JP2800726B2 - Woven cloth inspection equipment - Google Patents
Woven cloth inspection equipmentInfo
- Publication number
- JP2800726B2 JP2800726B2 JP7198171A JP19817195A JP2800726B2 JP 2800726 B2 JP2800726 B2 JP 2800726B2 JP 7198171 A JP7198171 A JP 7198171A JP 19817195 A JP19817195 A JP 19817195A JP 2800726 B2 JP2800726 B2 JP 2800726B2
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- processing
- warp
- weft
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、製織中の織布又は
織り上がった織布やシート(本明細書において、単に
「織布」という。)の異常の有無を自動検査する検反装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for automatically inspecting a woven fabric during weaving or a woven fabric or sheet (hereinafter simply referred to as "woven fabric") for abnormalities. Things.
【0002】[0002]
【従来の技術】従来、織布の外観を検査する場合、カメ
ラにより織布表面の画像を撮像し、その撮像結果から得
られる画像濃淡データをしきい値と比較して外観の異常
を検出する検反方法や、レーザー光を織布に照射し、そ
の反射又は透過光を受光素子にて受光し、その受光量の
レベルとしきい値を比較して異常を検出する自動検反方
法が知られている。しかし、これらの検反方法により検
知できる織布の異常は、通常、人が目視で簡単に判定で
きるような糸抜け等の比較的大きな欠陥に限られるとと
もに、これらの検反方法は、振動や外乱等により検知精
度が大きく低下するという問題があった。2. Description of the Related Art Conventionally, when inspecting the appearance of a woven fabric, an image of the surface of the woven fabric is taken by a camera, and image density data obtained from the taken image is compared with a threshold value to detect an abnormality in the appearance. There is known an inspection method or an automatic inspection method in which a woven fabric is irradiated with a laser beam, the reflected or transmitted light is received by a light receiving element, and the level of the received light amount is compared with a threshold to detect an abnormality. ing. However, the abnormalities of the woven fabric that can be detected by these inspection methods are usually limited to relatively large defects such as thread dropouts that can be easily visually determined by a person. There has been a problem that detection accuracy is greatly reduced due to disturbance or the like.
【0003】検知精度を向上させる目的で、光源から織
布に照射して透過する光を、検査対象の糸方向に配置し
た光学スリットを介して受光し、受光波形と基準波形と
の比較から異常を検出する方法が提案されている(特開
平4−148852号公報参照)。この方法は、織布の
織密度が一定で、かつ光学スリットの方向と検査対象の
糸が平行であることが前提となるが、実際の織布の織密
度は一定でなく、織布の種類によって、その都度光学ス
リットの交換が必要となり、また、実際の織布の糸、こ
のうち特に経糸は、湾曲しており、上記条件を満たさ
ず、このため、検知精度が低下するという問題点を有し
ていた。また、受光センサーに2対の櫛形受光センサー
を用い、両者の出力の差分値と予め設定されたしきい値
との比較から異常を検出する方法が提案されている(特
開平3−249243号公報参照)。この方法は、2対
の櫛形受光センサーに織布の狭処理領域を2分割した濃
淡情報が反映されるため、振動や外乱光があっても、両
者の差分値出力により相殺される効果がある。しかしな
がら、この方法も、上記方法と同様に、織布の織密度が
変わったり、櫛形受光センサーの方向と検査対象の糸の
平行度が維持できないと検知精度が低下するという問題
点を有していた。また、上記2つの方法は、共に、同じ
センサーで経糸、緯糸の異常を検知できないという問題
を有していた。In order to improve the detection accuracy, light transmitted from the light source to the woven fabric by irradiating the woven cloth is received through an optical slit arranged in the direction of the yarn to be inspected. Has been proposed (see JP-A-4-148852). This method is based on the premise that the woven density of the woven cloth is constant and the direction of the optical slit is parallel to the yarn to be inspected. Therefore, it is necessary to replace the optical slit each time, and the actual yarn of the woven fabric, especially the warp, is curved and does not satisfy the above-mentioned conditions, so that the detection accuracy is reduced. Had. In addition, a method has been proposed in which two pairs of comb-shaped light receiving sensors are used as light receiving sensors, and an abnormality is detected by comparing a difference value between the outputs of the two and a preset threshold value (Japanese Patent Laid-Open No. 3-249243). reference). In this method, since the density information obtained by dividing the narrow processing region of the woven cloth into two is reflected on the two pairs of comb-shaped light receiving sensors, even if there is vibration or disturbance light, there is an effect that the difference value output between the two cancels out. . However, this method also has a problem that, similarly to the above method, the detection accuracy decreases if the weaving density of the woven fabric changes or if the parallelism between the direction of the comb-shaped light receiving sensor and the yarn to be inspected cannot be maintained. Was. In addition, both of the above two methods have a problem that the same sensor cannot detect the abnormality of the warp and the weft.
【0004】[0004]
【発明が解決しようとする課題】上述のとおり、従来の
技術では、織密度の異なる複数種類の織布を同一の光学
条件で、かつ経糸、緯糸の区別なく、全幅に亘って異常
を高精度に検出することは困難であった。As described above, in the prior art, a plurality of types of woven fabrics having different weaving densities can be accurately detected over the entire width under the same optical conditions and without distinction between warp and weft. Was difficult to detect.
【0005】本発明は、織密度に左右されず、同一の光
学条件で、経糸異常、緯糸異常を同時に、かつ高精度に
検出することができる織布の自動検反装置を提供するこ
とを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide an automatic woven cloth inspection device capable of detecting a warp abnormality and a weft abnormality simultaneously and with high accuracy under the same optical conditions without being influenced by the weaving density. And
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、少なくとも被撮像領域の織布に対して光
を照射する投光手段と、織布から透過又は反射する光を
集光し、CCD素子にて撮像する撮像手段と、撮像手段
から出力されたアナログ信号をデジタル信号に変換し、
この画像データを基に画像エリア内に設定した複数の処
理領域毎の画像データを自動生成し、この画像データを
統計値に加工し、この複数の処理領域間の統計値の比較
及び予め設定したしきい値との比較を行うことにより織
布の異常の有無を判定する画像処理手段とを備えること
により、織布を撮像し、画像情報から検反情報を取り出
す織布の検反装置において、処理領域を、経糸異常検査
の場合、長軸を経糸方向に、緯糸異常検査の場合、長軸
を緯糸方向に平行に設定し、短軸を経糸又は緯糸のピッ
チ又はその整数倍とした矩形に設定し、この矩形の処理
領域を、画像エリア内に、経糸異常検査の場合、経糸と
垂直方向に、緯糸異常検査の場合、緯糸と垂直方向に、
同じサイズで隣接して複数個設けることを特徴とする。To achieve the above object, the present invention provides a light projecting means for irradiating at least a woven cloth in a region to be imaged, and a collecting means for transmitting or reflecting light from the woven cloth. An imaging unit that emits light and captures an image with a CCD element, and converts an analog signal output from the imaging unit into a digital signal,
Based on this image data, image data for each of a plurality of processing areas set in the image area is automatically generated, this image data is processed into a statistical value, and the statistical value between the plurality of processing areas is compared and set in advance. By providing an image processing means for determining the presence or absence of abnormality in the woven fabric by performing comparison with a threshold value, in a woven fabric inspection device that takes an image of the woven fabric and extracts inspection information from image information, In the case of the warp abnormality inspection, the processing area is set to a rectangle in which the long axis is set in the warp direction, and in the case of the weft abnormality inspection, the long axis is set in parallel to the weft direction, and the short axis is the pitch of the warp or the weft or an integer multiple thereof. Set this rectangular processing area within the image area in the vertical direction with the warp in the case of the warp abnormality inspection, and in the vertical direction with the weft in the case of the weft abnormality inspection.
It is characterized in that a plurality of the same size are provided adjacent to each other.
【0007】この場合において、画像処理手段を、各処
理領域毎の画像データの統計値への加工、処理領域間の
統計値の比較及び予め設定したしきい値との比較、並び
に織布の異常の有無の判定を1サイクルとし、経糸異常
検査の場合、経糸と垂直方向に、緯糸異常検査の場合、
緯糸と垂直方向に、処理領域を順にシフトさせ、同じ処
理を画像エリア全体に対して行うものとすることができ
る。In this case, the image processing means processes the image data for each processing area into a statistical value, compares the statistical value between the processing areas, compares the statistical value with a preset threshold value, and detects abnormalities in the woven cloth. In the case of the warp abnormality inspection, in the vertical direction to the warp, in the case of the weft abnormality inspection,
The processing area can be shifted sequentially in the direction perpendicular to the weft, and the same processing can be performed on the entire image area.
【0008】[0008]
【作 用】本発明の織布の検反装置は、投光手段によっ
て被撮像領域の織布に対して光を照射し、織布から透過
又は反射する光を、撮像手段により、集光、撮像し、撮
像手段から出力されたアナログ信号を、画像処理手段に
より、デジタル信号に変換し、この画像データを基に画
像エリア内に設定した複数の処理領域毎の画像データを
自動生成し、この画像データを統計値に加工し、この複
数の処理領域間の統計値の比較及び予め設定したしきい
値との比較を行うことにより織布の異常の有無を判定す
ることにより、1つの光学系で、織密度の異なる複数種
類の織布の異常を、経糸、緯糸の区別なく、全幅に亘っ
て、高精度に検出することが可能となる。The woven cloth inspection device of the present invention irradiates light to the woven cloth in the imaging area by the light emitting means, and condenses and transmits light transmitted or reflected from the woven cloth by the imaging means. The analog signal output from the imaging unit is captured and converted into a digital signal by the image processing unit, and image data is automatically generated for each of a plurality of processing regions set in the image area based on the image data. By processing the image data into statistical values, comparing the statistical values among the plurality of processing regions and comparing the statistical values with a preset threshold value to determine the presence or absence of abnormality in the woven fabric, one optical system Thus, abnormalities of a plurality of types of woven fabrics having different woven densities can be detected with high accuracy over the entire width without distinction between warp and weft.
【0009】また、経糸又は緯糸の方向を事前に認識さ
せ、処理領域を、経糸異常検査の場合、長軸を経糸方向
に、緯糸異常検査の場合、長軸を緯糸方向に平行に設定
し、短軸を経糸又は緯糸のピッチ又はその整数倍とした
矩形に設定し、この矩形の処理領域を、画像エリア内
に、経糸異常検査の場合、経糸と垂直方向に、緯糸異常
検査の場合、緯糸と垂直方向に、同じサイズで隣接して
複数個設け、矩形領域を対象とする方向に追従させるこ
とにより、糸方向が必ずしも織布中央部と同一でない織
布側部の検査もでき、織布の異常をより高精度に検出す
ることが可能となる。In addition, the direction of the warp or the weft is recognized in advance, and the processing area is set so that the major axis is in the warp direction in the case of the warp abnormality inspection and the major axis is in parallel with the weft direction in the case of the weft abnormality inspection. The short axis is set to a rectangle with the pitch of the warp or weft or an integer multiple thereof, and this rectangular processing area is set in the image area in the vertical direction with the warp in the case of the warp abnormality inspection, and the weft in the case of the weft abnormality inspection. In the direction perpendicular to the woven fabric, a plurality of the woven fabrics are provided adjacent to each other with the same size and follow the direction targeted for the rectangular area. Can be detected with higher accuracy.
【0010】また、画像処理手段を、各処理領域毎の画
像データの統計値への加工、処理領域間の統計値の比較
及び予め設定したしきい値との比較、並びに織布の異常
の有無の判定を1サイクルとし、経糸異常検査の場合、
経糸と垂直方向に、緯糸異常検査の場合、緯糸と垂直方
向に、処理領域を順にシフトさせ、同じ処理を画像エリ
ア全体に対して行うものとすることにより、織布の異常
を迅速に検出することが可能となる。[0010] The image processing means may be configured to process the image data for each processing area into a statistical value, compare the statistical value between the processing areas, compare it with a preset threshold value, and determine whether there is an abnormality in the woven fabric. In the case of a warp abnormality inspection,
In the case of the weft abnormality inspection in the vertical direction with the warp, the processing area is sequentially shifted in the vertical direction with the weft, and the same processing is performed on the entire image area, thereby quickly detecting the abnormality of the woven fabric. It becomes possible.
【0011】[0011]
【発明の実施の形態】以下、本発明の織布の検反装置の
実施の形態を図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a woven cloth inspection device according to the present invention will be described below with reference to the drawings.
【0012】図1に本発明の織布の検反装置の一実施例
の概略ブロック図を、図2に同外観斜視図を示す。光源
1から照射される光は、織布2の隙間を透過し、カメラ
のレンズ3で集光されて、カメラ4内のCCD素子に結
像される。FIG. 1 is a schematic block diagram of an embodiment of a woven cloth inspection device according to the present invention, and FIG. Light emitted from the light source 1 passes through a gap in the woven fabric 2, is condensed by a lens 3 of the camera, and is imaged on a CCD element in the camera 4.
【0013】光源1は、透過方式、反射方式のどちらで
もよいが、糸交路点の上下像が鮮明に撮像でき、欠陥の
特徴を顕著に観察できるように、織布2の隙間の撮像が
容易な透過方式が好ましい。また、本実施例では、カメ
ラ4に、一軸移動ステージ40に沿って移動するエリア
型のCCDカメラを使用しているため、光源1は、面照
度の均一な散乱光を用いることが好ましい。一方、ライ
ン型のCCDカメラを使用する場合、光源は、半導体レ
ーザ、HeーNeレーザをレンズを用いてスリット状に
広げて照射するようにした光源や、ロッドレンズ側面か
らハロゲン光を入射させ、ロッドレンズに設けた特殊な
スリット状散乱塗料によりスリット状に照射するように
した光源や、スリット状の光ファイバ照明を用いること
ができるが、このうち特に、幅方向の配向特性が均一で
あり、かつ高い輝度を得られるロッドレンズを使用した
光源が好ましい。なお、織布が定速度で移動している場
合に、ライン型のCCDカメラを使用するときは、図1
に示すように、A/D変換器5とフレームメモリ6の間
に一次元/二次元変換器30を追加すればよい。織布2
を透過する光量の指定は特にないが、CCDの更新周期
内で充分な電荷を蓄積できるレベルであれば問題はな
い。The light source 1 may be of either a transmission type or a reflection type. However, the light source 1 is used to image the gap of the woven cloth 2 so that the vertical image of the yarn intersection can be clearly captured and the feature of the defect can be observed remarkably. An easy transmission scheme is preferred. Further, in the present embodiment, since an area type CCD camera that moves along the uniaxial movement stage 40 is used as the camera 4, it is preferable that the light source 1 uses scattered light with uniform surface illuminance. On the other hand, when using a line-type CCD camera, the light source is a semiconductor laser, a light source that spreads a He-Ne laser into a slit shape using a lens, and irradiates a halogen light from the side of the rod lens, A light source configured to irradiate in a slit shape with a special slit-shaped scattering paint provided on a rod lens, or a slit-shaped optical fiber illumination can be used. Among them, particularly, the orientation characteristics in the width direction are uniform, A light source using a rod lens that can obtain high luminance is preferable. When a line-type CCD camera is used when the woven fabric is moving at a constant speed, FIG.
As shown in (1), a one-dimensional / two-dimensional converter 30 may be added between the A / D converter 5 and the frame memory 6. Woven cloth 2
There is no particular designation of the amount of light passing through the CCD, but there is no problem as long as sufficient charge can be accumulated within the update cycle of the CCD.
【0014】カメラのレンズ3の拡大倍率は、織布2の
織密度が最も細かなレベルを基準に決定する。一般に、
拡大倍率の高い画像ほど、欠陥の抽出が容易な傾向にあ
る。しかし、後述する統計値を演算する矩形の処理領域
の短軸サイズは、検査対象方向の糸ピッチ又はその整数
倍とする必要があるために、撮像した画像内に検査対象
方向の糸が少なくとも4本以上あることが前提となる。
また、後述する撮像した画像内の検査対象方向の糸本数
の自動算出の精度をも考慮すると、カメラ視野内の検査
対象方向の糸数が10〜50本の範囲で撮像できる拡大
倍率のレンズを用いることが好ましい。The magnification of the lens 3 of the camera is determined based on the level at which the weaving density of the woven fabric 2 is the finest. In general,
The higher the magnification, the easier the defect extraction tends to be. However, since the short axis size of the rectangular processing area for calculating the statistic value described later needs to be the yarn pitch in the inspection target direction or an integer multiple thereof, at least four yarns in the inspection target direction are included in the captured image. It is assumed that there are more than books.
Also, in consideration of the accuracy of the automatic calculation of the number of yarns in the inspection target direction in the captured image, which will be described later, a lens having an enlargement magnification capable of imaging in a range of 10 to 50 yarns in the inspection target direction in the camera field of view is used. Is preferred.
【0015】CCDカメラ4で撮像されたアナログ信号
からなる濃淡画像データを、A/D変換回路5で8bi
tのデジタル信号からなる画像データに加工した後、フ
レームメモリ6に格納する。格納されたフリーズ画像デ
ータは、前処理回路7にて、欠陥を効果的に抽出するた
めの微分強調等の前処理加工を行う。次に、検査対象方
向の糸ピッチを自動算出するために、濃度投影回路9に
て注目糸方向座標の濃度投影(濃度加算処理)を行い、
一次元の濃度データに加工する。また、データを基にF
FT回路8にてフーリエ変換し、周期的成分を抽出す
る。なお、フーリエ変換は、常時行う必要がないため
に、CPU15による処理も可能である。また、これら
の方式は、糸抜け等の欠情報が画像データに含まれる場
合でも高精度に求めることができる利点がある。A / D conversion circuit 5 converts the grayscale image data consisting of analog signals captured by CCD camera 4 into 8-bit data.
After processing into image data consisting of t digital signals, the image data is stored in the frame memory 6. The stored freeze image data is subjected to preprocessing such as differential emphasis by a preprocessing circuit 7 for effectively extracting defects. Next, in order to automatically calculate the yarn pitch in the inspection target direction, the density projection circuit 9 performs density projection (density addition processing) of the target thread direction coordinate,
Process into one-dimensional density data. In addition, F
Fourier transform is performed by the FT circuit 8 to extract a periodic component. The Fourier transform does not need to be performed at all times, so that the processing by the CPU 15 is also possible. Further, these methods have an advantage that even when missing information such as thread missing is included in image data, it can be obtained with high accuracy.
【0016】次に、画像データを2値化回路10にて2
値化処理を行い、2値化した画像データを基に、結合情
報統合化回路11にてデータの統合化処理を行う。この
データを基に、主軸角演算回路12にて主軸角を求め
る。この主軸角を精度よく求めるためには、事前に行う
前処理回路7での処理が、検査対象方向の糸方向と垂直
方向の微分強調処理であることが望ましい。また、主軸
角を求める方法としては、公知のHough変換がある
が、方式は特に指定するものではない。Next, the image data is converted into two
A binarization process is performed, and the integration information integration circuit 11 performs a data integration process based on the binarized image data. Based on this data, the main shaft angle calculation circuit 12 calculates the main shaft angle. In order to accurately obtain the principal axis angle, it is desirable that the processing in the pre-processing circuit 7 performed in advance is differential enhancement processing in the direction perpendicular to the yarn direction in the inspection target direction. As a method for obtaining the principal axis angle, there is a known Hough transform, but the method is not particularly specified.
【0017】求まった検査対象方向の糸ピッチと糸方向
から、統計値演算用の矩形の処理領域が自動生成され
る。その一例を、図3に示す。矩形の処理領域の長軸方
向のサイズは、特定されるものではないが、糸抜け等の
連続して発生する欠陥に対しては長く設定するほど欠陥
検知の精度は向上する傾向にあり、一方、局所的に発生
する毛羽等の欠陥に対しては短い方が好ましい。したが
って、長軸方向のサイズは、検査対象の特徴に合わせて
決定すればよく、計測中に長さを可変にして複数回同一
処理を行ってもよい。処理領域の設定方法は、図3
(a)、(b)に示すように、隣接する一対の矩形の領
域に限定するものでなく、図3(c)に示すように、比
較する領域を交互に設けてもよい。ただし、処理領域の
短軸方向のサイズ(画素数)は、検査対象方向の糸ピッ
チ又はその整数倍であることが前提となる。このように
処理領域を設定することで、例えば、処理領域の濃度加
算値の比較を行う場合、欠陥がないときには、比較値の
絶対値の差が最も小さくなり、欠陥があるときには、比
較値の絶対値の差が最も大きく現れる。ただし、矩形の
長軸方向と検査対象の糸方向との位相がずれると、欠陥
の検知精度は低下する。この問題を回避するために、上
述のとおり、検査対象の糸方向を自動的に算出し、矩形
の処理領域の長軸を検査対象の糸方向に追従させる。こ
れにより、例えば、製織中の織布の両側に生じる経糸の
傾きやカメラ固定時の軸出しミスによる検知精度の低下
を回避することができる。また、検査対象の糸の平均密
度を算出し、統計値算出用の矩形の処理領域を自動的に
最適化することにより、糸密度の異なる織布を検査する
場合でも、光学条件を何等調整することなく検査するこ
とができる。さらに、隣接する処理領域間の統計値の比
較処理を行うことにより、例えば、検査中に光源の光量
が相対的に低下、あるいは上昇した場合でも、それらの
影響を相殺することができる。なお、ハレーションを起
こすような迷い光が近くに存在する場合は、遮蔽板20
を設置するとよい。A rectangular processing area for statistical value calculation is automatically generated from the determined yarn pitch and yarn direction in the inspection target direction. An example is shown in FIG. Although the size of the rectangular processing region in the long axis direction is not specified, the accuracy of defect detection tends to be improved as the length is set longer for continuously occurring defects such as thread dropout. However, it is preferable that the defect be short for a locally generated defect such as fluff. Therefore, the size in the long axis direction may be determined according to the feature of the inspection object, and the same process may be performed a plurality of times while varying the length during measurement. The setting method of the processing area is shown in FIG.
As shown in FIGS. 3A and 3B, the present invention is not limited to a pair of adjacent rectangular regions, and regions to be compared may be alternately provided as shown in FIG. However, it is assumed that the size (the number of pixels) in the short axis direction of the processing region is the yarn pitch in the inspection target direction or an integral multiple thereof. By setting the processing area in this way, for example, when comparing the density addition values of the processing area, when there is no defect, the difference between the absolute values of the comparison values is the smallest, and when there is a defect, the difference of the comparison value is small. The difference between the absolute values appears largest. However, if the phase of the long axis direction of the rectangle is out of phase with the yarn direction of the inspection target, the accuracy of defect detection is reduced. In order to avoid this problem, as described above, the yarn direction of the inspection target is automatically calculated, and the long axis of the rectangular processing area is made to follow the yarn direction of the inspection target. Thereby, for example, it is possible to avoid a decrease in the detection accuracy due to an inclination of the warp that occurs on both sides of the woven fabric during weaving and an error in centering when the camera is fixed. In addition, by calculating the average density of the yarn to be inspected and automatically optimizing the rectangular processing area for calculating the statistic, even when inspecting woven fabrics having different yarn densities, any adjustment of the optical conditions is performed. Can be inspected without the need. Further, by performing the comparison processing of the statistical values between the adjacent processing regions, for example, even when the light amount of the light source relatively decreases or increases during the inspection, the influence thereof can be canceled. If stray light causing halation exists nearby, the shielding plate 20
Should be installed.
【0018】処理領域の統計値としては、濃度の標準偏
差値、平均値、中位置、最頻値、最大、最小値、分散
値、四分位範囲、加算値、分布の歪度、尖度、変動計数
等があり、欠陥の抽出は、この統計値の差分値、相関係
数、しきい値との比較により行う。なお、これらの統計
値の演算及び欠陥の抽出は、CPU15にて行う。ま
た、演算結果は、入出力回路18を通して出力される。The statistical values of the processing area include the standard deviation value of the density, the average value, the middle position, the mode value, the maximum value, the minimum value, the variance value, the interquartile range, the added value, the skewness of the distribution, and the kurtosis. , A variation count, and the like, and the defect is extracted by comparing the statistical value with a difference value, a correlation coefficient, and a threshold value. The calculation of these statistical values and the extraction of defects are performed by the CPU 15. The calculation result is output through the input / output circuit 18.
【0019】ところで、製織中の織り上がった織布をイ
ンラインで検査する場合、風綿等の異物が織布表面に付
着することがある。従来技術で指摘したように、もし単
純に画像の濃度値としきい値との比較や、2対の近傍領
域内の濃度加算値の比較のみで欠陥を抽出しようとする
と、これらの異物を欠陥と誤って判定してしまう。この
問題を回避するために、統計値の総合比較、しきい値と
の比較を行う。例えば、透過方式の検査の場合、異物が
あると、糸欠陥、例えば、ヘルド通し違いやリード通し
違い等の経糸欠点と異物とを上述の矩形の処理領域間で
比較すると、平均濃度値や濃度分布形状等は明らかに異
なる。したがって、従来の演算方式に加えて、このよう
な統計値の比較演算を判定に加えることで、欠陥と異物
等の外乱要素との分離ができる。なお、ここに示した判
定の際のパラメータとなる統計値は、特に限定するもの
でなく、対象欠点で特異な特徴を示す統計値を予め実験
等にて求め、それらを組み合わせて処理すればよい。ま
た、本方式は、同時に豊富な統計値の抽出ができるため
に、例えば、ファジー推論や重回帰分析等での欠陥の識
別も可能である。When the woven fabric being woven is inspected in-line, foreign matter such as fly cotton may adhere to the surface of the woven fabric. As pointed out in the prior art, if a defect is simply extracted by comparing the density value of an image with a threshold value or by comparing the density addition values in two pairs of neighboring areas, these foreign substances are regarded as defects. It will be judged incorrectly. In order to avoid this problem, comprehensive comparison of statistical values and comparison with threshold values are performed. For example, in the case of the transmission type inspection, if there is a foreign substance, a yarn defect, for example, a warp defect such as a wrong heald or a wrong lead, and the foreign substance are compared between the above-described rectangular processing areas. The distribution shape is obviously different. Therefore, by adding such a statistical comparison operation to the determination in addition to the conventional calculation method, it is possible to separate a defect from a disturbance element such as a foreign matter. In addition, the statistical value used as a parameter at the time of the determination shown here is not particularly limited, and a statistical value indicating a unique feature in the target defect may be obtained in advance by an experiment or the like, and may be processed by combining them. . Further, since the present method can simultaneously extract abundant statistical values, it is also possible to identify defects by, for example, fuzzy inference or multiple regression analysis.
【0020】図4は、本発明の一実施例の動作を説明す
るためのフローチャートである。取り込まれた画像の全
体を検査するために、一連の処理が完了した段階で、処
理領域を欠陥抽出に支障のない範囲の画素数だけ検査対
象糸方向と垂直軸にシフトさせて同じ処理を繰り返す。
経糸、緯糸異常を同時に検査する場合、上記一連の処理
を完了後、矩形の処理領域を次の対象とする糸方向に合
わせて同じ処理を行う。この場合、比較する統計値とし
きい値は、前者の場合と同じとは限らないため、その都
度、比較する統計値としきい値を設定し、同じ処理を行
う。なお、全体の制御を行うプログラムはROM16
に、また、統計値やしきい値はRAM17に格納するも
のとする。織布幅全体を検査する場合、本実施例に示す
ように、カメラ4を織布幅方向にトラバースするか、カ
メラを複数台、織布幅方向均一間隔に固定すればよい。
本実施例では、製織中の織布のインライン検査を示した
が、本発明は、製織中の織布のほか、織り上がった織布
や織布以外の規則性のある特徴をもったシート等の自動
検反に適用することができる。FIG. 4 is a flowchart for explaining the operation of one embodiment of the present invention. In order to inspect the entire captured image, at the stage when a series of processing is completed, the same processing is repeated by shifting the processing area by the number of pixels within a range that does not hinder defect extraction in the yarn direction to be inspected and the vertical axis. .
In the case of simultaneously inspecting for warp and weft abnormalities, after completing the above series of processing, the same processing is performed by adjusting the rectangular processing area to the next target yarn direction. In this case, the statistical value and the threshold value to be compared are not always the same as the former case, so that each time the statistical value and the threshold value to be compared are set and the same processing is performed. The program for controlling the whole is stored in the ROM 16
In addition, the statistic and the threshold are stored in the RAM 17. When inspecting the entire woven fabric width, as shown in this embodiment, the camera 4 may be traversed in the woven fabric width direction or a plurality of cameras may be fixed at uniform intervals in the woven fabric width direction.
In this embodiment, the in-line inspection of the woven fabric during weaving was shown. However, the present invention is not limited to the woven fabric during weaving, but also a woven fabric or a sheet having regular characteristics other than the woven fabric. Can be applied to automatic inspection.
【0021】[0021]
【発明の効果】請求項1記載の発明によれば、織密度の
異なる複数種類の織布の異常を、光学条件を変更するこ
となく、経糸、緯糸を同時に検知することが可能とな
り、また、豊富な抽出情報により、表面付着物等の外乱
要素と欠陥との分離、さらに欠陥の識別も行うことがで
きるとともに、糸の方向が必ずしも織布中央部と同一で
ない織布側部の検査もでき、織布の異常を高精度に検出
することができる。According to the first aspect of the present invention, it is possible to simultaneously detect the abnormality of a plurality of types of woven fabrics having different weaving densities without changing optical conditions, for the warp and the weft. With a wealth of extracted information, it is possible to separate defects from surface disturbances and other disturbance elements and defects, and to identify defects, as well as to inspect the side of the woven fabric where the yarn direction is not necessarily the same as the center of the woven fabric. In addition, abnormalities of the woven fabric can be detected with high accuracy.
【0022】請求項2記載の発明によれば、織布の異常
を迅速に検出することができる。According to the second aspect of the present invention, the abnormality of the woven fabric can be quickly detected.
【図1】本発明の一実施例の概略ブロック図である。FIG. 1 is a schematic block diagram of one embodiment of the present invention.
【図2】本発明の一実施例の外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of one embodiment of the present invention.
【図3】本発明の一実施例の統計値演算用の矩形処理領
域を説明するための図である。FIG. 3 is a diagram for explaining a rectangular processing area for calculating a statistical value according to one embodiment of the present invention;
【図4】本発明の一実施例の動作を説明するためのフロ
ーチャートである。FIG. 4 is a flowchart for explaining the operation of one embodiment of the present invention.
1 光源 2 織布 3 レンズ 4 CCDカメラ 5 A/D変換回路 6 フレームメモリ 7 画像前処理回路 8 FFT回路 9 画像濃度投影回路 10 画像2値化回路 11 画像結合情報統合化回路 12 主軸角演算回路 13 画像バス 14 CPUバス 15 CPU 16 ROM 17 RAM 18 入出力回路 20 遮蔽板 30 一次元/二次元変換器 40 一軸移動ステージ DESCRIPTION OF SYMBOLS 1 Light source 2 Woven cloth 3 Lens 4 CCD camera 5 A / D conversion circuit 6 Frame memory 7 Image preprocessing circuit 8 FFT circuit 9 Image density projection circuit 10 Image binarization circuit 11 Image combination information integration circuit 12 Main axis angle calculation circuit Reference Signs List 13 image bus 14 CPU bus 15 CPU 16 ROM 17 RAM 18 input / output circuit 20 shielding plate 30 one-dimensional / two-dimensional converter 40 one-axis moving stage
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/84 - 21/90 D06H 3/08 D06H 3/12Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/84-21/90 D06H 3/08 D06H 3/12
Claims (2)
を照射する投光手段と、織布から透過又は反射する光を
集光し、CCD素子にて撮像する撮像手段と、撮像手段
から出力されたアナログ信号をデジタル信号に変換し、
この画像データを基に画像エリア内に設定した複数の処
理領域毎の画像データを自動生成し、この画像データを
統計値に加工し、この複数の処理領域間の統計値の比較
及び予め設定したしきい値との比較を行うことにより織
布の異常の有無を判定する画像処理手段とを備えること
により、織布を撮像し、画像情報から検反情報を取り出
す織布の検反装置において、処理領域を、経糸異常検査
の場合、長軸を経糸方向に、緯糸異常検査の場合、長軸
を緯糸方向に平行に設定し、短軸を経糸又は緯糸のピッ
チ又はその整数倍とした矩形に設定し、この矩形の処理
領域を、画像エリア内に、経糸異常検査の場合、経糸と
垂直方向に、緯糸異常検査の場合、緯糸と垂直方向に、
同じサイズで隣接して複数個設けることを特徴とする織
布の検反装置。1. A light projecting means for irradiating light to at least a woven cloth in a region to be imaged, an imaging means for condensing light transmitted or reflected from the woven cloth, and imaging with a CCD element; Convert the output analog signal to a digital signal,
Based on this image data, image data for each of a plurality of processing areas set in the image area is automatically generated, this image data is processed into a statistical value, and the statistical value between the plurality of processing areas is compared and set in advance. By providing an image processing means for determining the presence or absence of abnormality in the woven fabric by performing comparison with a threshold value, in a woven fabric inspection device that takes an image of the woven fabric and extracts inspection information from image information, In the case of the warp abnormality inspection, the processing area is set to a rectangle in which the long axis is set in the warp direction, and in the case of the weft abnormality inspection, the long axis is set in parallel to the weft direction, and the short axis is the pitch of the warp or the weft or an integer multiple thereof. Set this rectangular processing area within the image area in the vertical direction with the warp in the case of the warp abnormality inspection, and in the vertical direction with the weft in the case of the weft abnormality inspection.
A woven cloth inspection device, wherein a plurality of woven cloth inspection devices are provided adjacent to each other with the same size.
像データの統計値への加工、処理領域間の統計値の比較
及び予め設定したしきい値との比較、並びに織布の異常
の有無の判定を1サイクルとし、経糸異常検査の場合、
経糸と垂直方向に、緯糸異常検査の場合、緯糸と垂直方
向に、処理領域を順にシフトさせ、同じ処理を画像エリ
ア全体に対して行うものであることを特徴とする請求項
1記載の織布の検反装置。2. The image processing means according to claim 1, wherein the processing of the image data for each processing area into a statistical value, a comparison of the statistical value between the processing areas, a comparison with a preset threshold value, and an abnormality of the woven fabric. The presence / absence determination is one cycle, and in the case of a warp abnormality inspection,
2. The woven fabric according to claim 1, wherein the processing area is sequentially shifted in a direction perpendicular to the warp and in a direction perpendicular to the weft in the case of the weft abnormality inspection, and the same processing is performed on the entire image area. Inspection equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7198171A JP2800726B2 (en) | 1995-07-10 | 1995-07-10 | Woven cloth inspection equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7198171A JP2800726B2 (en) | 1995-07-10 | 1995-07-10 | Woven cloth inspection equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0926400A JPH0926400A (en) | 1997-01-28 |
JP2800726B2 true JP2800726B2 (en) | 1998-09-21 |
Family
ID=16386658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7198171A Expired - Lifetime JP2800726B2 (en) | 1995-07-10 | 1995-07-10 | Woven cloth inspection equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2800726B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005050194A1 (en) * | 2003-11-21 | 2005-06-02 | Ralph Gregory Burke | A device for inspecting and controlling the density of a moving web of cloth in a production line |
JP2006275691A (en) * | 2005-03-29 | 2006-10-12 | Semiconductor Energy Lab Co Ltd | Inspection method and inspection device |
JP5531253B2 (en) * | 2009-04-22 | 2014-06-25 | シーシーエス株式会社 | Inspection system |
CN102288607A (en) * | 2011-06-20 | 2011-12-21 | 江南大学 | Woven fabric count detector based on digital microscope |
CN102288608A (en) * | 2011-06-20 | 2011-12-21 | 江南大学 | Novel method for automatically detecting density of woven fabric |
EP3063495A4 (en) * | 2013-10-31 | 2017-08-09 | 3M Innovative Properties Company | Multiscale uniformity analysis of a material |
CN104674440B (en) * | 2013-11-29 | 2016-05-04 | 北京中科远恒科技有限公司 | Recognition methods and the device of the weft yarn signal in air-jet loom |
CN107657613B (en) * | 2017-11-01 | 2024-07-19 | 江苏融汇建设集团有限公司 | Warp state detection device and working method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0192468A (en) * | 1986-08-20 | 1989-04-11 | Japan Small Business Corp | Cloth inspection apparatus using image processor |
JPH06288933A (en) * | 1993-03-31 | 1994-10-18 | Kawashima Textile Manuf Ltd | Method and device for detecting surface flaw of sheet or the like |
-
1995
- 1995-07-10 JP JP7198171A patent/JP2800726B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0926400A (en) | 1997-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6753965B2 (en) | Defect detection system for quality assurance using automated visual inspection | |
Sari-Sarraf et al. | Vision system for on-loom fabric inspection | |
JP6150248B2 (en) | Fabric defect inspection method and apparatus | |
JP4230566B2 (en) | Defect integration processing apparatus and defect integration processing method | |
US11788973B2 (en) | Defect inspection device and defect inspection method | |
JP3063719B2 (en) | Woven cloth inspection equipment | |
US20070286471A1 (en) | Auto Distinction System And Auto Distinction Method | |
JP2800726B2 (en) | Woven cloth inspection equipment | |
JPH11311510A (en) | Method and apparatus for inspection of very small uneven part | |
JP3013789B2 (en) | Woven cloth inspection device and inspection method | |
JP2001209798A (en) | Method and device for inspecting outward appearance | |
JP2001194314A (en) | Device for inspecting long material | |
KR101294967B1 (en) | Method and apparatus for detecting surface defect of round wired rod | |
JP2003156451A (en) | Defect detecting device | |
JP3013927B2 (en) | Woven cloth inspection equipment | |
KR100406399B1 (en) | A method of detecting defect on surface of a steel sheet | |
JP2778531B2 (en) | Inspection equipment for long objects | |
JP3013928B2 (en) | Woven cloth inspection equipment | |
JP2861338B2 (en) | Optical inspection equipment | |
JPH0933449A (en) | Apparatus for inspecting minute projection of sheet | |
JP2004125629A (en) | Defect detection apparatus | |
JP2001192963A (en) | Inspection device for sheet having tissue structure | |
JPH0429044A (en) | Inspecting method for long-sized structure | |
JPH0835939A (en) | Slight protrusion inspection device of sheet | |
TW202422049A (en) | Inspection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080710 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080710 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090710 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090710 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100710 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100710 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110710 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |