JPH10162959A - Organic electroluminescence device - Google Patents
Organic electroluminescence deviceInfo
- Publication number
- JPH10162959A JPH10162959A JP8319567A JP31956796A JPH10162959A JP H10162959 A JPH10162959 A JP H10162959A JP 8319567 A JP8319567 A JP 8319567A JP 31956796 A JP31956796 A JP 31956796A JP H10162959 A JPH10162959 A JP H10162959A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- layer
- electron injection
- transparent conductive
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
(57)【要約】
【課題】 低抵抗かつ高透明な陰極を有するとともに、
発光効率および耐久性(耐湿熱性)に優れ、透明発光素
子としても利用可能な有機エレクトロルミネッセンス素
子(EL素子)の提供。
【解決手段】 陽極と陰極との間に有機発光層を含む有
機層が介在してなる有機EL素子であって、前記陰極が
電子注入陰極層と非晶質透明導電膜とからなり、かつ前
記電子注入陰極層が前記有機層と接する構成を有する有
機EL素子を用いる。
(57) [Summary] [PROBLEMS] To have a cathode having low resistance and high transparency,
Provided is an organic electroluminescent element (EL element) which has excellent luminous efficiency and durability (moisture and heat resistance) and can be used as a transparent light emitting element. An organic EL device having an organic layer including an organic light emitting layer interposed between an anode and a cathode, wherein the cathode comprises an electron injection cathode layer and an amorphous transparent conductive film, and An organic EL device having a configuration in which an electron injection cathode layer is in contact with the organic layer is used.
Description
【0001】[0001]
【産業上の利用分野】本発明は、発光を素子の両側が取
り出すことができる、耐久性に優れた有機エレクトロル
ミネッセンス素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly durable organic electroluminescent device capable of extracting light emission from both sides of the device.
【0002】[0002]
【従来の技術】電界発光を利用したエレクトロルミネッ
センス素子(以下、EL素子と略記する。)は、自己発
光のため視認性が高く、かつ完全固体素子であるため、
耐衝撃性に優れるなどの特徴を有することから、各種表
示装置における発光素子としての利用が注目されてい
る。2. Description of the Related Art Electroluminescent devices utilizing electroluminescence (hereinafter abbreviated as EL devices) have high visibility due to self-luminescence and are completely solid devices.
Due to its characteristics such as excellent impact resistance, attention has been paid to its use as a light emitting element in various display devices.
【0003】EL素子には、発光材料として無機化合物
を用いる無機EL素子と、有機化合物を用いる有機EL
素子とがあり、このうち、有機EL素子は、印加電圧を
大幅に低くし得る小型化が容易であるため、次世代の表
示素子としてその実用化研究が積極的になされている。
有機EL素子の構成は、陽極/発光層/陰極の構成を基
本とし、ガラス板等を用いた基板上に、透明陽極を積層
する構成が通常採用されている。この場合、発光は基板
側に取り出される。[0003] An EL element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound.
Among them, organic EL elements are easy to be miniaturized so that the applied voltage can be significantly reduced. Therefore, research on practical use as a next-generation display element has been actively conducted.
The structure of the organic EL element is basically based on the structure of anode / light-emitting layer / cathode, and a structure in which a transparent anode is laminated on a substrate using a glass plate or the like is usually adopted. In this case, light emission is extracted to the substrate side.
【0004】ところで、近年以下の理由で、陰極を透明
にして発光を陰極側に取り出す試みがなされている。 (ア)陽極を透明とすれば、透明な発光素子ができる。 (イ)透明な発光素子の背景色として任意な色が採用で
き、発光時以外もカラフルなディスプレイとすることが
でき、装飾性が改良される。また、背景色として黒を採
用した場合には、発光時のコントラストが向上する。 (ウ)カラーフィルターや色変換層を用いる場合は、発
光素子の上にこれらを置くことができる。このため、こ
れらの層を考慮することなく素子を製造することができ
る。その利点として、例えば、陽極を形成させる際に基
板温度を高くすることができ、これにより陽極の抵抗値
を下げることができる。[0004] In recent years, attempts have been made to make the cathode transparent to extract light emission to the cathode side for the following reasons. (A) If the anode is transparent, a transparent light emitting element can be obtained. (A) An arbitrary color can be adopted as the background color of the transparent light emitting element, and a colorful display can be obtained even when light is not emitted, and the decorativeness is improved. When black is used as the background color, the contrast at the time of light emission is improved. (C) When a color filter or a color conversion layer is used, these can be placed on the light emitting element. Therefore, the device can be manufactured without considering these layers. As an advantage, for example, when forming the anode, the substrate temperature can be increased, thereby reducing the resistance value of the anode.
【0005】陰極を透明にすることにより、前記のよう
な利点が得られるため、透明陰極を用いた有機EL素子
を作成する試みがなされている。特開平8−18598
4号公報には、透明導電層よりなる第1の電極層と、超
薄膜の電子注入金属層及びその上に形成される透明導電
層よりなる第2の電極層を設けた、透明な有機EL素子
が開示されている。そして、これらの透明導電層を構成
する物質として、ITO(インジウムチンオキサイド)
やSnO2 が開示されている。しかし、これらはX線回
折ピークが消失する程度にまで結晶性をなくすることは
できず、本質的に結晶質である。このため、有機層を介
して基板に積層するに際して、有機層の損傷を防ぐため
に基板温度を室温〜100℃近くに設定して蒸着した場
合、比抵抗値が高い透明導電層が形成される(ITOで
は、1×10-3Ω・cm程度以上となる。)。そして、
そのような有機EL素子においては、透明導電層の配線
ラインで電圧降下が発生し、発光に不均一性が生じるた
め、比抵抗値を下げる改良が求められている。また、I
TOやSnO2 は、本質的に結晶質であるため、結晶粒
界より水分や酸素が侵入しやすい。このため、隣接して
積層される電子注入金属層が劣化をうけ易く、その結果
発光欠陥が生じたり、発光しなくなったりするなど、耐
久性が十分とはいえず、更なる改良が求められている。Since the above-mentioned advantages can be obtained by making the cathode transparent, attempts have been made to produce an organic EL device using a transparent cathode. JP-A-8-18598
Japanese Patent Application Laid-Open No. 4 (1999) -1992 discloses a transparent organic EL provided with a first electrode layer made of a transparent conductive layer, an ultrathin electron injection metal layer, and a second electrode layer made of a transparent conductive layer formed thereon. An element is disclosed. And, as a material constituting these transparent conductive layers, ITO (indium tin oxide) is used.
And SnO 2 are disclosed. However, they cannot lose crystallinity to the extent that the X-ray diffraction peak disappears, and are essentially crystalline. For this reason, when laminating on a substrate via an organic layer, when the substrate temperature is set at room temperature to near 100 ° C. in order to prevent damage to the organic layer, a transparent conductive layer having a high specific resistance is formed ( In the case of ITO, it is about 1 × 10 −3 Ω · cm or more.) And
In such an organic EL element, a voltage drop occurs in the wiring line of the transparent conductive layer, and non-uniformity occurs in light emission. Therefore, improvement in lowering the specific resistance value is required. Also, I
Since TO and SnO 2 are crystalline in nature, moisture and oxygen tend to penetrate through the crystal grain boundaries. For this reason, the electron-injection metal layer stacked adjacently is liable to be deteriorated, and as a result, a light-emitting defect occurs or the light-emission stops, and the durability is not sufficient, and further improvement is required. I have.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、上記
従来技術を解決し、低抵抗かつ高透明の陰極を有する有
機EL素子を提供することにある。本発明の目的は、ま
た、陰極を構成する透明導電膜から水分や酸素が侵入し
にくく、耐久性に優れる有機EL素子を提供することに
ある。SUMMARY OF THE INVENTION It is an object of the present invention to provide an organic EL device having a low-resistance and highly transparent cathode by solving the above-mentioned prior art. Another object of the present invention is to provide an organic EL element which is less likely to penetrate moisture and oxygen from a transparent conductive film constituting a cathode and has excellent durability.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、陰極を構成す
る透明導電膜として非晶質の透明導電膜を採用すること
により、上記の課題が解決されることを見出した。本発
明は、かかる知見に基づいて完成させたものである。Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, by adopting an amorphous transparent conductive film as a transparent conductive film constituting a cathode, It has been found that the above problem is solved. The present invention has been completed based on such findings.
【0008】すなわち、本発明の要旨は以下のとおりで
ある。 (1).陽極と陰極との間に有機発光層を含む有機層が
介在してなる有機エレクトロルミネッセンス素子であっ
て、前記陰極が電子注入電極層と非晶質透明導電膜とか
らなり、かつ前記電子注入電極層が前記有機層と接する
ことを特徴とする有機エレクトロルミネッセンス素子。 (2).電子注入電極層が、電子注入性の金属、合金お
よびアルカリ土類金属酸化物から選ばれる1種または2
種以上を用いて、超薄膜状に形成されていることを特徴
とする前記(1)記載の有機エレクトロルミネッセンス
素子。 (3).電子注入電極層が、電子注入性の金属、合金お
よびアルカリ土類金属酸化物から選ばれる1種または2
種以上と電子伝達性の有機物の混合層であることを特徴
とする前記(1)記載の有機エレクトロルミネッセンス
素子。 (4).電子注入電極層が、島状電子注入域からなるこ
とを特徴とする請求項1記載の有機エレクトロルミネッ
センス素子。 (5).非晶質透明導電膜が、インジウム(In)、亜
鉛(Zn)、酸素(O)からなる酸化物を用いて、形成
されていることを特徴とする前記(1)〜(4)のいず
れかに記載の有機エレクトロルミネッセンス素子。That is, the gist of the present invention is as follows. (1). An organic electroluminescence device in which an organic layer including an organic light emitting layer is interposed between an anode and a cathode, wherein the cathode comprises an electron injection electrode layer and an amorphous transparent conductive film, and the electron injection electrode An organic electroluminescent device, wherein a layer is in contact with the organic layer. (2). The electron injecting electrode layer is one or two selected from an electron injecting metal, an alloy, and an alkaline earth metal oxide;
The organic electroluminescent device according to the above (1), wherein the organic electroluminescent device is formed in an ultra-thin film shape using at least one kind. (3). The electron injecting electrode layer is one or two selected from an electron injecting metal, an alloy, and an alkaline earth metal oxide;
The organic electroluminescence device according to the above (1), wherein the organic electroluminescence device is a mixed layer of an organic material having electron conductivity and at least species. (4). 2. The organic electroluminescence device according to claim 1, wherein the electron injection electrode layer comprises an island-shaped electron injection region. (5). Any of (1) to (4), wherein the amorphous transparent conductive film is formed using an oxide made of indium (In), zinc (Zn), and oxygen (O). 3. The organic electroluminescent device according to 1.).
【0009】[0009]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の有機EL素子は、陽極と陰極との間に有機発光
層を含む有機層が介在しており、陰極は電子注入電極層
と非晶質透明導電膜とによって構成されており、しかも
電子注入電極層が有機層と接するという構成で成り立っ
ている。この構成は、例えば、図1により模式的に表す
ことができる。以下に、これらの構成について説明す
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the organic EL device of the present invention, an organic layer including an organic light emitting layer is interposed between an anode and a cathode, and the cathode is composed of an electron injection electrode layer and an amorphous transparent conductive film. It has a configuration in which the injection electrode layer is in contact with the organic layer. This configuration can be schematically represented by, for example, FIG. Hereinafter, these configurations will be described.
【0010】<非晶質透明導電膜>まず、本発明の有機
EL素子において陰極を構成する非晶質透明導電膜につ
いて説明する。本発明で用いる非晶質透明導電膜は、非
晶質であって透明性を有するものであればよいが、前記
したように、電圧降下とそれに起因する発光の不均一性
の排除のため、比抵抗値が5×10-4Ω・cm以下であ
ることが好ましい。<Amorphous Transparent Conductive Film> First, the amorphous transparent conductive film constituting the cathode in the organic EL device of the present invention will be described. The amorphous transparent conductive film used in the present invention is not particularly limited as long as it is amorphous and has transparency, but as described above, in order to eliminate non-uniformity of voltage drop and emission caused by the voltage drop, It is preferable that the specific resistance value is 5 × 10 −4 Ω · cm or less.
【0011】また、材質としては、In−Zn−O系の
酸化物膜が好ましい。ここで、In−Zn−O系の酸化
物膜とは、主要カチオン元素としてインジウム(In)
及び亜鉛(Zn)を含有する非晶質酸化物からなる透明
導電膜である。Inの原子比〔In/(In+Zn)〕
は0.45〜0.90が好ましい。それは、この範囲外
では導電性が低くなる可能性があるからである。Inの
原子比〔In/(In+Zn)〕は、導電性の点で0.
50〜0.90が特に好ましく、0.70〜0.85が
更に好ましい。The material is preferably an In-Zn-O-based oxide film. Here, an In—Zn—O-based oxide film refers to indium (In) as a main cation element.
And a transparent conductive film made of an amorphous oxide containing zinc (Zn). Atomic ratio of In [In / (In + Zn)]
Is preferably from 0.45 to 0.90. This is because the conductivity may be reduced outside this range. The atomic ratio [In / (In + Zn)] of In is 0.1 in terms of conductivity.
It is particularly preferably from 50 to 0.90, more preferably from 0.70 to 0.85.
【0012】上記非晶質酸化物は、主要カチオン元素と
して実質的にIn及びZnのみを含有するものであって
もよいし、その他に価数が正3価以上の1種以上の第3
元素を含有するものであってもよい。前記第3元素の具
体例としては、スズ(Sn)、アルミニウム(Al)、
アンチモン(Sb)、ガリウム(Ga)、ゲルマニウム
(Ge)、チタン(Ti)等があげられるが、導電性が
向上するという点でSnを含有するものが特に好まし
い。また、第3元素の含有量は、その総量の原子比
〔(全第3元素)/(In+Zn+(全第3元素)〕が
0.2以下となる量が好ましい。第3元素の総量の原子
比が0.2を超えると、イオンの散乱により導電性が低
くなる場合がある。第3元素の総量の特に好ましい原子
比は0.1以下である。なお、組成が同じであっても、
結晶化したものは非晶質のものより導電性に劣るので、
この点からも非晶質の透明導電膜を使用する必要があ
る。[0012] The amorphous oxide may contain substantially only In and Zn as main cation elements, or may contain one or more third cations having a valence of 3 or more.
It may contain an element. Specific examples of the third element include tin (Sn), aluminum (Al),
Antimony (Sb), gallium (Ga), germanium (Ge), titanium (Ti) and the like can be mentioned, but those containing Sn are particularly preferable in that conductivity is improved. Further, the content of the third element is preferably such that the atomic ratio of the total amount ((all third elements) / (In + Zn + (all third elements)) is 0.2 or less. If the ratio exceeds 0.2, the conductivity may decrease due to ion scattering, and a particularly preferable atomic ratio of the total amount of the third element is 0.1 or less.
Crystallized ones are less conductive than amorphous ones,
From this point, it is necessary to use an amorphous transparent conductive film.
【0013】上述の非晶質酸化物は、薄膜にすることで
透明導電膜として利用可能となる。このときの膜厚は、
概ね3〜3000nmとするのが好ましい。それは、3
nm未満では導電性が不十分となりやすく、3000n
mを超えると光透過性が低下したり、有機EL素子を製
造する過程や製造後において故意又は不可避的に有機E
L素子を変形させたときに透明導電膜にクラック等が生
じやすくなる。透明導電膜の特に好ましい膜厚は5〜1
000nmであり、更に好ましい膜厚は10〜800n
mである。The above-mentioned amorphous oxide can be used as a transparent conductive film by forming it into a thin film. The film thickness at this time is
Preferably, the thickness is approximately 3 to 3000 nm. It is 3
If the thickness is less than 300 nm, the conductivity tends to be insufficient, and
m, the light transmittance is reduced, or the organic E element is intentionally or inevitably produced during or after the production of the organic EL device.
When the L element is deformed, cracks and the like easily occur in the transparent conductive film. The particularly preferred thickness of the transparent conductive film is 5 to 1
000 nm, more preferably 10 to 800 n
m.
【0014】本発明の有機EL素子において、基板上に
陽極および有機層を介して陰極が形成される場合、電子
注入電極層の上に非晶質透明導電膜(酸化膜)が形成さ
れる。非晶質透明導電膜の形成手法としては、スパッタ
リング法の他、化学蒸着法、ゾルゲル法、イオンプレー
ティング法等を採用できるが、有機層への熱的な影響が
少ないことや簡便性の観点より、スパッタリング法が好
ましい。この場合、スパッタリング時に発生するプラズ
マにより有機層が損傷を受けないように注意する必要が
ある。また、有機層の耐熱性は低いので、基板の温度を
200℃以下とするのが好ましい。In the organic EL device of the present invention, when a cathode is formed on a substrate via an anode and an organic layer, an amorphous transparent conductive film (oxide film) is formed on the electron injection electrode layer. As a method for forming the amorphous transparent conductive film, in addition to the sputtering method, a chemical vapor deposition method, a sol-gel method, an ion plating method, or the like can be adopted, but from the viewpoint of less thermal influence on the organic layer and simplicity. More preferred is a sputtering method. In this case, care must be taken so that the organic layer is not damaged by plasma generated during sputtering. Further, since the heat resistance of the organic layer is low, the temperature of the substrate is preferably set to 200 ° C. or lower.
【0015】スパッタリングの方法は、RFあるいはD
Cマグネトロンスパッタリング等でも反応性スパッタリ
ングでもよく、使用するスパッタリングターゲットの組
成やスパッタリングの条件は、成膜しようとする透明導
電膜の組成等に応じて適宜選択される。RFあるいはD
Cマグネトロンスパッタリング等によりIn−Zn−O
系の透明導電膜を形成させる場合には、下記(i)〜
(ii)のスパッタリングターゲットを用いることが好ま
しい。The sputtering method is RF or D
C magnetron sputtering or reactive sputtering may be used, and the composition of the sputtering target to be used and sputtering conditions are appropriately selected according to the composition of the transparent conductive film to be formed. RF or D
In-Zn-O by C magnetron sputtering etc.
When forming a system transparent conductive film, the following (i) to
It is preferable to use the sputtering target of (ii).
【0016】(i)酸化インジウムと酸化亜鉛との組成
物からなる焼結体ターゲットで、インジウムの原子比が
所定のもの。ここで、「インジウムの原子比が所定のも
の」とは、最終的に得られる膜におけるInの原子比
〔In/(In+Zn)〕が0.45〜0.90の範囲
内の所望値となるものを意味するが、焼結体ターゲット
における原子比が概ね0.50〜0.90のものであ
る。この焼結体ターゲットは、酸化インジウムと酸化亜
鉛との混合物からなる焼結体であってもよいし、In2
O3 (ZnO)m(m=2〜20)で表される六方晶層
状化合物の1種以上から実質的になる焼結体であっても
よいし、In2 O3 (ZnO)m(m=2〜20)で表
される六方晶層状化合物の1種以上とIn2 O3 及び/
又はZnOとから実質的になる焼結体であってもよい。
なお、六方晶層状化合物を表す前記式においてmを2〜
20に限定する理由は、mが前記範囲外では六方晶層状
化合物とならないからである。(I) A sintered target made of a composition of indium oxide and zinc oxide having a predetermined indium atomic ratio. Here, “the atomic ratio of indium is predetermined” means that the atomic ratio of In in the finally obtained film [In / (In + Zn)] is a desired value in the range of 0.45 to 0.90. It means that the atomic ratio in the sintered target is approximately 0.50 to 0.90. The sintered target may be a sintered body comprising a mixture of indium oxide and zinc oxide, an In 2
It may be a sintered body consisting essentially of one or more hexagonal layered compounds represented by O 3 (ZnO) m (m = 2 to 20), or In 2 O 3 (ZnO) m (m = 2 to 20) and at least one of the hexagonal layered compounds represented by In 2 O 3 and / or
Alternatively, it may be a sintered body substantially composed of ZnO.
In the above formula representing a hexagonal layered compound, m is 2 to
The reason for limiting to 20 is that if m is outside the above range, the compound will not be a hexagonal layered compound.
【0017】(ii)酸化物系ディスクと、このディスク
上に配置した1種以上の酸化物系タブレットとからなる
スパッタリングターゲット。酸化物系ディスクは、酸化
インジウム又は酸化亜鉛から実質的になるものであって
もよいし、In2 O3 (ZnO)m(m=2〜20)で
表される六方晶層状化合物の1種以上から実質的になる
焼結体であってもよいし、In2 O3 (ZnO)m(m
=2〜20)で表される六方晶層状化合物の1種以上と
In2 O3 及び/又はZnOとから実質的になる焼結体
であってもよい。また、酸化物系タブレットとしては、
上記酸化物系ディスクと同様のものを使用することがで
きる。酸化物系ディスク及び酸化物系タブレットの組成
並びに使用割合は、最終的に得られる膜におけるInの
原子比〔In/(In+Zn)〕が0.45〜0.80
の範囲内の所望値となるように適宜決定される。(Ii) A sputtering target comprising an oxide-based disk and one or more oxide-based tablets disposed on the disk. The oxide-based disk may be substantially composed of indium oxide or zinc oxide, or one of hexagonal layered compounds represented by In 2 O 3 (ZnO) m (m = 2 to 20). From the above, a sintered body substantially consisting of In 2 O 3 (ZnO) m (m
= 2 to 20), and may be a sintered body substantially composed of one or more of the hexagonal layered compounds represented by In 2 O 3 and / or ZnO. In addition, as an oxide tablet,
The same oxide disk as above can be used. The composition and use ratio of the oxide disk and the oxide tablet are such that the atomic ratio of In [In / (In + Zn)] in the finally obtained film is 0.45 to 0.80.
Is appropriately determined so as to be a desired value within the range of.
【0018】前記(i)〜(ii)のいずれのスパッタリ
ングターゲットもその純度は98%以上であることが好
ましい。98%未満では、不純物の存在により、得られ
る膜の耐湿熱性(耐久性)が低下したり、導電性が低下
したり、光透過性が低下したりすることがある。より好
ましい純度は99%以上であり、更に好ましい純度は9
9.9%以上である。Preferably, the sputtering target of any of the above (i) to (ii) has a purity of 98% or more. If the content is less than 98%, the moisture-heat resistance (durability) of the obtained film may be reduced, the conductivity may be reduced, or the light transmittance may be reduced due to the presence of impurities. A more preferred purity is 99% or more, and an even more preferred purity is 9%.
9.9% or more.
【0019】また、焼結体ターゲットを用いる場合、こ
のターゲットの相対密度は70%以上とすることが好ま
しい。相対密度が70%未満では、成膜速度の低下や膜
質の低下をまねき易い。より好ましい相対密度は85%
以上であり、更に好ましくは90%以上である。When a sintered target is used, the relative density of the target is preferably 70% or more. If the relative density is less than 70%, it tends to cause a decrease in the film forming rate and a decrease in the film quality. More preferred relative density is 85%
And more preferably 90% or more.
【0020】ダイレクトスパッタリング法により透明導
電膜を設ける場合のスパッタリング条件は、ダイレクト
スパッタリングの方法やスパッタリングターゲットの組
成、用いる装置の特性等により種々変わってくるために
一概に規定することは困難であるが、DCダイレクトス
パッタリング法による場合には例えば下記のように設定
することが好ましい。Although the sputtering conditions for providing a transparent conductive film by the direct sputtering method vary depending on the method of the direct sputtering, the composition of the sputtering target, the characteristics of the apparatus to be used, and the like, it is difficult to unconditionally define the sputtering conditions. In the case of the DC direct sputtering method, for example, it is preferable to set as follows.
【0021】スパッタリング時の真空度およびターゲッ
ト印加電圧は以下のように設定することが好ましい。ス
パッタリング時の真空度は1.3×10-2〜6.7×1
00Pa程度、より好ましくは1.7×10-2〜1.3
×100 Pa程度、更に好ましくは4.0×10-2〜
6.7×10-1Pa程度とする。また、ターゲットの印
加電圧は200〜500Vが好ましい。スパッタリング
時の真空度が1.3×10-2Pa満たない(1.3×1
0-2Paよりも圧力が低い)とプラズマの安定性が悪
く、6.7×100 Paよりも高い(6.7×100 P
aよりも圧力が高い)とスパッタリングターゲットへの
印加電圧を高くすることができなくなる。また、ターゲ
ット印加電圧が200V未満では、良質の薄膜を得るの
が困難になったり、成膜速度が制限されることがある。The degree of vacuum and the voltage applied to the target during sputtering are preferably set as follows. The degree of vacuum during sputtering is 1.3 × 10 -2 to 6.7 × 1
0 0 Pa, more preferably about 1.7 × 10 -2 ~ 1.3,
About × 10 0 Pa, more preferably 4.0 × 10 −2 or more.
It is set to about 6.7 × 10 −1 Pa. Further, the applied voltage of the target is preferably 200 to 500 V. The degree of vacuum during sputtering is less than 1.3 × 10 -2 Pa (1.3 × 1
When the pressure is lower than 0 -2 Pa), the stability of the plasma is poor, and is higher than 6.7 × 10 0 Pa (6.7 × 10 0 P).
If the pressure is higher than a), the voltage applied to the sputtering target cannot be increased. If the target applied voltage is less than 200 V, it may be difficult to obtain a good-quality thin film, or the deposition rate may be limited.
【0022】雰囲気ガスとしては、アルゴンガス等の不
活性ガスと酸素ガスとの混合ガスが好ましい。不活性ガ
スとしてアルゴンガスを用いるばあい、このアルゴンガ
スと酸素ガスとの混合比(体積比)は概ね1:1〜9
9.99:0.01、好ましくは9:1〜99.9:
0.1とする。この範囲を外れると、低抵抗かつ光線透
過率の高い膜が得られない場合がある。As the atmosphere gas, a mixed gas of an inert gas such as an argon gas and an oxygen gas is preferable. When argon gas is used as the inert gas, the mixing ratio (volume ratio) of the argon gas and the oxygen gas is generally 1: 1 to 9
9.99: 0.01, preferably 9: 1 to 99.9:
0.1. Outside this range, a film having low resistance and high light transmittance may not be obtained.
【0023】基板温度は、有機層の耐熱性に応じて、当
該有機層が熱により変形や変質を起こさない温度の範囲
内で適宜選択される。基板温度が室温未満では冷却用の
機器が別途必要になるため、製造コストが上昇する。ま
た、基板温度を高温に加熱するにしたがって、製造コス
トが上昇する。このため、室温〜200℃とするのが好
ましい。The substrate temperature is appropriately selected according to the heat resistance of the organic layer within a temperature range at which the organic layer does not deform or deteriorate due to heat. If the substrate temperature is lower than room temperature, a separate cooling device is required, which increases the manufacturing cost. Further, as the substrate temperature is increased to a higher temperature, the manufacturing cost increases. For this reason, the temperature is preferably from room temperature to 200 ° C.
【0024】前記した(i)〜(ii)等のスパッタリン
グターゲットを用いて上述したような条件でダイレクト
スパッタリングを行うことにより、目的とする透明導電
膜を有機層上に設けることができる。The target transparent conductive film can be provided on the organic layer by performing direct sputtering under the conditions described above using the sputtering targets (i) to (ii) described above.
【0025】<電子注入電極層>次に、電子注入電極層
について説明する。電子注入電極層とは、発光層を含む
有機層に良好に電子注入ができる電極の層であり、透明
発光素子を得るためには、光線透過率が50%以上であ
ることが好ましく、このためには膜厚を0.5〜20n
m程度の超薄膜とすることが望ましい。<Electron Injection Electrode Layer> Next, the electron injection electrode layer will be described. The electron injection electrode layer is a layer of an electrode that can satisfactorily inject electrons into the organic layer including the light emitting layer. In order to obtain a transparent light emitting device, the light transmittance is preferably 50% or more. 0.5 to 20n
It is desirable to have an ultrathin film of about m.
【0026】電子注入電極層としては、例えば、仕事関
数3.8eV以下の金属(電子注入性の金属)、例え
ば、Mg,Ca,Ba,Sr,Li,Yb,Eu,Y,
Scなどを用いて膜厚を1nm〜20nmとした層を挙
げることができる。この場合において、50%以上、特
に60%以上の光線透過率を与える構成が好ましい。As the electron injecting electrode layer, for example, a metal having a work function of 3.8 eV or less (electron injecting metal), for example, Mg, Ca, Ba, Sr, Li, Yb, Eu, Y,
A layer having a thickness of 1 nm to 20 nm using Sc or the like can be given. In this case, a configuration that provides a light transmittance of 50% or more, particularly 60% or more, is preferable.
【0027】他の好ましい例としては、前記の仕事関数
3.8eV以下の金属(複数種でもよい。)と仕事関数
4.0eV以上の金属との合金(電子注入性の合金)を
用いた電子注入電極層を挙げることができる。このよう
な合金としては、電子注入電極層の形成が可能な合金で
あれば足りるが、例えば、アルミニウム−リチウム合
金、マグネシウム−アルミニウム合金、インジウム−リ
チウム合金、鉛−リチウム合金、ビスマス−リチウム合
金、スズ−リチウム合金、アルミニウム−カルシウム合
金、アルミニウム−バリウム合金、アルミニウム−スカ
ンジウム合金を挙げることができる。この場合において
も、膜厚を1nm〜20nmとすることが好ましく、5
0%以上、特に60%以上の光線透過率を与える層とす
ることが好ましい。Another preferred example is an electron using an alloy (an electron-injecting alloy) of the metal having a work function of 3.8 eV or less (a plurality of kinds may be used) and the metal having a work function of 4.0 eV or more. An injection electrode layer can be mentioned. As such an alloy, any alloy capable of forming an electron injection electrode layer is sufficient. For example, aluminum-lithium alloy, magnesium-aluminum alloy, indium-lithium alloy, lead-lithium alloy, bismuth-lithium alloy, Examples include a tin-lithium alloy, an aluminum-calcium alloy, an aluminum-barium alloy, and an aluminum-scandium alloy. Also in this case, it is preferable that the film thickness be 1 nm to 20 nm,
It is preferable that the layer provides a light transmittance of 0% or more, particularly 60% or more.
【0028】前記の金属または合金を用いて電子注入電
極層を形成させる場合、好適には抵抗加熱蒸着法を用い
る。この場合、基板温度を10〜100℃の間で設定
し、蒸着速度を0.05〜20nm/秒の間に設定する
のが好ましい。また、特に合金を蒸着する場合には、2
元蒸着法を用い、2種の金属の蒸着速度を個別に設定し
て蒸着するすることができる。この場合、Li,Ba,
Ca,Sc,Mgなどの蒸着速度を0.01〜0.1n
m/秒の間に設定し、Al等の母体金属の蒸着速度を1
〜10nm/秒の間に設定して同時に蒸着するという手
法が採用できる。また、合金を蒸着する場合に、1元蒸
着法を用いることもできる。この場合、予め所望の割合
で電子注入性の金属を母体金属に仕込んだ蒸着ペレット
または粒状体を抵抗加熱ボートやフィラメントに設置
し、加熱蒸着する。When the electron injection electrode layer is formed using the above metal or alloy, a resistance heating evaporation method is preferably used. In this case, it is preferable to set the substrate temperature between 10 and 100 ° C. and set the deposition rate between 0.05 and 20 nm / sec. In particular, when an alloy is deposited, 2
By using the original deposition method, deposition can be performed by individually setting the deposition rates of the two metals. In this case, Li, Ba,
The deposition rate of Ca, Sc, Mg, etc. is set to 0.01 to 0.1 n.
m / sec and the deposition rate of a base metal such as Al is 1
It is possible to adopt a method of setting the speed between 10 nm / sec and 10 nm / sec and performing simultaneous vapor deposition. In the case of depositing an alloy, a one-source deposition method can be used. In this case, a vapor-deposited pellet or granular material in which a metal having an electron-injecting property is previously charged into a base metal at a desired ratio is placed on a resistance heating boat or a filament, and heated and vapor-deposited.
【0029】更に別の好ましい形態としては、薄膜状の
電子注入性のアルカリ土類金属酸化物であって、膜厚が
0.1nm〜10nmの超薄膜を挙げることができる。
前記アルカリ土類金属酸化物としては、例えば、Ba
O,SrO,CuO及びこれらを混合した、Bax Sr
1-x O(0<x<1)やBax Ca1-x O(0<x<
1)を好ましくものとして挙げることができる。As still another preferred embodiment, an ultra-thin film of an alkaline earth metal oxide having an electron injecting property having a film thickness of 0.1 nm to 10 nm can be mentioned.
Examples of the alkaline earth metal oxide include Ba
Ba x Sr containing O, SrO, CuO and a mixture thereof
1-x O (0 <x <1) or Ba x Ca 1-x O (0 <x <
1) can be mentioned as preferred.
【0030】アルカリ土類金属酸化物層の形成手法とし
ては、抵抗加熱蒸着法によりアルカリ土類金属を蒸着し
ながら、真空槽内に酸素を導入して真空度を10-3〜1
0-4Paとし、酸素とアルカリ土類を反応させながら蒸
着させる方法が好ましい。また、アルカリ土類金属酸化
物を電子ビーム蒸着法により製膜する方法を採用するこ
ともできる。As a method of forming the alkaline earth metal oxide layer, oxygen is introduced into the vacuum chamber while the alkaline earth metal is deposited by the resistance heating evaporation method to reduce the degree of vacuum to 10 -3 to 1.
A method in which the pressure is set to 0 -4 Pa and vapor deposition is performed while reacting oxygen and alkaline earths is preferable. Further, a method of forming a film of an alkaline earth metal oxide by an electron beam evaporation method can also be employed.
【0031】なお、これまで説明した、電子注入性の金
属、合金、アルカリ土類金属酸化物については、1種の
みでなく2種以上を用いて電子注入電極層を形成するこ
ともできる。The electron injecting electrode layer can be formed by using not only one kind but also two or more kinds of the metal, alloy and alkaline earth metal oxide described above.
【0032】更に他の好ましい例として、電子注入電極
層は、電子注入性の金属、合金あるいはアルカリ土類金
属酸化物と電子伝達性の化合物との混合層であってもよ
い。As still another preferred example, the electron injecting electrode layer may be an electron injecting metal, alloy or a mixed layer of an alkaline earth metal oxide and an electron transporting compound.
【0033】電子注入性の金属、合金、アルカリ土類金
属酸化物としては、前記した金属、合金、アルカリ土類
金属酸化物を挙げることができる。また、これらは、1
種のみでなく2種以上を用いることもできる。一方、電
子伝達性の化合物は、電子を伝達する化合物であればよ
く、好ましい化合物として、キレート化オキシノイド化
合物を挙げることができ、更に好適な化合物として下式
で表されるものが挙げられる。The metals, alloys and alkaline earth metal oxides having electron injecting properties include the above-mentioned metals, alloys and alkaline earth metal oxides. These are 1
Not only species but also two or more species can be used. On the other hand, the electron-transporting compound may be any compound that transmits electrons, and preferred compounds include chelated oxinoid compounds, and more preferred compounds include those represented by the following formula.
【0034】[0034]
【化1】 Embedded image
【0035】(式中、Meは金属を表し、nは1〜3の
整数である。Zは独立にそれぞれの場合において少なく
とも2個の縮合芳香族環を持つ核を完成する原子を示
す。) 式中の金属としては、キレート形成能のある1〜3価金
属であればよく、例えば、リチウム、ナトリウム、カリ
ウムのようなアルカリ金属、マグネシウムやカルシウム
のようなアルカリ土類金属、あるいはホウ素やアルミニ
ウムのような3価金属を挙げることができる。また、Z
は少なくとも2個の縮合芳香族環を持つ複素環状核を完
成する原子を表す。Zが完成する複素環状核としては、
例えば、アゾール環やアジン環を挙げることができる。Wherein Me represents a metal, n is an integer from 1 to 3, and Z independently represents in each case an atom which completes a nucleus having at least two fused aromatic rings. The metal in the formula may be a metal having a valence of 1 to 3 having chelating ability, for example, an alkali metal such as lithium, sodium or potassium, an alkaline earth metal such as magnesium or calcium, or boron or aluminum. And the like. Also, Z
Represents an atom completing a heterocyclic nucleus having at least two fused aromatic rings. As a heterocyclic nucleus where Z is completed,
For example, an azole ring and an azine ring can be mentioned.
【0036】前記有用なキレート化オキシノイド化合物
としては、アルミニウムトリスオキシン、マグネシウム
ビスオキシン、ビス〔ベンゾ(f)−8−キノリノー
ル〕亜鉛、ビス(2−メチル−8−キノリノラート)ア
ルミニウムオキサイド、インジウムトリスオキシン、ア
ルミニウムトリス(5−メチルオキシン)、リチウムオ
キシン、ガリウムトリスオキシン、カルシウムビス(5
−クロロオキシン)、ポリ〔亜鉛(II)−ビス(8−
ヒドロキシ−5−キノリノニル)メタン〕、ジリチウム
エピンドリジオン等が挙げられる。The useful chelated oxinoid compounds include aluminum trisoxine, magnesium bisoxin, bis [benzo (f) -8-quinolinol] zinc, bis (2-methyl-8-quinolinolate) aluminum oxide, indium trisoxine , Aluminum tris (5-methyloxin), lithium oxine, gallium trisoxin, calcium bis (5
-Chlorooxin), poly [zinc (II) -bis (8-
Hydroxy-5-quinolinonyl) methane], dilithium epindridione and the like.
【0037】また、電子注入性の金属、合金、アルカリ
土類金属酸化物と電子伝達性の化合物との混合比(重量
比)は、100:1〜1:2とすることが好ましい。電
子注入性の金属、合金と電子伝達性の化合物との混合層
は、2元同時蒸着法により形成するのが好ましい。基板
温度は、10〜100℃の間で設定すればよい。The mixing ratio (weight ratio) between the electron-injecting metal, alloy, or alkaline earth metal oxide and the electron-transporting compound is preferably 100: 1 to 1: 2. The mixed layer of the electron-injecting metal or alloy and the electron-transporting compound is preferably formed by a binary simultaneous evaporation method. The substrate temperature may be set between 10 and 100 ° C.
【0038】更に他の好ましい例として、電子注入電極
層が島状の電子注入域である構成を挙げることができ
る。ここで、島状とは、例えば図2に示すように、不連
続に電子注入性化合物層が形成されていて、この層は有
機層の表面を覆いつくすことがないことを意味する。島
状電子注入域は、例えば仕事関数3.8eV以下の低仕
事関数の金属、酸化物、ホウ化金属、窒化金属、ケイ化
金属などを島状に不連続に形成させたものであり、その
形状及び大きさについては特に制限はないが、微粒子状
または結晶状であって、大きさが0.5nm〜5μm程
度のものが好ましい。As still another preferred example, there can be mentioned a configuration in which the electron injection electrode layer is an island-shaped electron injection region. Here, the island shape means that an electron injecting compound layer is formed discontinuously as shown in FIG. 2, for example, and this layer does not cover the surface of the organic layer. The island-shaped electron injection region is formed by, for example, discontinuously forming a metal, an oxide, a metal boride, a metal nitride, a metal silicide, or the like having a low work function of 3.8 eV or less as islands. The shape and size are not particularly limited, but are preferably in the form of fine particles or crystals having a size of about 0.5 nm to 5 μm.
【0039】また、この電子注入域は、薄膜状を指すも
のでも、孤立原子分散の状態を示すものでもない。上記
の低仕事関数の金属又は化合物が、粒子状の形態で導電
性薄膜上又は有機化合物層内に分散されている状態を指
す。このような分散により、有機化合物層と接触してい
る面積が大きくなり、電子注入性が高まる。Further, this electron injection region does not indicate a thin film shape, nor does it indicate a state of isolated atom dispersion. This refers to a state in which the metal or compound having a low work function is dispersed in the form of particles on the conductive thin film or in the organic compound layer. Due to such dispersion, the area in contact with the organic compound layer increases, and the electron injecting property increases.
【0040】上記島状電子注入域を構成する低仕事関数
の金属及び合金としては、仕事関数3.8eV以下のも
のが好ましく、例えば、前記した金属及び合金を挙げる
ことができる。また、低仕事関数の酸化物としては、ア
ルカリ金属又はアルカリ土類金属の酸化物が好ましく、
特にCaO,BaO,SrOなどが好適であり、また、
これらと他の金属酸化物との固溶体も好ましく挙げるこ
とができる。更に、低仕事関数のホウ化金属や窒化金属
としては、例えば希土類のホウ化物、希土類のケイ化物
あるいはTiNなどが好ましく挙げられる。The low work function metal and alloy constituting the island-shaped electron injection region preferably have a work function of 3.8 eV or less, and include, for example, the above-mentioned metals and alloys. Further, as the oxide having a low work function, an oxide of an alkali metal or an alkaline earth metal is preferable,
Particularly, CaO, BaO, SrO and the like are preferable.
Solid solutions of these with other metal oxides are also preferred. Further, as the low work function metal boride or metal nitride, for example, a rare earth boride, a rare earth silicide, or TiN is preferably exemplified.
【0041】島状電子注入域の形成方法としては、抵抗
加熱蒸着法や電子ビーム蒸着法を採用することができ
る。後者の場合、高融点のホウ化金属、窒化金属または
酸化物を電子ビーム蒸着により島状に不連続に形成させ
る。As a method of forming the island-shaped electron injection region, a resistance heating evaporation method or an electron beam evaporation method can be employed. In the latter case, a high melting point metal boride, metal nitride or oxide is discontinuously formed in an island shape by electron beam evaporation.
【0042】本発明の有機EL素子においては、陰極が
電子注入電極層と非晶質透明導電膜とで構成されている
ため、劣化し易い電子注入電極層が非晶質透明導電膜で
保護されることとなり、電子注入電極層を薄くすること
ができ、結果として、透明陰極を作成できるという利点
を有する。In the organic EL device of the present invention, since the cathode is composed of the electron injection electrode layer and the amorphous transparent conductive film, the easily deteriorated electron injection electrode layer is protected by the amorphous transparent conductive film. As a result, the thickness of the electron injection electrode layer can be reduced, and as a result, a transparent cathode can be formed.
【0043】また、電子注入電極層が有機層と接するこ
とで、電子が有機層に注入される。これにより、陽極側
からの正孔の注入と相まってEL素子が形成される。本
発明の有機EL素子においては、通常、基板上に陽極を
積層しその上に有機層を積層する構成を採用するが、こ
の場合、有機発光層を含む有機層の上に電子注入電極層
を形成する。形成方法は、前記のとおりであるが、他の
好ましい方法としてスパッタリング法があるが。この手
法を用いるに際しては、プラズマにより有機層が損傷を
受けないように注意する必要がある。When the electron injection electrode layer comes into contact with the organic layer, electrons are injected into the organic layer. Thereby, an EL element is formed in combination with the injection of holes from the anode side. In the organic EL device of the present invention, a structure is usually adopted in which an anode is laminated on a substrate and an organic layer is laminated thereon. In this case, an electron injection electrode layer is formed on the organic layer including the organic light emitting layer. Form. Although the formation method is as described above, another preferable method is a sputtering method. In using this technique, care must be taken that the organic layer is not damaged by the plasma.
【0044】<有機層>本発明の有機EL素子におい
て、陽極と陰極との間に介在する有機層は、少なくとも
発光層を含む。有機層は、発光層のみからなる層であっ
てもよく、また、発光層とともに、正孔注入輸送層など
を積層した多層構造のものであってもよいよい。<Organic Layer> In the organic EL device of the present invention, the organic layer interposed between the anode and the cathode includes at least a light emitting layer. The organic layer may be a layer composed of only a light emitting layer, or may have a multilayer structure in which a hole injection transport layer and the like are stacked together with the light emitting layer.
【0045】この有機EL素子において、発光層は
(1)電界印加時に、陽極又は正孔輸送層により正孔を
注入することができ、かつ電子注入層より電子を注入す
ることができる機能、(2)注入した電荷(電子と正
孔)を電界の力で移動させる輸送機能、(3)電子と正
孔の再結合の場を発光層内部に提供し、これを発光につ
なげる発光機能などを有している。この発光層に用いら
れる発光材料の種類については特に制限はなく、従来有
機EL素子における公知のものを用いることができる。In this organic EL device, the light emitting layer has the following functions: (1) a function of injecting holes by an anode or a hole transport layer and applying an electron from an electron injecting layer when an electric field is applied; 2) a transport function of moving the injected charges (electrons and holes) by the force of an electric field; and (3) a light-emitting function of providing a field for recombination of electrons and holes inside the light-emitting layer and connecting it to light emission. Have. There is no particular limitation on the type of light emitting material used for the light emitting layer, and a known material for an organic EL element can be used.
【0046】また、正孔注入輸送層は、正孔伝達化合物
からなる層であって、陽極より注入された正孔を発光層
に伝達する機能を有し、この正孔注入輸送層を陽極と発
光層との間に介在させることにより、より低い電界で多
くの正孔が発光層に注入される。その上、電子注入層よ
り発光層に注入された電子は、発光層と正孔注入輸送層
の界面に存在する電子の障壁により、この発光層内の界
面近くに蓄積されたEL素子の発光効率を向上させ、発
光性能の優れたEL素子とする。この正孔注入輸送層に
用いられる正孔伝達化合物については特に制限はなく、
従来有機EL素子における正孔伝達化合物として公知の
ものを使用することができる。正孔注入輸送層は、単層
のみでなく多層とすることもできる。The hole injecting and transporting layer is a layer made of a hole transporting compound and has a function of transmitting holes injected from the anode to the light emitting layer. By interposing between the light emitting layer and the light emitting layer, many holes are injected into the light emitting layer at a lower electric field. In addition, the electrons injected from the electron injection layer into the light emitting layer cause the luminous efficiency of the EL element accumulated near the interface in the light emitting layer due to the electron barrier existing at the interface between the light emitting layer and the hole injection transport layer. And an EL device having excellent light emitting performance. There is no particular limitation on the hole transport compound used in the hole injection transport layer,
Conventionally known compounds can be used as hole transport compounds in organic EL devices. The hole injecting and transporting layer can be not only a single layer but also a multilayer.
【0047】<陽極>陽極は、仕事関数が4.8eV以
上の導電性を示すものであれば特に制限はない。仕事関
数が4.8eV以上の金属又は透明導電膜(導電性酸化
物膜)又はこれらを組み合わせたものが好ましい。陽極
は、必ずしも透明である必要はなく、黒色のカーボン層
等をコーティングしてもよい。<Anode> The anode is not particularly limited as long as it has a work function of 4.8 eV or more. A metal having a work function of 4.8 eV or more, a transparent conductive film (conductive oxide film), or a combination thereof is preferable. The anode is not necessarily required to be transparent, and may be coated with a black carbon layer or the like.
【0048】好適な金属としては、例えば、Au,P
t,Ni,Pdを挙げることができ、導電性酸化物とし
ては、例えば、In−Zn−O,In−Sn−O,Zn
O−Al,Zn−Sn−Oを挙げることができる。ま
た、積層体としては、例えば、AuとIn−Zn−Oの
積層体、PtとIn−Zn−Oの積層体、In−Sn−
OとPtの積層体を挙げることができる。Suitable metals include, for example, Au, P
t, Ni, and Pd. Examples of the conductive oxide include In-Zn-O, In-Sn-O, and Zn.
O-Al and Zn-Sn-O can be mentioned. Examples of the laminate include a laminate of Au and In—Zn—O, a laminate of Pt and In—Zn—O, and an In—Sn—
A laminate of O and Pt can be given.
【0049】また、陽極は、有機層との界面が仕事関数
4.8eV以上であればよいため、陽極を2層とし、有
機層と接しない側に仕事関数4.8eV以下の導電性膜
を用いてもよい。この場合、Al,Ta,W等の金属や
Al合金、Ta−W合金等の合金等を用いることができ
る。また、ドープされたポリアニリンやドープされたポ
リフェニレンビニレン等のドープされた導電性高分子
や、α−Si,α−SiC、α−Cなどの非晶質半導
体、μC−Si,μC−SiC等の微結晶なども好まし
く用いることができる。更には、黒色の半導性の酸化物
であるCr2 O3 ,Pr2 O5 ,NiO,Mn2 O5 ,
MnO2 等を用いることができる。Since the anode only needs to have a work function of 4.8 eV or more at the interface with the organic layer, the anode has two layers and a conductive film having a work function of 4.8 eV or less is provided on the side not in contact with the organic layer. May be used. In this case, a metal such as Al, Ta, W, or the like, an Al alloy, an alloy such as a Ta-W alloy, or the like can be used. Also, a doped conductive polymer such as doped polyaniline or doped polyphenylenevinylene, an amorphous semiconductor such as α-Si, α-SiC, α-C, μC-Si, μC-SiC, etc. Microcrystals and the like can also be preferably used. Furthermore, black semiconductive oxides such as Cr 2 O 3 , Pr 2 O 5 , NiO, Mn 2 O 5 ,
MnO 2 or the like can be used.
【0050】陽極の膜厚は、50〜300nm程度とす
ることが好ましい。膜厚が50nm未満では、抵抗値が
高くなり過ぎる場合がある。一方、300nmを超える
と、有機EL素子において、陽極がパターンされている
端で生じる段差により上部の膜、例えば有機層や陰極が
段差切れや断線を起こす場合がある。The thickness of the anode is preferably about 50 to 300 nm. If the film thickness is less than 50 nm, the resistance value may be too high. On the other hand, when the thickness exceeds 300 nm, in an organic EL element, a step formed at an end where an anode is patterned may cause an upper film, for example, an organic layer or a cathode to be disconnected or disconnected.
【0051】<有機EL素子の構成>本発明の有機EL
素子は、陽極と陰極との間に有機発光層を含む有機層が
介在しており、陰極は電子注入電極層と非晶質透明導電
膜とによって構成されており、しかも電子注入電極層が
有機層と接するという構成を具備していれば、本発明の
目的を達成することができるが、更に他の構成を付加し
て、種々の機能を持たせることができる。以下に本発明
の有機EL素子を利用した構成を例示する。<Structure of Organic EL Element> Organic EL Element of the Present Invention
In the device, an organic layer including an organic light emitting layer is interposed between an anode and a cathode, and the cathode is composed of an electron injection electrode layer and an amorphous transparent conductive film. The object of the present invention can be achieved by providing a structure in contact with a layer, but various functions can be provided by further adding another structure. Hereinafter, a configuration using the organic EL device of the present invention will be exemplified.
【0052】 透明陽極/有機層/電子注入電極層/
非晶質透明電極 陽極/有機層/電子注入電極層/非晶質透明電極/
カラーフィルター 陽極/有機層/電子注入電極層/非晶質透明電極/
色変換層 透明陽極/有機層/電子注入電極層/非晶質透明電
極/黒色光吸収層 透明陽極/有機層/電子注入電極層/非晶質透明電
極/背景色形成層 黒色光吸収層/透明陽極/有機層/電子注入電極層
/非晶質透明電極 背景色形成層/透明陽極/有機層/電子注入電極層
/非晶質透明電極 前記の構成の場合、両方の電極が透明なので、透明表
示素子が形成される。Transparent anode / organic layer / electron injection electrode layer /
Amorphous transparent electrode Anode / organic layer / electron injection electrode layer / amorphous transparent electrode /
Color filter anode / organic layer / electron injection electrode layer / amorphous transparent electrode /
Color conversion layer Transparent anode / organic layer / electron injection electrode layer / amorphous transparent electrode / black light absorbing layer Transparent anode / organic layer / electron injection electrode layer / amorphous transparent electrode / background color forming layer black light absorbing layer / Transparent anode / organic layer / electron injection electrode layer / amorphous transparent electrode Background color forming layer / transparent anode / organic layer / electron injection electrode layer / amorphous transparent electrode In the above configuration, both electrodes are transparent, A transparent display element is formed.
【0053】やの構成の場合、陽極を支持基板上に
形成し、支持基板とは逆方向に発光の取り出しができる
ので、カラーフィルターや色変換層上に陽極を形成する
必要がない。従って、陽極を形成する際に基板温度が1
50℃以上となるようなプロセスを採用することがで
き、陽極の抵抗値を下げる上で大きなメリットがある。
また、カラーフィルターや色変換層は陽極形成後に形成
されるため、高温プロセスの採用による劣化を心配する
必要がない。図3に、の構成を例示する。なお、ここ
で、色変換層としては、蛍光性色素を含有する透明性ポ
リマーからなり、EL発光色を蛍光により別の色に変換
するものであることが好ましい。In the case of the above structure, the anode is formed on the support substrate, and light can be extracted in the direction opposite to the support substrate. Therefore, it is not necessary to form the anode on the color filter or the color conversion layer. Therefore, when forming the anode, the substrate temperature is 1
It is possible to adopt a process in which the temperature is 50 ° C. or higher, and there is a great merit in lowering the resistance value of the anode.
Further, since the color filter and the color conversion layer are formed after the formation of the anode, there is no need to worry about deterioration due to the adoption of the high temperature process. FIG. 3 illustrates an example of the configuration. Here, it is preferable that the color conversion layer is made of a transparent polymer containing a fluorescent dye, and converts the EL emission color to another color by fluorescence.
【0054】また、やの構成で、多くの画素を構成
させた態様においては、基板上に陽極以外の補助配線や
TFT(Thin Film Transister)が形成されるため、基
板方向に光を取り出すと、補助配線やTFTが光を遮断
し、光取り出しの開口率が落ち、結果としてディスプレ
イの輝度が小さくなり、画質が落ちるという欠点があ
る。本発明を用いれば基板とは逆の方向に光の取り出し
ができるが、この場合には光が遮断されず光取り出しの
開口率が落ちない。In a mode in which a large number of pixels are formed in a slightly different configuration, auxiliary wirings other than the anode and TFTs (Thin Film Transisters) are formed on the substrate. There is a drawback that the auxiliary wiring and the TFT block light, and the aperture ratio of light extraction is reduced, resulting in a decrease in display brightness and image quality. According to the present invention, light can be extracted in the direction opposite to the direction of the substrate. In this case, light is not blocked and the aperture ratio of light extraction does not decrease.
【0055】やの構成においては、画素がオフのと
きに黒色に見えるので、入射外光が反射せず、ディスプ
レイのコントラストが向上するという利点がある。図4
に、の構成を例示する。やの構成においては、種
々の背景色や図柄を採用することができ、画素がオフの
ときにも装飾性に優れるディスプレイとすることができ
る。図5に、の構成を例示する。In the configuration described above, since the pixel looks black when the pixel is off, there is an advantage that external light is not reflected and the contrast of the display is improved. FIG.
FIG. In the above configuration, various background colors and patterns can be adopted, and a display having excellent decorativeness can be provided even when the pixels are off. FIG. 5 shows an example of the configuration.
【0056】なお、前記〜の構成において、色変換
層、カラーフィルター、黒色光吸収層及び背景色形成層
は、必ずしも電極に密着する必要はなく、中間層を介在
させてもよいし、その効果が発現される限り、図3に示
すように離して設置してもよい。ただし、色変換層やカ
ラーフィルターは光取り出し方向に設置される必要があ
り、黒色光吸収層や背景色形成層は光取り出し方向とは
逆方向に設置される必要がある。In the above constitutions, the color conversion layer, the color filter, the black light absorbing layer and the background color forming layer do not necessarily have to be in close contact with the electrode, and may have an intermediate layer interposed between them. May be installed as shown in FIG. However, the color conversion layer and the color filter need to be installed in the light extraction direction, and the black light absorption layer and the background color formation layer need to be installed in the direction opposite to the light extraction direction.
【0057】[0057]
【実施例】以下、本発明の実施例について説明する。 実施例1 <有機EL素子の作製>25mm×75mm×1mmの
ガラス基板上に、ITOを100nmの膜厚で製膜した
もの(ジオマティックス社製)を基板上に導電性薄膜が
成膜してあるものとして使用した。次に、これをイソプ
ロピルアルコール中に浸漬し、超音波洗浄を行った後、
サムコインターナショナル製の紫外線照射機UV−30
0を用いて紫外線とオゾンとを併用して30分間洗浄し
た。Embodiments of the present invention will be described below. Example 1 <Manufacture of Organic EL Element> A conductive thin film was formed on a glass substrate of 25 mm × 75 mm × 1 mm (manufactured by Geomatics Co., Ltd.) by forming ITO to a thickness of 100 nm. Used as is. Next, after immersing this in isopropyl alcohol and performing ultrasonic cleaning,
UV-irradiator UV-30 manufactured by Samco International
Washing was carried out for 30 minutes using UV light and ozone in combination with O.
【0058】次いで、このITO薄膜付きガラス基板
を、市販の真空蒸着装置の中に入れ、この装置に設置さ
れている基板ホルダーに取り付け、真空槽を5×10-4
Paまで減圧した。なお、あらかじめ真空蒸着装置の抵
抗加熱ボートには、Cu配位のフタロシアニン(以下、
CuPcと略記する。)、N,N’−ビス(3−メチル
フェニル)−N,N’−ジフェニル−(1,1’−ビフ
ェニル)−4,4’−ジアミン(以下、TPDと略記す
る。)及び8−キノリノールアルミニウム錯体(アルミ
ニウムトリスオキシン、以下、Alqと略記する。)を
それぞれ200mgずつ入れ、また抵抗加熱フィラメン
トにはアルミニウム−リチウム合金(Li含量:2重量
%)を入れておいた。これらのボートおよびフィラメン
トを順次加熱することにより、それぞれの成分を蒸着し
た。Next, the glass substrate with the ITO thin film is put in a commercially available vacuum evaporation apparatus, attached to a substrate holder installed in the apparatus, and the vacuum chamber is set to 5 × 10 -4.
The pressure was reduced to Pa. In addition, a phthalocyanine (hereinafter, referred to as Cu-coordinated) is previously provided in the resistance heating boat of the vacuum evaporation apparatus.
Abbreviated as CuPc. ), N, N'-bis (3-methylphenyl) -N, N'-diphenyl- (1,1'-biphenyl) -4,4'-diamine (hereinafter abbreviated as TPD) and 8-quinolinol An aluminum complex (aluminum trisoxin; hereinafter, abbreviated as Alq) was charged in an amount of 200 mg each, and the resistance heating filament was charged with an aluminum-lithium alloy (Li content: 2% by weight). These components were deposited by sequentially heating these boats and filaments.
【0059】まず、正孔注入輸送層としてCuPcをI
TO薄膜付きガラス基板に25nm蒸着し、次に第2の
正孔注入輸送層としてTPDを40nm蒸着し、更に発
光層としてAlqを60nm蒸着した。次に、形成され
た積層体の上にマスクを設置し、アルミニウム−リチウ
ム合金を7nm蒸着して電子注入電極層を形成させた。First, CuPc was used as a hole injection / transport layer.
25 nm was deposited on a glass substrate with a TO thin film, then TPD was deposited to a thickness of 40 nm as a second hole injection / transport layer, and Alq was deposited to a thickness of 60 nm as a light emitting layer. Next, a mask was placed on the formed laminate, and an aluminum-lithium alloy was deposited to a thickness of 7 nm to form an electron injection electrode layer.
【0060】次に、上記真空蒸着装置に連結されている
別の真空槽の基板ホルダーに基板を移送しセットした。
なお、この間真空度は保たれたままである。上記、別の
真空槽はDCマグネトロンスパッタリングによりIn−
Zn−O系酸化物膜を形成できるように設備されてい
る。In−Zn−O系酸化物膜を形成させるためのター
ゲットは、In2 O3 とZnOとからなる焼結体であ
り、Inの原子比〔In/(In+Zn)〕は0.67
である。この真空槽のアルゴンガスと酸素ガスの混合ガ
ス(体積比で1000:2.8)を3×10-1Paとな
るまで導入し、スパッタリング出力を20W、基板温度
を室温に設定して膜厚200nmの非晶質透明導電膜を
形成させた。なお、In−Zn−O系酸化物膜が非晶質
であることは、ITO薄膜が蒸着されていないガラス基
板を用いて上記と同様の方法により積層体を形成し、X
線回折により確認した。Next, the substrate was transferred and set to a substrate holder of another vacuum tank connected to the above-mentioned vacuum evaporation apparatus.
During this period, the degree of vacuum is maintained. The above-mentioned another vacuum chamber is formed by DC magnetron sputtering.
Equipment is provided so that a Zn—O-based oxide film can be formed. The target for forming the In—Zn—O-based oxide film is a sintered body composed of In 2 O 3 and ZnO, and the atomic ratio of In [In / (In + Zn)] is 0.67.
It is. A mixed gas (1000: 2.8 in volume ratio) of argon gas and oxygen gas in this vacuum chamber was introduced until the gas pressure reached 3 × 10 −1 Pa, the sputtering output was set to 20 W, and the substrate temperature was set to room temperature. A 200 nm amorphous transparent conductive film was formed. Note that the fact that the In—Zn—O-based oxide film is amorphous means that a laminate is formed by a method similar to the above using a glass substrate on which an ITO thin film is not deposited, and X
It was confirmed by line diffraction.
【0061】さらに、前記した素子の作成方法と同様の
方法を用いて、ITO薄膜付きガラス基板上に直接、電
子注入電極層および非晶質透明導電膜を積層した積層体
を作成し、波長460nmの光の透過率を計測したとこ
ろ、63%と高透明のものであった。Further, by using a method similar to the above-described method for fabricating the element, a laminate in which an electron injection electrode layer and an amorphous transparent conductive film were directly laminated on a glass substrate with an ITO thin film was fabricated, and a wavelength of 460 nm was formed. The light transmittance was measured to be 63%, which was highly transparent.
【0062】<有機EL素子の評価>前記実施例の製造
法により形成された非晶質透明導電膜について、三菱油
化社製のロレスタFPを用いた四探針法により面抵抗値
を調べたところ、17Ω/□であった。そして、膜厚が
200nmであるため、比抵抗は、3.4×10-4Ω・
cmと低抵抗であることが確認された。<Evaluation of Organic EL Element> The sheet resistance of the amorphous transparent conductive film formed by the manufacturing method of the above embodiment was examined by a four-probe method using Loresta FP manufactured by Mitsubishi Yuka. However, it was 17Ω / □. Since the film thickness is 200 nm, the specific resistance is 3.4 × 10 −4 Ω ·
cm and low resistance.
【0063】次に、ITO薄膜を陽極とし、前記非晶質
透明導電膜を陰極として、電圧を8V印加したところ、
3.1mA/cm2 の電流密度となり、非晶質透明導電
膜側より観測したところ、60Cd/m2 の発光があっ
た。発光は、Alqより生じた緑色発光であった。更
に、この素子を大気中、70%RH(相対湿度)の雰囲
気に100時間放置したところ、無発光点は肉眼では観
測されず、素子の発光性能も維持されていたNext, when a voltage of 8 V was applied using the ITO thin film as an anode and the amorphous transparent conductive film as a cathode,
The current density was 3.1 mA / cm 2 , and when observed from the side of the amorphous transparent conductive film, light emission of 60 Cd / m 2 was observed. Light emission was green light emitted from Alq. Furthermore, when this device was left in an atmosphere of 70% RH (relative humidity) in the atmosphere for 100 hours, no light emitting point was observed with the naked eye, and the light emitting performance of the device was maintained.
【0064】比較例1 実施例1と同様の方法により有機EL素子を作製した。
ただし、In−Zn−O系酸化物膜を形成させる代わり
に、市販のITOターゲットを用いて結晶質透明導電膜
であるところのITO膜を形成させた。Comparative Example 1 An organic EL device was manufactured in the same manner as in Example 1.
However, instead of forming an In—Zn—O-based oxide film, an ITO film that was a crystalline transparent conductive film was formed using a commercially available ITO target.
【0065】その後、実施例1と同様の方法により有機
EL素子の性能を評価したところ、面抵抗値は130Ω
/□であった。そして、膜厚が200nmであるため、
比抵抗は、2.6×10-3Ω・cmと高抵抗であること
が確認された。次に、この有機EL素子に電圧を8V印
加したところ、4mA/cm2 の電流密度となり、非晶
質透明導電膜側より観測したところ、60Cd/m2 の
発光があった。発光は、Alqより生じた緑色発光であ
った。この素子を大気中、70%RHの雰囲気に100
時間放置したところ、無発光点は肉眼で無数確認され、
発光欠陥が多いことが確認された。Thereafter, the performance of the organic EL device was evaluated in the same manner as in Example 1, and the sheet resistance was 130 Ω.
/ □. And since the film thickness is 200 nm,
It was confirmed that the specific resistance was as high as 2.6 × 10 −3 Ω · cm. Next, when a voltage of 8 V was applied to the organic EL device, the current density became 4 mA / cm 2 , and when observed from the side of the amorphous transparent conductive film, light emission of 60 Cd / m 2 was observed. Light emission was green light emitted from Alq. This device was placed in an atmosphere of 70% RH in the air for 100 hours.
After standing for a long time, countless non-emission points were confirmed with the naked eye,
It was confirmed that there were many light emission defects.
【0066】以上の結果より、本発明の有機EL素子
は、陰極の透明性が高く、かつ陰極を構成する非晶質透
明導電膜が低抵抗であるため発光効率が高く、更に非晶
質であるため、耐久性に優れ、発光欠陥が生じにくいこ
とが確認された。ところで、電子注入電極層の酸化によ
り発光欠陥が生じることが知られている。本発明の有機
EL素子では、電子注入電極層の上に非晶質透明導電膜
が形成され、この透明導電膜には結晶粒界が存在しない
ため、酸素や水分の侵入が防がれ前記の結果となったも
のと考えられる。From the above results, the organic EL device of the present invention has high luminous efficiency due to the high transparency of the cathode and the low resistance of the amorphous transparent conductive film constituting the cathode, and furthermore, the organic EL device is amorphous. Therefore, it was confirmed that the durability was excellent and the light emission defect hardly occurred. By the way, it is known that a light emission defect occurs due to oxidation of the electron injection electrode layer. In the organic EL device of the present invention, an amorphous transparent conductive film is formed on the electron injection electrode layer, and since there is no crystal grain boundary in the transparent conductive film, penetration of oxygen and moisture is prevented, and It is considered that the result was obtained.
【0067】実施例2 <有機EL素子の作製>実施例1で用いたものと同様の
ITO薄膜付きガラス基板を、実施例1と同様に真空蒸
着装置内の基板ホルダーに取り付け、真空槽を5×10
-4Paまで減圧した。なお、あらかじめ真空蒸着装置の
抵抗加熱ボートには、CuPc、TPD及びAlqをそ
れぞれ200mgずつ入れ、また抵抗加熱フィラメント
にはアルミニウム−リチウム合金(Li含量:2重量
%)を入れておいた。Example 2 <Preparation of Organic EL Element> A glass substrate with an ITO thin film similar to that used in Example 1 was mounted on a substrate holder in a vacuum evaporation apparatus in the same manner as in Example 1, and the × 10
The pressure was reduced to -4 Pa. In addition, 200 mg each of CuPc, TPD, and Alq was put in the resistance heating boat of the vacuum evaporation apparatus, and an aluminum-lithium alloy (Li content: 2% by weight) was put in the resistance heating filament.
【0068】まず、CuPcをITO薄膜付きガラス基
板に25nm蒸着し、次にTPDを40nm蒸着し、更
にAlqを60nm蒸着した。次に、形成された積層体
の上にマスクを設置し、真空度が1×10-3Paとなる
まで酸素を導入し、バリウム(Ba)を膜厚1.0nm
蒸着し、電子注入電極層であるBaOを形成させた。な
お、Baは、真空槽中に存在する酸素と反応し、BaO
電子注入電極層が形成される。First, CuPc was deposited on a glass substrate with an ITO thin film to a thickness of 25 nm, TPD was deposited to a thickness of 40 nm, and Alq was deposited to a thickness of 60 nm. Next, a mask is placed on the formed laminate, oxygen is introduced until the degree of vacuum becomes 1 × 10 −3 Pa, and barium (Ba) is deposited to a thickness of 1.0 nm.
Vapor deposition was performed to form BaO as an electron injection electrode layer. Ba reacts with oxygen present in the vacuum chamber and produces BaO.
An electron injection electrode layer is formed.
【0069】次に、上記真空蒸着装置に連結されている
別の真空槽の基板ホルダーに基板を移送しセットした。
なお、この間真空度は保たれたままである。上記、別の
真空槽はDCマグネトロンスパッタリングによりIn−
Zn−O系酸化物膜を形成できるように設備されてい
る。In−Zn−O系酸化物膜を形成させるためのター
ゲットは、In2 O3 とZnOとからなる焼結体であ
り、Inの原子比〔In/(In+Zn)〕は0.84
である。この真空槽のアルゴンガスと酸素ガスの混合ガ
ス(体積比で1000:5.0)を3×10-1Paとな
るまで導入し、スパッタリング出力を20W、基板温度
を室温に設定して膜厚200nmの非晶質透明導電膜を
形成させた。なお、In−Zn−O系酸化物膜が非晶質
であることは、ITO薄膜が蒸着されていないガラス基
板を用いて上記と同様の方法により積層体を形成し、X
線回折により確認した。Next, the substrate was transferred and set to a substrate holder of another vacuum chamber connected to the above-mentioned vacuum deposition apparatus.
During this period, the degree of vacuum is maintained. The above-mentioned another vacuum chamber is formed by DC magnetron sputtering.
Equipment is provided so that a Zn—O-based oxide film can be formed. The target for forming the In—Zn—O-based oxide film is a sintered body composed of In 2 O 3 and ZnO, and the atomic ratio of In [In / (In + Zn)] is 0.84.
It is. A mixed gas (volume ratio: 1000: 5.0) of argon gas and oxygen gas in this vacuum chamber was introduced until the pressure reached 3 × 10 −1 Pa, the sputtering output was set to 20 W, the substrate temperature was set to room temperature, and the film thickness was set. A 200 nm amorphous transparent conductive film was formed. Note that the fact that the In—Zn—O-based oxide film is amorphous means that a laminate is formed by a method similar to the above using a glass substrate on which an ITO thin film is not deposited, and X
It was confirmed by line diffraction.
【0070】<有機EL素子の評価>この製造法により
形成された非晶質透明導電膜について、実施例1と同様
にして面抵抗値を調べたところ、16Ω/□であった。
そして、膜厚が200nmであるため、比抵抗は、3.
2×10-4Ω・cmと低抵抗であることが確認された。<Evaluation of Organic EL Element> When the sheet resistance of the amorphous transparent conductive film formed by this manufacturing method was examined in the same manner as in Example 1, it was 16 Ω / □.
Since the film thickness is 200 nm, the specific resistance is 3.
It was confirmed that the resistance was as low as 2 × 10 −4 Ω · cm.
【0071】次に、ITO薄膜を陽極とし、前記非晶質
透明導電膜を陰極として、電圧を8V印加したところ、
3.0mA/cm2 の電流密度となり、非晶質透明導電
膜側より観測したところ、80Cd/m2 の発光があっ
た。発光は、Alqより生じた緑色発光であった。更
に、この素子を大気中、70%RHの雰囲気に100時
間放置したところ、無発光点は肉眼では観測されず、素
子の発光効率も落ちず、発光性能が維持されていた。Next, when a voltage of 8 V was applied using the ITO thin film as an anode and the amorphous transparent conductive film as a cathode,
The current density became 3.0 mA / cm 2 , and light emission of 80 Cd / m 2 was observed from the amorphous transparent conductive film side. Light emission was green light emitted from Alq. Furthermore, when this device was left in the atmosphere of 70% RH in the air for 100 hours, no light emitting point was observed with the naked eye, the luminous efficiency of the device did not decrease, and the luminous performance was maintained.
【0072】実施例3 <有機EL素子の作製>実施例1で用いたものと同様の
ITO薄膜付きガラス基板を、実施例1と同様に真空蒸
着装置内の基板ホルダーに取り付け、真空槽を5×10
-4Paまで減圧した。なお、あらかじめ真空蒸着装置の
抵抗加熱ボートには、CuPc、TPD及びAlqをそ
れぞれ200mgずつ入れ、また抵抗加熱フィラメント
にはアルミニウム−リチウム合金(Li含量:2重量
%)を入れておいた。Example 3 <Preparation of Organic EL Device> A glass substrate with an ITO thin film similar to that used in Example 1 was mounted on a substrate holder in a vacuum evaporation apparatus in the same manner as in Example 1, and the × 10
The pressure was reduced to -4 Pa. In addition, 200 mg each of CuPc, TPD, and Alq was put in the resistance heating boat of the vacuum evaporation apparatus, and an aluminum-lithium alloy (Li content: 2% by weight) was put in the resistance heating filament.
【0073】まず、CuPcをITO薄膜付きガラス基
板に25nm蒸着し、次にTPDを40nm蒸着し、更
にAlqを60nm蒸着した。次に、形成された積層体
の上にマスクを設置し、電子注入金属であるマグネシウ
ム(Mg)を蒸着速度1.4nm/秒で、電子伝達性化
合物であるAlqを0.1nm/秒で同時に蒸着し、膜
厚10nmの混合電子注入電極層とした。First, CuPc was deposited on a glass substrate with an ITO thin film at 25 nm, TPD was deposited at 40 nm, and Alq was deposited at 60 nm. Next, a mask was placed on the formed laminate, and magnesium (Mg) as an electron injecting metal was simultaneously deposited at a deposition rate of 1.4 nm / sec and Alq as an electron transporting compound at 0.1 nm / sec. Vapor deposition was performed to form a mixed electron injection electrode layer having a thickness of 10 nm.
【0074】次に、上記真空蒸着装置に連結されている
別の真空槽の基板ホルダーに基板を移送しセットした。
なお、この間真空度は保たれたままである。上記、別の
真空槽はDCマグネトロンスパッタリングによりIn−
Zn−O系酸化物膜を形成できるように設備されてい
る。In−Zn−O系酸化物膜を形成させるためのター
ゲットは、In2 O3 とZnOとからなる焼結体であ
り、Inの原子比〔In/(In+Zn)〕は0.84
である。この真空槽のアルゴンガスと酸素ガスの混合ガ
ス(体積比で1000:5.0)を3×10-1Paとな
るまで導入し、スパッタリング出力を1W/cm2 、基
板温度を室温に設定して膜厚200nmの非晶質透明導
電膜を形成させた。なお、In−Zn−O系酸化物膜が
非晶質であることは、ITO薄膜が蒸着されていないガ
ラス基板を用いて上記と同様の方法により積層体を形成
し、X線回折により確認した。Next, the substrate was transferred and set to a substrate holder in another vacuum chamber connected to the above-mentioned vacuum deposition apparatus.
During this period, the degree of vacuum is maintained. The above-mentioned another vacuum chamber is formed by DC magnetron sputtering.
Equipment is provided so that a Zn—O-based oxide film can be formed. The target for forming the In—Zn—O-based oxide film is a sintered body composed of In 2 O 3 and ZnO, and the atomic ratio of In [In / (In + Zn)] is 0.84.
It is. A mixed gas of argon gas and oxygen gas (volume ratio: 1000: 5.0) in this vacuum chamber was introduced until the pressure became 3 × 10 −1 Pa, the sputtering output was set to 1 W / cm 2 , and the substrate temperature was set to room temperature. Thus, an amorphous transparent conductive film having a thickness of 200 nm was formed. Note that the fact that the In—Zn—O-based oxide film was amorphous was confirmed by X-ray diffraction using a glass substrate on which an ITO thin film had not been deposited by forming a laminate in the same manner as described above. .
【0075】<有機EL素子の評価>この製造法により
形成された非晶質透明導電膜について、実施例1と同様
にして面抵抗値を調べたところ、20Ω/□であった。
そして、膜厚が200nmであるため、比抵抗は、4.
0×10-4Ω・cmと低抵抗であることが確認された。<Evaluation of Organic EL Element> When the sheet resistance of the amorphous transparent conductive film formed by this manufacturing method was examined in the same manner as in Example 1, it was 20 Ω / □.
Since the film thickness is 200 nm, the specific resistance is 4.
It was confirmed that the resistance was as low as 0 × 10 −4 Ω · cm.
【0076】次に、ITO薄膜を陽極とし、前記非晶質
透明導電膜を陰極として、電圧を8V印加したところ、
2.9mA/cm2 の電流密度となり、非晶質透明導電
膜側より観測したところ、60Cd/m2 の発光があっ
た。発光は、Alqより生じた緑色発光であった。更
に、この素子を大気中、70%RHの雰囲気に100時
間放置したところ、無発光点は肉眼では観測されず、素
子の発光効率も落ちず、発光性能が維持されていた。Next, when a voltage of 8 V was applied using the ITO thin film as an anode and the amorphous transparent conductive film as a cathode,
The current density was 2.9 mA / cm 2 , and when observed from the side of the amorphous transparent conductive film, light emission was 60 Cd / m 2 . Light emission was green light emitted from Alq. Furthermore, when this device was left in the atmosphere of 70% RH in the air for 100 hours, no light emitting point was observed with the naked eye, the luminous efficiency of the device did not decrease, and the luminous performance was maintained.
【0077】実施例4 <有機EL素子の作製>実施例1で用いたものと同様の
ITO薄膜付きガラス基板を、実施例1と同様に真空蒸
着装置内の基板ホルダーに取り付け、真空槽を5×10
-4Paまで減圧した。なお、あらかじめ真空蒸着装置の
抵抗加熱ボートには、CuPc、TPD及びAlqをそ
れぞれ200mgずつ入れ、また抵抗加熱フィラメント
にはアルミニウム−リチウム合金(Li含量:2重量
%)を入れておいた。Example 4 <Preparation of Organic EL Element> A glass substrate with an ITO thin film similar to that used in Example 1 was mounted on a substrate holder in a vacuum evaporation apparatus in the same manner as in Example 1, and the × 10
The pressure was reduced to -4 Pa. In addition, 200 mg each of CuPc, TPD, and Alq was put in the resistance heating boat of the vacuum evaporation apparatus, and an aluminum-lithium alloy (Li content: 2% by weight) was put in the resistance heating filament.
【0078】まず、CuPcをITO薄膜付きガラス基
板に25nm蒸着し、次にTPDを40nm蒸着し、更
にAlqを60nm蒸着した。次に、形成された積層体
の上にマスクを設置し、Al−Li合金を膜厚2nmと
なるように蒸着した。ただし、本実施例においては、島
状に不連続になるように蒸着させ、電子注入電極層とし
た。First, CuPc was deposited on a glass substrate with an ITO thin film to a thickness of 25 nm, TPD was deposited to a thickness of 40 nm, and Alq was deposited to a thickness of 60 nm. Next, a mask was placed on the formed laminate, and an Al—Li alloy was deposited to a thickness of 2 nm. However, in this embodiment, the electron injection electrode layer was formed by vapor deposition so as to be discontinuous in an island shape.
【0079】次に、上記真空蒸着装置に連結されている
別の真空槽の基板ホルダーに基板を移送しセットした。
なお、この間真空度は保たれたままである。上記、別の
真空槽はDCマグネトロンスパッタリングによりIn−
Zn−O系酸化物膜を形成できるように設備されてい
る。In−Zn−O系酸化物膜を形成させるためのター
ゲットは、In2 O3 とZnOとからなる焼結体であ
り、Inの原子比〔In/(In+Zn)〕は0.84
である。この真空槽のアルゴンガスと酸素ガスの混合ガ
ス(体積比で1000:5.0)を3×10-1Paとな
るまで導入し、スパッタリング出力を1W/cm2 、基
板温度を室温に設定して膜厚200nmの非晶質透明導
電膜を形成させた。なお、In−Zn−O系酸化物膜が
非晶質であることは、ITO薄膜が蒸着されていないガ
ラス基板を用いて上記と同様の方法により積層体を形成
し、X線回折により確認した。Next, the substrate was transferred and set to a substrate holder in another vacuum chamber connected to the above-mentioned vacuum deposition apparatus.
During this period, the degree of vacuum is maintained. The above-mentioned another vacuum chamber is formed by DC magnetron sputtering.
Equipment is provided so that a Zn—O-based oxide film can be formed. The target for forming the In—Zn—O-based oxide film is a sintered body composed of In 2 O 3 and ZnO, and the atomic ratio of In [In / (In + Zn)] is 0.84.
It is. A mixed gas of argon gas and oxygen gas (volume ratio: 1000: 5.0) in this vacuum chamber was introduced until the pressure became 3 × 10 −1 Pa, the sputtering output was set to 1 W / cm 2 , and the substrate temperature was set to room temperature. Thus, an amorphous transparent conductive film having a thickness of 200 nm was formed. Note that the fact that the In—Zn—O-based oxide film was amorphous was confirmed by X-ray diffraction using a glass substrate on which an ITO thin film had not been deposited by forming a laminate in the same manner as described above. .
【0080】また、島状電子注入域の形成については、
上記のEL素子の作成方法において、Al−Li合金を
蒸着した段階で止めた積層体を別途作成し、走査型電子
顕微鏡により、島状に蒸着されていることを確認した。Regarding the formation of the island-like electron injection region,
In the above-described method for producing an EL element, a laminate was stopped separately at the stage when the Al-Li alloy was vapor-deposited, and it was confirmed by a scanning electron microscope that the layer was vapor-deposited in an island shape.
【0081】<有機EL素子の評価>前記実施例の製造
法により形成された非晶質透明導電膜について、実施例
1と同様にして面抵抗値を調べたところ、15Ω/□で
あった。そして、膜厚が200nmであるため、比抵抗
は、3.0×10-4Ω・cmと低抵抗であることが確認
された。<Evaluation of Organic EL Device> The sheet resistance of the amorphous transparent conductive film formed by the manufacturing method of the above embodiment was measured in the same manner as in Example 1, and was found to be 15 Ω / □. Since the film thickness was 200 nm, it was confirmed that the specific resistance was as low as 3.0 × 10 −4 Ω · cm.
【0082】次に、ITO薄膜を陽極とし、前記非晶質
透明導電膜を陰極として、電圧を8V印加したところ、
3.8mA/cm2 の電流密度となり、非晶質透明導電
膜側より観測したところ、65Cd/m2 の発光があっ
た。発光は、Alqより生じた緑色発光であった。更
に、この素子を大気中、70%RHの雰囲気に100時
間放置したところ、無発光点は肉眼では観測されず、素
子の発光効率も落ちず、発光性能が維持されていた。Next, when a voltage of 8 V was applied using the ITO thin film as an anode and the amorphous transparent conductive film as a cathode,
The current density became 3.8 mA / cm 2 , and when observed from the side of the amorphous transparent conductive film, light emission of 65 Cd / m 2 was observed. Light emission was green light emitted from Alq. Furthermore, when this device was left in the atmosphere of 70% RH in the air for 100 hours, no light emitting point was observed with the naked eye, the luminous efficiency of the device did not decrease, and the luminous performance was maintained.
【0083】[0083]
【発明の効果】本発明の有機EL素子は、低抵抗かつ高
透明の陰極を有するため、発光を効率よく素子の両面か
ら取り出すことができる。また、耐久性に優れる。この
ため、本発明の有機EL素子は、たとえば情報機器のデ
ィスプレイなどに好適に用いられる。Since the organic EL device of the present invention has a cathode having low resistance and high transparency, light can be efficiently extracted from both sides of the device. Also, it has excellent durability. For this reason, the organic EL element of the present invention is suitably used, for example, for displays of information equipment.
【図1】 本発明の有機EL素子の一例の構成を示す断
面図である。FIG. 1 is a cross-sectional view illustrating a configuration of an example of an organic EL device of the present invention.
【図2】 本発明の有機EL素子において、島状電子注
入域が、非晶質透明導電膜と有機層との界面に存在する
場合の一例の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a configuration in which an island-shaped electron injection region is present at an interface between an amorphous transparent conductive film and an organic layer in the organic EL device of the present invention.
【図3】 本発明の有機EL素子の利用態様の一例を単
純化して示したものであって、非晶質透明導電膜の外側
にカラーフィルターを付加した構成を示す断面図であ
る。FIG. 3 is a simplified cross-sectional view showing an example of a use mode of the organic EL element of the present invention, showing a configuration in which a color filter is added outside an amorphous transparent conductive film.
【図4】 本発明の有機EL素子の利用態様の一例を単
純化して示したものであって、非晶質透明導電膜の外側
に黒色吸収層を備えた構成を示す断面図である。FIG. 4 is a simplified cross-sectional view showing an example of a use mode of the organic EL element of the present invention, showing a configuration in which a black absorbing layer is provided outside an amorphous transparent conductive film.
【図5】 本発明の有機EL素子の利用態様の一例を単
純化して示したものであって、透明陽極の外側に背景色
形成層を備えた構成を示す断面図である。FIG. 5 is a cross-sectional view showing a simplified example of a use mode of the organic EL element of the present invention, and showing a configuration provided with a background color forming layer outside a transparent anode.
1:基板 2:陽極 3:有機層 4:電子注入電極層 5:非晶質透明導電膜 6:島状注入域 7:カラーフィルター 8:黒色光吸収層 9:背景色形成層 1: substrate 2: anode 3: organic layer 4: electron injection electrode layer 5: amorphous transparent conductive film 6: island-like injection region 7: color filter 8: black light absorbing layer 9: background color forming layer
Claims (5)
機層が介在してなる有機エレクトロルミネッセンス素子
であって、前記陰極が電子注入電極層と非晶質透明導電
膜とからなり、かつ前記電子注入電極層が前記有機層と
接することを特徴とする有機エレクトロルミネッセンス
素子。1. An organic electroluminescence device having an organic layer including an organic light emitting layer interposed between an anode and a cathode, wherein the cathode comprises an electron injection electrode layer and an amorphous transparent conductive film, An organic electroluminescence device, wherein the electron injection electrode layer is in contact with the organic layer.
合金およびアルカリ土類金属酸化物から選ばれる1種ま
たは2種以上を用いて、超薄膜状に形成されていること
を特徴とする請求項1記載の有機エレクトロルミネッセ
ンス素子。2. An electron injection electrode layer comprising: an electron injection metal;
2. The organic electroluminescent device according to claim 1, wherein the organic electroluminescent device is formed in an ultra-thin film using one or more selected from alloys and alkaline earth metal oxides.
合金およびアルカリ土類金属酸化物から選ばれる1種ま
たは2種以上と電子伝達性の有機物の混合層であること
を特徴とする請求項1記載の有機エレクトロルミネッセ
ンス素子。3. An electron injection electrode layer comprising: an electron injection metal;
2. The organic electroluminescent device according to claim 1, wherein the organic electroluminescent device is a mixed layer of one or more selected from alloys and alkaline earth metal oxides and an electron-transporting organic substance.
なることを特徴とする請求項1記載の有機エレクトロル
ミネッセンス素子。4. The organic electroluminescence device according to claim 1, wherein the electron injection electrode layer comprises an island-shaped electron injection region.
n)、亜鉛(Zn)、酸素(O)からなる酸化物を用い
て、形成されていることを特徴とする請求項1〜4のい
ずれかに記載の有機エレクトロルミネッセンス素子。5. An amorphous transparent conductive film is made of indium (I)
The organic electroluminescence device according to any one of claims 1 to 4, wherein the organic electroluminescence device is formed using an oxide composed of n), zinc (Zn), and oxygen (O).
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8319567A JPH10162959A (en) | 1996-11-29 | 1996-11-29 | Organic electroluminescence device |
EP19970120854 EP0845924B1 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
DE1997629394 DE69729394T2 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
DE1997623538 DE69723538T2 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
EP20010109489 EP1119221B1 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
DE1997627987 DE69727987T2 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
EP20010109490 EP1119222B1 (en) | 1996-11-29 | 1997-11-27 | Organic electroluminescent device |
US08/980,345 US6284393B1 (en) | 1996-11-29 | 1997-11-28 | Organic electroluminescent device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8319567A JPH10162959A (en) | 1996-11-29 | 1996-11-29 | Organic electroluminescence device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004342002A Division JP2005056864A (en) | 2004-11-26 | 2004-11-26 | Organic electroluminescence device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10162959A true JPH10162959A (en) | 1998-06-19 |
Family
ID=18111716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8319567A Pending JPH10162959A (en) | 1996-11-29 | 1996-11-29 | Organic electroluminescence device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10162959A (en) |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270172A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent device |
JPH11162652A (en) * | 1997-12-02 | 1999-06-18 | Idemitsu Kosan Co Ltd | Organic EL device and method of manufacturing the same |
JPH11162647A (en) * | 1997-09-29 | 1999-06-18 | Minolta Co Ltd | Organic electroluminescence element |
JP2000040592A (en) * | 1998-07-21 | 2000-02-08 | Casio Comput Co Ltd | EL device |
JP2000068560A (en) * | 1998-08-24 | 2000-03-03 | Casio Comput Co Ltd | EL device |
JP2000077191A (en) * | 1998-08-31 | 2000-03-14 | Sanyo Electric Co Ltd | Display device |
JP2001060498A (en) * | 1999-08-23 | 2001-03-06 | Tdk Corp | Organic el element |
WO2002063929A1 (en) * | 2001-02-08 | 2002-08-15 | Nec Corporation | Organic el device |
US6468676B1 (en) | 1999-01-02 | 2002-10-22 | Minolta Co., Ltd. | Organic electroluminescent display element, finder screen display device, finder and optical device |
JP2003059657A (en) * | 2001-08-10 | 2003-02-28 | Sumitomo Chem Co Ltd | Method for manufacturing organic electroluminescence device |
JP2003514343A (en) * | 1999-09-30 | 2003-04-15 | イノベイティブ・テクノロジー・ライセンシング・エルエルシー | Electronic light-emitting displays incorporating transparent and conductive zinc oxide thin films |
JP2003115390A (en) * | 2001-10-02 | 2003-04-18 | Sony Corp | Light emitting element and its usage |
JP2003243179A (en) * | 2002-02-13 | 2003-08-29 | Univ Toyama | Organic electroluminescence device |
JP2003526188A (en) * | 2000-03-09 | 2003-09-02 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | High efficiency transparent organic light emitting device |
JP2003317955A (en) * | 2002-02-22 | 2003-11-07 | Semiconductor Energy Lab Co Ltd | Light emitting device, method of manufacturing the same, and method of operating manufacturing device |
JP2004014360A (en) * | 2002-06-07 | 2004-01-15 | Fuji Electric Holdings Co Ltd | Organic EL device |
JP2004055404A (en) * | 2002-07-22 | 2004-02-19 | Fuji Electric Holdings Co Ltd | Manufacturing method of organic EL device |
JP2004127740A (en) * | 2002-10-03 | 2004-04-22 | Dainippon Printing Co Ltd | Organic electroluminescent image display device |
JP2004127639A (en) * | 2002-10-01 | 2004-04-22 | Dainippon Printing Co Ltd | Organic electroluminescent image display |
JP2004139981A (en) * | 2002-09-24 | 2004-05-13 | Dainippon Printing Co Ltd | Display element and its manufacturing method |
JP2004192876A (en) * | 2002-12-10 | 2004-07-08 | Semiconductor Energy Lab Co Ltd | Light emitting device and manufacturing method thereof |
WO2004068910A1 (en) * | 2003-01-24 | 2004-08-12 | Semiconductor Energy Laboratory Co. Ltd. | Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device |
JP2004247106A (en) * | 2003-02-12 | 2004-09-02 | Fuji Electric Holdings Co Ltd | Organic EL element and method of manufacturing organic EL element |
JP2004296234A (en) * | 2003-03-26 | 2004-10-21 | Fuji Electric Holdings Co Ltd | Organic EL element and method of manufacturing the same |
JP2005005068A (en) * | 2003-06-11 | 2005-01-06 | Toppoly Optoelectronics Corp | Light emitting element having reflection prevention structure |
JP2005123205A (en) * | 2002-10-24 | 2005-05-12 | Toyota Industries Corp | Organic el element |
US6911163B2 (en) | 2002-03-27 | 2005-06-28 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device |
WO2005079119A1 (en) * | 2004-02-16 | 2005-08-25 | Japan Science And Technology Agency | Light emitting transistor |
JP2005267926A (en) * | 2004-03-17 | 2005-09-29 | Japan Science & Technology Agency | Double-sided organic EL panel |
WO2006008942A1 (en) * | 2004-07-20 | 2006-01-26 | Pioneer Corporation | Organic el element |
US7029767B2 (en) | 2003-03-06 | 2006-04-18 | Fuji Electric Holdings Co., Ltd | Organic electroluminescent device and method for manufacturing same |
JP2006287078A (en) * | 2005-04-04 | 2006-10-19 | Sony Corp | Organic electroluminescence element |
WO2006126407A1 (en) | 2005-05-27 | 2006-11-30 | Gifu University | Luminescent device and electroluminescence utilizing the same |
JP2006324535A (en) * | 2005-05-20 | 2006-11-30 | Hitachi Displays Ltd | Organic light emitting display |
US7274042B2 (en) | 2003-05-19 | 2007-09-25 | Tpo Displays Corp. | Electroluminescent device having anti-reflective member |
US7371475B2 (en) | 2002-05-30 | 2008-05-13 | Sumitomo Metal Mining Co., Ltd. | Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell |
WO2008087924A1 (en) * | 2007-01-16 | 2008-07-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and method for manufacturing the same |
JP2008258157A (en) * | 2007-04-05 | 2008-10-23 | Samsung Sdi Co Ltd | Organic electroluminescent device comprising a transparent conductive oxide film cathode and method for producing the same |
US7453426B2 (en) | 2004-01-14 | 2008-11-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic apparatus |
JP2009123362A (en) * | 2007-11-12 | 2009-06-04 | Rohm Co Ltd | Organic el light emitting element |
US7566902B2 (en) | 2003-05-16 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and electronic device |
JP2010016413A (en) * | 1997-01-27 | 2010-01-21 | Junji Kido | Organic electroluminescent element |
US7687987B2 (en) | 2006-03-28 | 2010-03-30 | Dai Nippon Printing Co., Ltd. | Organic electroluminescent having a transparent electroconductive layer formed on a light emitting layer |
US7714505B2 (en) | 2005-09-01 | 2010-05-11 | Dai Nippon Printing Co., Ltd. | Electroluminescence element |
WO2010143430A1 (en) * | 2009-06-11 | 2010-12-16 | パナソニック株式会社 | Organic electroluminescent element and method for manufacturing same |
DE112009001283T5 (en) | 2008-06-02 | 2011-04-28 | Cambridge Display Technology Ltd. | Organic electroluminescent element |
US7939999B2 (en) | 2005-09-01 | 2011-05-10 | Dai Nippon Printing Co., Ltd. | Electroluminescence device and functional device |
EP2398087A1 (en) | 2010-06-17 | 2011-12-21 | Ricoh Company, Ltd. | Organic electroluminescence device having anode including metal oxide and conductive polymer, light emission apparatus, and method of fabricating organic electroluminescence device |
US8138670B2 (en) | 2002-02-22 | 2012-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus |
US8178870B2 (en) | 2008-04-23 | 2012-05-15 | Panasonic Corporation | Organic electroluminescence element |
US8563994B2 (en) | 2010-08-06 | 2013-10-22 | Panasonic Corporation | Light-emitting element, display device, and method for producing light-emitting element |
US8664669B2 (en) | 2010-06-24 | 2014-03-04 | Panasonic Corporation | Organic EL element, display apparatus, and light-emitting apparatus |
US8703530B2 (en) | 2010-06-24 | 2014-04-22 | Panasonic Corporation | Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device |
US8822246B2 (en) | 2009-02-10 | 2014-09-02 | Panasonic Corporation | Method for manufacturing a light-emitting element including a protective film for a charge injection layer |
US8822040B2 (en) | 2004-02-26 | 2014-09-02 | Dai Nippon Printing Co., Ltd. | Organic electroluminescent element |
US8829510B2 (en) | 2011-02-23 | 2014-09-09 | Panasonic Corporation | Organic electroluminescence display panel and organic electroluminescence display device |
US8852977B2 (en) | 2010-08-06 | 2014-10-07 | Panasonic Corporation | Method for producing light-emitting elements |
US8866160B2 (en) | 2009-02-10 | 2014-10-21 | Panasonic Corporation | Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance |
US8872164B2 (en) | 2009-08-19 | 2014-10-28 | Panasonic Corporation | Organic el element |
US8884281B2 (en) | 2011-01-21 | 2014-11-11 | Panasonic Corporation | Organic EL element |
US8884276B2 (en) | 2011-05-11 | 2014-11-11 | Panasonic Corporation | Organic EL display panel and organic EL display apparatus |
US8890129B2 (en) | 2010-08-06 | 2014-11-18 | Panasonic Corporation | Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device |
US8890173B2 (en) | 2009-02-10 | 2014-11-18 | Panasonic Corporation | Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof |
US8906517B2 (en) | 2005-04-04 | 2014-12-09 | Sony Corporation | Organic electroluminescence device |
US8921838B2 (en) | 2010-08-06 | 2014-12-30 | Panasonic Corporation | Light emitting element, method for manufacturing same, and light emitting device |
US8927976B2 (en) | 2010-08-06 | 2015-01-06 | Panasonic Corporation | Organic EL element and production method for same |
US8927975B2 (en) | 2010-08-06 | 2015-01-06 | Panasonic Corporation | Light emitting element, method for manufacturing same, and light emitting device |
US8946693B2 (en) | 2010-08-06 | 2015-02-03 | Panasonic Corporation | Organic EL element, display device, and light-emitting device |
US8981361B2 (en) | 2011-02-25 | 2015-03-17 | Panasonic Corporation | Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device |
US8999832B2 (en) | 2010-08-06 | 2015-04-07 | Panasonic Corporation | Organic EL element |
US9012896B2 (en) | 2010-08-06 | 2015-04-21 | Panasonic Corporation | Organic EL element |
US9012897B2 (en) | 2010-08-06 | 2015-04-21 | Panasonic Corporation | Organic EL element, display device, and light-emitting device |
US9029842B2 (en) | 2010-08-06 | 2015-05-12 | Joled Inc. | Organic electroluminescence element and method of manufacturing thereof |
US9029843B2 (en) | 2010-08-06 | 2015-05-12 | Joled Inc. | Organic electroluminescence element |
US9048448B2 (en) | 2010-08-06 | 2015-06-02 | Joled Inc. | Organic electroluminescence element and method of manufacturing thereof |
US9130187B2 (en) | 2010-08-06 | 2015-09-08 | Joled Inc. | Organic EL element, display device, and light-emitting device |
JP2016040783A (en) * | 2002-01-24 | 2016-03-24 | 株式会社半導体エネルギー研究所 | Light emitting device |
US9379351B2 (en) | 2002-09-24 | 2016-06-28 | Dai Nippon Printing Co., Ltd. | Display element and method for producing the same |
US9490445B2 (en) | 2010-07-30 | 2016-11-08 | Joled Inc. | Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element |
US9843010B2 (en) | 2010-08-06 | 2017-12-12 | Joled Inc. | Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method |
-
1996
- 1996-11-29 JP JP8319567A patent/JPH10162959A/en active Pending
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010016413A (en) * | 1997-01-27 | 2010-01-21 | Junji Kido | Organic electroluminescent element |
JPH10270172A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent device |
JPH11162647A (en) * | 1997-09-29 | 1999-06-18 | Minolta Co Ltd | Organic electroluminescence element |
JPH11162652A (en) * | 1997-12-02 | 1999-06-18 | Idemitsu Kosan Co Ltd | Organic EL device and method of manufacturing the same |
JP2000040592A (en) * | 1998-07-21 | 2000-02-08 | Casio Comput Co Ltd | EL device |
JP2000068560A (en) * | 1998-08-24 | 2000-03-03 | Casio Comput Co Ltd | EL device |
JP2000077191A (en) * | 1998-08-31 | 2000-03-14 | Sanyo Electric Co Ltd | Display device |
US6809473B2 (en) | 1999-01-02 | 2004-10-26 | Minolta Co., Ltd. | Organic electro-luminescence display element, finder screen display device, finder and optical device |
US6468676B1 (en) | 1999-01-02 | 2002-10-22 | Minolta Co., Ltd. | Organic electroluminescent display element, finder screen display device, finder and optical device |
JP2001060498A (en) * | 1999-08-23 | 2001-03-06 | Tdk Corp | Organic el element |
JP2003514343A (en) * | 1999-09-30 | 2003-04-15 | イノベイティブ・テクノロジー・ライセンシング・エルエルシー | Electronic light-emitting displays incorporating transparent and conductive zinc oxide thin films |
JP2003526188A (en) * | 2000-03-09 | 2003-09-02 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | High efficiency transparent organic light emitting device |
JP4846953B2 (en) * | 2000-03-09 | 2011-12-28 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | High efficiency transparent organic light emitting device |
WO2002063929A1 (en) * | 2001-02-08 | 2002-08-15 | Nec Corporation | Organic el device |
US7465963B2 (en) | 2001-02-08 | 2008-12-16 | Samsung Sdi Co., Ltd. | Organic EL device |
JP2003059657A (en) * | 2001-08-10 | 2003-02-28 | Sumitomo Chem Co Ltd | Method for manufacturing organic electroluminescence device |
JP2003115390A (en) * | 2001-10-02 | 2003-04-18 | Sony Corp | Light emitting element and its usage |
JP2016040783A (en) * | 2002-01-24 | 2016-03-24 | 株式会社半導体エネルギー研究所 | Light emitting device |
US9653519B2 (en) | 2002-01-24 | 2017-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of preparing the same and device for fabricating the same |
JP2018022700A (en) * | 2002-01-24 | 2018-02-08 | 株式会社半導体エネルギー研究所 | Light emitting device |
JP2021153059A (en) * | 2002-01-24 | 2021-09-30 | 株式会社半導体エネルギー研究所 | Light emitting device |
JP2019192650A (en) * | 2002-01-24 | 2019-10-31 | 株式会社半導体エネルギー研究所 | Light-emitting device |
JP2003243179A (en) * | 2002-02-13 | 2003-08-29 | Univ Toyama | Organic electroluminescence device |
US6806640B2 (en) | 2002-02-13 | 2004-10-19 | President Of Toyama University | Organic electroluminescence device having current injection layer between light emitting layer and cathode |
US8138670B2 (en) | 2002-02-22 | 2012-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus |
JP2003317955A (en) * | 2002-02-22 | 2003-11-07 | Semiconductor Energy Lab Co Ltd | Light emitting device, method of manufacturing the same, and method of operating manufacturing device |
US8536784B2 (en) | 2002-02-22 | 2013-09-17 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus |
US7276186B2 (en) | 2002-03-27 | 2007-10-02 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device |
US6911163B2 (en) | 2002-03-27 | 2005-06-28 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device |
US7276187B2 (en) | 2002-03-27 | 2007-10-02 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminiscence device |
US7125503B2 (en) | 2002-03-27 | 2006-10-24 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device |
US7371475B2 (en) | 2002-05-30 | 2008-05-13 | Sumitomo Metal Mining Co., Ltd. | Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell |
JP2004014360A (en) * | 2002-06-07 | 2004-01-15 | Fuji Electric Holdings Co Ltd | Organic EL device |
JP2004055404A (en) * | 2002-07-22 | 2004-02-19 | Fuji Electric Holdings Co Ltd | Manufacturing method of organic EL device |
US9379351B2 (en) | 2002-09-24 | 2016-06-28 | Dai Nippon Printing Co., Ltd. | Display element and method for producing the same |
JP2004139981A (en) * | 2002-09-24 | 2004-05-13 | Dainippon Printing Co Ltd | Display element and its manufacturing method |
JP2004127639A (en) * | 2002-10-01 | 2004-04-22 | Dainippon Printing Co Ltd | Organic electroluminescent image display |
JP2004127740A (en) * | 2002-10-03 | 2004-04-22 | Dainippon Printing Co Ltd | Organic electroluminescent image display device |
JP2005123205A (en) * | 2002-10-24 | 2005-05-12 | Toyota Industries Corp | Organic el element |
US7614929B2 (en) | 2002-12-10 | 2009-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Lighting emitting device and method of fabricating the same |
JP2004192876A (en) * | 2002-12-10 | 2004-07-08 | Semiconductor Energy Lab Co Ltd | Light emitting device and manufacturing method thereof |
US7199520B2 (en) | 2003-01-24 | 2007-04-03 | Semiconductor Energy Laboratory Co., Ltd. | Lighting emitting device and electronic apparatus having the same |
US8860011B2 (en) | 2003-01-24 | 2014-10-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and electronic book including double-sided light emitting display panel |
US9324773B2 (en) | 2003-01-24 | 2016-04-26 | Semiconductor Energy Laboratory Co., Ltd. | Display panel including a plurality of lighting emitting elements |
WO2004068910A1 (en) * | 2003-01-24 | 2004-08-12 | Semiconductor Energy Laboratory Co. Ltd. | Light-emitting device, method for manufacturing same and electric apparatus using such light-emitting device |
JPWO2004068910A1 (en) * | 2003-01-24 | 2006-05-25 | 株式会社半導体エネルギー研究所 | LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRIC DEVICE USING THE LIGHT EMITTING DEVICE |
US8084081B2 (en) | 2003-01-24 | 2011-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Lighting emitting device, manufacturing method of the same, electronic apparatus having the same |
JP2004247106A (en) * | 2003-02-12 | 2004-09-02 | Fuji Electric Holdings Co Ltd | Organic EL element and method of manufacturing organic EL element |
US7029767B2 (en) | 2003-03-06 | 2006-04-18 | Fuji Electric Holdings Co., Ltd | Organic electroluminescent device and method for manufacturing same |
JP2004296234A (en) * | 2003-03-26 | 2004-10-21 | Fuji Electric Holdings Co Ltd | Organic EL element and method of manufacturing the same |
US7566902B2 (en) | 2003-05-16 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and electronic device |
US7274042B2 (en) | 2003-05-19 | 2007-09-25 | Tpo Displays Corp. | Electroluminescent device having anti-reflective member |
JP2005005068A (en) * | 2003-06-11 | 2005-01-06 | Toppoly Optoelectronics Corp | Light emitting element having reflection prevention structure |
US8907868B2 (en) | 2004-01-14 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic apparatus |
US7453426B2 (en) | 2004-01-14 | 2008-11-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic apparatus |
US7531832B2 (en) | 2004-02-16 | 2009-05-12 | Japan Science And Technology Agency | Light-emitting transistor |
JPWO2005079119A1 (en) * | 2004-02-16 | 2007-10-25 | 独立行政法人科学技術振興機構 | Light emitting transistor |
WO2005079119A1 (en) * | 2004-02-16 | 2005-08-25 | Japan Science And Technology Agency | Light emitting transistor |
KR100850754B1 (en) * | 2004-02-16 | 2008-08-06 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | Light emitting transistor |
US8822040B2 (en) | 2004-02-26 | 2014-09-02 | Dai Nippon Printing Co., Ltd. | Organic electroluminescent element |
JP2005267926A (en) * | 2004-03-17 | 2005-09-29 | Japan Science & Technology Agency | Double-sided organic EL panel |
WO2006008942A1 (en) * | 2004-07-20 | 2006-01-26 | Pioneer Corporation | Organic el element |
JP2006287078A (en) * | 2005-04-04 | 2006-10-19 | Sony Corp | Organic electroluminescence element |
US8906517B2 (en) | 2005-04-04 | 2014-12-09 | Sony Corporation | Organic electroluminescence device |
JP2006324535A (en) * | 2005-05-20 | 2006-11-30 | Hitachi Displays Ltd | Organic light emitting display |
WO2006126407A1 (en) | 2005-05-27 | 2006-11-30 | Gifu University | Luminescent device and electroluminescence utilizing the same |
US7714505B2 (en) | 2005-09-01 | 2010-05-11 | Dai Nippon Printing Co., Ltd. | Electroluminescence element |
US7939999B2 (en) | 2005-09-01 | 2011-05-10 | Dai Nippon Printing Co., Ltd. | Electroluminescence device and functional device |
US7687987B2 (en) | 2006-03-28 | 2010-03-30 | Dai Nippon Printing Co., Ltd. | Organic electroluminescent having a transparent electroconductive layer formed on a light emitting layer |
WO2008087924A1 (en) * | 2007-01-16 | 2008-07-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and method for manufacturing the same |
JP2008258157A (en) * | 2007-04-05 | 2008-10-23 | Samsung Sdi Co Ltd | Organic electroluminescent device comprising a transparent conductive oxide film cathode and method for producing the same |
US7838327B2 (en) | 2007-04-05 | 2010-11-23 | Samsung Mobile Display Co., Ltd. | Organic light-emitting device including transparent conducting oxide layer as cathode and method of manufacturing the same |
JP2009123362A (en) * | 2007-11-12 | 2009-06-04 | Rohm Co Ltd | Organic el light emitting element |
US8178870B2 (en) | 2008-04-23 | 2012-05-15 | Panasonic Corporation | Organic electroluminescence element |
DE112009001283T5 (en) | 2008-06-02 | 2011-04-28 | Cambridge Display Technology Ltd. | Organic electroluminescent element |
US8445895B2 (en) | 2008-06-02 | 2013-05-21 | Panasonic Corporation | Organic electroluminescence element |
US8822246B2 (en) | 2009-02-10 | 2014-09-02 | Panasonic Corporation | Method for manufacturing a light-emitting element including a protective film for a charge injection layer |
US8890173B2 (en) | 2009-02-10 | 2014-11-18 | Panasonic Corporation | Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof |
US8890174B2 (en) | 2009-02-10 | 2014-11-18 | Panasonic Corporation | Light-emitting element including a charge injection transport layer that includes a dissolvable metal compound, and display device and method for manufacturing thereof |
US8866160B2 (en) | 2009-02-10 | 2014-10-21 | Panasonic Corporation | Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance |
WO2010143430A1 (en) * | 2009-06-11 | 2010-12-16 | パナソニック株式会社 | Organic electroluminescent element and method for manufacturing same |
US8872164B2 (en) | 2009-08-19 | 2014-10-28 | Panasonic Corporation | Organic el element |
US8754405B2 (en) | 2010-06-17 | 2014-06-17 | Ricoh Company, Ltd. | Organic electroluminescence device having anode including metal oxide and conductive polymer, light emission apparatus, and method of fabricating organic electroluminescence device |
EP2398087A1 (en) | 2010-06-17 | 2011-12-21 | Ricoh Company, Ltd. | Organic electroluminescence device having anode including metal oxide and conductive polymer, light emission apparatus, and method of fabricating organic electroluminescence device |
US8664669B2 (en) | 2010-06-24 | 2014-03-04 | Panasonic Corporation | Organic EL element, display apparatus, and light-emitting apparatus |
US8703530B2 (en) | 2010-06-24 | 2014-04-22 | Panasonic Corporation | Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device |
US9490445B2 (en) | 2010-07-30 | 2016-11-08 | Joled Inc. | Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element |
US8852977B2 (en) | 2010-08-06 | 2014-10-07 | Panasonic Corporation | Method for producing light-emitting elements |
US9130187B2 (en) | 2010-08-06 | 2015-09-08 | Joled Inc. | Organic EL element, display device, and light-emitting device |
US8563994B2 (en) | 2010-08-06 | 2013-10-22 | Panasonic Corporation | Light-emitting element, display device, and method for producing light-emitting element |
US8999832B2 (en) | 2010-08-06 | 2015-04-07 | Panasonic Corporation | Organic EL element |
US9012896B2 (en) | 2010-08-06 | 2015-04-21 | Panasonic Corporation | Organic EL element |
US9012897B2 (en) | 2010-08-06 | 2015-04-21 | Panasonic Corporation | Organic EL element, display device, and light-emitting device |
US9029842B2 (en) | 2010-08-06 | 2015-05-12 | Joled Inc. | Organic electroluminescence element and method of manufacturing thereof |
US9029843B2 (en) | 2010-08-06 | 2015-05-12 | Joled Inc. | Organic electroluminescence element |
US9048448B2 (en) | 2010-08-06 | 2015-06-02 | Joled Inc. | Organic electroluminescence element and method of manufacturing thereof |
US8946693B2 (en) | 2010-08-06 | 2015-02-03 | Panasonic Corporation | Organic EL element, display device, and light-emitting device |
US9843010B2 (en) | 2010-08-06 | 2017-12-12 | Joled Inc. | Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method |
US8927975B2 (en) | 2010-08-06 | 2015-01-06 | Panasonic Corporation | Light emitting element, method for manufacturing same, and light emitting device |
US8927976B2 (en) | 2010-08-06 | 2015-01-06 | Panasonic Corporation | Organic EL element and production method for same |
US8921838B2 (en) | 2010-08-06 | 2014-12-30 | Panasonic Corporation | Light emitting element, method for manufacturing same, and light emitting device |
US8890129B2 (en) | 2010-08-06 | 2014-11-18 | Panasonic Corporation | Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device |
US8884281B2 (en) | 2011-01-21 | 2014-11-11 | Panasonic Corporation | Organic EL element |
US8829510B2 (en) | 2011-02-23 | 2014-09-09 | Panasonic Corporation | Organic electroluminescence display panel and organic electroluminescence display device |
US8981361B2 (en) | 2011-02-25 | 2015-03-17 | Panasonic Corporation | Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device |
US8884276B2 (en) | 2011-05-11 | 2014-11-11 | Panasonic Corporation | Organic EL display panel and organic EL display apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10162959A (en) | Organic electroluminescence device | |
JP4354019B2 (en) | Organic electroluminescence device | |
JP3571171B2 (en) | Organic electroluminescence device | |
EP1119222B1 (en) | Organic electroluminescent device | |
JP3824798B2 (en) | Organic EL device | |
JPH08222374A (en) | Organic electroluminescent device | |
JP2000340366A (en) | Light emitting diode | |
JP4543446B2 (en) | Organic EL device | |
JP2001043977A (en) | Light emitting diode | |
JP4255041B2 (en) | Organic EL device | |
EP1024542A1 (en) | Organic electroluminescent device | |
JP2001155867A (en) | Organic EL display | |
JP2000150166A (en) | Organic el element | |
JP2007149703A (en) | Organic electroluminescence device | |
EP1030384A1 (en) | Organic electroluminescent device | |
JP2001035667A (en) | Organic el element | |
WO2000056122A1 (en) | Organic el device | |
JP3476035B2 (en) | Organic electroluminescence device | |
JP3961985B2 (en) | Organic electroluminescence device | |
JP2001057286A (en) | Organic EL device | |
JP4560556B2 (en) | Organic electroluminescence device | |
JP3724733B2 (en) | ORGANIC EL LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF | |
JP2005056864A (en) | Organic electroluminescence device | |
JP2000268966A (en) | Organic electroluminescent element | |
JP2000268971A (en) | Organic electroluminescent element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060508 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060627 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060811 |