JPH10121368A - Inspection apparatus for woven fabric - Google Patents
Inspection apparatus for woven fabricInfo
- Publication number
- JPH10121368A JPH10121368A JP8272400A JP27240096A JPH10121368A JP H10121368 A JPH10121368 A JP H10121368A JP 8272400 A JP8272400 A JP 8272400A JP 27240096 A JP27240096 A JP 27240096A JP H10121368 A JPH10121368 A JP H10121368A
- Authority
- JP
- Japan
- Prior art keywords
- woven fabric
- image data
- image
- yarn
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002759 woven fabric Substances 0.000 title abstract description 50
- 238000007689 inspection Methods 0.000 title abstract description 48
- 230000007547 defect Effects 0.000 claims abstract description 49
- 239000004744 fabric Substances 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 abstract description 10
- 230000005856 abnormality Effects 0.000 abstract description 9
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 40
- 238000009941 weaving Methods 0.000 description 13
- 238000000605 extraction Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06H—MARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
- D06H3/00—Inspecting textile materials
- D06H3/08—Inspecting textile materials by photo-electric or television means
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06H—MARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
- D06H2201/00—Inspecting textile materials
- D06H2201/10—Inspecting textile materials by means of television equipment
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Treatment Of Fiber Materials (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、織布の検反装置に
関し、特に、製織中の織布または織上がった織布の欠陥
の有無を自動検査するための織布の検反装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a woven cloth inspection apparatus, and more particularly to a woven cloth inspection apparatus for automatically inspecting a woven cloth during weaving or a woven cloth for defects.
【0002】[0002]
【従来の技術】従来、織布の外観を検査する装置または
方法として、カメラにより織布表面の画像を撮像し、そ
の撮像結果から得られる画像濃淡データをしきい値と比
較して外観の異常を検出する検反装置や、レーザ光を織
布に照射し、その反射光または透過光を受光素子によっ
て受光し、その受光量のレベルとしきい値とを比較して
異常を検出する自動検反方法等が知られている。しか
し、この検反装置や検反方法で検知できる欠陥は、人が
目視で簡単に判定できるような糸抜け等の比較的大きな
欠陥に限られるという問題点があった。また、振動や外
乱等で検知精度が大きく低下するという問題点もあっ
た。2. Description of the Related Art Conventionally, as an apparatus or a method for inspecting the appearance of a woven fabric, an image of the surface of the woven fabric is taken by a camera, and image density data obtained from the taken image is compared with a threshold value to detect abnormalities in the appearance. An automatic inspection system that irradiates a woven cloth with laser light, receives the reflected light or transmitted light with a light-receiving element, compares the level of the received light amount with a threshold value, and detects an abnormality Methods and the like are known. However, the defect that can be detected by the inspection apparatus or the inspection method is limited to a relatively large defect such as a thread drop that can be easily determined visually by a person. There is also a problem that the detection accuracy is greatly reduced due to vibration, disturbance, or the like.
【0003】検知精度を向上させる方法として、たとえ
ば、特開平4−148852号公報に開示された発明が
ある。この発明には、光源から織布に照射されて透過す
る光を、検査対象の糸方向に配置された光学スリットを
介して受光素子により受光し、受光波形と基準波形との
比較から異常を検出する方法が開示されている。この方
法は、光を透過する部分、すなわち抽出された織布開口
部の特徴量をもとに欠陥の有無を判定しようとするもの
である。As a method for improving the detection accuracy, there is an invention disclosed in Japanese Patent Application Laid-Open No. 4-148852, for example. According to the present invention, light transmitted from a light source irradiating a woven fabric is received by a light receiving element through an optical slit arranged in a yarn direction of an inspection target, and abnormality is detected by comparing a received light waveform with a reference waveform. A method for doing so is disclosed. In this method, the presence or absence of a defect is determined based on the characteristic amount of the light transmitting portion, that is, the extracted woven fabric opening.
【0004】また、特開平3−249243号公報にお
いては、受光センサを2対の公知の櫛形とし、両者の出
力の差分値と予め設定したしきい値との比較から異常を
検出する方法が開示されている。この方法では、2対の
櫛形受光センサに織布狭領域を2分割した濃淡情報が反
映されるため、振動や外乱光があっても、両者の差分値
出力により相殺される効果がある。Japanese Patent Application Laid-Open No. 3-249243 discloses a method in which two pairs of known comb-shaped light-receiving sensors are used, and an abnormality is detected by comparing a difference between the outputs of the two with a preset threshold value. Have been. In this method, since the density information obtained by dividing the woven cloth narrow region into two is reflected on the two pairs of comb-shaped light receiving sensors, even if there is vibration or disturbance light, there is an effect that the difference value output between the two cancels out.
【0005】目視で行なう検査と同等の精度を確保する
ためには、従来の織布開口部の特徴検査に加えて、糸成
分そのものの特徴をも抽出する必要がある。たとえば、
経糸流込み欠陥のような欠陥に対しては目視検査では、
糸交絡点上の検査対象方向糸の上下関係の周期性の乱れ
から欠陥の有無が判定される。したがって、この欠陥を
機械的に検出しようとすると、糸交絡点座標上で経糸が
緯糸の上または下にある糸成分のみを抽出すればよいこ
とになる。この欠陥を画像処理によって検出するために
は、濃淡画像の2値化処理が不可欠であるが、従来の固
定2値化法では、緯糸の上または下にある経糸成分のみ
の抽出は対象部の濃度が均一でないため不可能であっ
た。[0005] In order to ensure the same accuracy as the inspection performed by visual inspection, it is necessary to extract the characteristic of the yarn component itself in addition to the conventional characteristic inspection of the woven fabric opening. For example,
Visual inspection for defects such as warp pouring defects
The presence / absence of a defect is determined from the disorder of the periodicity of the vertical relationship of the yarn to be inspected on the yarn interlacing point. Therefore, in order to mechanically detect this defect, it is only necessary to extract only the yarn component in which the warp is above or below the weft on the yarn interlacing point coordinates. In order to detect this defect by image processing, binarization processing of the grayscale image is indispensable. However, in the conventional fixed binarization method, extraction of only the warp component above or below the weft is not possible in the target portion. This was not possible because the concentration was not uniform.
【0006】本出願人は、上述した問題点を改善した織
布の検反装置を特願平7−198171号に開示してい
る。この発明は、透光手段により織布に照射した光をC
CD(Charge Coupled Device )素子にて撮像し、これ
によって得られた画像データをもとに織布情報(糸の密
度、糸の傾き、織組織等)を算出し、この織布情報から
得られた糸ピッチ幅を有する領域と、この糸ピッチ幅の
整数倍離れた位置の他の領域との画像データ全体にわた
る相関値に対して、設定されたしきい値との比較を行な
うことにより、織組織の異なる領域を経糸、緯糸の区別
なく、同一光学条件で織布の全幅に対して高精度に検出
するものである。The applicant of the present invention discloses a woven cloth inspection apparatus which solves the above-mentioned problems in Japanese Patent Application No. 7-198171. According to the present invention, the light illuminated on the woven
An image is taken by a CD (Charge Coupled Device) element, and woven fabric information (yarn density, yarn inclination, woven structure, etc.) is calculated based on the image data obtained by the imaging, and is obtained from this woven fabric information. By comparing the correlation value over the entire image data between the region having the thread pitch width and the other region located at an integer multiple of this thread pitch width with the set threshold value, In this method, regions having different structures are detected with high accuracy over the entire width of the woven fabric under the same optical conditions without distinguishing between warps and wefts.
【0007】[0007]
【発明が解決しようとする課題】上述した特開平4−1
48852号公報に開示された発明においては、たとえ
ば、経糸の流込み欠陥のように織布開口部が良品とあま
り変わらない欠陥の場合には欠陥が検知できず、検知精
度が著しく低下するという問題点があった。またこの方
法においては、織密度が一定でかつ光学スリットと検査
対象方向の糸とが平行であることが前提となる。しかし
ながら、実際の織布の織密度はさまざまなものが存在
し、その都度光学スリットの交換が必要となるという問
題点がある。また、実際の織上がりの糸、特に経糸は、
織布の両側部で湾曲しており上記条件が維持できず、検
知精度が低下するという問題点もある。SUMMARY OF THE INVENTION The above-mentioned JP-A-4-14-1
In the invention disclosed in Japanese Patent No. 48852, for example, in the case of a defect in which the opening portion of the woven fabric is not so different from a non-defective product, such as a defect in pouring a warp, the defect cannot be detected, and the detection accuracy is significantly reduced. There was a point. Further, in this method, it is assumed that the weave density is constant and the optical slit and the yarn in the inspection target direction are parallel. However, there are various woven densities of actual woven fabrics, and there is a problem that the optical slit needs to be replaced each time. Also, the actual woven yarn, especially the warp,
There is also a problem that the above conditions cannot be maintained due to the curvature at both sides of the woven fabric, and the detection accuracy is reduced.
【0008】また、特開平3−249243号公報に開
示された発明においては、特開平4−148852号公
報に開示された発明と同様に、抽出できる欠陥に制限が
ある点や織密度が変わったり、櫛形受光センサと検査対
象の糸との平行度が維持できないと検知精度は低下する
という問題点がある。In the invention disclosed in Japanese Patent Application Laid-Open No. 3-249243, similarly to the invention disclosed in Japanese Patent Application Laid-Open No. 4-148852, there are limitations on the defects that can be extracted and the density of the woven fabric changes. If the parallelism between the comb-shaped light receiving sensor and the yarn to be inspected cannot be maintained, there is a problem that the detection accuracy is reduced.
【0009】また、上述した発明はともに、同じセンサ
で経糸および緯糸の異常を同時に検出できないという問
題点もある。Further, both of the above-mentioned inventions have a problem that the same sensor cannot simultaneously detect the abnormality of the warp and the weft.
【0010】さらに、特願平7−198171号に開示
された発明においては、平織以外の朱子織や綾織といっ
た織組織の異なる織布の欠陥に対してはあまり効果がな
いことが認められている。Further, in the invention disclosed in Japanese Patent Application No. Hei 7-198171, it has been recognized that there is little effect on defects of woven fabrics having different woven structures such as satin weave and twill weave other than plain weave. .
【0011】本発明は、上記問題点を解決するためにな
されたものであり、請求項に記載の発明の目的は、織組
織に左右されず、同一光学条件で経糸異常および緯糸異
常を同時に高精度で検出でき、かつ、低コストで自動的
に検査が可能な織布の検反装置を提供することである。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the invention described in the claims is to simultaneously raise abnormalities of warp and weft simultaneously under the same optical conditions irrespective of the weaving structure. An object of the present invention is to provide a woven cloth inspection device capable of detecting with high accuracy and automatically inspecting at low cost.
【0012】[0012]
【課題を解決するための手段】請求項1に記載の発明
は、織布を撮像し、撮像された織布の画像データに基づ
いて織布の検査を行なうための織布の検反装置であっ
て、織布の画像データから織布の組織周期を算出するた
めの組織周期算出手段と、組織周期に基づいて画像デー
タの比較領域を設定するための比較領域設定手段と、比
較領域内の画像データから統計量を抽出し、統計量に基
づいて欠陥を抽出するための欠陥抽出手段とを含む。According to a first aspect of the present invention, there is provided a woven cloth inspection apparatus for imaging a woven cloth and inspecting the woven cloth based on image data of the woven cloth. A tissue cycle calculating means for calculating a tissue cycle of the woven fabric from the image data of the woven fabric; a comparison area setting means for setting a comparison area of the image data based on the tissue cycle; Defect extracting means for extracting a statistic from the image data and extracting a defect based on the statistic.
【0013】織布の組織周期を算出し、この組織周期に
基づいて画像データの比較領域を設定することによっ
て、織密度、織組織等の異なる複数の種類の織布の異常
を経糸または緯糸の区別なく、織布の全幅にわたって高
精度に異常を検出することが可能になる。By calculating the texture period of the woven fabric and setting the comparison area of the image data based on the texture period, abnormalities of a plurality of types of woven fabrics having different woven densities, woven textures, etc. can be detected by the warp or weft. Without distinction, it is possible to detect an abnormality with high accuracy over the entire width of the woven fabric.
【0014】[0014]
【発明の実施の形態】図1は、本発明の実施の形態にお
ける検反装置の概略ブロック図である。検反装置は、カ
メラレンズ3、CCDカメラ4、A/D変換器5、フレ
ームメモリ6、微分強調等の前処理加工を行なうための
前処理回路7、FFT(Fast FourierTransform)回路
8、検査対象糸を検査対象糸方向座標に濃度投影するた
めの濃度投影回路9、濃淡画像を2値化するための2値
化回路10、矩形領域内の2値画像にラベルリングを行
なうための結合情報統合化回路11、ラベルを付された
2値画像の各種特徴量を抽出するための特徴量抽出回路
12、中間周波数領域をカットするためのフィルタ回路
13、画像データに対して論理演算を行なうための画像
論理演算回路14、画像バス15、CPUバス16、C
PU(Central Proccessing Unit)17、ROM(Read
Only Memory)18、RAM(Random Access Memory)
19およびキーボードやディスプレイ等の入出力装置2
0を含む。FIG. 1 is a schematic block diagram of an inspection apparatus according to an embodiment of the present invention. The inspection apparatus includes a camera lens 3, a CCD camera 4, an A / D converter 5, a frame memory 6, a pre-processing circuit 7 for performing pre-processing such as differential emphasis, an FFT (Fast Fourier Transform) circuit 8, an inspection object. A density projection circuit 9 for density-projecting the yarn onto the coordinates of the yarn to be inspected, a binarization circuit 10 for binarizing the grayscale image, and integration of binding information for labeling the binary image in the rectangular area Circuit 11, a feature amount extraction circuit 12 for extracting various feature amounts of a labeled binary image, a filter circuit 13 for cutting an intermediate frequency region, and a logic operation on image data Image logic operation circuit 14, image bus 15, CPU bus 16, C
PU (Central Proccessing Unit) 17, ROM (Read
Only Memory) 18, RAM (Random Access Memory)
19 and input / output device 2 such as keyboard and display
Contains 0.
【0015】光源1から照射される光は、織布2の隙間
を透過し、カメラレンズ3で集光されてカメラ4内のC
CD素子に結像される。光源1は、透過方式または反射
方式のいずれでもよいが、糸交絡点の糸の上下像が鮮明
に撮像できる点と、欠陥の特徴を顕著に観察できる織布
開口部の撮像が容易な透過方式が好ましい。また、光源
1は、エリア型のCCDカメラを用いる場合は、面照度
の均一な散乱光が好ましい。ライン型のCCDカメラを
用いる場合、光源1の種類としては、半導体レーザ、H
eNeレーザ等をレンズを用いてスリット状に広げて照
射する光源や、ロッドレンズ側面からハロゲン光を入射
させ、ロッドに設けられた特殊なスリット状散乱塗料に
よりスリット状に照射される光源や、スリット状の光フ
ァイバ照明を用いてもよい。この中で、ロッドを使用し
た光源は幅方向の配向特性が均一でありかつ高い輝度を
得られる点で最も好ましい。本実施の形態では、エリア
型のCCDカメラを使用した例を示す。もし、織布が低
速度で走行されるという前提でライン型のCCDカメラ
を使用する場合は、図1に示すように、A/D変換器5
とフレームメモリ6との間に1次元画像データを2次元
画像データに変換するための1次元/2次元変換器30
を追加すればよい。The light emitted from the light source 1 passes through the gap between the woven fabrics 2, is condensed by the camera lens 3,
An image is formed on a CD element. The light source 1 may be either a transmission type or a reflection type. Is preferred. When an area-type CCD camera is used as the light source 1, scattered light having a uniform surface illuminance is preferable. When a line-type CCD camera is used, the type of the light source 1 is a semiconductor laser, H
A light source that emits eNe laser or the like in a slit shape using a lens, a light source that emits halogen light from the side of the rod lens, and is irradiated in a slit shape by a special slit-shaped scattering paint provided on the rod, or a slit. Fiber optic illumination may be used. Among them, a light source using a rod is the most preferable because it has uniform orientation characteristics in the width direction and can obtain high luminance. In this embodiment, an example in which an area type CCD camera is used will be described. If the line type CCD camera is used on the premise that the woven fabric is run at a low speed, the A / D converter 5 is used as shown in FIG.
One-dimensional / two-dimensional converter 30 for converting one-dimensional image data into two-dimensional image data between the image data and the frame memory 6
Should be added.
【0016】織布を透過する光量は特に限定されない
が、CCDの更新周期内で十分な電荷を蓄積できるレベ
ルの光量であれば特に問題はない。カメラレンズ3の拡
大倍率は、製品の織密度の中で最も細かな織密度を基準
に決定される。一般に、織布像拡大率の高い画像ほど欠
陥の抽出が容易な傾向にある。しかし、後述するよう
に、統計量が抽出される矩形領域のサイズは、織組織周
期に合わせる必要があるため、撮像した画像内に検査対
象方向の糸が少なくとも組織周期の糸数の倍の本数以上
あることが前提となる。The amount of light transmitted through the woven fabric is not particularly limited, but there is no particular problem as long as the amount of light is sufficient to accumulate sufficient charges within the CCD update cycle. The magnification of the camera lens 3 is determined based on the finest weaving density among the weaving densities of the product. In general, there is a tendency that the higher the woven cloth image magnification ratio, the easier the defect extraction is. However, as will be described later, since the size of the rectangular area from which the statistic is extracted needs to be adjusted to the weave tissue cycle, the number of yarns in the inspection target direction in the captured image is at least twice the number of yarns in the tissue cycle. It is assumed that there is.
【0017】CCDカメラ4で撮像された濃淡画像デー
タは、A/D変換器5によって8ビットのデジタル画像
データに変換された後、フレームメモリ6に格納され
る。上述したようにCCDカメラ4がライン型の場合に
は、1次元/2次元変換器30が1次元画像データを2
次元画像データに変換してフレームメモリ6に格納す
る。格納された画像データは、前処理回路7によって、
欠陥を効果的に抽出させるために、輪郭を強調するため
の微分強調等の前処理加工を行なう。前処理加工がされ
た画像から、後述する統計量が抽出される矩形領域のサ
イズを設定するために織組織周期が求められる。これ
は、以下の方式によって実現できる。The grayscale image data picked up by the CCD camera 4 is converted into 8-bit digital image data by an A / D converter 5 and then stored in a frame memory 6. As described above, when the CCD camera 4 is of a line type, the one-dimensional / two-dimensional converter 30 converts the one-dimensional image data into two.
The image data is converted into two-dimensional image data and stored in the frame memory 6. The stored image data is processed by the preprocessing circuit 7.
In order to effectively extract defects, pre-processing such as differential enhancement for enhancing the contour is performed. From the preprocessed image, the weave tissue period is determined in order to set the size of a rectangular area from which a statistic described later is extracted. This can be realized by the following method.
【0018】矩形領域の短軸は、検査対象となる糸に対
して垂直方向に設定される。この短軸の幅を最も小さい
値(同一光学条件において撮像される織布画像の中で、
最も検査対象糸密度の高い糸のピッチサイズに相当する
画素数)から順に比較領域の短軸方向の画素数を増やし
ながら、1対の比較領域(異なる領域に設定された同じ
大きさの2つの比較領域)内の画像データの相関値を求
める。求められた相関値の中で最大値となる短軸の幅が
織組織周期と一致することがわかった。この短軸の幅を
比較領域の短軸サイズとする。なお、組織周期を求める
方式は、濃淡画像ではなく2値画像に変換した後でおこ
なってもよい。また、たとえば、検査対象糸と垂直方向
の濃度波形の特徴を抽出して周期性を求める方式や、F
FTにおける周期性を求める方式でも織組織周期の算出
は可能であるが、方式は特に限定されるものではない。The short axis of the rectangular area is set in a direction perpendicular to the yarn to be inspected. The width of this short axis is set to the smallest value (in the woven cloth image captured under the same optical conditions,
While sequentially increasing the number of pixels in the short axis direction of the comparison area from the number of pixels corresponding to the pitch size of the yarn having the highest density of the inspection target yarn, a pair of comparison areas (two of the same size set in different areas) The correlation value of the image data in the comparison area) is obtained. It was found that the width of the short axis which became the maximum value in the obtained correlation values coincided with the weave tissue period. The width of the short axis is defined as the short axis size of the comparison area. Note that the method of obtaining the tissue cycle may be performed after conversion into a binary image instead of a grayscale image. Further, for example, a method of extracting a characteristic of a density waveform in a direction perpendicular to a yarn to be inspected to obtain a periodicity,
Although it is possible to calculate the weave tissue period by a method for obtaining the periodicity in the FT, the method is not particularly limited.
【0019】次に、検査対象糸方向の平均糸ピッチと平
均糸傾量を自動算出するために、濃度投影回路9におい
て検査対象糸方向座標に濃度投影(濃度加算処理)を行
い、1次元の濃度データを生成する。この濃度データに
対してFFT回路8によってフーリエ変換が行なわれ、
スペクトル最頻値の実数データと虚数データが求められ
る。この実数データと虚数データとから検査対象糸方向
の糸平均ピッチ(織密度)および傾き量が求められる。
なお、傾き量を求めるために、上述した処理を検査対象
方向の糸に対して画像領域を少なくとも2分割以上設定
して行ない、得られたそれぞれの虚数データ、すなわち
位相成分のデータをもとに平均法や、最小二乗法等によ
って傾き量を求める。Next, in order to automatically calculate the average yarn pitch and the average yarn inclination amount in the inspection target yarn direction, the density projection circuit 9 performs density projection (density addition processing) on the inspection target yarn direction coordinates and performs one-dimensional processing. Generate density data. Fourier transform is performed on the density data by the FFT circuit 8,
Real number data and imaginary number data of the spectrum mode are obtained. From the real number data and the imaginary number data, the average yarn pitch (weaving density) and the amount of inclination in the inspection target yarn direction are obtained.
In addition, in order to obtain the amount of inclination, the above-described processing is performed by setting the image area to at least two divisions for the yarn in the inspection target direction, and based on each obtained imaginary data, that is, data of the phase component. The amount of inclination is obtained by an averaging method, a least square method, or the like.
【0020】なお、高速フーリエ変換は、常時行なわれ
る必要はないため、CPU17によるソフト処理によっ
ても可能である。また、本方式は、糸抜け等の欠陥情報
が画像データに含まれる場合でも高精度に求められる利
点がある。The fast Fourier transform does not need to be performed at all times, and can be performed by software processing by the CPU 17. Further, this method has an advantage that it can be obtained with high accuracy even when defect information such as thread dropout is included in image data.
【0021】糸方向の算出法の他の方式として、たとえ
ば、検査対象糸垂直方向を微分してその輪郭を強調させ
た後、その軸波形のピーク値を追跡する方法や、ほぼ直
線上に並んだ多数の点列から、できるだけそれらの多く
を通る直線を決定するHough変換により、糸方向を求め
る手法等があるが、方式は特に限定されるものではな
い。Other methods of calculating the yarn direction include, for example, a method of differentiating the vertical direction of the yarn to be inspected to emphasize its contour, and then following the peak value of the axial waveform, or a method of arranging substantially linearly. There is a method of obtaining the yarn direction by Hough transform for determining a straight line passing through as many of these points as possible from a large number of point sequences, but the method is not particularly limited.
【0022】次に、画像データに対して2値化回路10
によって2値化処理が行なわれる。2値化は、検査方向
の糸成分の特徴量を抽出するために行なわれる。特に、
経糸の場合、緯糸との交絡点上の上または下にある成分
のみの抽出が必要となる。この処理を図2を参照しなが
ら説明する。Next, a binarizing circuit 10 for the image data
Performs a binarization process. The binarization is performed to extract the characteristic amount of the yarn component in the inspection direction. Especially,
In the case of warp, it is necessary to extract only the components above or below the point of intertwining with the weft. This processing will be described with reference to FIG.
【0023】まず、織布の切断部における画像データの
X軸方向の濃淡データを順に抽出して生波形を生成す
る。そして、生波形をフィルタ回路13を通すことによ
って、フィルタ波形が生成される。フィルタ回路13
は、予め求められた検査対象の糸方向の周期成分を含む
中間周波数領域をカットするためのバンドエリミネーシ
ョンフィルタである。フィルタ回路13を通して得られ
たフィルタ波形に若干のオフセット値を加えてしきい値
を求める。そして、生波形がしきい値より大きいか否か
によって切断部における画像データが2値化される。こ
の処理を切断部をY軸方向に走査しながら繰返すことに
よって第1の2値画像が生成される。同様に、切断部を
Y軸方向にとり、切断部における画像データを2値化し
X軸方向に走査しながら繰返すことによって第2の2値
画像が生成される。First, density data in the X-axis direction of image data at a cut portion of a woven fabric is sequentially extracted to generate a raw waveform. Then, the filter waveform is generated by passing the raw waveform through the filter circuit 13. Filter circuit 13
Is a band elimination filter for cutting an intermediate frequency region including a previously determined periodic component in the yarn direction to be inspected. A threshold value is obtained by adding a slight offset value to the filter waveform obtained through the filter circuit 13. Then, the image data at the cutting section is binarized depending on whether or not the raw waveform is larger than the threshold value. This process is repeated while scanning the cutting section in the Y-axis direction to generate a first binary image. Similarly, a second binary image is generated by taking the cut portion in the Y-axis direction, binarizing the image data at the cut portion, and repeating the scan while scanning in the X-axis direction.
【0024】第1の2値画像は経糸方向と垂直方向にフ
ィルタ処理されたものであるので、第1の2値画像は交
絡点上の緯糸の上にある経糸成分のみの2値画像が生成
される。また、第2の2値画像は、交絡点上の経糸の上
下を含んだ緯糸成分のみの2値画像が生成される。上述
した2値化法は、さらに、照明の変動、照度むら、織布
の局所的な織密度むら、または糸のつや違い等があって
も糸情報のみを確実に抽出できる利点がある。Since the first binary image has been subjected to the filtering process in the warp direction and the vertical direction, the first binary image is a binary image of only the warp component on the weft on the interlacing point. Is done. Further, as the second binary image, a binary image of only the weft component including the upper and lower portions of the warp on the intertwined point is generated. The above-described binarization method has an additional advantage that only the thread information can be reliably extracted even if there is variation in illumination, uneven illuminance, uneven weaving density of the woven fabric, or a difference in the level of yarn.
【0025】2値化後の画像の一例を図3(a)および
(b)に示す。上述した第1の2値画像および第2の2
値画像をもとに、後述する矩形領域処理を行なえば、織
布の欠陥情報が求まるが、経糸方向の2値画像は経糸が
緯糸の上から両隣の緯糸の下にもぐり込む中間の画像も
含まれる。この情報は、織布の欠陥抽出には不必要であ
るため、経糸の検査の場合、第1の2値画像と第2の2
値画像とを画像論理演算回路14によってAND論理演
算を行なうことにより、完全な交絡点上の緯糸上にある
経糸画像のみに変換できる。変換後の2値画像の一例を
図3(c)に示す。FIGS. 3A and 3B show an example of an image after binarization. The above-described first binary image and second binary image
If the rectangular area processing described later is performed based on the value image, defect information of the woven fabric can be obtained, but the binary image in the warp direction also includes an intermediate image in which the warp passes under the weft from above the weft. It is. Since this information is unnecessary for defect extraction of the woven fabric, in the case of the warp inspection, the first binary image and the second binary image are used.
By performing an AND logic operation on the value image and the image logic operation circuit 14, it is possible to convert only the warp image on the weft on the complete confounding point. An example of the converted binary image is shown in FIG.
【0026】求められた検査対象糸方向の組織周期と糸
方向とから統計量を抽出するための矩形領域が自動生成
される。織組織が平織の場合の矩形領域の一例を図4
(a)および(b)に示す。矩形領域の長軸方向の長さ
は特に限定するものではないが、糸抜け等の連続に発生
する欠陥に対しては長く設定するほど欠陥検知の精度は
向上する傾向にある。また、局所的に発生する毛羽等に
よる欠陥に対しては短い方が精度は向上する。長軸方向
の長さは、検査対象となる織布の特徴に合せて決定すれ
ばよく、検査中に長さを可変にして複数回同一処理を行
なってもよい。A rectangular area for automatically extracting a statistic from the obtained texture period and the yarn direction in the yarn direction to be inspected is automatically generated. FIG. 4 shows an example of a rectangular region when the weave structure is plain weave.
(A) and (b). Although the length of the rectangular area in the major axis direction is not particularly limited, the accuracy of defect detection tends to be improved as the length is set longer for continuously occurring defects such as thread dropout. In addition, the shorter the defect due to fluff or the like, the higher the accuracy. The length in the major axis direction may be determined according to the characteristics of the woven fabric to be inspected, and the same process may be performed a plurality of times while varying the length during the inspection.
【0027】矩形領域の設定方法は、図4(a)および
(b)に示すような隣接する1対の矩形領域(領域1=
A×H、領域2=B×H)に限定されるものではない。
すなわち、図4(c)に示すように、比較する矩形領域
を交互(領域1=A×H+C×H、領域2=B×H+D
×H)に設定してもよい。ただし、矩形領域の短軸方向
のサイズ(画素数)は、検査対象糸方向の糸の織組織周
期と一致することが前提である。このように矩形領域を
設定することで、織布の組織パターンがどのような形状
であっても同一の検査が可能となる。ただし、矩形領域
の長軸方向と検査対象糸方向との位相がずれると、欠陥
の検知精度は低下する。この問題を回避するために、上
述したように検査対象糸方向を自動算出し、矩形領域の
長軸方向を対象糸方向に追従させるか、または画像を対
象糸の傾き量だけ回転させ、矩形領域の長軸と検査対象
糸方向とを合わせる。これにより、たとえば、製織中の
織布の両側に生じる経糸の傾きやセンサ固定時の軸出し
ミスによる欠陥検知精度の低下を回避できる。A rectangular area is set by a method of setting a pair of adjacent rectangular areas (area 1 = one) as shown in FIGS.
A × H, region 2 = B × H).
That is, as shown in FIG. 4C, the rectangular areas to be compared are alternately changed (area 1 = A × H + C × H, area 2 = B × H + D
× H). However, it is premised that the size (the number of pixels) of the rectangular area in the short axis direction matches the weaving period of the yarn in the inspection target yarn direction. By setting the rectangular area in this manner, the same inspection can be performed regardless of the structure pattern of the woven fabric. However, if the phase of the long axis direction of the rectangular area is out of phase with the direction of the yarn to be inspected, the accuracy of defect detection is reduced. To avoid this problem, the direction of the yarn to be inspected is automatically calculated as described above, and the longitudinal direction of the rectangular region is made to follow the direction of the target yarn, or the image is rotated by the amount of inclination of the target yarn, and the rectangular region is rotated. Align the long axis of the target with the direction of the yarn to be inspected. As a result, it is possible to avoid a decrease in defect detection accuracy due to, for example, an inclination of the warp that occurs on both sides of the woven fabric during weaving and an error in centering when the sensor is fixed.
【0028】また、検査対象糸の平均密度を算出し、統
計値を算出するための矩形領域の長軸を自動的に最適化
することにより、織密度の異なる織布を検査する場合で
あっても光学条件を何ら調整することなく同一検査が行
なえる利点がある。さらに、隣接する矩形領域間の統計
量の比較処理の途中に、たとえば、検査中に光源の光量
が相対的に低下または上昇した場合であっても、これら
の影響は相殺される利点がある。ただし、ハレーション
を起こすような光が近くに存在する場合は、図1に示す
遮蔽板21を設置するとよい。In addition, in the case of inspecting woven fabrics having different woven densities, the average density of the yarn to be inspected is calculated, and the long axis of the rectangular area for calculating the statistical value is automatically optimized. This has the advantage that the same inspection can be performed without any adjustment of the optical conditions. Furthermore, even if the light amount of the light source relatively decreases or increases during the inspection, for example, during the process of comparing the statistics between adjacent rectangular areas, these effects are advantageously offset. However, in the case where light causing halation exists nearby, the shielding plate 21 shown in FIG. 1 may be provided.
【0029】結合情報統合化処理回路11は、矩形領域
内の2値画像のラベリングを行う。たとえば、図3
(c)に示す2値画像の場合、交絡点上の緯糸の上にあ
る経糸成分として抽出された2値画像のそれぞれに対し
てラベルが付される。そして、特徴量抽出回路12は、
矩形領域内の2値画像の特徴量(統計量)を抽出する。The combination information integration processing circuit 11 labels a binary image in a rectangular area. For example, FIG.
In the case of the binary image shown in (c), a label is attached to each of the binary images extracted as the warp components on the weft on the interlaced point. Then, the feature amount extraction circuit 12
The feature amount (statistical amount) of the binary image in the rectangular area is extracted.
【0030】矩形領域内の統計量としては、黒または白
の総画素数と、総ラベル数と、ラベルが付された各2値
画像の特徴量である面積、フィレ径、形状比、主軸角、
周囲長、または近接ラベル重心間距離等の最大値、平均
値もしくは最小値とであり、欠陥の抽出は、これら統計
量の差分値、画像パターン相関性または統計量と基準デ
ータとの比較によって行なう。ただし、画像パターン相
関性に関しては2値画像のみでなく元の濃淡画像で行な
ってもよい。また、フィレ径とは、ラベルを付された一
固まりの2値画像のX軸方向の投影部の長さとY軸方向
への投影部の長さを意味する。The statistics in the rectangular area include the total number of black or white pixels, the total number of labels, the area, fillet diameter, shape ratio, and principal axis angle, which are the characteristic amounts of each labeled binary image. ,
The maximum value, the average value, or the minimum value of the perimeter, the distance between the centers of gravity of the adjacent labels, and the like. The defect is extracted by comparing the difference value of these statistics, the image pattern correlation or the statistics with the reference data. . However, the image pattern correlation may be performed not only on the binary image but also on the original grayscale image. Further, the fillet diameter means the length of the projection part in the X-axis direction and the length of the projection part in the Y-axis direction of a group of labeled binary images.
【0031】図5(a)および(b)は、欠陥抽出の一
例を示す図である。(a)は、正常な織組織を示し、
(b)は2本通し違い欠陥の一例を示す。このような欠
陥は、従来の織布開口部の比較では抽出が困難である
が、図5に示すように、上述した2値化処理による2値
画像を矩形領域内で比較すると、(b)における左右の
矩形領域内の位置パターン整合性が全く異なる。すなわ
ち、交絡点上の緯糸の上にある経糸成分(図5中では黒
い四角形で表わされる)の位置パターンが全く異なって
いる。したがって、1対の矩形領域間のパターン整合性
を演算することで、簡単に織組織の欠陥が抽出できるこ
とがわかる。なお、欠陥の抽出は、上述した統計量をも
とにCPU17が行なう。演算結果は、入出力装置20
のディスプレイ等によって出力される。FIGS. 5A and 5B are diagrams showing an example of defect extraction. (A) shows normal woven tissue,
(B) shows an example of two crossover defects. Although it is difficult to extract such a defect by comparing the conventional woven fabric openings, as shown in FIG. 5, when the binary images obtained by the above-described binarization processing are compared in a rectangular area, (b) Are completely different in the position pattern consistency in the left and right rectangular regions. That is, the position patterns of the warp components (represented by black squares in FIG. 5) on the weft on the intertwining points are completely different. Therefore, it can be seen that by calculating the pattern consistency between a pair of rectangular regions, a defect in the woven tissue can be easily extracted. Note that the CPU 17 performs defect extraction based on the statistics described above. The calculation result is input / output device 20
Is output by a display or the like.
【0032】製織中の織布をインラインで検査する場
合、風綿等の異物が織布表面に付着する場合がある。従
来技術において説明したように、織布開口部の特徴量を
もとに欠陥の有無を比較する場合や、2対の近傍領域内
の濃度データの比較のみで欠陥を抽出しようとすると、
これらの異物を欠陥と誤判定してしまう。この問題を回
避するために、上述した統計量の総合比較、統計量と基
準値との比較を行なう。たとえば、透過方式の検査で、
異物がある場合、リード通し違いの経糸欠陥と異物によ
る欠陥とを上述した矩形領域間で比較すると、矩形領域
内の濃淡データの平均値である平均濃度値は明らかに異
なる。したがって、従来の演算方式に加えて、このよう
な統計量の比較を判定に加えることによって、欠陥と異
物等の外乱要素との分離が可能となる。なお、ここに示
した判定の際のパラメータとなる統計量は、特に限定さ
れるものではなく、対象欠陥で特異な特徴を示す統計量
を予め実験等で求めるか、インライン中にヒストグラム
を作成し、このヒストグラムによって対象欠陥の特徴を
求めるか、あるいはそれらを組合せて処理するとよい。
また、本方式は、同時に豊富な統計量の抽出ができるた
め、たとえば、ファジィ推論や重回帰分析等での欠陥の
識別も可能である。When the woven fabric during weaving is inspected in-line, foreign matter such as fly cotton may adhere to the surface of the woven fabric. As described in the related art, when comparing the presence or absence of a defect based on the feature amount of the woven fabric opening, or when trying to extract the defect only by comparing the density data in two pairs of neighboring areas,
These foreign substances are erroneously determined as defects. In order to avoid this problem, the above-described comprehensive comparison of the statistics and comparison between the statistics and the reference value are performed. For example, in a transmission inspection,
In the case where there is a foreign matter, when the warp defect caused by the wrong lead and the defect caused by the foreign matter are compared between the above-described rectangular areas, the average density value, which is the average value of the density data in the rectangular area, is clearly different. Therefore, by adding such a statistical comparison to the determination in addition to the conventional calculation method, it is possible to separate a defect from a disturbance element such as a foreign matter. The statistic serving as a parameter at the time of the determination shown here is not particularly limited, and a statistic indicating a unique feature of the target defect is obtained in advance by an experiment or the like, or a histogram is created in-line. The feature of the target defect may be obtained from the histogram, or may be processed in combination.
In addition, since the present method can simultaneously extract abundant statistics, it is also possible to identify defects by, for example, fuzzy inference or multiple regression analysis.
【0033】図6は、本実施の形態における織布の検反
装置の処理手順を示すフローチャートである。まず、C
CDカメラ4によって撮像された濃淡画像データが、A
/D変換器5によって8ビットのデジタル画像データに
変換された後、フレームメモリ6に取込まれる。その
際、CCDカメラ4がライン型であれば、1次元/2次
元変換器30によって1次元画像データが2次元画像デ
ータに変換された後、フレームメモリ6に取込まれる
(S1)。FIG. 6 is a flowchart showing a processing procedure of the woven cloth inspection device in this embodiment. First, C
The grayscale image data captured by the CD camera 4 is A
After being converted into 8-bit digital image data by the / D converter 5, it is taken into the frame memory 6. At this time, if the CCD camera 4 is a line type, the one-dimensional / two-dimensional converter 30 converts the one-dimensional image data into two-dimensional image data, and then takes in the frame memory 6 (S1).
【0034】次に、前処理回路7は、フレームメモリ6
に取込まれた濃淡画像データを読出して、画像の輪郭を
強調するための微分強調等の前処理加工を行なう(S
2)。CPU17は、前処理加工がなされた濃淡画像デ
ータに基づいて、上述した方式により検査対象糸の組織
周期を抽出する。また、濃度投影回路9によって濃淡画
像データが濃度投影された後、FFT回路8が濃度投影
された画像データに対してフーリエ変換することによっ
て糸方向が算出される(S3)。Next, the pre-processing circuit 7 includes the frame memory 6
Is read out and subjected to pre-processing such as differential enhancement for enhancing the outline of the image (S
2). The CPU 17 extracts the texture period of the inspection target yarn based on the pre-processed gray image data by the method described above. Further, after the density image data is density-projected by the density projection circuit 9, the thread direction is calculated by performing a Fourier transform on the density-projected image data by the FFT circuit 8 (S3).
【0035】2値化回路10は、濃淡画像データに対し
てフィルタ処理を行なうことによって、交絡点上の緯糸
の上にある経糸成分のみの2値画像(第1の2値画像)
を生成し(S4)、さらに交絡点上の経糸の上下を含ん
だ緯糸成分のみの2値画像(第2の2値画像)を生成す
る(S5)。The binarizing circuit 10 performs a filtering process on the grayscale image data, thereby forming a binary image (first binary image) of only the warp component on the weft on the interlaced point.
Is generated (S4), and a binary image (second binary image) of only the weft components including the upper and lower portions of the warp on the interlaced point is generated (S5).
【0036】画像論理演算回路14は、第1の2値画像
と第2の2値画像との演算を行ない、交絡点上の緯糸の
上にある経糸成分のみの2値画像、あるいは交絡点上の
経糸の上にある緯糸成分のみの2値画像である第3の2
値画像を生成する(S6)。The image logical operation circuit 14 performs an operation on the first binary image and the second binary image, and outputs a binary image of only the warp component on the weft on the interlaced point or the binary image on the interlaced point. 3rd binary image of only the weft component above the warp
A value image is generated (S6).
【0037】次に、CPU17は検査対象糸方向の組織
周期と糸方向とから、第3の2値画像に矩形領域を設定
する(S7)。特徴量抽出回路12は、設定された矩形
領域内の2値画像データから各種統計量を抽出する(S
8)。1対の矩形領域を設定した場合には、それぞれの
矩形領域の各種統計量を比較することによって欠陥の有
無を判定する。また、予め基準値が設定されている場合
には、矩形領域の各種統計量と基準値とを比較すること
によって欠陥の有無を判定する。Next, the CPU 17 sets a rectangular area in the third binary image based on the tissue cycle in the thread direction to be inspected and the thread direction (S7). The feature amount extraction circuit 12 extracts various statistics from the binary image data in the set rectangular area (S
8). When a pair of rectangular regions is set, the presence or absence of a defect is determined by comparing various statistics of each rectangular region. If a reference value has been set in advance, the presence or absence of a defect is determined by comparing various statistical quantities of the rectangular area with the reference value.
【0038】ステップS1において、取込まれた画像デ
ータのすべてについて検査が行なわれたか否かを判定す
る。検査が終了していなければ(S10,No)、第3
の2値画像に設定される矩形領域を検査対象糸方向と垂
直の方向にずらして設定する(S12)。そして、ステ
ップS8とS9との処理を繰返す。検査が終了していれ
ば(S10,Yes)、他の方向の検査対象糸の検査を
行なうか否かを判定する。検査を行なう場合(S11,
Yes)には、ステップS7以下の処理を繰返す。検査
を行なわない場合(S11,No)には、検査結果を入
出力装置20におけるディスプレイ等に出力する(S1
3)。In step S1, it is determined whether or not inspection has been performed on all of the captured image data. If the inspection is not completed (S10, No), the third
The rectangular area set in the binary image is shifted in the direction perpendicular to the direction of the yarn to be inspected (S12). Then, the processing of steps S8 and S9 is repeated. If the inspection has been completed (S10, Yes), it is determined whether or not to inspect the yarn to be inspected in another direction. When performing an inspection (S11,
In Yes), the processes in and after step S7 are repeated. When the inspection is not performed (S11, No), the inspection result is output to a display or the like of the input / output device 20 (S1).
3).
【0039】なお、全体の制御を行なうプログラムは、
ROM18に格納されている。織布の全幅を検査する場
合、センサを織布幅方向にトラバースするか複数個のセ
ンサを織布幅方向に等間隔に配置すればよい。The program for performing the overall control is as follows:
It is stored in the ROM 18. When inspecting the entire width of the woven fabric, the sensors may be traversed in the woven fabric width direction or a plurality of sensors may be arranged at equal intervals in the woven fabric width direction.
【0040】以上の説明では、製織中の織布のインライ
ン検査に関する処理についてであったが、織上がった織
布の自動検反に適用することも可能である。また、織布
以外の規則性のある特徴を持ったシートにも適用でき
る。In the above description, the processing relating to the in-line inspection of the woven fabric during weaving has been described, but the present invention can also be applied to automatic inspection of a woven fabric that has been woven. Further, the present invention can be applied to a sheet having regular characteristics other than the woven fabric.
【0041】図7は織機に本実施の形態における検反装
置を適用した場合を示す図である。製織中の織布2に対
して下から光源1を照射し、CCDカメラ4によって撮
像する。CCDカメラ4は移動軸40に沿って移動可能
となるよう取付けられる。FIG. 7 is a diagram showing a case where the inspection apparatus according to the present embodiment is applied to a loom. The light source 1 is irradiated from below onto the woven fabric 2 during weaving, and an image is taken by the CCD camera 4. The CCD camera 4 is mounted so as to be movable along a movement axis 40.
【0042】以上説明したように、本発明は検出が困難
であった織組織が異なる欠陥を確実に検出できるように
なった。また、織密度が変わったり、検査対象の糸方向
が変わっても、光学系の条件を全く変えることなく経糸
および緯糸同時に、かつ高精度に、欠陥の抽出が可能と
なった。さらに、豊富な統計量を抽出することによっ
て、表面付着物等の外乱要素と欠陥とを分離することが
可能となり、より精度の高い識別が可能となった。As described above, according to the present invention, it has become possible to reliably detect a defect having a different woven texture, which has been difficult to detect. Further, even if the weaving density changes or the yarn direction of the inspection object changes, the defect can be extracted simultaneously and with high accuracy without changing the conditions of the optical system at all. Further, by extracting abundant statistics, it is possible to separate a disturbance element such as a surface deposit from a defect, thereby enabling more accurate discrimination.
【図1】本発明の実施の形態における織布の検反装置の
概略ブロック図である。FIG. 1 is a schematic block diagram of a woven cloth inspection device according to an embodiment of the present invention.
【図2】2値化処理を説明するための生波形およびフィ
ルタ波形の一例を示す図である。FIG. 2 is a diagram showing an example of a raw waveform and a filter waveform for explaining a binarization process.
【図3】2値化処理および論理演算処理を説明するため
の2値画像の一例である。FIG. 3 is an example of a binary image for describing a binarization process and a logical operation process.
【図4】統計量を抽出するために設定される矩形領域を
説明するための図である。FIG. 4 is a diagram for explaining a rectangular area set for extracting a statistic;
【図5】正常な織組織および欠陥がある織組織の一例を
示す図である。FIG. 5 is a diagram showing an example of a normal woven structure and a defective woven structure.
【図6】本発明の実施の形態における織布の検反装置の
処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a processing procedure of the woven cloth inspection device according to the embodiment of the present invention.
【図7】織機に本実施の形態における検反装置を適用し
た場合を示す図である。FIG. 7 is a diagram illustrating a case where the inspection apparatus according to the present embodiment is applied to a loom;
1 光源 2 製織中の織布 3 光学レンズ 4 CCDカメラ 5 A/D変換器 6 フレームメモリ 7 前処理回路 8 FFT回路 9 濃度投影回路 10 2値化回路 11 結合情報統合化回路 12 特徴量抽出回路 13 フィルタ回路 14 画像論理演算回路 15 画像バス 16 CPUバス 17 CPU 18 ROM 19 RAM 20 入出力装置 21 遮蔽板 30 1次元/2次元変換器 Reference Signs List 1 light source 2 woven fabric during weaving 3 optical lens 4 CCD camera 5 A / D converter 6 frame memory 7 preprocessing circuit 8 FFT circuit 9 density projection circuit 10 binarization circuit 11 combination information integration circuit 12 feature amount extraction circuit Reference Signs List 13 filter circuit 14 image logic operation circuit 15 image bus 16 CPU bus 17 CPU 18 ROM 19 RAM 20 input / output device 21 shielding plate 30 one-dimensional / two-dimensional converter
Claims (1)
データに基づいて織布の検査を行なうための織布の検反
装置であって、 前記織布の画像データから織布の組織周期を算出するた
めの組織周期算出手段と、 前記組織周期に基づいて前記画像データの比較領域を設
定するための比較領域設定手段と、 前記比較領域内の画像データから統計量を抽出し、該統
計量に基づいて欠陥を抽出するための欠陥抽出手段とを
含む織布の検反装置。An apparatus for inspecting a woven cloth based on image data of a woven cloth taken from an image of the woven cloth, wherein the woven cloth is inspected based on the image data of the woven cloth. A tissue cycle calculating means for calculating a tissue cycle of; a comparison area setting means for setting a comparison area of the image data based on the tissue cycle; and extracting a statistic from the image data in the comparison area. And a defect extracting means for extracting a defect based on the statistic.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8272400A JP3013789B2 (en) | 1996-10-15 | 1996-10-15 | Woven cloth inspection device and inspection method |
TW086114360A TW381136B (en) | 1996-10-15 | 1997-10-02 | Inspecting apparatus |
KR1019970052225A KR100441313B1 (en) | 1996-10-15 | 1997-10-13 | Apparatus for inspecting a defect of textile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8272400A JP3013789B2 (en) | 1996-10-15 | 1996-10-15 | Woven cloth inspection device and inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10121368A true JPH10121368A (en) | 1998-05-12 |
JP3013789B2 JP3013789B2 (en) | 2000-02-28 |
Family
ID=17513379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8272400A Expired - Fee Related JP3013789B2 (en) | 1996-10-15 | 1996-10-15 | Woven cloth inspection device and inspection method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3013789B2 (en) |
KR (1) | KR100441313B1 (en) |
TW (1) | TW381136B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006058185A (en) * | 2004-08-20 | 2006-03-02 | Seiren Co Ltd | Filament inspection method and device |
JP2007132858A (en) * | 2005-11-11 | 2007-05-31 | Nippon Steel Corp | Haze detection method, apparatus, and computer program |
WO2008066129A1 (en) * | 2006-11-29 | 2008-06-05 | Sharp Kabushiki Kaisha | Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program |
JP2009002764A (en) * | 2007-06-21 | 2009-01-08 | Satake Corp | Nori appearance inspection method and apparatus |
JP2011137657A (en) * | 2009-12-25 | 2011-07-14 | Sharp Corp | Image processing method, image processing apparatus, program and recording medium |
CN104458759A (en) * | 2014-10-30 | 2015-03-25 | 东华大学 | Automatic cloth inspecting machine with grey level nonuniformity self-correcting system |
CN108303046A (en) * | 2018-02-05 | 2018-07-20 | 湖南省忘不了服饰有限公司 | A kind of detection method of woven fabric garment bottom sewing corrugation flatness |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020002494A (en) * | 2018-06-28 | 2020-01-09 | 株式会社豊田自動織機 | Stop mark inspection method for loom and stop mark inspection apparatus for loom |
TWI755801B (en) * | 2020-07-29 | 2022-02-21 | 台灣歐西瑪股份有限公司 | Knitted fabric inspection structure of fabric inspection machine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6293637A (en) * | 1985-10-21 | 1987-04-30 | Hitachi Ltd | Automatic inspection system |
JP2793845B2 (en) * | 1989-06-22 | 1998-09-03 | 津田駒工業株式会社 | Automatic inspection control device |
JPH0650906A (en) * | 1992-07-31 | 1994-02-25 | New Oji Paper Co Ltd | Online land total |
KR0141750B1 (en) * | 1995-06-13 | 1998-06-15 | 구자홍 | Tv system and controlling method by using the exclusive module gui |
-
1996
- 1996-10-15 JP JP8272400A patent/JP3013789B2/en not_active Expired - Fee Related
-
1997
- 1997-10-02 TW TW086114360A patent/TW381136B/en not_active IP Right Cessation
- 1997-10-13 KR KR1019970052225A patent/KR100441313B1/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006058185A (en) * | 2004-08-20 | 2006-03-02 | Seiren Co Ltd | Filament inspection method and device |
JP2007132858A (en) * | 2005-11-11 | 2007-05-31 | Nippon Steel Corp | Haze detection method, apparatus, and computer program |
WO2008066129A1 (en) * | 2006-11-29 | 2008-06-05 | Sharp Kabushiki Kaisha | Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program |
JP2009002764A (en) * | 2007-06-21 | 2009-01-08 | Satake Corp | Nori appearance inspection method and apparatus |
JP2011137657A (en) * | 2009-12-25 | 2011-07-14 | Sharp Corp | Image processing method, image processing apparatus, program and recording medium |
CN104458759A (en) * | 2014-10-30 | 2015-03-25 | 东华大学 | Automatic cloth inspecting machine with grey level nonuniformity self-correcting system |
CN108303046A (en) * | 2018-02-05 | 2018-07-20 | 湖南省忘不了服饰有限公司 | A kind of detection method of woven fabric garment bottom sewing corrugation flatness |
Also Published As
Publication number | Publication date |
---|---|
TW381136B (en) | 2000-02-01 |
KR100441313B1 (en) | 2004-11-16 |
JP3013789B2 (en) | 2000-02-28 |
KR19980032767A (en) | 1998-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kang et al. | Automatic recognition of fabric weave patterns by digital image analysis | |
US6753965B2 (en) | Defect detection system for quality assurance using automated visual inspection | |
Zhang et al. | Fabric defect detection and classification using image analysis | |
US10607333B2 (en) | Real-time, full web image processing method and system for web manufacturing supervision | |
CN108364291A (en) | Grey cloth rapid detection method based on computer vision technique | |
JP3063719B2 (en) | Woven cloth inspection equipment | |
Çelik et al. | Fabric defect detection using linear filtering and morphological operations | |
CN116309671B (en) | Geosynthetic fabric quality detection system | |
KR102445162B1 (en) | Fabric inspection system | |
JP3013789B2 (en) | Woven cloth inspection device and inspection method | |
CN113838038B (en) | Carbon fiber cloth cover defect detection method and device, electronic equipment and storage medium | |
CA2586672A1 (en) | Automatic judging device and automatic judging method | |
Sobirov et al. | Method of assessment of structural properties of knitted fabrics based on image analysis | |
CN115861310A (en) | Method for detecting spinning defects on surface of bed sheet | |
CN115524337A (en) | Cloth inspecting method based on machine vision | |
JP2800726B2 (en) | Woven cloth inspection equipment | |
JP2008089534A (en) | Method and device for inspecting fabric of carbon fiber | |
CN113610843A (en) | A real-time defect identification system and method for optical fiber braid | |
JP2003138468A (en) | Textile inspection equipment | |
JP2778531B2 (en) | Inspection equipment for long objects | |
JP2001194314A (en) | Device for inspecting long material | |
JP3013927B2 (en) | Woven cloth inspection equipment | |
JP3013928B2 (en) | Woven cloth inspection equipment | |
KR20090121612A (en) | Corrugated cardboard quality inspection automatic inspection method and device | |
JPH10123066A (en) | Singularity detection apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991116 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |