、内部熱交換器にて高圧側冷媒に圧力損失が生じても、減圧手段における減圧量を変動させ調整すれば、冷凍サイクルにおける高低圧差は変動しないので、機器としての運転効率を低下させることはない。   In addition, by providing an uneven portion on the inner surface of the high-pressure side pipe, that is, an inner grooved pipe, a vortex is generated when refrigerant flows through the high-pressure side pipe, resulting in energy loss (pressure loss). Since the high-pressure side refrigerant flows between the radiator and the decompression means, even if a pressure loss occurs in the high-pressure side refrigerant in the internal heat exchanger, if the amount of decompression in the decompression means is varied and adjusted, Since the pressure difference does not fluctuate, the operating efficiency of the equipment is not reduced.

これにより、冷凍サイクル装置のエネルギー効率を向上しつつ、内部熱交換器における熱交換量も増加させることができる。   Thereby, the amount of heat exchange in the internal heat exchanger can be increased while improving the energy efficiency of the refrigeration cycle apparatus.

第2の発明は、前記蒸発器に付着した霜を溶かす除霜運転モードを備え、前記除霜運転モードにおいて、冷媒は、前記圧縮機、前記放熱器、前記内部熱交換器の高圧側配管、前記減圧手段、前記蒸発器、前記内部熱交換器の低圧側配管、前記圧縮機の順で循環することを特徴とするものである。   2nd invention is equipped with the defrost operation mode which melt | dissolves the frost adhering to the said evaporator, In the said defrost operation mode, a refrigerant | coolant is the said high pressure side piping of the said compressor, the said heat radiator, and the said internal heat exchanger, The pressure reducing means, the evaporator, the low-pressure side pipe of the internal heat exchanger, and the compressor are circulated in this order.

これにより、放熱器で水等を加熱する貯湯運転モードにおいては、内部熱交換器の熱交換量を増加させることができ、冷凍サイクル装置のエネルギー効率を向上できるとともに、除霜運転モードにおいては、冷媒は圧縮機で湿り圧縮され、圧縮機の潤滑油とともに圧縮機から吐出されるが、この潤滑油が内部熱交換器の高圧側配管の凹凸部(溝部)に付着することで、除霜運転時において、内部熱交換器での高圧側冷媒と低圧側冷媒の熱交換効率を低下させることができ、その結果、内部熱交換器での高圧側冷媒の放熱量が低減され、高圧側冷媒が有する熱を効率良く蒸発器に伝達でき、除霜に活用することができることで、除霜運転時間を短縮することができる。   Thereby, in the hot water storage operation mode in which water or the like is heated with a radiator, the heat exchange amount of the internal heat exchanger can be increased, the energy efficiency of the refrigeration cycle apparatus can be improved, and in the defrost operation mode, The refrigerant is wet-compressed by the compressor and discharged from the compressor together with the lubricating oil of the compressor, and this lubricating oil adheres to the uneven part (groove part) of the high-pressure side pipe of the internal heat exchanger, so that the defrosting operation is performed. The heat exchange efficiency of the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger can be reduced, and as a result, the heat release amount of the high-pressure side refrigerant in the internal heat exchanger is reduced, and the high-pressure side refrigerant The defrosting operation time can be shortened because the heat it has can be efficiently transmitted to the evaporator and used for defrosting.

第3の発明は、前記減圧手段を、前記放熱器よりも鉛直上方に配設したことを特徴とするものである。   The third invention is characterized in that the pressure reducing means is arranged vertically above the radiator.

これにより、放熱器で水等を加熱する貯湯運転モードにおいては、内部熱交換器の熱交換量を増加させることができ、冷凍サイクル装置のエネルギー効率を向上できるとともに除霜運転モードにおいては、冷媒は圧縮機で湿り圧縮され、圧縮機の潤滑油とともに圧縮機から吐出されるが、放熱器から内部熱交換器の高圧側配管、そして減圧手段へと冷媒が流れ、かつ、減圧手段が、放熱器よりも鉛直上方に配設されていることで、この潤滑油が内部熱交換器の高圧側配管の凹凸部(溝部)に付着し、かつ、重力作用によって、この凹凸部(溝部)に潤滑油残留しやすいことで、除霜運転時において、内部熱交換器での高圧側冷媒と低圧側冷媒の熱交換効率を低下させることができ、その結果、内部熱交換器での
高圧側冷媒の放熱量が低減され、高圧側冷媒が有する熱を効率良く蒸発器に伝達でき、除霜に活用することができることで、除霜運転時間を短縮することができる。
Thereby, in the hot water storage operation mode in which water or the like is heated by the radiator, the heat exchange amount of the internal heat exchanger can be increased, and the energy efficiency of the refrigeration cycle apparatus can be improved and the refrigerant in the defrost operation mode. Is wet-compressed by the compressor and discharged from the compressor together with the lubricating oil of the compressor, but the refrigerant flows from the radiator to the high-pressure side piping of the internal heat exchanger and the decompression means, and the decompression means dissipates heat. The lubricating oil adheres to the uneven part (groove part) of the high-pressure side pipe of the internal heat exchanger and is lubricated to the uneven part (groove part) by the action of gravity. Due to the oil remaining easily, the heat exchange efficiency of the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger can be reduced during the defrosting operation. As a result, the high-pressure side refrigerant in the internal heat exchanger can be reduced. The heat dissipation is reduced The heat of the high-pressure side refrigerant can efficiently transmitted to the evaporator, that can be utilized in defrosting, it is possible to shorten the defrosting operation time.

第4の発明は、前記内部熱交換器の低圧側冷媒は、前記蒸発器から前記圧縮機へと供給される冷媒であることを特徴とするものである。   The fourth invention is characterized in that the low-pressure side refrigerant of the internal heat exchanger is a refrigerant supplied from the evaporator to the compressor.

これにより、蒸発器の略全域にわたって冷媒を湿り状態で動作させることができるので、蒸発器の熱交換効率を高めることができるとともに、圧縮機に吸入される冷媒の過熱度を十分に大きくすることができ、冷凍サイクル装置のエネルギー効率を向上できる。   As a result, the refrigerant can be operated in a wet state over substantially the entire area of the evaporator, so that the heat exchange efficiency of the evaporator can be increased and the degree of superheat of the refrigerant sucked into the compressor can be sufficiently increased. It is possible to improve the energy efficiency of the refrigeration cycle apparatus.

第5の発明は、前記内部熱交換器において低圧側冷媒が流れる低圧側配管の内表面は、平滑であることを特徴とするものである。   The fifth invention is characterized in that the inner surface of the low-pressure side pipe through which the low-pressure side refrigerant flows in the internal heat exchanger is smooth.

これにより、低圧側配管に凹凸部(溝部)を設けた場合に比べ、低圧側冷媒と低圧側配管の接触面積が減り、低圧側冷媒の圧力損失が低減されるので、圧縮機の吸入圧力が上昇し、冷凍サイクル装置のエネルギー効率を向上できる。   As a result, the contact area between the low-pressure side refrigerant and the low-pressure side pipe is reduced and the pressure loss of the low-pressure side refrigerant is reduced as compared with the case where the uneven portion (groove) is provided in the low-pressure side pipe. As a result, the energy efficiency of the refrigeration cycle apparatus can be improved.

第6の発明は、前記内部熱交換器において低圧側冷媒が流れる低圧側配管は、前記高圧側配管と平行に接合され、前記低圧側配管の内径は、前記高圧側配管の内径よりも大きいことを特徴とするものである。   In a sixth aspect of the present invention, the low pressure side pipe through which the low pressure side refrigerant flows in the internal heat exchanger is joined in parallel with the high pressure side pipe, and the inner diameter of the low pressure side pipe is larger than the inner diameter of the high pressure side pipe. It is characterized by.

これにより、低圧側配管の内表面積を比較的大きくすることができるので、低圧側冷媒と低圧側配管との熱抵抗と、高圧側冷媒と高圧側配管との熱抵抗を比較的均一にすることができ、内部熱交換器における熱交換効率を向上でき、冷凍サイクル装置のエネルギー効率を向上できる。   As a result, the internal surface area of the low-pressure side pipe can be made relatively large, so that the thermal resistance between the low-pressure side refrigerant and the low-pressure side pipe and the thermal resistance between the high-pressure side refrigerant and the high-pressure side pipe are made relatively uniform. The heat exchange efficiency in the internal heat exchanger can be improved, and the energy efficiency of the refrigeration cycle apparatus can be improved.

第7の発明は、前記冷媒は二酸化炭素であることを特徴としたもので、不燃性冷媒であるため、発火や爆発の危険性を取り除くことが出来るという効果を奏する。   The seventh invention is characterized in that the refrigerant is carbon dioxide, and since it is a non-flammable refrigerant, there is an effect that the risk of ignition or explosion can be eliminated.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本発明の第1の実施の形態における内部熱交換器およびヒートポンプ給湯装置の構成について、以下、図面を参照しながら説明する。
(Embodiment 1)
The configuration of the internal heat exchanger and the heat pump water heater in the first embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施の形態の内部熱交換器の概略図である。図2は、図1のX−X断面図である。   FIG. 1 is a schematic diagram of an internal heat exchanger according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along line XX in FIG.

図1および図2において、内部熱交換器13の、高圧側配管131と低圧側配管132は、内部を流れる高圧側冷媒と低圧側冷媒が熱交換できるよう、外表面が接合部133にて接触し並列に配設されている。   1 and 2, the high-pressure side pipe 131 and the low-pressure side pipe 132 of the internal heat exchanger 13 are in contact with each other at the joint 133 so that the high-pressure refrigerant and the low-pressure refrigerant flowing inside can exchange heat. Are arranged in parallel.

ここで、高圧側配管131の内表面には、伝熱を促進するための溝なる凹凸部134を設ける加工を施しており、低圧側配管132の内表面は、圧力損失を低減するために平滑としている。   Here, the inner surface of the high-pressure side pipe 131 is processed to provide an uneven portion 134 that is a groove for promoting heat transfer, and the inner surface of the low-pressure side pipe 132 is smoothed to reduce pressure loss. It is said.

高圧側配管131と低圧側配管132との接合部133は、伝熱を促進するため、半田によって金属接合されており、低圧側配管の内径は、高圧側配管の内径よりも大きい。   The joint 133 between the high-pressure side pipe 131 and the low-pressure side pipe 132 is metal-bonded by solder to promote heat transfer, and the inner diameter of the low-pressure side pipe is larger than the inner diameter of the high-pressure side pipe.

なお、内部熱交換器13の高圧側配管131の端部はそれぞれ、放熱器12の出口側の冷媒配管と、減圧手段14の入口側の冷媒配管に接続され、低圧側配管132の端部はそれぞれ、蒸発器15の出口側の冷媒配管と、圧縮機11の吸入側の冷媒配管と接続されている。   The end of the high-pressure side pipe 131 of the internal heat exchanger 13 is connected to the refrigerant pipe on the outlet side of the radiator 12 and the refrigerant pipe on the inlet side of the decompression means 14, and the end of the low-pressure side pipe 132 is The refrigerant pipe on the outlet side of the evaporator 15 and the refrigerant pipe on the suction side of the compressor 11 are connected to each other.

図3は実施の形態1の冷凍サイクル装置を備えたヒートポンプ給湯装置の回路構成図である。図3において、このヒートポンプ給湯装置は、冷凍サイクル装置10と、貯湯装置20から構成されている。   FIG. 3 is a circuit configuration diagram of a heat pump hot water supply apparatus including the refrigeration cycle apparatus of the first embodiment. In FIG. 3, the heat pump hot water supply apparatus includes a refrigeration cycle apparatus 10 and a hot water storage apparatus 20.

冷凍サイクル装置10は、圧縮機11、放熱器12、減圧手段14、蒸発器15を順に冷媒配管で環状に接続して構成されている。ここで、減圧手段14は、放熱器12よりも鉛直上方に配設されている。なお、冷凍サイクル装置10には、冷媒として二酸化炭素が封入されている。   The refrigeration cycle apparatus 10 is configured by connecting a compressor 11, a radiator 12, a decompression unit 14, and an evaporator 15 in an annular manner with a refrigerant pipe in order. Here, the decompression means 14 is disposed vertically above the radiator 12. In the refrigeration cycle apparatus 10, carbon dioxide is enclosed as a refrigerant.

内部熱交換器13は、放熱器12と減圧手段14との間に配設された高圧側配管131を流れる高圧側冷媒と、蒸発器15と圧縮機11との間に配設された低圧側配管132を流れる低圧側冷媒との間で熱交換を行う。   The internal heat exchanger 13 includes a high-pressure side refrigerant that flows through a high-pressure side pipe 131 that is disposed between the radiator 12 and the decompression unit 14, and a low-pressure side that is disposed between the evaporator 15 and the compressor 11. Heat exchange is performed with the low-pressure refrigerant flowing through the pipe 132.

放熱器12は、圧縮機11から吐出された高圧側冷媒と、貯湯タンク21から水用配管18を介して供給される貯湯水との間で熱交換を行い、温水を生成する。蒸発用ファン17は、蒸発器15に送風するための送風装置である。   The radiator 12 exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the hot water supplied from the hot water storage tank 21 via the water pipe 18 to generate hot water. The evaporation fan 17 is a blower for blowing air to the evaporator 15.

貯湯装置20は、貯湯タンク21を備え、貯湯タンク21の底部の水供給用配管22は、水道管等の配管に接続されている。   The hot water storage device 20 includes a hot water storage tank 21, and a water supply pipe 22 at the bottom of the hot water storage tank 21 is connected to a pipe such as a water pipe.

また、貯湯装置20は、沸き上げ往き配管23から、送水ポンプ24、水用配管18、放熱器12、沸き上げ戻り配管19、三方切替弁25を経て貯湯タンク21へ戻す沸き上げ回路を有している。   Further, the hot water storage device 20 has a boiling circuit that returns from the boiling forward piping 23 to the hot water storage tank 21 via the water supply pump 24, the water piping 18, the radiator 12, the boiling return piping 19, and the three-way switching valve 25. ing.

給湯混合弁28は、水供給用配管22と貯湯タンク21から出る出湯管29の混合部に設けられ、給湯混合弁28にて設定温度に調節されたお湯が、給湯配管40を流れる構成となっている。また、各動作部品への運転指示は、制御装置(図示せず)にて行われている。   The hot water mixing valve 28 is provided in the mixing portion of the water supply pipe 22 and the hot water outlet pipe 29 coming out of the hot water storage tank 21, and the hot water adjusted to the set temperature by the hot water mixing valve 28 flows through the hot water supply pipe 40. ing. In addition, an operation instruction to each operation component is performed by a control device (not shown).

以上のように構成されたヒートポンプ給湯装置について、以下、その貯湯運転動作について説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the hot water storage driving | operation operation | movement is demonstrated below.

貯湯運転時、冷凍サイクル装置10に封入された冷媒は、低圧のガス状態で圧縮機11に吸入され、高温高圧の超臨界状態にまで圧縮される。圧縮された冷媒は、放熱器12に搬送されて、貯湯タンク21から搬送された水と熱交換した後、内部熱交換器13にて、低圧側冷媒に放熱して、自身は低温高圧冷媒となる。   During the hot water storage operation, the refrigerant sealed in the refrigeration cycle apparatus 10 is sucked into the compressor 11 in a low-pressure gas state and compressed to a high-temperature and high-pressure supercritical state. The compressed refrigerant is transferred to the radiator 12 and exchanges heat with the water transferred from the hot water storage tank 21, and then radiates heat to the low-pressure side refrigerant in the internal heat exchanger 13. Become.

その後、冷媒は、膨張弁等の減圧手段14で低温低圧状態に膨張した気液二相冷媒となり、蒸発器15で、蒸発用ファン17により送風された外気から吸熱した後、内部熱交換器13で高圧側冷媒から吸熱して低圧のガス冷媒となり、圧縮機11に吸入されるという動作を繰り返す。   Thereafter, the refrigerant becomes a gas-liquid two-phase refrigerant expanded to a low-temperature and low-pressure state by the decompression means 14 such as an expansion valve, and after absorbing heat from the outside air blown by the evaporation fan 17 by the evaporator 15, the internal heat exchanger 13. Then, the operation of absorbing heat from the high-pressure side refrigerant to become a low-pressure gas refrigerant and being sucked into the compressor 11 is repeated.

一方、貯湯タンク21の底部の水は、送水ポンプ24により沸き上げ往き管23、水用配管18を介して放熱器12に搬送され、前記冷凍サイクル装置10の冷媒と熱交換して自身は加熱されて温水となる。   On the other hand, the water at the bottom of the hot water storage tank 21 is conveyed to the radiator 12 through the water supply pump 24 through the boiling forward pipe 23 and the water pipe 18, and exchanges heat with the refrigerant of the refrigeration cycle apparatus 10 to heat itself. It becomes warm water.

その後、加熱された温水は、沸き上げ戻り管19、三方切替弁25を介し、貯湯タンク21の上部または底部に戻される。   Thereafter, the heated hot water is returned to the top or bottom of the hot water storage tank 21 via the boiling return pipe 19 and the three-way switching valve 25.

放熱器12の出口温水の温度は、冷凍サイクル装置10を起動してすぐに目標沸き上げ温度に到達する訳ではなく、所定時間を要する。   The temperature of the outlet hot water of the radiator 12 does not reach the target boiling temperature immediately after the start of the refrigeration cycle apparatus 10, but requires a predetermined time.

出湯温度検知手段191で検出した温度(以下、検出温度と呼ぶ)が目標沸き上げ温度に対して低い間(例えば、目標沸き上げ温度と検出温度との温度差が所定値以上の場合)は、沸き上げ戻り管19の温水は、三方切替弁25により、沸き上げバイパス管26を介して貯湯タンク21の底部に戻される。   While the temperature detected by the tapping temperature detection means 191 (hereinafter referred to as the detected temperature) is lower than the target boiling temperature (for example, when the temperature difference between the target boiling temperature and the detected temperature is a predetermined value or more), The hot water in the boiling return pipe 19 is returned to the bottom of the hot water storage tank 21 through the boiling bypass pipe 26 by the three-way switching valve 25.

その後、検出温度が目標沸き上げ温度に近づいた場合(例えば、目標沸き上げ温度と検出温度との温度差が所定値未満になった場合)に、三方切替弁25を切り替えて沸き上げ戻り管19の温水を沸き上げ配管27を介して貯湯タンク21の上部に戻す。   Thereafter, when the detected temperature approaches the target boiling temperature (for example, when the temperature difference between the target boiling temperature and the detected temperature becomes less than a predetermined value), the three-way switching valve 25 is switched and the boiling return pipe 19 is switched. The hot water is boiled up and returned to the upper part of the hot water storage tank 21 through the piping 27.

以上の動作により、冷凍サイクル装置10で加熱された高温の温が貯湯タンク21内に貯湯される。   Through the above operation, the hot temperature heated by the refrigeration cycle apparatus 10 is stored in the hot water storage tank 21.

次に、ヒートポンプ給湯装置の除霜運転動作について説明する。   Next, the defrosting operation operation of the heat pump water heater will be described.

外気温が低い状態で貯湯運転動作を行うと、蒸発器15に霜が付き、蒸発器15の吸熱能力が大幅に低下してしまう。   When the hot water storage operation is performed in a state where the outside air temperature is low, frost is formed on the evaporator 15, and the heat absorption capability of the evaporator 15 is significantly reduced.

ここで、蒸発器15に付着した霜を除霜する除霜運転動作を行う。蒸発器15に霜が付着したと、蒸発器15近傍に配設された温度センサ(図示せず)からの情報により、制御装置(図示せず)が判断した場合に、除霜運転動作は開始される。   Here, a defrosting operation for defrosting the frost attached to the evaporator 15 is performed. The defrosting operation starts when the controller (not shown) determines that frost has adhered to the evaporator 15 based on information from a temperature sensor (not shown) disposed in the vicinity of the evaporator 15. Is done.

まず、送水ポンプ24と蒸発用ファン17が停止し、減圧手段14の弁の開度が開かれる。そして、圧縮機11で圧縮された高温の冷媒は放熱器12、内部熱交換器13の高圧側配管131、減圧手段14を流れ、蒸発器15に流入し、冷媒の有する熱で除霜を行い、内部熱交換器13の低圧側配管132を流れた後、圧縮機11に吸入される。   First, the water pump 24 and the evaporation fan 17 are stopped, and the opening of the valve of the decompression means 14 is opened. The high-temperature refrigerant compressed by the compressor 11 flows through the radiator 12, the high-pressure side pipe 131 of the internal heat exchanger 13, and the decompression means 14, flows into the evaporator 15, and defrosts with the heat of the refrigerant. After flowing through the low-pressure side pipe 132 of the internal heat exchanger 13, it is sucked into the compressor 11.

なお、蒸発器15に付着していた霜が溶けたと、蒸発器15近傍に配設された温度センサ(図示せず)からの情報により、制御装置(図示せず)が判断した場合には、除霜運転動作は終了され、次に貯湯運転が行われる。   In addition, when the control device (not shown) judges that the frost adhering to the evaporator 15 has melted based on information from a temperature sensor (not shown) disposed in the vicinity of the evaporator 15, The defrosting operation is terminated, and then a hot water storage operation is performed.

ここで、本実施の形態1によれば、上記構成により、高圧側配管131の内表面に溝なる凹凸部134を設ける加工を有したことにより、高圧側配管131と高圧側配管131の内部を流れる高圧側冷媒との伝熱面積が増加するとともに、凹凸部134(溝)による乱流促進効果によって、高圧側冷媒と高圧側配管131の熱伝達率が向上するので、高圧側冷媒と低圧側冷媒との間の熱交換量が増加するという効果を奏する。   Here, according to the first embodiment, with the above-described configuration, the process of providing the concave and convex portion 134 that forms a groove on the inner surface of the high-pressure side pipe 131, the interior of the high-pressure side pipe 131 and the high-pressure side pipe 131 is formed. The heat transfer area with the flowing high-pressure side refrigerant is increased, and the heat transfer coefficient between the high-pressure side refrigerant and the high-pressure side pipe 131 is improved by the effect of promoting turbulence by the uneven portion 134 (groove). There is an effect that the amount of heat exchange with the refrigerant increases.

一方、高圧側配管131の内面に凹凸部134(溝)を設ける内面溝付管にしたことにより、高圧側配管131の内部において渦が発生し、エネルギー損失(圧力損失)を生じることになるが、高圧側冷媒は放熱器12と減圧手段14との間を流れるので、内部熱交換器13にて高圧側冷媒に圧力損失が生じても、減圧手段14における減圧量を変動させ調整すれば、冷凍サイクルにおける高低圧差は変動しないので、機器としての運転効率を低下させることはない。   On the other hand, the use of an internally grooved tube provided with an uneven portion 134 (groove) on the inner surface of the high-pressure side pipe 131 causes vortices inside the high-pressure side pipe 131, resulting in energy loss (pressure loss). Since the high-pressure side refrigerant flows between the radiator 12 and the decompression means 14, even if a pressure loss occurs in the high-pressure side refrigerant in the internal heat exchanger 13, if the amount of decompression in the decompression means 14 is varied and adjusted, Since the high-low pressure difference in the refrigeration cycle does not fluctuate, the operating efficiency of the equipment is not reduced.

これにより、冷凍サイクル装置のエネルギー効率を向上しつつ、内部熱交換器13における熱交換量も増加させることができる。   Thereby, the amount of heat exchange in the internal heat exchanger 13 can be increased while improving the energy efficiency of the refrigeration cycle apparatus.

また、蒸発器15に付着した霜を溶かす除霜運転モードにおいて、冷媒は、圧縮機11、放熱器12、内部熱交換器13の高圧側配管131、減圧手段14、蒸発器15、内部熱交換器13の低圧側配管132、圧縮機11の順で循環することで、前記貯湯運転モードにおいては、内部熱交換器13の熱交換量を増加させることができ、冷凍サイクル装置のエネルギー効率を向上できるとともに、除霜運転においては、冷媒は圧縮機11で湿り圧縮され、圧縮機11の潤滑油とともに圧縮機11から吐出されるが、この潤滑油が内部熱交換器13の高圧側配管131の凹凸部134(溝部)に付着することで、除霜運転時において、内部熱交換器13での高圧側冷媒と低圧側冷媒の熱交換効率を低下させることができ、その結果、内部熱交換器13での高圧側冷媒の放熱量が低減され、高圧側冷媒が有する熱を効率良く蒸発器15に伝達でき、除霜に活用することができることで、除霜運転時間を短縮することができる。   Further, in the defrosting operation mode in which the frost adhering to the evaporator 15 is melted, the refrigerant is the compressor 11, the radiator 12, the high-pressure side pipe 131 of the internal heat exchanger 13, the decompression means 14, the evaporator 15, and the internal heat exchange. In the hot water storage operation mode, the heat exchange amount of the internal heat exchanger 13 can be increased and the energy efficiency of the refrigeration cycle apparatus is improved by circulating the low pressure side pipe 132 of the compressor 13 and the compressor 11 in this order. In addition, in the defrosting operation, the refrigerant is wet-compressed by the compressor 11 and discharged from the compressor 11 together with the lubricating oil of the compressor 11. This lubricating oil is discharged from the high-pressure side pipe 131 of the internal heat exchanger 13. By adhering to the concavo-convex portion 134 (groove portion), the heat exchange efficiency of the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 13 can be reduced during the defrosting operation, and as a result, the internal heat exchange Heat radiation amount of the high-pressure side refrigerant in 13 is reduced, can transmit the heat of the high-pressure side refrigerant to efficiently evaporator 15, that can be utilized in defrosting, it is possible to shorten the defrosting operation time.

また、除霜運転においては、放熱器12から内部熱交換器13の高圧側配管131、そして減圧手段14へと冷媒が流れ、かつ、減圧手段14が、放熱器12よりも鉛直方向において上方側に配設されていることで、内部熱交換器13の高圧側配管131の凹凸部134(溝部)に付着した潤滑油が重力作用によって、この凹凸部134(溝部)に潤滑油残留しやすいことで、除霜運転時において、内部熱交換器13での高圧側冷媒と低圧側冷媒の熱交換効率を低下させることができ、その結果、内部熱交換器13での高圧側冷媒の放熱量が低減され、高圧側冷媒が有する熱を効率良く蒸発器15に伝達でき、除霜に活用することができることで、除霜運転時間を短縮することができる。   Further, in the defrosting operation, the refrigerant flows from the radiator 12 to the high-pressure side pipe 131 of the internal heat exchanger 13 and the decompression means 14, and the decompression means 14 is located above the radiator 12 in the vertical direction. The lubricating oil adhering to the uneven portion 134 (groove portion) of the high-pressure side pipe 131 of the internal heat exchanger 13 is likely to remain in the uneven portion 134 (groove portion) due to the gravity action. Thus, during the defrosting operation, the heat exchange efficiency between the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 13 can be reduced, and as a result, the heat release amount of the high-pressure side refrigerant in the internal heat exchanger 13 can be reduced. The defrosting operation time can be shortened by being reduced and being able to efficiently transmit the heat of the high-pressure side refrigerant to the evaporator 15 and utilizing it for defrosting.

また、内部熱交換器13において低圧側冷媒が流れる低圧側配管132の内表面が、平滑であることで、低圧側配管に凹凸部(溝部)を設けた場合に比べ、低圧側冷媒と低圧側配管の接触面積が減り、低圧側冷媒の圧力損失が低減されるので、圧縮機11の吸入圧力が上昇し、冷凍サイクル装置のエネルギー効率を向上できる。   In addition, since the inner surface of the low-pressure side pipe 132 through which the low-pressure side refrigerant flows in the internal heat exchanger 13 is smooth, the low-pressure side refrigerant and the low-pressure side are compared with the case where the concave-convex part (groove part) is provided in the low-pressure side pipe. Since the contact area of the piping is reduced and the pressure loss of the low-pressure side refrigerant is reduced, the suction pressure of the compressor 11 is increased, and the energy efficiency of the refrigeration cycle apparatus can be improved.

また、内部熱交換器13において低圧側冷媒が流れる低圧側配管132は、高圧側配管131と平行に接合され、低圧側配管132の内径は、高圧側配管131の内径よりも大きいことで、低圧側配管132の内表面積を比較的大きくすることができ、低圧側冷媒と低圧側配管との熱抵抗と、高圧側冷媒と高圧側配管131との熱抵抗を比較的均一にすることができ、内部熱交換器13における熱交換効率を向上でき、冷凍サイクル装置のエネルギー効率を向上できる。   In addition, the low-pressure side pipe 132 through which the low-pressure side refrigerant flows in the internal heat exchanger 13 is joined in parallel with the high-pressure side pipe 131, and the inner diameter of the low-pressure side pipe 132 is larger than the inner diameter of the high-pressure side pipe 131. The inner surface area of the side pipe 132 can be made relatively large, the thermal resistance between the low pressure side refrigerant and the low pressure side pipe, and the thermal resistance between the high pressure side refrigerant and the high pressure side pipe 131 can be made relatively uniform, The heat exchange efficiency in the internal heat exchanger 13 can be improved, and the energy efficiency of the refrigeration cycle apparatus can be improved.

以上のように、本発明にかかる冷凍サイクル装置は、内部熱交換器の高圧側配管と高圧側冷媒との伝熱面積を増加させることで、熱交換性能に優れた内部熱交換器を備えた冷凍サイクル装置を提供できるので、内部熱交換器を備えた冷凍サイクル装置に適用できる。   As described above, the refrigeration cycle apparatus according to the present invention includes the internal heat exchanger having excellent heat exchange performance by increasing the heat transfer area between the high-pressure side pipe and the high-pressure side refrigerant of the internal heat exchanger. Since a refrigeration cycle apparatus can be provided, it can be applied to a refrigeration cycle apparatus equipped with an internal heat exchanger.

10 冷凍サイクル装置
11 圧縮機
12 放熱器
13 内部熱交換器
14 減圧手段
15 蒸発器
131 高圧側配管
132 低圧側配管
133 接合部
134 凹凸部(溝部)
DESCRIPTION OF SYMBOLS 10 Refrigeration cycle apparatus 11 Compressor 12 Radiator 13 Internal heat exchanger 14 Depressurization means 15 Evaporator 131 High pressure side piping 132 Low pressure side piping 133 Joint part 134 Uneven part (groove part)

Claims (7)

圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記減圧手段により減圧された低圧側冷媒とが熱交換する内部熱交換器とを備え、前記内部熱交換器において高圧側冷媒が流れる高圧側配管は、内表面に凹凸部を有することを特徴とする冷凍サイクル装置。 Internal heat exchange in which heat is exchanged between the compressor, the radiator, the decompression means, the evaporator, the high-pressure side refrigerant supplied from the radiator to the decompression means, and the low-pressure side refrigerant decompressed by the decompression means The high-pressure side pipe through which the high-pressure side refrigerant flows in the internal heat exchanger has an uneven portion on the inner surface. 前記蒸発器に付着した霜を溶かす除霜運転モードを備え、前記除霜運転モードにおいて、冷媒は、前記圧縮機、前記放熱器、前記内部熱交換器の高圧側配管、前記減圧手段、前記蒸発器、前記内部熱交換器の低圧側配管、前記圧縮機の順で循環することを特徴とする請求項1に記載の冷凍サイクル装置。 A defrosting operation mode for melting frost adhering to the evaporator, and in the defrosting operation mode, the refrigerant is the compressor, the radiator, the high-pressure side piping of the internal heat exchanger, the decompression means, the evaporation The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is circulated in the order of a compressor, a low-pressure side pipe of the internal heat exchanger, and the compressor. 前記減圧手段を、前記放熱器よりも鉛直上方に配設したことを特徴とする請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the decompression means is disposed vertically above the radiator. 前記内部熱交換器の低圧側冷媒は、前記蒸発器から前記圧縮機へと供給される冷媒であることを特徴とする請求項1〜3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the low-pressure side refrigerant of the internal heat exchanger is a refrigerant supplied from the evaporator to the compressor. 前記内部熱交換器において低圧側冷媒が流れる低圧側配管の内表面は、平滑であることを特徴とする請求項1〜4のいずれか1項に記載の冷凍サイクル装置。 5. The refrigeration cycle apparatus according to claim 1, wherein an inner surface of the low-pressure side pipe through which the low-pressure side refrigerant flows in the internal heat exchanger is smooth. 前記内部熱交換器において低圧側冷媒が流れる低圧側配管は、前記高圧側配管と平行に接合され、前記低圧側配管の内径は、前記高圧側配管の内径よりも大きいことを特徴とする請求項1〜5のいずれか1項に記載の冷凍サイクル装置。 The low-pressure side pipe through which the low-pressure side refrigerant flows in the internal heat exchanger is joined in parallel to the high-pressure side pipe, and an inner diameter of the low-pressure side pipe is larger than an inner diameter of the high-pressure side pipe. The refrigeration cycle apparatus according to any one of 1 to 5. 前記冷媒は、二酸化炭素であることを特徴とする請求項1〜6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide.
JP2013057606A 2013-03-21 2013-03-21 Refrigeration cycle device Pending JP2014181870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057606A JP2014181870A (en) 2013-03-21 2013-03-21 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057606A JP2014181870A (en) 2013-03-21 2013-03-21 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2014181870A true JP2014181870A (en) 2014-09-29

Family

ID=51700755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057606A Pending JP2014181870A (en) 2013-03-21 2013-03-21 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2014181870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098263A1 (en) * 2014-12-19 2016-06-23 サンデンホールディングス株式会社 Heat exchanger and heat pump type hot water generating device using same
CN107178935A (en) * 2016-03-11 2017-09-19 福特全球技术公司 Nested type HVAC pipeline
JP2019056536A (en) * 2017-09-22 2019-04-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864488A (en) * 1981-10-15 1983-04-16 Matsushita Electric Ind Co Ltd Heat exchanger
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Freezer refrigerator
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator
JP2006071270A (en) * 2004-08-06 2006-03-16 Showa Denko Kk Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2010060255A (en) * 2008-09-08 2010-03-18 Daikin Ind Ltd Heat exchanger
JP2011102678A (en) * 2009-11-11 2011-05-26 Daikin Industries Ltd Heat pump device
JP2012251701A (en) * 2011-06-02 2012-12-20 Panasonic Corp Heat pump hydronic heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864488A (en) * 1981-10-15 1983-04-16 Matsushita Electric Ind Co Ltd Heat exchanger
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Freezer refrigerator
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator
JP2006071270A (en) * 2004-08-06 2006-03-16 Showa Denko Kk Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2010060255A (en) * 2008-09-08 2010-03-18 Daikin Ind Ltd Heat exchanger
JP2011102678A (en) * 2009-11-11 2011-05-26 Daikin Industries Ltd Heat pump device
JP2012251701A (en) * 2011-06-02 2012-12-20 Panasonic Corp Heat pump hydronic heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098263A1 (en) * 2014-12-19 2016-06-23 サンデンホールディングス株式会社 Heat exchanger and heat pump type hot water generating device using same
JPWO2016098263A1 (en) * 2014-12-19 2017-10-05 サンデンホールディングス株式会社 Heat exchanger and heat pump type hot water generator using the same
EP3220074A4 (en) * 2014-12-19 2018-08-15 Sanden Holdings Corporation Heat exchanger and heat pump type hot water generating device using same
CN107178935A (en) * 2016-03-11 2017-09-19 福特全球技术公司 Nested type HVAC pipeline
JP2019056536A (en) * 2017-09-22 2019-04-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Similar Documents

Publication Publication Date Title
CN104114964B (en) Refrigerating circulatory device and the hot water generating device possessing it
JP4738293B2 (en) Heat pump device and heat pump water heater
CN102840713B (en) Hot and cold water water supply installation
WO2012032680A1 (en) Refrigeration cycle apparatus
JP5939764B2 (en) Heat pump device and heat pump water heater
CN102032699A (en) Refrigeration cycle apparatus and hot water heater
JP2008032376A (en) Heat pump liquid heating air conditioner or apparatus
CN105091410A (en) Heat pump
JP2013096670A (en) Refrigeration cycle device and hot water generator
EP2770278B1 (en) Water heater
JP2014181870A (en) Refrigeration cycle device
EP2770277B1 (en) Water heater
CN103836790A (en) Heat pump water heater
JP2010085004A (en) Heat pump water heater and method for defrosting the heat pump water heater
JP2008256281A (en) Heat pump water heater
JP2015172452A (en) Hot water generator
JP4417396B2 (en) Heat pump equipment
JP5150300B2 (en) Heat pump type water heater
JP2012233685A (en) Water heater
CN103411269B (en) Indoor apparatus of air conditioner, the air-conditioner of application and control method thereof
JP2015224845A (en) Refrigeration cycle device
JP5413594B2 (en) Heat pump type water heater
JP2014047954A (en) Refrigeration cycle device
JP6277417B2 (en) Heat pump water heater
CN102645054B (en) Cold/hot water supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606