JPH1012497A - Manufacture of solid electrolytic capacitor using conductive polymer - Google Patents
Manufacture of solid electrolytic capacitor using conductive polymerInfo
- Publication number
- JPH1012497A JPH1012497A JP8167894A JP16789496A JPH1012497A JP H1012497 A JPH1012497 A JP H1012497A JP 8167894 A JP8167894 A JP 8167894A JP 16789496 A JP16789496 A JP 16789496A JP H1012497 A JPH1012497 A JP H1012497A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- electrolytic capacitor
- manufacturing
- solution
- conductive polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体電解質に導電
性高分子を用いた固体電解コンデンサの製造方法に関
し、特に、導電性高分子層を化学酸化重合法によって形
成する固体電解コンデンサの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, and more particularly to a method for manufacturing a solid electrolytic capacitor in which a conductive polymer layer is formed by a chemical oxidation polymerization method. About.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、高機能化、高
周波化の要求に伴い、固体電解コンデンサの小型化、高
周波性能の向上が著しい。ところで、固体電解コンデン
サは、例えば次のような製造工程により製造されるもの
である。先ず、一例としてタンタルのような酸化皮膜形
成性金属の微粉末を円柱や角柱のような柱体に成形し、
焼結して、柱体内部に無数の微細空孔(細孔)をもつ、
拡面化されたシンタードペレットを得る。次に、その焼
結体の内表面つまり細孔表面および外表面上に、誘電体
層としての酸化金属(この場合は、酸化タンタルTa2
O5 )の皮膜を形成する。皮膜の形成には、陽極酸化な
どが用いられる。次いで、その誘電体酸化皮膜上に固体
電解質層を形成し、更にその固体電解質層上に陰極導体
層を形成する。陰極導体層は、このあと取り付けられる
外部接続用の陰極端子と前述の固体電解質層とを低抵抗
で連結するものであって、例えば銀ペースト層,はんだ
層を積層することによって形成される。このあと、外部
接続用の陰極端子および陽極端子の取付け、モールド樹
脂層などによる封止外装、端子成形を経てコンデンサを
完成する。2. Description of the Related Art In recent years, along with demands for miniaturization, high performance, and high frequency of electronic equipment, the size and improvement of high frequency performance of solid electrolytic capacitors have been remarkable. Incidentally, the solid electrolytic capacitor is manufactured by the following manufacturing process, for example. First, as an example, a fine powder of an oxide film-forming metal such as tantalum is formed into a columnar body such as a cylinder or a prism,
After sintering, it has a myriad of fine cavities (pores) inside the column,
A broadened sintered pellet is obtained. Next, a metal oxide (in this case, tantalum oxide Ta 2) is used as a dielectric layer on the inner surface, that is, the surface of the pores and the outer surface of the sintered body.
O 5 ) is formed. Anodization or the like is used for forming the film. Next, a solid electrolyte layer is formed on the dielectric oxide film, and a cathode conductor layer is formed on the solid electrolyte layer. The cathode conductor layer connects the cathode terminal for external connection to be attached later and the above-mentioned solid electrolyte layer with low resistance, and is formed by, for example, laminating a silver paste layer and a solder layer. Thereafter, a capacitor is completed through mounting of a cathode terminal and an anode terminal for external connection, sealing exterior with a mold resin layer and the like, and terminal molding.
【0003】ここで、固体電解コンデンサの固体電解質
には、従来、二酸化マンガンや二酸化鉛などのような無
機半導体が多用されてきたが、それらの物質は抵抗率が
かなり高いため、高周波数領域でのインピーダンスが大
きく、そのようなコンデンサを高周波対応の電子機器に
応用することは困難になりつつある。そこで、抵抗率の
低い導電性高分子を用いた固体電解コンデンサが開発さ
れ、高周波数領域でのインピーダンス特性が改善されて
きた。[0003] Here, inorganic semiconductors such as manganese dioxide and lead dioxide have been frequently used as solid electrolytes of solid electrolytic capacitors. However, since those substances have a considerably high resistivity, they are used in a high frequency region. Has a large impedance, and it is becoming difficult to apply such a capacitor to a high-frequency compatible electronic device. Therefore, a solid electrolytic capacitor using a conductive polymer having a low resistivity has been developed, and the impedance characteristics in a high frequency region have been improved.
【0004】上述の導電性高分子の層を得る方法には、
単量体を電解重合させる方法と化学酸化重合させる方法
とがあり、電解重合法では、例えば、重合性単量体と支
持電解質との混合溶液を電解液として用い、電界を掛け
る方法が知られている。又、化学酸化重合法では、重合
性単量体と酸化剤とを主に液相で混合する方法が知られ
ている。本発明は、上記二つの重合法のうち化学酸化重
合により導電性高分子層を形成する、固体電解コンデン
サの製造方法に関わるものである。[0004] The method for obtaining the above-mentioned conductive polymer layer includes the following:
There are a method of electrolytic polymerization of a monomer and a method of chemical oxidation polymerization.In the electrolytic polymerization method, for example, a method of applying an electric field using a mixed solution of a polymerizable monomer and a supporting electrolyte as an electrolytic solution is known. ing. In the chemical oxidative polymerization method, a method of mixing a polymerizable monomer and an oxidizing agent mainly in a liquid phase is known. The present invention relates to a method for manufacturing a solid electrolytic capacitor in which a conductive polymer layer is formed by chemical oxidation polymerization among the above two polymerization methods.
【0005】ところで、化学酸化重合を用いて固体電解
コンデンサを製造する場合、誘電体皮膜の形成までが済
んだコンデンサ素子を、槽内に貯留した酸化剤溶液中に
浸漬させ、酸化剤溶液を誘電体皮膜に付着させた後に単
量体溶液を塗布する方法が、一般的である。単量体溶液
の塗布のときも、槽内に貯留した単量体溶液にコンデン
サ素子を浸す浸漬法が用いられる。ところが、そのよう
な浸漬法を用いた製造方法は、コンデンサ素子を各溶
液中に確実に浸さなければならないことから、大量の溶
液が必要である、酸化剤が付着したコンデンサ素子を
単量体溶液中に浸漬するので、浸漬される側の単量体溶
液に酸化剤が混入して酸化反応が起り、その結果、経時
的な変質いわゆる「溶液汚れ」が生じる、酸化剤溶液
の酸化力が時間の経過に伴い低下する上に、浸漬の繰返
しによって濃度も変化するので、液を頻繁に交換する必
要がある、などの理由で、コストの大幅上昇の原因とな
っている。又、この方法ではコンデンサ素子に対する酸
化剤,単量体の付着量の制御性に乏しく、換言すれば酸
化剤と単量体とのモル比を化学量論的なモル比に厳密に
制御することが困難で、本来期待できる高導電率を再現
性良く得ることできず、コンデンサの電気的特性の安定
性に欠ける。When a solid electrolytic capacitor is manufactured using chemical oxidation polymerization, a capacitor element on which a dielectric film has been formed is immersed in an oxidizing solution stored in a tank, and the oxidizing solution is converted into a dielectric material. A method of applying a monomer solution after attaching it to a body film is general. Also when applying the monomer solution, an immersion method in which the capacitor element is immersed in the monomer solution stored in the tank is used. However, such a manufacturing method using the immersion method requires a large amount of solution since the capacitor element must be surely immersed in each solution. Since the immersion immersion, the oxidizing agent is mixed into the monomer solution on the side to be immersed, and an oxidation reaction occurs. In addition to the decrease with the passage of time, the concentration also changes due to repetition of immersion, so that it is necessary to frequently change the liquid. Also, in this method, the controllability of the amount of the oxidizing agent and the monomer attached to the capacitor element is poor. In other words, the molar ratio between the oxidizing agent and the monomer is strictly controlled to the stoichiometric molar ratio. However, it is difficult to obtain the originally expected high conductivity with good reproducibility, and the stability of the electrical characteristics of the capacitor is lacking.
【0006】このような問題を改善するために、特開平
3ー198315号公報および特開平6ー45197号
公報に開示された技術が発明された。すなわち、単量体
溶液と酸化剤溶液とをそれぞれ別個に調整する、そし
て、化学酸化重合に供する化成箔部分に対し、一定量の
単量体溶液と一定量の酸化剤溶液とを交互に滴下して化
学酸化重合を行わしめ、導電性高分子層を形成するので
ある。In order to improve such a problem, the techniques disclosed in Japanese Patent Application Laid-Open Nos. 3-198315 and 6-45197 have been invented. That is, the monomer solution and the oxidizing agent solution are separately adjusted, and a certain amount of the monomer solution and a certain amount of the oxidizing agent solution are alternately dropped onto the chemical conversion foil portion to be subjected to the chemical oxidative polymerization. Then, chemical oxidation polymerization is performed to form a conductive polymer layer.
【0007】[0007]
【発明が解決しようとする課題】上述の公報記載の化学
酸化重合による導電性高分子層形成方法には、コンデン
サの被覆率(誘電体酸化皮膜の全体面積に占る、導電性
高分子層が形成されている誘電体酸化皮膜の面積の割
合)が小さいという問題がある。The method of forming a conductive polymer layer by chemical oxidation polymerization described in the above-mentioned publication includes a method of forming a conductive polymer layer by covering the capacitor (the total area of the dielectric oxide film, (The ratio of the area of the formed dielectric oxide film) is small.
【0008】これは、コンデンサ素子内の細孔が含む空
気や単量体溶液あるいは酸化剤溶液の表面張力が、コン
デンサ素子の外表面に滴下した単量体溶液もしくは酸化
剤溶液がコンデンサ素子内の細孔に浸透するのを阻害
し、誘電体酸化皮膜に導電性高分子層が形成されない部
分が生じるからである。被覆率が小さいと、後に述べる
ように、コンデンサの静電容量値が環境、特に周囲の湿
度によって変化し易く、安定性に欠けるようになる。[0008] This is because the surface tension of the air, the monomer solution or the oxidant solution contained in the pores in the capacitor element is reduced by the monomer solution or the oxidant solution dropped on the outer surface of the capacitor element. This is because it impedes penetration into the pores and causes a portion where the conductive polymer layer is not formed on the dielectric oxide film. If the coverage is small, as will be described later, the capacitance value of the capacitor is likely to change depending on the environment, particularly the ambient humidity, and the stability is lacking.
【0009】従って本発明は、固体電解質に導電性高分
子を用いる固体電解コンデンサであって、被覆率が高
く、静電容量値の湿度変化に対する安定性に富む固体電
解コンデンサを提供することを目的とするものである。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, which has a high covering rate and a high stability against a change in capacitance value due to humidity. It is assumed that.
【0010】本発明の他の目的は、本来の高導電率を示
す導電性高分子を浸漬法によるよりも再現性良く形成
し、コンデンサの特性の製造時のばらつきを減少させる
ことを目的とするものである。Another object of the present invention is to form a conductive polymer exhibiting the original high conductivity with higher reproducibility than by the immersion method, and to reduce variations in the characteristics of the capacitor during manufacturing. Things.
【0011】本発明は更に、導電性高分子層形成の際の
単量体溶液および酸化剤溶液の使用量を浸漬法によるよ
りも少くして、製造コスト削減を可能にすることを目的
とする。Another object of the present invention is to reduce the amount of a monomer solution and an oxidizing agent solution used in forming a conductive polymer layer as compared with the immersion method, thereby enabling a reduction in manufacturing cost. .
【0012】[0012]
【課題を解決するための手段】本発明等は、上記の課題
を解決するため、導電性高分子を固体電解質に用いる固
体電解コンデンサの製造方法について鋭意研究した。そ
の結果、この出願の発明に至った。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has made intensive studies on a method of manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte. As a result, the invention of this application was reached.
【0013】すなわち、本発明の固体電解コンデンサの
製造方法は、酸化皮膜形成性の金属を用いて内部に多数
の微細空孔を含む多孔体を形成する工程と、前記多孔体
を酸化して表面に誘電体としての酸化金属皮膜を形成す
る工程と、前記酸化金属皮膜上に固体電解質層としての
導電性高分子層を化学酸化重合により形成する工程と、
前記導電性高分子層上に陰極導体層を形成する工程と、
外部端子を取り付け外装を施す工程とを含む固体電解コ
ンデンサの製造方法において、前記導電性高分子層の形
成工程が、前記多孔体内の微細空孔表面の酸化金属皮膜
に予め濡れ性の高い液体を付着させる第1の工程と、前
記第1の工程終了後の多孔体に、前記多孔体の空孔体積
以下の量の酸化剤溶液又は単量体溶液を滴下する第2の
工程と、前記第2の工程終了後の多孔体に、前記第1の
工程での酸化剤溶液又は単量体溶液の滴下に対応して、
前記多孔体の空孔体積以下の量の単量体溶液又は酸化剤
溶液を滴下する工程とを含むことを特徴とする。That is, in the method for manufacturing a solid electrolytic capacitor of the present invention, a step of forming a porous body having a large number of fine pores therein using a metal having an oxide film formation; A step of forming a metal oxide film as a dielectric, and a step of forming a conductive polymer layer as a solid electrolyte layer on the metal oxide film by chemical oxidation polymerization,
Forming a cathode conductor layer on the conductive polymer layer,
A method of manufacturing a solid electrolytic capacitor, comprising: attaching an external terminal and providing an exterior, wherein the step of forming the conductive polymer layer comprises applying a highly wettable liquid to the metal oxide film on the surface of the fine pores in the porous body. A first step of attaching, a second step of dropping an oxidizing agent solution or a monomer solution in an amount equal to or less than the pore volume of the porous body to the porous body after the completion of the first step; In response to the dropping of the oxidizing agent solution or the monomer solution in the first step, the porous body after the step 2 is completed,
Dropping a monomer solution or an oxidizing agent solution in an amount equal to or less than the pore volume of the porous body.
【0014】滴下する単量体溶液および酸化剤溶液の量
は多孔体の空孔体積以下であることが望ましく、又、重
合反応式により決まる酸化剤と単量体との化学量論的な
モル比に対し、単量体量が1倍から15倍以内であるこ
とが望ましい。The amount of the monomer solution and the oxidizing agent solution to be dropped is preferably not more than the pore volume of the porous material, and the stoichiometric molar ratio between the oxidizing agent and the monomer determined by the polymerization reaction formula. It is desirable that the amount of the monomer be within 1 to 15 times the ratio.
【0015】予め形成する濡れ性の高い物質は種類を選
ばないが、酸化剤、単量体の良溶媒であることが望まし
く、例えば水またはアルコール系溶剤のような有機溶剤
が挙げられる。The substance having high wettability to be formed in advance is not limited, but is preferably an oxidizing agent or a good solvent for a monomer, for example, water or an organic solvent such as an alcohol solvent.
【0016】単量体は芳香族系単量体、複素五員環系単
量体であることが望ましく、ピロール、アニリン、チオ
フェン、フラン或いはそれらの誘導体などがある。The monomer is preferably an aromatic monomer or a five-membered heterocyclic monomer, such as pyrrole, aniline, thiophene, furan or a derivative thereof.
【0017】多孔体は焼結体が良いが、箔形状でも良
い。The porous body is preferably a sintered body, but may be a foil shape.
【0018】本発明によれば、多孔体内の細孔表面の誘
電体酸化皮膜全体に予め付着させておいた濡れ性の高い
物質の溶媒に、後から滴下する反応液が拡散して行くの
で、多孔体内の細孔表面の誘電体酸化皮膜上全体に均一
に反応液が付着する。これにより、被覆率の高い固体電
解コンデンサを製造できる。According to the present invention, the reaction liquid dropped later diffuses into the solvent of the substance having a high wettability, which is previously adhered to the entire dielectric oxide film on the surface of the pores in the porous body. The reaction liquid uniformly adheres to the entire surface of the dielectric oxide film on the surface of the pores in the porous body. Thereby, a solid electrolytic capacitor having a high coverage can be manufactured.
【0019】コンデンサ素子への反応液の供給は先端の
細いノズルなどを用いて、滴下により行われる。従っ
て、供給量の制御性に優れ、多孔体の空効体積に見合っ
た必要なだけの反応液を、厳密に化学量論的なモル比で
供給できる。従って、得られた導電性高分子層は化学反
応論によって期待できる高導電性を備え、しかも再現性
は良好である。又、反応液の使用量自体が少くて済む上
に、槽内での反応液の混合や浸漬の繰り返しによる反応
液自体の変質がなく、反溶液を頻繁に交換する必要がな
いので、製造コストを削減できる。The supply of the reaction liquid to the capacitor element is performed by dripping using a nozzle having a thin tip. Therefore, it is possible to supply a required amount of the reaction solution having an excellent controllability of the supply amount and a stoichiometric molar ratio corresponding to the vacant volume of the porous body. Therefore, the obtained conductive polymer layer has high conductivity which can be expected by chemical reaction theory, and has good reproducibility. In addition, the use amount of the reaction solution itself is small, and there is no deterioration of the reaction solution itself due to repeated mixing and immersion of the reaction solution in the tank. Can be reduced.
【0020】[0020]
【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して説明する。始めに、図1は、本発明
による固体電解コンデンサの製造方法の製造工程を順に
示す工程フロー図である。又、図2及び図3は、コンデ
ンサの断面を図1の工程順に従って示す図であり、図4
は、完成後のコンデンサの断面を示す図である。以下に
述べる実施の形態では、図1と図2又は図3に示す製造
工程によって、図4に断面図を示すタンタル固体電解コ
ンデンサを製造した。以下、本発明の実施の形態につい
て、幾つかの実施例および比較例に基づき、具体的に説
明する。Next, an embodiment of the present invention will be described with reference to the drawings. First, FIG. 1 is a process flow chart sequentially showing the manufacturing steps of the method for manufacturing a solid electrolytic capacitor according to the present invention. 2 and 3 are views showing a cross section of the capacitor in accordance with the process order of FIG.
FIG. 3 is a diagram showing a cross section of a completed capacitor. In the embodiment described below, a tantalum solid electrolytic capacitor whose sectional view is shown in FIG. 4 was manufactured by the manufacturing process shown in FIG. 1, FIG. 2 or FIG. Hereinafter, embodiments of the present invention will be specifically described based on some examples and comparative examples.
【0021】(実施例1)本実施例では、図1に示す工
程フローに基づいて、具体的には図2に示す方法によ
り、タンタル固体電解コンデンサを作製した。Example 1 In this example, a tantalum solid electrolytic capacitor was manufactured based on the process flow shown in FIG. 1, specifically, by the method shown in FIG.
【0022】先ず、タンタル微粉末を用いて、タンタル
の焼結体2を作製した。この焼結体2は3.2mm×
1.8mm×3.4mmの角柱で、予め一方の端面にタ
ンタルワイヤ製の陽極リード線1が植立されている。空
孔率は70%、空孔体積は12μリットルである。次
に、この焼結体2の内表面、外表面に誘電体皮膜とし
て、酸化タンタル(Ta2 O5 )皮膜3を形成した。皮
膜形成は陽極酸化により、リン酸水溶液中で電圧27V
を印加した。この状態のものを、以後、コンデンサ素子
4と呼ぶ。First, a tantalum sintered body 2 was prepared using tantalum fine powder. This sintered body 2 is 3.2 mm ×
An anode lead wire 1 made of tantalum wire is planted on one end face in advance of a 1.8 mm × 3.4 mm prism. The porosity is 70% and the porosity volume is 12 μl. Next, a tantalum oxide (Ta 2 O 5 ) film 3 was formed as a dielectric film on the inner surface and the outer surface of the sintered body 2. The film is formed by anodic oxidation in a phosphoric acid aqueous solution at a voltage of 27 V
Was applied. This state is hereinafter referred to as a capacitor element 4.
【0023】次いで、得られたコンデンサ素子4をメタ
ノール中に浸漬し、微細空孔内にメタノールを充填した
(ステップS1A。図2(b))。Next, the obtained capacitor element 4 was immersed in methanol to fill the pores with methanol (step S1A, FIG. 2 (b)).
【0024】その後、コンデンサ素子をメタノールから
引き上げ、充填したメタノールの一部を乾燥した後、コ
ンデンサ素子に対し酸化剤であるpートルエンスルホン
酸第二鉄メタノール溶液を滴下した(ステップS2)。
pトルエンスルホン酸第二鉄メタノール溶液は濃度40
wt.%で、滴下量はコンデンサ素子1個当り5μリッ
トル(0.45mモル)である。Thereafter, the capacitor element was pulled out of methanol, a part of the filled methanol was dried, and a methanolic solution of ferric p-toluenesulfonate as an oxidizing agent was dropped on the capacitor element (step S2).
Ferric methanol solution of p-toluenesulfonic acid has a concentration of 40
wt. %, And the drop amount is 5 μl (0.45 mmol) per capacitor element.
【0025】次に、溶剤を乾燥させ、引き続きコンデン
サ素子に対し単量体溶液であるピロールを滴下し、乾燥
・重合させたあと、素子をメタノールで洗浄した(ステ
ップS3)。ピロールの滴下量は、コンデンサ素子1個
当り1.5μリットル(0.23mモル)である。尚、
化学反応式で決まる酸化剤とピロールとの化学量論的な
モル比は2:1であり、本実施例におけるモル比は、そ
の値とほぼ一致している。Next, the solvent was dried, and subsequently pyrrole, which was a monomer solution, was dropped on the capacitor element, dried and polymerized, and then the element was washed with methanol (step S3). The amount of pyrrole dropped was 1.5 μl (0.23 mmol) per capacitor element. still,
The stoichiometric molar ratio between the oxidizing agent and pyrrole determined by the chemical reaction formula is 2: 1, and the molar ratio in the present example substantially matches the value.
【0026】上記のステップS1A,S2,S3の操作
を5回繰り返して、酸化タンタル皮膜3上にポリピロー
ル膜5を形成した。The operations of steps S1A, S2 and S3 were repeated five times to form a polypyrrole film 5 on the tantalum oxide film 3.
【0027】その後、ポリピロール膜5上に陰極導体層
6を形成し、陽極リード線1に外部陽極端子7を溶接
し、陰極側には導電性接着剤8を用いて外部陰極端子9
を固着したあと、モールド樹脂10で樹脂外装を行い本
実施例のタンタル固体電解コンデンサを得た。Thereafter, a cathode conductor layer 6 is formed on the polypyrrole film 5, an external anode terminal 7 is welded to the anode lead wire 1, and an external cathode terminal 9 is formed on the cathode side by using a conductive adhesive 8.
After fixing, the tantalum solid electrolytic capacitor of the present example was obtained by coating the resin with the mold resin 10.
【0028】得られたコンデンサを高温高湿試験に供
し、試験の前後で静電容量値を比較した。試験条件は、
温度65℃,湿度90〜95%RHの雰囲気中に無負荷
で100時間放置するものである。静電容量値は、1k
Hzでの値を測定した。試験結果を表1に示す。試験前
後での容量値比(試験後の容量値/試験後の容量値)は
1.08で、被覆率が高いことが確認された。通常、コ
ンデンサに高温高湿試験を施すと、試験後の静電容量値
は試験前の容量値に比較し大きくなることが知られてい
る。これは、誘電体酸化皮膜のうち導電性高分子層に覆
われていない部分に水分が吸着して、その部分が容量発
現に寄与するようになることによるものである。このこ
とから、上記の容量値比が小さいほど被覆率が高いと判
断でき、商用コンデンサには製品規格として、容量値比
が1.2以下と規定されている。The obtained capacitor was subjected to a high-temperature and high-humidity test, and the capacitance value was compared before and after the test. The test conditions are
It is left unloaded for 100 hours in an atmosphere of a temperature of 65 ° C. and a humidity of 90 to 95% RH. The capacitance value is 1k
The value in Hz was measured. Table 1 shows the test results. The capacitance value ratio before and after the test (capacity value after the test / capacity value after the test) was 1.08, and it was confirmed that the coverage was high. It is generally known that when a high-temperature and high-humidity test is performed on a capacitor, the capacitance value after the test becomes larger than the capacitance value before the test. This is because moisture is adsorbed on a portion of the dielectric oxide film that is not covered with the conductive polymer layer, and that portion contributes to capacity development. From this, it can be determined that the smaller the above-mentioned capacitance value ratio, the higher the coverage ratio, and the capacitance value ratio is specified as 1.2 or less as a product standard for commercial capacitors.
【0029】(実施例2)本実施例では、図1に示す工
程フローに基づいて、具体的には図3に示す方法によ
り、タンタル固体電解コンデンサを作製した。すなわ
ち、実施例1におけると同一のコンデンサ素子を用いて
はいるが、そのコンデンサ素子内の細孔にメタノールを
充填する仕方が実施例1とは異っている。本実施例で
は、メタノールの充填(ステップS1B。図3(b))
に際して、メタノールをコンデンサ素子に十分な量だけ
滴下した。Embodiment 2 In this embodiment, a tantalum solid electrolytic capacitor was manufactured based on the process flow shown in FIG. 1, specifically, by the method shown in FIG. That is, although the same capacitor element as in the first embodiment is used, the method of filling the pores in the capacitor element with methanol is different from the first embodiment. In the present embodiment, filling with methanol (Step S1B; FIG. 3B)
At this time, a sufficient amount of methanol was dropped on the capacitor element.
【0030】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.05で、被覆率が高いことが確認され
た。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The capacitance value ratio before and after the test was 1.05, confirming that the coverage was high.
【0031】(実施例3)本実施例は実施例1に対し、
用いる溶剤をメタノールからイソプロピルアルコールに
変更した点が異っている。他の製造方法および条件は、
実施例1と同一である。(Embodiment 3) This embodiment is different from Embodiment 1 in that
The difference is that the solvent used is changed from methanol to isopropyl alcohol. Other manufacturing methods and conditions are:
This is the same as the first embodiment.
【0032】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.10で、被覆率が高いことが確認され
た。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The capacitance ratio before and after the test was 1.10, confirming that the coverage was high.
【0033】(実施例4)本実施例は実施例1に対し、
ステップS3でのピロールの滴下量を4倍の6.0μリ
ットルにした点が異っている。すなわち、酸化剤とピロ
ールとのモル比を、実施例1における2:1から1:2
に変更している。他の製造方法および条件は、実施例1
と同一である。(Embodiment 4) This embodiment is different from Embodiment 1 in that
The difference is that the amount of pyrrole dropped in step S3 is quadrupled to 6.0 μl. That is, the molar ratio between the oxidizing agent and pyrrole was changed from 2: 1 to 1: 2 in Example 1.
Has been changed to. Other manufacturing methods and conditions are described in Example 1.
Is the same as
【0034】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.04で、被覆率が高いことが確認され
た。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The capacitance value ratio before and after the test was 1.04, and it was confirmed that the coverage was high.
【0035】(比較例1)本比較例は実施例1に対し、
コンデンサ素子へのメタノール充填(ステップS1A)
を省いた点が異っている。すなわち、酸化タンタル皮膜
形成済みのコンデンサ素子に直接、酸化剤を滴下した
(ステップS2)。他の製造方法および条件は、実施例
1と同一である。Comparative Example 1 This comparative example is different from Example 1 in that
Filling the capacitor element with methanol (Step S1A)
Is omitted. That is, the oxidizing agent was directly dropped on the capacitor element on which the tantalum oxide film had been formed (Step S2). Other manufacturing methods and conditions are the same as those in the first embodiment.
【0036】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.27で、これまでの実施例に対して被覆
率の悪化が認められた。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The capacitance value ratio before and after the test was 1.27, indicating that the coverage was worse than that of the examples described above.
【0037】(比較例2)本比較例は実施例1に対し、
製造工程フローは同じとしながら、ステップS2での酸
化剤溶液の滴下量と、ステップS3でのピロールの滴下
量とを増量し、タンタル焼結体の空孔体積より多い量に
した点が異っている。本実施例では、ステップS2での
酸化剤溶液滴下量を15μリットルとし、ステップS3
でのピロール滴下量を4.5μリットルとした。他の製
造方法および条件は、実施例1と同一である。Comparative Example 2 This comparative example is different from Example 1 in that
The difference is that the amount of the oxidizing agent solution dropped in step S2 and the amount of the pyrrole dropped in step S3 are increased to be larger than the pore volume of the tantalum sintered body while the manufacturing process flow is the same. ing. In this embodiment, the drop amount of the oxidizing agent solution in Step S2 is set to 15 μL, and Step S3
The amount of pyrrole dropped in the above was 4.5 μl. Other manufacturing methods and conditions are the same as those in the first embodiment.
【0038】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.25で、これまでの実施例に対して被覆
率の悪化が認められた。これは、酸化剤溶液,単量体溶
液の滴下量が空孔体積以上であると、滴下された溶液が
焼結体内の細孔を覆い、細孔内の空気の脱出路を塞ぐこ
とによるものと推測される。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The ratio of the capacitance values before and after the test was 1.25, indicating that the coverage was worse than in the previous examples. This is because when the amount of the oxidizing agent solution and the monomer solution is more than the volume of the pores, the dropped solution covers the pores in the sintered body and blocks the escape path of the air in the pores. It is presumed.
【0039】(実施例5)本実施例は実施例1に対し、
製造工程フローは同じとしながら、ステップS3での単
量体をピロールをチオフェンに変え、そのチオフェンの
滴下量を分子量に従って2μリットルにした点が異って
いる。他の製造方法および条件は、実施例1と同一であ
る。(Embodiment 5) This embodiment is different from Embodiment 1 in that
The difference is that the monomer in step S3 was changed from pyrrole to thiophene, and the amount of thiophene dropped was set to 2 μl according to the molecular weight, while the production process flow was the same. Other manufacturing methods and conditions are the same as those in the first embodiment.
【0040】得られたコンデンサを実施例1におけると
同一条件での高温高湿試験に供し、試験の前後で静電容
量値を測定した。試験結果を表1に示す。試験前後での
容量値比は1.09で、被覆率の高いことが確認され
た。The obtained capacitor was subjected to a high-temperature and high-humidity test under the same conditions as in Example 1, and the capacitance value was measured before and after the test. Table 1 shows the test results. The capacitance ratio before and after the test was 1.09, confirming that the coverage was high.
【0041】[0041]
【表1】 [Table 1]
【0042】尚、前述の実施例4において、単量体(ピ
ロール)の滴下量を化学量論的モル比で決まる量の4倍
に増量して被覆率上昇効果を得たが、少くとも15倍ま
で増量しても実施例4と同等の効果が得られることを確
認した。但し、単量体の量が1倍より小さい場合は、被
覆率の悪化が認められた。従って、単量体の滴下量は、
化学量論的モル比で決まる量に対して1倍以上、15倍
以下であることが好ましいと言える。In Example 4 described above, the effect of increasing the coverage was obtained by increasing the amount of the monomer (pyrrole) to be dropped by four times the amount determined by the stoichiometric molar ratio. It was confirmed that the same effect as in Example 4 could be obtained even when the amount was increased to twice. However, when the amount of the monomer was smaller than 1, the deterioration of the coverage was observed. Therefore, the drop amount of the monomer is
It can be said that the amount is preferably 1 to 15 times the amount determined by the stoichiometric molar ratio.
【0043】尚また、これまでの実施例では、ステップ
S2で酸化剤溶液を付着させた後、ステップS3で単量
体を付着させたが、この工程を入れ替えて、先に単量体
を付着させた後に酸化剤を付着させることによっても、
各実施例と同様の効果が得られることを確認した。In the above-described embodiments, the oxidizing agent solution was deposited in step S2, and then the monomer was deposited in step S3. However, this process was replaced, and the monomer was deposited first. By attaching an oxidizing agent after
It was confirmed that the same effect as in each example was obtained.
【0044】又、本実施の形態では、単量体にピロール
又はチオフェンを用いたが、単量体はそれらに限らず、
π共役系分子であれば良い。但し、ピロール,アニリ
ン,チオフェン,Nーメチルピロール,フランなどのよ
うな芳香族系、複素五員環系の単量体が、耐熱性に富み
適当であろう。濡れ性の高い物質としてメタノール又は
イソプロピルアルコールを用いたが、それらに限られる
ものではない。Further, in the present embodiment, pyrrole or thiophene is used as a monomer, but the monomer is not limited to them.
Any π-conjugated molecule may be used. However, aromatic or hetero-five-membered ring monomers such as pyrrole, aniline, thiophene, N-methylpyrrole, furan, etc. are suitable because of their high heat resistance. Methanol or isopropyl alcohol was used as the substance having high wettability, but is not limited thereto.
【0045】[0045]
【発明の効果】以上説明したように、本発明では、誘電
体酸化皮膜が形成された多孔体内の微細空孔表面に、反
応液の付着に先き立って予め、濡れ性の高い物質を付着
させている。従って、多孔体の外表面に滴下された反応
液はその濡れ性の高い物質の溶媒中を拡散し、多孔体内
部の微細空孔表面全体に付着する。これにより本発明に
よれば、被覆率を向上させて、周囲の湿度変化に対して
も容量値の変化のない、対環境性に優れた固体電解コン
デンサを提供できる。As described above, according to the present invention, a substance having a high wettability is attached to the surface of the fine pores in the porous body on which the dielectric oxide film is formed before the reaction liquid is attached. Let me. Therefore, the reaction solution dropped on the outer surface of the porous body diffuses in the solvent of the substance having high wettability and adheres to the entire surface of the fine pores inside the porous body. As a result, according to the present invention, it is possible to provide a solid electrolytic capacitor having an excellent environmental protection property, in which the coverage ratio is improved and the capacitance value does not change even when the ambient humidity changes.
【0046】又、本発明では、酸化剤溶液,単量体溶液
の供給を滴下により行う。従って、各溶液付着量制御が
容易で、酸化剤,単量体のモル比を化学量論的モル比に
厳密にしかも再現性良く制御できる。これにより本発明
によれば、化学量論から期待される本来の高導電率を持
つ導電性高分子を再現性良く形成できるので、コンデン
サの電気的特性の製造時のばらつきを減少できる。In the present invention, the oxidizing agent solution and the monomer solution are supplied dropwise. Therefore, it is easy to control the amount of each solution attached, and the molar ratio of the oxidizing agent and the monomer can be controlled strictly to the stoichiometric molar ratio with good reproducibility. Thus, according to the present invention, a conductive polymer having an original high conductivity expected from the stoichiometry can be formed with good reproducibility, so that variations in the electrical characteristics of the capacitor during manufacturing can be reduced.
【0047】しかも、反応液はこれを多孔体の空孔体積
に見合う量だけを滴下するので、槽内に貯留されている
反応液中にコンデンサ素子を浸す従来の製造方法に比
べ、反応液の使用量を削減し、製造コストを低減でき
る。Moreover, the reaction solution is dropped in an amount corresponding to the pore volume of the porous body, so that the reaction solution is compared with the conventional manufacturing method in which the capacitor element is immersed in the reaction solution stored in the tank. The use amount can be reduced, and the manufacturing cost can be reduced.
【0048】又、反応液槽中で酸化剤と単量体とが混合
することによる単量体の変質や浸漬の繰返しによる酸化
力の低下がないので、反応液交換の頻度が減り、この点
でも製造コストを削減できる。In addition, since there is no deterioration of the monomer due to mixing of the oxidizing agent and the monomer in the reaction solution tank and a decrease in the oxidizing power due to repeated immersion, the frequency of replacement of the reaction solution is reduced. However, manufacturing costs can be reduced.
【図1】本発明による固体電解コンデンサの製造方法の
製造工程フロー図である。FIG. 1 is a manufacturing process flow chart of a method for manufacturing a solid electrolytic capacitor according to the present invention.
【図2】本発明の実施の形態によるコンデンサの断面
を、製造工程順に示す図である。FIG. 2 is a diagram showing a cross section of the capacitor according to the embodiment of the present invention in the order of manufacturing steps.
【図3】本発明の実施の形態によるコンデンサの断面
を、製造工程順に示す図である。FIG. 3 is a diagram showing a cross section of the capacitor according to the embodiment of the present invention in the order of manufacturing steps.
【図4】本発明の実施の形態によるタンタル固体電解コ
ンデンサの断面図である。FIG. 4 is a sectional view of a tantalum solid electrolytic capacitor according to an embodiment of the present invention.
1 陽極リード線 2 タンタル焼結体 3 酸化タンタル皮膜 4 コンデンサ素子 5 ポリピロール膜 6 陰極導体層 7 外部陽極端子 8 導電性接着剤 9 外部陰極端子 10 モールド樹脂 DESCRIPTION OF SYMBOLS 1 Anode lead wire 2 Tantalum sintered body 3 Tantalum oxide film 4 Capacitor element 5 Polypyrrole film 6 Cathode conductor layer 7 External anode terminal 8 Conductive adhesive 9 External cathode terminal 10 Mold resin
Claims (9)
数の微細空孔を含む多孔体を形成する工程と、前記多孔
体を酸化して表面に誘電体としての酸化金属皮膜を形成
する工程と、前記酸化金属皮膜上に固体電解質層として
の導電性高分子層を化学酸化重合により形成する工程
と、前記導電性高分子層上に陰極導体層を形成する工程
と、外部端子を取り付け外装を施す工程とを含む固体電
解コンデンサの製造方法において、前記導電性高分子層
の形成工程が、 前記多孔体内の微細空孔表面の酸化金属皮膜に予め濡れ
性の高い液体を付着させる第1の工程と、 前記第1の工程終了後の多孔体に、前記多孔体の空孔体
積以下の量の酸化剤溶液又は単量体溶液を滴下する第2
の工程と、 前記第2の工程終了後の多孔体に、前記第1の工程での
酸化剤溶液又は単量体溶液の滴下に対応して、前記多孔
体の空孔体積以下の量の単量体溶液又は酸化剤溶液を滴
下する工程とを含むことを特徴とする固体電解コンデン
サの製造方法。1. A step of forming a porous body having a large number of fine pores therein using a metal capable of forming an oxide film, and oxidizing the porous body to form a metal oxide film as a dielectric on the surface. A step of forming a conductive polymer layer as a solid electrolyte layer on the metal oxide film by chemical oxidation polymerization, a step of forming a cathode conductor layer on the conductive polymer layer, and attaching external terminals. In the method for manufacturing a solid electrolytic capacitor including a step of providing an exterior, the step of forming the conductive polymer layer includes the step of first adhering a highly wettable liquid to the metal oxide film on the surface of the fine pores in the porous body. And dropping an oxidizing agent solution or a monomer solution in an amount equal to or less than the pore volume of the porous body to the porous body after the completion of the first step.
And a step of adding the oxidizing agent solution or the monomer solution in the first step to the porous body after the completion of the second step. A method of dropping a dimer solution or an oxidizing agent solution.
造方法において、 前記導電性高分子層形成の第2の工程及び第3の工程で
滴下する酸化剤溶液量及び単量体溶液量が、重合反応式
で化学量論的に決るモル比に対して単量体溶液量が1倍
以上、15倍以下の範囲となるような量であることを特
徴とする固体電解コンデンサの製造方法。2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the amount of the oxidizing agent solution and the amount of the monomer solution dropped in the second step and the third step of forming the conductive polymer layer are: A method for producing a solid electrolytic capacitor, characterized in that the amount of the monomer solution is in the range of 1 to 15 times the molar ratio determined stoichiometrically by the polymerization reaction formula.
造方法において、 前記導電性高分子層形成の第1の工程で、前記濡れ性の
高い液体を付着させるに際して、前記酸化金属皮膜形成
後の多孔体を、槽内に貯留した前記濡れ性の高い液体中
に浸漬させることを特徴とする固体電解コンデンサの製
造方法。3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein in the first step of forming the conductive polymer layer, when the liquid having a high wettability is attached, A method for manufacturing a solid electrolytic capacitor, characterized by immersing a porous body in the liquid having high wettability stored in a tank.
造方法において、 前記導電性高分子層形成の第1の工程で、前記濡れ性の
高い液体を付着させるに際して、前記酸化金属皮膜形成
後の多孔体に、前記濡れ性の高い液体を滴下することを
特徴とする固体電解コンデンサの製造方法。4. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein in the first step of forming the conductive polymer layer, the liquid having high wettability is adhered after the formation of the metal oxide film. A method for manufacturing a solid electrolytic capacitor, characterized in that the liquid having high wettability is dropped on a porous body.
造方法において、 前記導電性高分子層形成の第1の工程で、前記濡れ性の
高い液体として水及び有機溶剤のいずれかを用いること
を特徴とする固体電解コンデンサの製造方法。5. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein in the first step of forming the conductive polymer layer, any one of water and an organic solvent is used as the liquid having a high wettability. A method for manufacturing a solid electrolytic capacitor.
造方法において、 前記導電性高分子層形成の第1の工程で、前記有機溶剤
としてアルコール類を用いることを特徴とする固体電解
コンデンサの製造方法。6. The method for manufacturing a solid electrolytic capacitor according to claim 5, wherein an alcohol is used as the organic solvent in the first step of forming the conductive polymer layer. Method.
造方法において、 単量体として、芳香族系単量体及び複素五員環系単量体
のいずれかを用いることを特徴とする固体電解コンデン
サの製造方法。7. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein any one of an aromatic monomer and a five-membered heterocyclic monomer is used as the monomer. Manufacturing method of capacitor.
造方法において、 前記単量体として、ピロール,アニリン,チオフェン,
フラン及びそれらの誘導体のいずれかを用いることを特
徴とする固体電解コンデンサの製造方法。8. The method for manufacturing a solid electrolytic capacitor according to claim 7, wherein the monomers include pyrrole, aniline, thiophene,
A method for producing a solid electrolytic capacitor, comprising using one of furan and a derivative thereof.
造方法において、 前記多孔体として、前記酸化皮膜形成性金属の微粉末の
焼結体を用いることを特徴とする固体電解コンデンサの
製造方法。9. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a sintered body of a fine powder of the oxide film-forming metal is used as the porous body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08167894A JP3087654B2 (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing solid electrolytic capacitor using conductive polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08167894A JP3087654B2 (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing solid electrolytic capacitor using conductive polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1012497A true JPH1012497A (en) | 1998-01-16 |
JP3087654B2 JP3087654B2 (en) | 2000-09-11 |
Family
ID=15858044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08167894A Expired - Fee Related JP3087654B2 (en) | 1996-06-27 | 1996-06-27 | Method for manufacturing solid electrolytic capacitor using conductive polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3087654B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11219862A (en) * | 1997-10-31 | 1999-08-10 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor and manufacture thereof |
JPH11317327A (en) * | 1998-05-07 | 1999-11-16 | Nippon Chemicon Corp | Manufacture of solid electrolytic capacitor |
US6088218A (en) * | 1997-10-31 | 2000-07-11 | Matsushita Electric Industrial Co., Ltd. | Electrolytic capacitor and method for producing the same |
JP2000223364A (en) * | 1999-02-03 | 2000-08-11 | Sanyo Electric Co Ltd | Manufacture of electrolytic capacitor |
US6423103B1 (en) | 1999-01-25 | 2002-07-23 | Nec Tokin Toyama, Ltd. | Method for producing a solid electrolytic capacitor |
JP2008235906A (en) * | 2007-03-21 | 2008-10-02 | Avx Corp | Solid electrolytic capacitor containing conductive polymer |
JP2009252913A (en) * | 2008-04-04 | 2009-10-29 | Nichicon Corp | Method of manufacturing solid electrolytic capacitor |
WO2013024532A1 (en) * | 2011-08-17 | 2013-02-21 | 三菱レイヨン株式会社 | Solid electrolyte capacitor and method for producing same |
CN106206018A (en) * | 2016-06-27 | 2016-12-07 | 中国振华(集团)新云电子元器件有限责任公司 | A kind of electrolysis condenser is electrochemically formed device systems |
WO2017150407A1 (en) * | 2016-02-29 | 2017-09-08 | 出光興産株式会社 | Conductive polymer composition, conductive-polymer-containing porous body and manufacturing method therefor, and solid electrolytic capacitor and manufacturing method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267727A (en) * | 1991-02-05 | 1992-09-24 | Keisuke Ito | Multi-layer molded container and manufacture thereof |
-
1996
- 1996-06-27 JP JP08167894A patent/JP3087654B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11219862A (en) * | 1997-10-31 | 1999-08-10 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor and manufacture thereof |
US6088218A (en) * | 1997-10-31 | 2000-07-11 | Matsushita Electric Industrial Co., Ltd. | Electrolytic capacitor and method for producing the same |
JPH11317327A (en) * | 1998-05-07 | 1999-11-16 | Nippon Chemicon Corp | Manufacture of solid electrolytic capacitor |
US6423103B1 (en) | 1999-01-25 | 2002-07-23 | Nec Tokin Toyama, Ltd. | Method for producing a solid electrolytic capacitor |
JP2000223364A (en) * | 1999-02-03 | 2000-08-11 | Sanyo Electric Co Ltd | Manufacture of electrolytic capacitor |
JP2008235906A (en) * | 2007-03-21 | 2008-10-02 | Avx Corp | Solid electrolytic capacitor containing conductive polymer |
JP2009252913A (en) * | 2008-04-04 | 2009-10-29 | Nichicon Corp | Method of manufacturing solid electrolytic capacitor |
CN103733286A (en) * | 2011-08-17 | 2014-04-16 | 三菱丽阳株式会社 | Solid electrolyte capacitor and method for producing same |
WO2013024532A1 (en) * | 2011-08-17 | 2013-02-21 | 三菱レイヨン株式会社 | Solid electrolyte capacitor and method for producing same |
JPWO2013024532A1 (en) * | 2011-08-17 | 2015-03-05 | 三菱レイヨン株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
CN103733286B (en) * | 2011-08-17 | 2017-02-08 | 三菱丽阳株式会社 | Solid electrolyte capacitor and method for producing same |
US9627144B2 (en) | 2011-08-17 | 2017-04-18 | Mitsubishi Rayon Co., Ltd. | Solid electrolytic capacitor and method for manufacturing same |
WO2017150407A1 (en) * | 2016-02-29 | 2017-09-08 | 出光興産株式会社 | Conductive polymer composition, conductive-polymer-containing porous body and manufacturing method therefor, and solid electrolytic capacitor and manufacturing method therefor |
JPWO2017150407A1 (en) * | 2016-02-29 | 2018-12-20 | 出光興産株式会社 | Conductive polymer composition, conductive polymer-containing porous body and method for producing the same, solid electrolytic capacitor and method for producing the same |
US10975200B2 (en) | 2016-02-29 | 2021-04-13 | Idemitsu Kosan Co., Ltd. | Conductive polymer composition, conductive-polymer-containing porous body and manufacturing method therefor, and solid electrolytic capacitor and manufacturing method therefor |
CN106206018A (en) * | 2016-06-27 | 2016-12-07 | 中国振华(集团)新云电子元器件有限责任公司 | A kind of electrolysis condenser is electrochemically formed device systems |
Also Published As
Publication number | Publication date |
---|---|
JP3087654B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0159127B1 (en) | Solid electrolytic capacitor and process for production thereof | |
KR100473098B1 (en) | Solid electrolytic capacitor and method for preparing the same | |
US5972052A (en) | Fabrication method of solid electrolytic capacitor | |
JP3157748B2 (en) | Solid electrolytic capacitor using conductive polymer and method for manufacturing the same | |
US6361572B1 (en) | Method of making an electrolytic capacitor having a conductive polymer formed on the inner surface of micropores of the anodes | |
JPH07135126A (en) | Solid electrolytic capacitor and its manufacture | |
JP3202668B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0794368A (en) | Solid electrolytic capacitor and manufacture thereof | |
KR100279098B1 (en) | Manufacturing method of solid electrolytic capacitor | |
EP1922739A1 (en) | Solid state capacitors and method of manufacturing them | |
JP3087654B2 (en) | Method for manufacturing solid electrolytic capacitor using conductive polymer | |
JP2765453B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3478987B2 (en) | Method for manufacturing solid electrolytic capacitor | |
KR100365370B1 (en) | Method for producing a solid electrolytic capacitor | |
JP2792469B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP2004186684A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
KR20010028273A (en) | Method of fabricating conducting polymer coatings on the metal oxide surface and electrolytic capacitors devices using the technique | |
TWI283877B (en) | Solid electrolytic capacitor and method for producing the same | |
JP2007281268A (en) | Solid electrolytic capacitor and its manufacturing method | |
JPH0434915A (en) | Manufacture of solid electrolytic capacitor | |
JP3416061B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP2006147900A (en) | Manufacturing method of solid electrolytic capacitor | |
JP4117727B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2007173454A (en) | Solid electrolytic capacitor | |
JP4947431B2 (en) | Solid electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000613 |
|
LAPS | Cancellation because of no payment of annual fees |