JPH10115476A - Heat transfer tube for condensation in tube - Google Patents
Heat transfer tube for condensation in tubeInfo
- Publication number
- JPH10115476A JPH10115476A JP26815896A JP26815896A JPH10115476A JP H10115476 A JPH10115476 A JP H10115476A JP 26815896 A JP26815896 A JP 26815896A JP 26815896 A JP26815896 A JP 26815896A JP H10115476 A JPH10115476 A JP H10115476A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- tube
- transfer tube
- condensation
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 57
- 230000005494 condensation Effects 0.000 title abstract description 23
- 238000009833 condensation Methods 0.000 title abstract description 23
- 239000003507 refrigerant Substances 0.000 claims description 27
- 230000000694 effects Effects 0.000 abstract description 8
- 239000007788 liquid Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【課題】 凝縮熱伝達率の向上を図る。
【解決手段】 伝熱管本体11の内面に形成した高さの
低いフィン12Aおよび高いフィン12Bによって伝熱
管本体11の管壁近傍の乱流効果が促進され、凝縮熱伝
達率が向上する。
(57) [Abstract] [Problem] To improve the heat transfer coefficient of condensation. SOLUTION: Low fins 12A and high fins 12B formed on the inner surface of a heat transfer tube main body 11 promote a turbulent flow effect near the tube wall of the heat transfer tube main body 11, thereby improving the condensation heat transfer rate.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱交換器に適用さ
れ、冷媒を管内で凝縮させて熱交換を行う管内凝縮用伝
熱管に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe condensing heat transfer tube applied to a heat exchanger and performing heat exchange by condensing a refrigerant in a pipe.
【0002】[0002]
【従来の技術】冷凍機,空気調和機,ヒートポンプ等に
おける熱交換器には、冷媒を伝熱管内に通し、その冷媒
を伝熱管内で凝縮させることにより必要な熱交換を行う
管内凝縮用伝熱管が使用されている。2. Description of the Related Art In a heat exchanger in a refrigerator, an air conditioner, a heat pump, or the like, a refrigerant is passed through a heat transfer tube, and the refrigerant is condensed in the heat transfer tube to perform necessary heat exchange to perform a necessary heat exchange. Heat tubes are used.
【0003】上記のような伝熱管の内面には、当初は平
滑なものであったが、熱力学的研究が進むにつれ、管の
内面は平滑なものより所定の凹凸を形成させた方が凝縮
熱伝達率が良くなることが分かり、最近では、伝熱管の
内面に連続した螺旋溝および螺旋フィンを形成したもの
が主流を占めるようになってきている(「熱設計ハンド
ブック」,大島耕一著,P572)。その一例を図5に示
す。[0003] The inner surface of the heat transfer tube as described above was initially smooth, but as the thermodynamics research progressed, the inner surface of the tube became more condensed if it had predetermined irregularities than the smooth surface. It has been found that the heat transfer coefficient is improved, and in recent years, those having continuous spiral grooves and spiral fins formed on the inner surface of the heat transfer tube have become the mainstream ("Thermal Design Handbook", written by Koichi Oshima, P572). An example is shown in FIG.
【0004】図5は従来の管内凝縮用伝熱管の要部を示
す図であり、同図(a) は縦断面図、同図(b) は横断面
図、同図(c) は同図(b) のA部拡大図である。なお、同
図においてβは管軸方向に対する角度(捩れ角)を示
す。この管内凝縮用伝熱管1は、伝熱管本体2の内面
に、連続した螺旋溝3および螺旋フィン4を形成したも
のである。このような螺旋溝3および螺旋フィン4を形
成することにより、管内の表面積が大きくなり、熱伝達
面積が増大する。また、それだけでなく、管内で冷媒を
凝縮させて熱交換を行う場合、凝縮開始直後において
は、冷媒蒸気が螺旋溝3内で凝縮し、この凝縮した冷媒
液が管内全体の螺旋溝3内を螺旋溝3によりかき上げら
れながら流れる。また、管内が冷媒液で充満するまで
は、螺旋フィン4の先端が冷媒蒸気に接触しているた
め、ここでも冷媒蒸気の凝縮が進む。この結果、高い凝
縮熱伝達率が得られる。FIGS. 5 (a) and 5 (b) are views showing a main part of a conventional heat transfer tube for condensing heat in a pipe, wherein FIG. 5 (a) is a longitudinal sectional view, FIG. 5 (b) is a transverse sectional view, and FIG. It is the A section enlarged view of (b). In the drawing, β indicates an angle (twist angle) with respect to the tube axis direction. The in-pipe condensing heat transfer tube 1 has a continuous spiral groove 3 and spiral fins 4 formed on the inner surface of a heat transfer tube main body 2. By forming such spiral grooves 3 and spiral fins 4, the surface area inside the tube increases, and the heat transfer area increases. In addition, when heat is exchanged by condensing the refrigerant in the pipe, the refrigerant vapor condenses in the spiral groove 3 immediately after the condensation starts, and the condensed refrigerant liquid flows through the spiral groove 3 in the entire pipe. It flows while being lifted up by the spiral groove 3. Until the inside of the pipe is filled with the refrigerant liquid, the tip of the spiral fin 4 is in contact with the refrigerant vapor, so that the condensation of the refrigerant vapor also proceeds here. As a result, a high condensation heat transfer coefficient is obtained.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来の管内凝
縮用伝熱管1によると、伝熱管本体2の内面に螺旋溝3
および螺旋フィン4を形成しているだけの構造であるた
め、螺旋溝3内が冷媒液で充満すると、凝縮は冷媒液表
面にて行われ、凝縮直後に比べて凝縮熱伝達率は低下す
るという欠点がある。また、凝縮が進行すると、冷媒液
の液膜が厚くなり、冷媒液自体が熱抵抗となるため、凝
縮熱伝達率が更に低下してしまう。However, according to the conventional in-pipe condensing heat transfer tube 1, the spiral groove 3 is formed on the inner surface of the heat transfer tube main body 2.
And since it is a structure only forming the spiral fin 4, when the inside of the spiral groove 3 is filled with the refrigerant liquid, the condensation is performed on the surface of the refrigerant liquid, and the condensation heat transfer rate is lower than immediately after the condensation. There are drawbacks. Further, as the condensation progresses, the liquid film of the refrigerant liquid becomes thicker, and the refrigerant liquid itself becomes a heat resistor, so that the heat transfer coefficient of condensation is further reduced.
【0006】従って、本発明の目的は、凝縮熱伝達率の
向上を図った管内凝縮用伝熱管を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an in-pipe condensing heat transfer tube with an improved heat transfer coefficient of condensation.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に本発明は、冷媒を管内で凝縮させて熱交換を行う管内
凝縮用伝熱管において、管内面に管軸方向に対し所定の
角度を有して連続した所定の高さのフィンを形成すると
ともに、前記所定の高さのフィン間に連続した前記所定
の高さより高いフィンを形成したことを特徴とする管内
凝縮用伝熱管を提供する。伝熱管の性能は、凝縮開始後
の高い熱伝達率の部分だけでなく、冷媒蒸気がすべて冷
媒液に凝縮するまでの全体の性能で決定されるため、冷
媒液の液膜が厚くなった時の凝縮熱伝達率を向上させれ
ば、伝熱管の熱伝達性能は大幅に向上する。すなわち、
伝熱管の内面に、高さが一様な螺旋フィンのみを設けた
場合、凝縮した冷媒液はフィン間の螺旋溝内を流れ、こ
の流れが支配的となって管壁に沿った旋回流となり、冷
媒液の液膜が螺旋溝の深さよりも厚くなったときの管壁
近傍の乱流効果は小さい。しかし、本発明の上記構成の
ように高さの低いフィン間に高さの高いフィンを付加す
ると、その高いフィンの存在により、冷媒液の液膜が攪
拌され、凝縮熱伝達率を向上させることができる。ま
た、凝縮する前の冷媒蒸気においても、高いフィンによ
りに、管壁近傍で冷媒蒸気が攪拌され、管壁近傍の乱流
効果が促進され、凝縮熱伝達率を向上させることができ
る。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a heat transfer tube for condensing a refrigerant in a tube for heat exchange by forming a predetermined angle on the inner surface of the tube with respect to the axial direction of the tube. A heat transfer tube for condensing in a pipe, wherein fins having a predetermined height are formed continuously and fins having a height higher than the predetermined height are formed between the fins having the predetermined height. . The performance of the heat transfer tube is determined not only by the high heat transfer coefficient after the start of condensation but also by the overall performance until all of the refrigerant vapor condenses into the refrigerant liquid. If the condensation heat transfer coefficient is improved, the heat transfer performance of the heat transfer tube is greatly improved. That is,
If only spiral fins with a uniform height are provided on the inner surface of the heat transfer tube, the condensed refrigerant liquid flows in the spiral groove between the fins, and this flow becomes dominant and becomes a swirling flow along the tube wall. When the liquid film of the refrigerant liquid becomes thicker than the depth of the spiral groove, the turbulence effect near the pipe wall is small. However, when high fins are added between low fins as in the above configuration of the present invention, the liquid film of the refrigerant liquid is agitated due to the presence of the high fins, thereby improving the condensation heat transfer coefficient. Can be. Further, even in the refrigerant vapor before being condensed, the refrigerant fin is stirred near the tube wall by the high fins, the turbulence effect near the tube wall is promoted, and the heat transfer coefficient of condensation can be improved.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。図1は本発明の実施の形態
に係る管内凝縮用伝熱管の要部を示す断面図、図2は管
内面の詳細を示す斜視図である。この管内凝縮用伝熱管
10は、図1に示すように、伝熱管本体11の内面に、
例えば1〜30°の管軸方向に対する角度(捩れ角)β
を有する連続した所定の高さの螺旋フィン12Aを形成
するとともに、所定の高さの螺旋フィン12A間に連続
した上記所定の高さより高い螺旋フィン12Bを形成
し、図2に示すように、高い螺旋フィン12Bに切欠き
13を設けたものである。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a main part of a heat transfer tube for condensation in a tube according to an embodiment of the present invention, and FIG. 2 is a perspective view showing details of an inner surface of the tube. As shown in FIG. 1, the in-pipe condensing heat transfer tube 10 is provided on an inner surface of a heat transfer tube main body 11.
For example, an angle (torsion angle) β of 1 to 30 ° with respect to the tube axis direction
A continuous spiral fin 12A having a predetermined height is formed, and a continuous spiral fin 12B having a height higher than the predetermined height is formed between the spiral fins 12A having a predetermined height, as shown in FIG. A notch 13 is provided in the spiral fin 12B.
【0009】図3はこの伝熱管10の製造方法の一例を
示す図である。被加工管14を管軸方向へ移動させつ
つ、管周方向に回転する球状あるいはロール状の回転加
工部材15によって被加工管14を縮径するとともに、
軸16を中心に回転する内面溝付プラグ17によって所
定の捩れ角を持つ管内面溝を形成する。このような転造
加工により、図4に示すような連続した高さの低い螺旋
フィン12Aと連続した高さの高い螺旋フィン12Bと
を有する伝熱管10を成形する。次に、螺旋フィン12
A,12Bが形成された伝熱管10に再度、捩れ角の異
なる内面溝付プラグ(図示省略)により高い螺旋フィン
12Bのみに転造加工を行い、切欠き13を設ける。こ
のようにして図1,図2に示す伝熱管10を製造する。
なお、内面溝付プラグによる2回の転造加工は、軸16
に2種類の内面溝付プラグを取り付けて1回で行っても
よい。これにより、加工時間の短縮を図れる。FIG. 3 is a view showing an example of a method of manufacturing the heat transfer tube 10. As shown in FIG. While moving the processing pipe 14 in the pipe axis direction, the processing pipe 14 is reduced in diameter by a spherical or roll-shaped rotary processing member 15 rotating in the pipe circumferential direction,
An inner groove having a predetermined twist angle is formed by an inner groove grooved plug 17 which rotates about the shaft 16. By such a rolling process, the heat transfer tube 10 having the continuous low spiral fins 12A and the continuous high spiral fins 12B as shown in FIG. 4 is formed. Next, the spiral fin 12
The heat transfer tube 10 having the A and 12B formed therein is again subjected to rolling processing only on the high spiral fin 12B by an inner grooved plug (not shown) having a different twist angle, and a notch 13 is provided. Thus, the heat transfer tube 10 shown in FIGS. 1 and 2 is manufactured.
In addition, two rolling processes using the inner surface grooved plug are performed on the shaft 16.
May be performed once by attaching two types of plugs with internal grooves. Thereby, the processing time can be reduced.
【0010】上記のように構成された本伝熱管10によ
れば、以下の効果が得られる。伝熱管本体11の内面
に、高さが一様な螺旋フィン12のみを設けた場合、凝
縮した冷媒液は螺旋フィン12間の螺旋溝内を流れ、こ
の流れが支配的となって管壁に沿った旋回流となり、冷
媒液の液膜が螺旋溝の深さよりも厚くなったときの管壁
近傍の乱流効果は小さい。しかし、本発明に係る伝熱管
10のように、高さの低い螺旋フィン12A間に高さの
高い螺旋フィン12Bを付加すると、その高い螺旋フィ
ン12Bの存在により、冷媒液の液膜が攪拌され、凝縮
熱伝達率を向上させることができる。また、凝縮する前
の冷媒蒸気においても、高い螺旋フィン12Bにより、
伝熱管本体11の管壁近傍で冷媒蒸気が攪拌され、管壁
近傍の乱流効果が促進され、凝縮熱伝達率を向上させる
ことができる。この結果、凝縮器用伝熱管として優れた
性能を発揮することができる。According to the heat transfer tube 10 configured as described above, the following effects can be obtained. When only the spiral fins 12 having a uniform height are provided on the inner surface of the heat transfer tube main body 11, the condensed refrigerant liquid flows in the spiral grooves between the spiral fins 12, and this flow becomes dominant, and is formed on the tube wall. When the liquid film of the refrigerant liquid becomes thicker than the depth of the spiral groove, the effect of turbulence near the pipe wall is small. However, when the high spiral fin 12B is added between the low spiral fins 12A as in the heat transfer tube 10 according to the present invention, the liquid film of the refrigerant liquid is agitated due to the presence of the high spiral fin 12B. In addition, the condensing heat transfer coefficient can be improved. Further, even in the refrigerant vapor before being condensed, the high spiral fins 12B allow
The refrigerant vapor is stirred near the tube wall of the heat transfer tube main body 11, the turbulence effect near the tube wall is promoted, and the condensation heat transfer coefficient can be improved. As a result, excellent performance can be exhibited as a condenser heat transfer tube.
【0011】なお、本発明は、上記実施の形態に限定さ
れず、種々な実施の形態が可能である。例えば、上記実
施の形態では、凝縮性能を大幅に向上させ、凝縮用とし
て用いた場合について説明したが、蒸発性能は螺旋溝お
よび螺旋フィンのみを備えた従来の内面溝付管と同等で
あるので、蒸発用として用いてもよい。また、伝熱管本
体11の内面に捩れ角0°で連続した高さの低い複数の
フィンを形成し、これらの低いフィン間に高さの高い複
数のフィンを形成してもよい。これにより、上記実施の
形態と同様の効果が得られる。Note that the present invention is not limited to the above-described embodiment, and various embodiments are possible. For example, in the above embodiment, the case where the condensing performance is greatly improved and used for condensing has been described. However, since the evaporating performance is equivalent to a conventional inner grooved tube having only a spiral groove and a spiral fin, , For evaporation. Alternatively, a plurality of continuous low fins with a twist angle of 0 ° may be formed on the inner surface of the heat transfer tube main body 11, and a plurality of high fins may be formed between these low fins. Thereby, the same effect as in the above embodiment can be obtained.
【0012】[0012]
【発明の効果】以上説明した通り、本発明によれば、管
内面に形成するフィン間に高低差を設けることにより伝
熱管の管壁近傍の乱流効果が促進されるので、凝縮熱伝
達率の向上を図ることができる。As described above, according to the present invention, the turbulence effect in the vicinity of the tube wall of the heat transfer tube is promoted by providing a height difference between the fins formed on the inner surface of the tube. Can be improved.
【図1】本発明に係る管内凝縮用伝熱管の要部を示す縦
断面図FIG. 1 is a longitudinal sectional view showing a main part of a heat transfer tube for condensation in a tube according to the present invention.
【図2】本発明に係る管内凝縮用伝熱管の管内面の詳細
を示す斜視図FIG. 2 is a perspective view showing details of the inner surface of the heat transfer tube for condensation in a tube according to the present invention.
【図3】本発明に係る管内凝縮用伝熱管の製造方法の一
例を示す断面図FIG. 3 is a cross-sectional view showing an example of a method for manufacturing a heat transfer tube for condensation in a tube according to the present invention.
【図4】本発明に係る管内凝縮用伝熱管の製造方法の一
例を示す斜視図FIG. 4 is a perspective view showing an example of a method for manufacturing a heat transfer tube for condensation in a tube according to the present invention.
【図5】従来の管内凝縮用伝熱管の要部を示す図であ
り、同図(a) は縦断面図、同図(b) は横断面図、同図
(c) は同図(b) のA部拡大図FIG. 5 is a view showing a main part of a conventional heat transfer tube for condensing in a pipe, wherein FIG. 5 (a) is a longitudinal sectional view, FIG. 5 (b) is a transverse sectional view, and FIG.
(c) is an enlarged view of part A of Fig. (b)
10 管内凝縮用伝熱管 11 伝熱管本体 12A 高さの低いフィン 12B 高さの高いフィン 13 切欠き 14 被加工管 15 回転加工部材 16 軸 17 内面溝付プラグ β 管軸方向に対する角度(捩れ角) DESCRIPTION OF SYMBOLS 10 Condensation heat transfer tube in tube 11 Heat transfer tube main body 12A Low fin 12B High fin 13 Notch 14 Worked tube 15 Rotating member 16 Shaft 17 Plug with inner groove β Angle (twist angle) to tube axis direction
Claims (2)
凝縮用伝熱管において、 管内面に管軸方向に対し所定の角度を有して連続した所
定の高さのフィンを形成するとともに、前記所定の高さ
のフィン間に連続した前記所定の高さより高いフィンを
形成したことを特徴とする管内凝縮用伝熱管。An in-pipe condensing heat transfer tube for exchanging heat by condensing a refrigerant in a pipe, wherein a fin having a predetermined height continuous at a predetermined angle with respect to a pipe axis direction is formed on an inner surface of the pipe. And a fin having a height higher than the predetermined height which is continuous between the fins having the predetermined height.
請求項1記載の管内凝縮用伝熱管。2. The heat transfer tube according to claim 1, wherein the high fin has a notch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26815896A JPH10115476A (en) | 1996-10-09 | 1996-10-09 | Heat transfer tube for condensation in tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26815896A JPH10115476A (en) | 1996-10-09 | 1996-10-09 | Heat transfer tube for condensation in tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10115476A true JPH10115476A (en) | 1998-05-06 |
Family
ID=17454718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26815896A Pending JPH10115476A (en) | 1996-10-09 | 1996-10-09 | Heat transfer tube for condensation in tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10115476A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249484A (en) * | 2009-04-20 | 2010-11-04 | Mitsubishi Electric Corp | Heat exchanger and refrigerating cycle device |
CN102003907A (en) * | 2010-11-19 | 2011-04-06 | 高克联管件(上海)有限公司 | Heat transfer tube for improving tube bundle effect |
-
1996
- 1996-10-09 JP JP26815896A patent/JPH10115476A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010249484A (en) * | 2009-04-20 | 2010-11-04 | Mitsubishi Electric Corp | Heat exchanger and refrigerating cycle device |
CN102003907A (en) * | 2010-11-19 | 2011-04-06 | 高克联管件(上海)有限公司 | Heat transfer tube for improving tube bundle effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1228603C (en) | Heat transferring tube for downward flow fluid membrane distiller | |
EP0865838A1 (en) | A heat transfer tube and method of manufacturing same | |
JP4119836B2 (en) | Internal grooved heat transfer tube | |
JPH11148747A (en) | Heat transfer tube for evaporator of absorption refrigerator | |
JPH10115476A (en) | Heat transfer tube for condensation in tube | |
JP3480514B2 (en) | Heat transfer tube for falling film evaporator | |
JPH09101093A (en) | Heat transfer tube with internal groove | |
JP2003240485A (en) | Heat transfer tube with internal groove | |
JP2785851B2 (en) | Heat exchanger tubes for heat exchangers | |
JP3592149B2 (en) | Internal grooved tube | |
JP2001153580A (en) | Heat transfer pipe | |
JPH0579783A (en) | Heat transfer tube with internal groove | |
JP3494625B2 (en) | Internal grooved heat transfer tube | |
JPH10115495A (en) | Heat transfer tube for condensation in tube | |
JP2002350080A (en) | Heat transfer tube with inner groove | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JPH08136178A (en) | Heat transfer tube for heat exchanger and manufacture thereof | |
JP3743330B2 (en) | Manufacturing method of internally grooved tube | |
CN208108902U (en) | Half annular knurl finned condensation pipe | |
JPH08233480A (en) | Heat transfer tube with inner surface groove | |
JPH0849992A (en) | Heat transfer tube with internal groove | |
JPH02137609A (en) | Heat exchanger tube for condensing inside the tube and its manufacturing method | |
JPS6319798B2 (en) | ||
JPH07109354B2 (en) | Heat exchanger | |
JP2001033185A (en) | Heat conductive pipe provided with inside groove, and its design method |