JPH11148747A - Heat transfer tube for evaporator of absorption refrigerator - Google Patents
Heat transfer tube for evaporator of absorption refrigeratorInfo
- Publication number
- JPH11148747A JPH11148747A JP31865397A JP31865397A JPH11148747A JP H11148747 A JPH11148747 A JP H11148747A JP 31865397 A JP31865397 A JP 31865397A JP 31865397 A JP31865397 A JP 31865397A JP H11148747 A JPH11148747 A JP H11148747A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- fin
- tube
- axis direction
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/422—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【課題】 その外面に付着した冷媒の濡れ拡がりがすぐ
れ、その内面における流体の温度境界層が薄く、且つ表
面積が大きく、伝熱性能が優れた吸収式冷凍機の蒸発器
用伝熱管を提供する。
【解決手段】 吸収式冷凍機の蒸発器用伝熱管の外面に
は、管軸方向に直交又は傾斜する方向に延びるフィン1
が設けられている。このフィン1の高さは0.85mm
であり、管軸方向1m当たりのフィン数は1339列に
設定されている。フィン1の頂部にはフィンに沿って溝
部3が設けられている。この溝部3の両側壁面のなす角
度は50°に設定されている。更に、フィン1には切欠
部2が設けられている。伝熱管の内面には、管軸方向に
傾斜する方向に延びるリブ4が設けられている。リブの
管軸方向に対するリード角は43°である。リブのピッ
チPとフィンを有する部分の最大内径Diとの比P/D
iは0.13である。
PROBLEM TO BE SOLVED: To provide an excellent evaporator for an absorption refrigerator in which a refrigerant adhered to its outer surface has excellent wet spreading, a thin temperature boundary layer of fluid on its inner surface, a large surface area, and excellent heat transfer performance. Provide heat transfer tubes. SOLUTION: A fin 1 extending in a direction orthogonal or inclined to a tube axis direction is provided on an outer surface of a heat transfer tube for an evaporator of an absorption refrigerator.
Is provided. The height of this fin 1 is 0.85 mm
The number of fins per meter in the tube axis direction is set to 1339 rows. At the top of the fin 1, a groove 3 is provided along the fin. The angle between the side walls of the groove 3 is set to 50 °. Further, the fin 1 is provided with a notch 2. On the inner surface of the heat transfer tube, there is provided a rib 4 extending in a direction inclined in the tube axis direction. The lead angle of the rib with respect to the tube axis direction is 43 °. Ratio P / D between rib pitch P and maximum inner diameter Di of the portion having fins
i is 0.13.
Description
【0001】[0001]
【発明が属する技術分野】本発明は、工業用及びビルの
空調用等の吸収式冷凍機に組み込むのに好適な蒸発器用
伝熱管に関し、特に、蒸発伝熱特性が良好な吸収式冷凍
機の蒸発器用伝熱管に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube for an evaporator suitable for being incorporated in an absorption refrigerator for industrial use, air conditioning of a building, and the like, and more particularly to an absorption refrigerator having good evaporation heat transfer characteristics. The present invention relates to a heat transfer tube for an evaporator.
【0002】[0002]
【従来の技術】一般に、伝熱管では、伝熱管の外周面に
冷媒を流下させて、管内を流れる流体と前記冷媒との間
で熱交換させ、管内の流体を冷却している。伝熱管に接
触した冷媒は、伝熱管表面を濡れ拡がり、低い圧力で蒸
発して伝熱管の伝熱面から熱を奪うことにより、伝熱管
内部の流体を冷却する。また、伝熱管の表面に濡れ拡が
った冷媒が蒸発する際に、伝熱面から気化熱を奪うた
め、効率的に管内の流体を冷却することができる。従っ
て、伝熱性能が良好な高性能の伝熱管を得るためには、
冷媒と伝熱管との接触面積(即ち、伝熱面の面積)を可
及的に増大させることが必要である。2. Description of the Related Art Generally, in a heat transfer tube, a refrigerant flows down the outer peripheral surface of the heat transfer tube to exchange heat between the fluid flowing in the tube and the refrigerant, thereby cooling the fluid in the tube. The refrigerant that has contacted the heat transfer tube spreads on the surface of the heat transfer tube, evaporates at a low pressure, and removes heat from the heat transfer surface of the heat transfer tube, thereby cooling the fluid inside the heat transfer tube. Further, when the refrigerant spread and wet on the surface of the heat transfer tube evaporates, heat of vaporization is taken from the heat transfer surface, so that the fluid in the tube can be efficiently cooled. Therefore, in order to obtain a high-performance heat transfer tube with good heat transfer performance,
It is necessary to increase the contact area between the refrigerant and the heat transfer tube (that is, the area of the heat transfer surface) as much as possible.
【0003】冷媒と冷却管との接触面積を増大させるに
は、伝熱管の表面積を増大させること及び伝熱管表面で
の冷媒の濡れ拡がり性を良好にすることが考えられる。
従来、表面積を増大させた伝熱管としては、管の外周面
に螺旋状のフィンが形成されたローフィン管及び前記ロ
ーフィン管の内周面に螺旋状のリブが設けられた内面リ
ブ付きローフィン管等が提案されている。例えば、冷媒
の濡れ拡がり性を良好にした伝熱管としては、特開昭6
2−206356号公報が提案されている。この公報に
記載された従来の伝熱管においては、外面フィンの一部
に割れ部分を設けることによって、濡れ面積を増大させ
ている。また、管内面の伝熱性向上を目的として、例え
ば、内面に独立した突起を設けることにより、温度境界
層を薄くした伝熱管が提案されている(特開昭62−2
42795号公報)。In order to increase the contact area between the refrigerant and the cooling pipe, it is conceivable to increase the surface area of the heat transfer pipe and to improve the wetting and spreading of the refrigerant on the surface of the heat transfer pipe.
Conventionally, as a heat transfer tube having an increased surface area, a low fin tube in which spiral fins are formed on the outer peripheral surface of the tube, a low fin tube with internal ribs provided with spiral ribs on the inner peripheral surface of the low fin tube, and the like. Has been proposed. For example, Japanese Patent Application Laid-Open No.
Japanese Patent Publication No. 2-206356 has been proposed. In the conventional heat transfer tube described in this publication, a wet area is increased by providing a crack in a part of the outer fin. Further, for the purpose of improving the heat transfer property of the inner surface of the tube, for example, a heat transfer tube in which the temperature boundary layer is thinned by providing independent protrusions on the inner surface has been proposed (Japanese Patent Laid-Open No. Sho 62-2).
No. 42799).
【0004】更に、特開平7−71889号公報に記載
された従来の伝熱管においては、外面のフィンに溝部を
形成すると共に、フィンの先端部に管軸方向に切欠きを
形成し、冷媒の濡れ拡がり性を向上させ、伝熱表面積を
大きくしている。更に、内周面にリブを設けることによ
って、管内の流体を乱し、管内面側の伝熱性能の向上を
図っている。Further, in the conventional heat transfer tube described in Japanese Patent Application Laid-Open No. 7-71889, a groove is formed in a fin on the outer surface, and a notch is formed in a tip portion of the fin in a tube axial direction, so that the refrigerant is cooled. Improves wet spreading properties and increases heat transfer surface area. Further, by providing a rib on the inner peripheral surface, the fluid in the pipe is disturbed, and the heat transfer performance on the inner surface side of the pipe is improved.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述の
伝熱管には以下に示すような問題点がある。即ち、特開
昭62−206356号公報に記載された伝熱管におい
ては、蒸発伝熱特性が十分なものではない。また、特開
昭62−242795号公報に記載された伝熱管におい
ては、内面に設けられた独立した突起が、液体の乱流を
促進させる効果を有しているものの、温度境界層を薄く
するには十分なものではない。また、特開平7−718
89号公報に記載された伝熱管においては、管内面のリ
ブのピッチが大きいことにより、管内流体の乱流は促進
されても、再び温度境界層が形成され、伝熱性能の向上
に限界がある。However, the above-described heat transfer tubes have the following problems. That is, in the heat transfer tube described in JP-A-62-206356, the evaporative heat transfer characteristics are not sufficient. Further, in the heat transfer tube described in Japanese Patent Application Laid-Open No. 62-242795, although the independent projections provided on the inner surface have the effect of promoting the turbulent flow of the liquid, the temperature boundary layer is thinned. Is not enough. Also, Japanese Patent Application Laid-Open No. 7-718
In the heat transfer tube described in Japanese Patent Publication No. 89, the temperature boundary layer is formed again even if the turbulent flow of the fluid in the tube is promoted due to the large pitch of the ribs on the inner surface of the tube, and there is a limit to the improvement of the heat transfer performance. is there.
【0006】更に、従来技術においては、低流量範囲で
高い総括伝熱係数が示されなかったため、モータの容量
を大きくする必要があった。Furthermore, in the prior art, since a high overall heat transfer coefficient was not exhibited in a low flow rate range, it was necessary to increase the capacity of the motor.
【0007】本発明はかかる問題点に鑑みてなされたも
のであって、管内を流れる流体の乱流を可能な限り促進
させ、且つ温度境界層の形成を少なくして蒸発伝熱性能
を著しく向上させた吸収式冷凍機の蒸発用伝熱管を提供
することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the turbulent flow of a fluid flowing in a pipe is promoted as much as possible, and the formation of a temperature boundary layer is reduced, thereby significantly improving the evaporative heat transfer performance. It is an object of the present invention to provide a heat transfer tube for evaporation of an absorption type refrigerator which is made to perform the heat transfer.
【0008】[0008]
【課題を解決するための手段】本発明に係る吸収式冷凍
機の蒸発器用伝熱管は、管本体と、この管本体の外面に
設けられ管軸方向に直交又は傾斜する方向に延びるフィ
ンと、前記フィンの頂部に沿って形成された溝部と、前
記フィンに交差する方向に延び前記フィンの先端部を切
り欠く切欠部と、前記管本体の内面に設けられ管軸方向
に傾斜する方向に延びるリブとを有する吸収式冷凍機の
蒸発器用伝熱管において、前記フィンは管軸方向の1m
当たりに1142乃至1417列設けられており、フィ
ンの高さは0.7乃至1.2mmであり、前記溝部の壁
面がなす角度は45乃至65°であり、前記リブのピッ
チPとフィンを有する部分の最大内径Diとの比P/D
iは0.1以上0.4未満であり、前記リブの管軸方向
に対するリード角は35乃至50°であることを特徴と
する。A heat transfer tube for an evaporator of an absorption refrigerator according to the present invention comprises: a tube main body; and a fin provided on an outer surface of the tube main body and extending in a direction orthogonal or inclined to the tube axis direction. A groove formed along the top of the fin, a notch extending in a direction intersecting the fin and notching a tip of the fin, and a notch provided on the inner surface of the pipe body and extending in a direction inclined in the pipe axis direction. In the heat transfer tube for an evaporator of an absorption refrigerator having ribs, the fin is 1 m in the tube axis direction.
There are 1142 to 1417 rows per contact, the height of the fins is 0.7 to 1.2 mm, the angle between the wall surfaces of the grooves is 45 to 65 °, and the pitch P of the ribs and the fins are provided. Ratio P / D to the maximum inner diameter Di of the part
i is 0.1 or more and less than 0.4, and the lead angle of the rib with respect to the tube axis direction is 35 to 50 °.
【0009】本発明においては、水等の冷媒を上述の伝
熱管に滴下すると、冷媒は伝熱管のフィンで捕捉され、
この冷媒は前記溝部に沿ってフィン頂部を周方向に流下
すると共に、前記切欠部を通って管軸方向に移動する。
この管軸方向に移動した冷媒は、最終的にはフィン間を
通って管上部から管下部に向けて流下する。このよう
に、本発明に係る伝熱管においては、フィンの頂部に形
成された溝部と、フィン尖端部を所定のピッチで管軸方
向に切り欠く切欠部とを介して、冷媒が周方向及び管軸
方向の両方に拡がるため、伝熱管の外面を流下する冷媒
は、流下に伴う濡れ拡がりの偏りを生じない。従って、
本発明に係る蒸発器用伝熱管は、冷媒と伝熱管との接触
面積が大きく、フィン形成による大きな管表面積を有効
に利用できるため、蒸発伝熱性能が極めて優れている。In the present invention, when a refrigerant such as water is dropped on the above-mentioned heat transfer tube, the refrigerant is captured by the fins of the heat transfer tube,
The refrigerant flows down the fin top in the circumferential direction along the groove, and moves in the tube axis direction through the notch.
The refrigerant that has moved in the pipe axis direction finally flows down from the upper part of the pipe toward the lower part of the pipe through between the fins. As described above, in the heat transfer tube according to the present invention, the refrigerant flows in the circumferential direction and the pipe through the groove formed at the top of the fin and the notch that cuts the fin tip at a predetermined pitch in the tube axis direction. Since the refrigerant spreads in both axial directions, the refrigerant flowing down the outer surface of the heat transfer tube does not have a wetting and spreading bias due to the flow. Therefore,
The heat transfer tube for an evaporator according to the present invention has a large contact area between the refrigerant and the heat transfer tube, and can effectively utilize a large tube surface area due to the formation of the fins.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施例について、
添付の図面を参照して具体的に説明する。図1は本発明
の実施例に係る吸収式冷凍機の蒸発器用伝熱管の側壁及
びフィン構造を示す模式的斜視図である。伝熱管の外周
には、管軸方向に対し直交又は傾斜して延びるフィン1
が設けられている。このフィン1の頂部には、フィンに
沿って形成された溝部3が設けられている。また、フィ
ン1の尖端には管軸方向に配列した切欠部2が設けられ
ている。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic perspective view showing a side wall and a fin structure of a heat transfer tube for an evaporator of an absorption refrigerator according to an embodiment of the present invention. Fins 1 extending on the outer periphery of the heat transfer tube at right angles or at an angle to the tube axis direction
Is provided. The top of the fin 1 is provided with a groove 3 formed along the fin. Further, notches 2 arranged in the pipe axis direction are provided at the tips of the fins 1.
【0011】本実施例に係る吸収式冷凍機の蒸発用伝熱
管において、伝熱管の上方から滴下された冷媒は、伝熱
管の上半部で捕捉される。そして、この冷媒はフィン頂
部の溝部3に沿って流下すると共に、切欠部2を通って
管軸方向へも移動する。フィン1の頂部は、その頂部に
溝部3が形成されるときに圧縮されるため、頂部が管軸
方向に若干膨出している。このため、隣接するフィンの
先端部間の距離は、フィン1の頂部に溝部がない場合に
比して短くなる。従って、単にフィンに切欠部を設けた
だけの伝熱管に比して、管軸方向への冷媒の偏りを一層
制御することができる。また、ローフィンチューブで
は、フィンが障壁となるため、冷媒の管軸方向への濡れ
拡がりが小さい。しかし、本実施例に係る伝熱管は、フ
ィン1の頂部にフィン1に沿って形成された溝部3が設
けられていると共に、フィン1に管軸方向に配列する切
欠部2が設けられているため、管軸方向の濡れ拡がりが
大きいと共に流下に伴う冷媒の収縮を回避することがで
きる。In the evaporative heat transfer tube of the absorption refrigerator according to this embodiment, the refrigerant dropped from above the heat transfer tube is captured by the upper half of the heat transfer tube. Then, the refrigerant flows down along the groove 3 at the top of the fin, and moves in the pipe axis direction through the notch 2. Since the top of the fin 1 is compressed when the groove 3 is formed on the top, the top is slightly swelled in the tube axis direction. For this reason, the distance between the tips of the adjacent fins is shorter than when there is no groove at the top of the fin 1. Therefore, it is possible to further control the bias of the refrigerant in the tube axis direction as compared with the heat transfer tube in which the notch is simply provided in the fin. Further, in the low fin tube, the fin acts as a barrier, so that the wetting and spreading of the refrigerant in the tube axis direction is small. However, in the heat transfer tube according to the present embodiment, the groove 3 formed along the fin 1 is provided at the top of the fin 1, and the notch 2 arranged in the tube axis direction is provided in the fin 1. For this reason, it is possible to prevent the refrigerant from contracting due to a large wet spread in the tube axis direction and the flow down.
【0012】図2は本発明の実施例に係る伝熱管の管軸
方向の模式的断面図である。図4に示すように、管内面
には管軸を中心として螺旋状にリブ4が配設されてい
る。本実施例に係る吸収式冷凍機の蒸発器用伝熱管にお
いては、このリブ4が管軸方向に傾斜する方向に延出し
ているため、管内を通る流体の乱流効果の増加により管
内の伝熱性能が向上する。これにより。本実施例に係る
吸収式冷凍機の蒸発器用伝熱管は、内面にリブがない場
合に比して、伝熱性能が向上するという効果を奏する。FIG. 2 is a schematic cross-sectional view of a heat transfer tube according to an embodiment of the present invention in a tube axis direction. As shown in FIG. 4, a rib 4 is provided on the inner surface of the tube in a spiral shape around the tube axis. In the heat transfer tube for the evaporator of the absorption refrigerator according to the present embodiment, since the ribs 4 extend in the direction inclined in the tube axis direction, the turbulence effect of the fluid passing through the tube increases, and the heat transfer in the tube increases. Performance is improved. By this. The heat transfer tube for an evaporator of the absorption refrigerator according to the present embodiment has an effect of improving the heat transfer performance as compared with the case where there is no rib on the inner surface.
【0013】なお、外面及び内面の成形方法は特に限定
されるものではなく、例えば、特公昭52−11670
が挙げられる。この方法においては、表面に螺旋溝を有
する中空のピンを有する心軸を管の内部に挿入し、管の
外部を複数個の円板からなる円板群により押圧するの
で、外部螺旋フィン及び内部リブを同時に成形すること
が可能である。The method for forming the outer surface and the inner surface is not particularly limited. For example, Japanese Patent Publication No. 52-11670
Is mentioned. In this method, a mandrel having a hollow pin having a spiral groove on the surface is inserted into the inside of the tube, and the outside of the tube is pressed by a group of disks composed of a plurality of disks. The ribs can be molded simultaneously.
【0014】以下、本発明に係る吸収式冷凍機の蒸発器
用伝熱管における数値限定理由について説明する。Hereinafter, the reasons for limiting the numerical values of the heat transfer tubes for the evaporator of the absorption refrigerator according to the present invention will be described.
【0015】管軸方向1m当たりのフィン数:1142
乃至1417列 管軸方向1m当たりのフィン数が1142列未満の場合
及び1417列を超える場合は、いずれも濡れ拡がり性
が低下し、伝熱性能が低下する。従って、管軸方向1m
当たりのフィン数は1142乃至1417列であること
が好ましい。The number of fins per meter in the tube axis direction: 1142
When the number of fins per 1 m in the tube axial direction is less than 1142 rows and when the number of fins exceeds 1417 rows, the wet spreadability is reduced, and the heat transfer performance is reduced. Therefore, 1m in the pipe axis direction
The number of fins per hit is preferably 1142 to 1417 rows.
【0016】フィンの高さ:0.7乃至1.2mm フィンの高さが0.7mm未満の場合及び1.2mmを
超える場合は、いずれも濡れ拡がり性が低下する。従っ
て、フィンの高さは0.7乃至1.2mmであることが
好ましい。 Fin height: 0.7 to 1.2 mm Both when the fin height is less than 0.7 mm and when it exceeds 1.2 mm, the wet spreading property is reduced. Therefore, it is preferable that the height of the fin is 0.7 to 1.2 mm.
【0017】溝部の両壁面のなす角度:45乃至65° フィン頂部に設けられた溝部の両壁面のなす角度が45
°未満の場合及び65°を超える場合は、いずれも濡れ
拡がり性が低下する。従って、フィン頂部に設けられた
溝部の両壁面のなす角度は45乃至65°であることが
好ましい。なお、溝部の両壁面のなす角度とは、管軸を
通る断面において、溝部を形成する両壁面のなす角度を
いう。The angle between the two wall surfaces of the groove: 45 to 65 ° The angle between the two wall surfaces of the groove provided on the top of the fin is 45 °
If it is less than 65 ° or more than 65 °, the wet spreadability is reduced. Therefore, it is preferable that the angle between the two wall surfaces of the groove provided on the fin top is 45 to 65 °. The angle formed by both wall surfaces of the groove means the angle formed by both wall surfaces forming the groove in a cross section passing through the pipe axis.
【0018】リブのピッチPとフィンを有する部分の最
大内径Diとの比P/Di:0.1以上0.4未満 管内面に設けられたリブのピッチPとフィンを有する部
分の最大内径Diとの比P/Diが0.1未満となる
と、内面の溝部の幅が狭くなり、管内を流れる流体の乱
流が促進されなくなり、伝熱性能の向上が小さくなる。
一方、P/Diが0.4以上となると、溝部の幅が広く
なるため、管内を流れる流体の乱流は促進されるが、再
び温度境界層が形成され、伝熱性能の向上が小さくな
る。従って、リブのピッチPとフィンを有する部分の最
大内径Diとの比P/Diは0.1以上0.4未満であ
ることが好ましい。 The pitch P of the ribs and the maximum
Ratio P / Di to large inner diameter Di: 0.1 or more and less than 0.4 When the ratio P / Di between the pitch P of the rib provided on the inner surface of the pipe and the maximum inner diameter Di of the portion having the fin becomes less than 0.1. In addition, the width of the groove on the inner surface is reduced, so that the turbulence of the fluid flowing in the pipe is not promoted, and the improvement of the heat transfer performance is reduced.
On the other hand, when P / Di is 0.4 or more, the turbulent flow of the fluid flowing in the pipe is promoted because the width of the groove is widened, but the temperature boundary layer is formed again, and the improvement in heat transfer performance is reduced. . Therefore, the ratio P / Di between the pitch P of the ribs and the maximum inner diameter Di of the portion having the fin is preferably 0.1 or more and less than 0.4.
【0019】リブの管軸方向に対するリード角:35乃
至50° 管内部に設けられたリブの管軸方向に対するリード角が
35°未満となると、管内を流れる流体が管内の溝部に
沿って流れるようになり、温度境界層が形成されやすく
なり、伝熱性能の向上が小さくなる。一方、リード角が
50°を超えると、管内を流れる流体の乱流が促進され
る以前に、管内の圧力損失が大幅に増加する。従って、
リブの管軸方向に対するリード角は35乃至50°であ
ることが好ましい。 Lead angle of the rib with respect to the tube axis direction: 35 mm
If the lead angle of the rib provided inside the pipe with respect to the pipe axis direction is less than 35 °, the fluid flowing in the pipe flows along the groove in the pipe, so that the temperature boundary layer is easily formed, and Thermal performance improvement is reduced. On the other hand, when the lead angle exceeds 50 °, the pressure loss in the pipe increases significantly before turbulence of the fluid flowing in the pipe is promoted. Therefore,
The lead angle of the rib with respect to the tube axis direction is preferably 35 to 50 °.
【0020】[0020]
【実施例】次に、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples outside the scope of the claims.
【0021】先ず、管の外径が15.88mmであり、
管の肉厚が1.24mmであるリン脱酸銅管(C120
1;JIS H3300)を、その外面にフィンを成形
し、内周面に前述の特公昭52−11670号公報に記
載されている転造装置を用いてリブを成形し、供試管に
成形した。このとき、実施例1並びに比較例2及び3の
管の外周面は表1に示すような形状を有している。ま
た、外周面のフィンはその高さが1mmであり、管軸方
向の1m当たりに1339列設けられている。更に、こ
のフィンの先端部を歯車状のディスクを用いて管軸方向
に切欠を成形した後、このフィンの先端を略クサビ形の
形状を有するディスクを用いて、両壁面のなす角度が5
0°になるように円周方向に成形した。また、比較例4
として外面のフィンが管軸方向に1024列/m設けら
れている伝熱管を用いた。First, the outer diameter of the tube is 15.88 mm,
Phosphorus deoxidized copper tube (C120) having a tube thickness of 1.24 mm
1; JIS H3300), fins were formed on the outer surface thereof, and ribs were formed on the inner peripheral surface thereof by using a rolling device described in Japanese Patent Publication No. 52-11670 described above to form test tubes. At this time, the outer peripheral surfaces of the tubes of Example 1 and Comparative Examples 2 and 3 have shapes as shown in Table 1. The fins on the outer peripheral surface have a height of 1 mm, and are provided in 1339 rows per 1 m in the tube axis direction. Furthermore, after forming a notch in the tube axis direction at the tip of the fin using a gear-shaped disk, the tip of the fin is formed with a disk having a substantially wedge-like shape, and the angle between the two wall surfaces is 5 °.
It was formed in the circumferential direction so as to be 0 °. Comparative Example 4
A heat transfer tube having 1024 rows / m of fins on the outer surface in the tube axis direction was used.
【0022】[0022]
【表1】 [Table 1]
【0023】そして、本発明の実施例及び比較例の吸収
式冷凍機の蒸発器用伝熱管の蒸発性能を測定した。図3
は、蒸発性能の測定に使用した試験装置である。供試管
は1列×4段(段ピッチ;24mm)とした。蒸発部1
7の供試管群の上部には冷媒の入口7が、供試管群の下
部には蒸発部内を流れる冷媒の出口8が設置されてい
る。この冷媒の出口8から排出された冷媒は配管19a
を介して冷媒ポンプ15に送り込まれ、更に冷媒はこの
冷媒ポンプ15により配管19bを介して冷媒の入口7
に運ばれる。この配管19bには冷媒散布量調節バルブ
20が設けられており、冷媒散布量調節バルブ20によ
り蒸発部に散布される冷媒の量が調節される。また、こ
の供試管群の下側端部は供試管内に流す冷水の入口5に
接続され、上側端部は冷水の出口6に接続されている。
このとき、蒸発部を通過する冷水のパス数は4パスとし
た。更に、蒸発部17の上部には、測定装置内の圧力を
測定するためのデジタルマノメータ14がバルブ13b
を介して設けられている。Then, the evaporating performance of the heat transfer tubes for the evaporator of the absorption refrigerators of the examples and comparative examples of the present invention was measured. FIG.
Is a test device used for measuring the evaporation performance. The test tubes were arranged in one row × 4 stages (stage pitch: 24 mm). Evaporation section 1
In the upper part of the test tube group 7, an inlet 7 for the refrigerant is provided, and in the lower part of the test tube group, an outlet 8 for the refrigerant flowing in the evaporator is provided. The refrigerant discharged from the refrigerant outlet 8 is connected to a pipe 19a.
The refrigerant is sent to the refrigerant pump 15 through the refrigerant pump 15, and the refrigerant is further supplied to the refrigerant inlet 7 through the pipe 19b by the refrigerant pump 15.
Transported to The pipe 19b is provided with a refrigerant spray amount control valve 20, and the refrigerant spray amount control valve 20 controls the amount of the refrigerant sprayed to the evaporating section. The lower end of the test tube group is connected to an inlet 5 of cold water flowing into the test tube, and the upper end is connected to an outlet 6 of cold water.
At this time, the number of passes of the cold water passing through the evaporator was four. Further, a digital manometer 14 for measuring the pressure in the measuring device is provided above the evaporating section 17 by a valve 13b.
Is provided via
【0024】一方、吸収部18の伝熱管群の上部には吸
収部内を流れるLiBr水溶液の入口9が、伝熱管群の
下部にはLiBr水溶液の出口10が設置されている。
更に、このLiBr水溶液の出口10は配管19cを介
してLiBr水溶液ポンプ16に接続されており、Li
Br水溶液はLiBr水溶液ポンプ16により系外へと
排出される。また、この伝熱管群の下側端部は伝熱管内
に流す冷却水の入口11に接続され、上側端部は冷却水
の出口12に接続されている。また、吸収部18の上部
には、測定装置内を真空にするためのバルブ13aが取
り付けられており、この配管は真空ポンプに接続されて
いる。On the other hand, an inlet 9 for a LiBr aqueous solution flowing in the absorber is provided above the heat transfer tube group of the absorber 18, and an outlet 10 for the LiBr aqueous solution is provided below the heat transfer tube group.
Further, the outlet 10 of the LiBr aqueous solution is connected to a LiBr aqueous solution pump 16 via a pipe 19c,
The Br aqueous solution is discharged out of the system by the LiBr aqueous solution pump 16. The lower end of the heat transfer tube group is connected to an inlet 11 of cooling water flowing into the heat transfer tube, and the upper end is connected to an outlet 12 of cooling water. Further, a valve 13a for evacuating the inside of the measuring device is attached to the upper part of the absorbing section 18, and this piping is connected to a vacuum pump.
【0025】蒸発性能の測定は下記のようにして行っ
た。先ず、蒸発部17の伝熱管に冷水の入口5から1.
50m/sの流速で冷水を流し、冷水の出口温度が7.
0℃になるように冷水の入口温度を調節した。また、吸
収部18の伝熱管には冷却水の入口11から一定水量の
冷却水を流し、測定装置内の圧力が6.0mmHgにな
るように冷却水流量を調節した。このようにして、蒸発
器の伝熱量が定常状態となった後、供試管群に冷媒の入
口7より冷媒を0.75乃至1.25kg/m・分の散
布量で散布し、冷水の出口温度及び入口温度、冷水の流
量並びに測定器内の圧力を測定した。The measurement of the evaporation performance was performed as follows. First, from the inlet 5 of the cold water to the heat transfer tube of the evaporating section 17, 1.
6. Flow cold water at a flow rate of 50 m / s, and the outlet temperature of the cold water is 7.
The inlet temperature of the cold water was adjusted to be 0 ° C. In addition, a constant amount of cooling water was flowed from the cooling water inlet 11 to the heat transfer tube of the absorption section 18, and the flow rate of the cooling water was adjusted such that the pressure in the measuring device was 6.0 mmHg. In this way, after the heat transfer amount of the evaporator is in a steady state, the refrigerant is sprayed to the test tube group from the refrigerant inlet 7 at a spraying amount of 0.75 to 1.25 kg / m · min. The temperature and inlet temperature, the flow rate of cold water and the pressure in the measuring instrument were measured.
【0026】ところで、蒸発性能は、蒸発器の冷凍能力
をQ(kcal/時)と、対数平均温度差をΔT
m(℃)と及び原管部外径基準管外表面積をA0(m2)
としたとき、下記数1に示す総括伝熱係数K0(kca
l/時・℃・m2)によって評価することができる。By the way, the evaporation performance is represented by Q (kcal / hour) as the refrigerating capacity of the evaporator, and ΔT as the logarithmic average temperature difference.
m (° C.) and A 0 (m 2 )
, The overall heat transfer coefficient K 0 (kca
1 / hour · ° C. · m 2 ).
【0027】[0027]
【数1】K0=Q/(ΔTm・A0)K 0 = Q / (ΔT m · A 0 )
【0028】但し、蒸発器の冷凍能力Qは、冷水流量を
G(kg/時)と、冷水比熱をCp(kcal/kg・
℃)と、冷水入口温度をTin(℃)と及び冷水出口温度
をTout(℃)としたとき、下記数2で示される。However, the refrigerating capacity Q of the evaporator is defined as G (kg / hour) of the chilled water flow rate and C p (kcal / kg ·
° C), the cold water inlet temperature is T in (° C.), and the cold water outlet temperature is T out (° C.).
【0029】[0029]
【数2】Q=G・Cp・(Tin−Tout)## EQU2 ## Q = G · C p · (T in -T out )
【0030】また、対数平均温度差ΔTmは、冷媒蒸発
温度をTe(℃)としたとき、下記数3で示される。The logarithmic average temperature difference ΔT m is expressed by the following equation (3), where T e (° C.) is the refrigerant evaporation temperature.
【0031】[0031]
【数3】ΔTm=(Tin−Tout)/ln((Tin−
Te)/(Tout−Te))[Number 3] ΔT m = (T in -T out ) / ln ((T in -
T e ) / (T out −T e ))
【0032】また、原管部外径基準管外表面積A0は、
原管部外径をD0(m)と、チューブ有効長をL(m)
と及びチューブ本数をNとしたとき、下記数4で示され
る。Further, the outer surface area A 0 of the outer diameter of the original pipe portion is determined as follows:
The outer diameter of the original tube is D 0 (m) and the effective tube length is L (m)
And when the number of tubes is N, it is expressed by the following Equation 4.
【0033】[0033]
【数4】A0=π・D0・L・NA 0 = π · D 0 · L · N
【0034】図4は横軸に冷媒散布量をとり、縦軸に総
括伝熱係数をとって両者の関係を示すグラフ図である。
図4に示すように、実施例1においては、リード角、リ
ブのピッチPとフィンを有する部分の最大内径Diとの
比P/Di及びリブの高さが本発明で規定したものであ
るので、現行品である比較例4に対して、蒸発性能が約
1.18倍(冷媒散布量;1.00kg/m・minの
時)向上した。FIG. 4 is a graph showing the relationship between the amount of refrigerant sprayed on the horizontal axis and the overall heat transfer coefficient on the vertical axis.
As shown in FIG. 4, in the first embodiment, the lead angle, the ratio P / Di of the pitch P of the rib to the maximum inner diameter Di of the portion having the fin, and the height of the rib are defined by the present invention. The evaporation performance was improved about 1.18 times (when the amount of refrigerant sprayed was 1.00 kg / m · min) as compared with the current product, Comparative Example 4.
【0035】一方、比較例2及び3においては、リード
角が本発明で規定したものとは相違するので、温度境界
層が形成され、伝熱性能が低下してしまい、現行品であ
る比較例4に対して、蒸発性能が低下した。On the other hand, in Comparative Examples 2 and 3, since the lead angle is different from that specified in the present invention, a temperature boundary layer is formed, and the heat transfer performance is reduced. For 4, the evaporation performance was reduced.
【0036】[0036]
【発明の効果】以上、詳述したように、本発明に係る吸
収式冷凍機の蒸発器用伝熱管によれば、管本体の外面に
管軸方向に直交又は傾斜する方向に延びるフィンと、こ
のフィンの頂部にフィンに沿って設けられた溝部と、前
記フィンに交差する方向に延び前記フィンの先端部を切
り欠く切欠部と、前記管本体の内面に管軸方向に傾斜す
る方向に延びるリブと、を有する伝熱管において、前記
フィンの数及び高さ、前記溝部の壁面がなす角度、前記
リブのピッチPとフィンを有する部分の最大内径Diと
の比P/Di並びに前記リブの管軸方向に対するリード
角を適切なものに規定しているので、冷媒と伝熱管との
接触面積を増大させることができ、また、管外面を流下
する冷媒の濡れ拡がり性を極めて良好にすることがで
き、更に、管内面において、温度境界層を極めて薄くす
ることができる。このため、本発明に係る吸収式冷凍機
の蒸発器用伝熱管の伝熱特性は極めて優れている。ま
た、低流量範囲で高い総括伝熱係数が示されるので、大
きな容量のモータを必要とせず、コンパクト化すること
ができる。As described above in detail, according to the heat transfer tube for an evaporator of an absorption refrigerator according to the present invention, a fin extending on the outer surface of the tube main body in a direction perpendicular or inclined to the tube axis direction is provided. A groove provided along the fin at the top of the fin, a notch extending in a direction intersecting the fin and cutting out a tip of the fin, and a rib extending in a direction inclined in the pipe axis direction on the inner surface of the pipe main body The number and height of the fins, the angle formed by the wall surface of the groove, the ratio P / Di between the pitch P of the ribs and the maximum inner diameter Di of the portion having the fins, and the tube axis of the ribs. Since the lead angle with respect to the direction is specified as appropriate, the contact area between the refrigerant and the heat transfer tube can be increased, and the wet-spreading property of the refrigerant flowing down the outer surface of the tube can be extremely improved. , And on the inner surface of the pipe There, it is possible to very thin thermal boundary layer. Therefore, the heat transfer characteristics of the heat transfer tube for the evaporator of the absorption refrigerator according to the present invention are extremely excellent. Further, since a high overall heat transfer coefficient is exhibited in a low flow rate range, a large-capacity motor is not required and the size can be reduced.
【図1】本発明の実施例に係る蒸発器用伝熱管を示す模
式的斜視図である。FIG. 1 is a schematic perspective view showing a heat transfer tube for an evaporator according to an embodiment of the present invention.
【図2】本発明の実施例に係る蒸発器用伝熱管の管軸方
向の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a heat transfer tube for an evaporator according to an embodiment of the present invention in a tube axis direction.
【図3】伝熱管の伝熱性能を測定する装置の模式図であ
る。FIG. 3 is a schematic view of an apparatus for measuring the heat transfer performance of a heat transfer tube.
【図4】実施例及び比較例の伝熱管の伝熱性能を比較し
て示すグラフ図である。FIG. 4 is a graph showing a comparison between heat transfer performances of heat transfer tubes of an example and a comparative example.
1;フィン 2;切欠部 3;溝部 4;リブ 5;冷水の入口 6;冷水の出口 7;冷媒の入口 8;冷媒の出口 9;LiBr水溶液の入口 10;LiBr水溶液の出口 11;冷却水の入口 12;冷却水の出口 13a、13b;バルブ 14;デジタルマノメータ 15;冷媒ポンプ 16;LiBr水溶液ポンプ 17;蒸発部 18;吸収部 19a、19b、19c;配管 20;冷却散布量調節バルブ 1; Fin 2; Notch 3; Groove 4; Rib 5; Cold water inlet 6; Cold water outlet 7; Refrigerant inlet 8; Refrigerant outlet 9; LiBr aqueous solution inlet 10; LiBr aqueous solution outlet 11; Inlet 12; Cooling water outlet 13a, 13b; Valve 14; Digital manometer 15; Refrigerant pump 16; LiBr aqueous solution pump 17; Evaporator 18; Absorber 19a, 19b, 19c;
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木島 広行 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 佐伯 主税 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 河合 満嗣 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社内 (72)発明者 瀧川 孝寿 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroyuki Kijima 65, Hirasawa, Hadano-shi, Kanagawa Prefecture Inside the Hadano Plant, Kobe Steel Co., Ltd. (72) Inventor Mitsugu Kawai 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd. (72) Inventor Takatoshi Takigawa 1-1-1, Nishiichitsuya, Settsu-shi, Osaka, Daikin Industries
Claims (1)
管軸方向に直交又は傾斜する方向に延びるフィンと、前
記フィンの頂部に沿って形成された溝部と、前記フィン
に交差する方向に延び前記フィンの先端部を切り欠く切
欠部と、前記管本体の内面に設けられ管軸方向に傾斜す
る方向に延びるリブとを有する吸収式冷凍機の蒸発器用
伝熱管において、前記フィンは管軸方向の1m当たりに
1339列設けられており、フィンの高さは0.85m
mであり、前記溝部の壁面がなす角度は50°であり、
前記リブのピッチPとフィンを有する部分の最大内径D
iとの比P/Diは0.13であり、前記リブの管軸方
向に対するリード角は43°であることを特徴とする吸
収式冷凍機の蒸発器用伝熱管。1. A tube main body, a fin provided on an outer surface of the tube main body and extending in a direction orthogonal or inclined to a tube axis direction, a groove formed along a top of the fin, and a direction intersecting the fin. A fin extending from the fin, and a rib provided on the inner surface of the pipe main body and extending in a direction inclined in the pipe axis direction, the fin being a pipe. 1339 rows are provided per meter in the axial direction, and the height of the fin is 0.85 m.
m, the angle formed by the wall surface of the groove is 50 °,
The pitch P of the rib and the maximum inner diameter D of the portion having the fin
A ratio P / Di to i is 0.13, and a lead angle of the rib with respect to a tube axis direction is 43 °, wherein the heat transfer tube for an evaporator of an absorption refrigerator is characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31865397A JPH11148747A (en) | 1997-11-19 | 1997-11-19 | Heat transfer tube for evaporator of absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31865397A JPH11148747A (en) | 1997-11-19 | 1997-11-19 | Heat transfer tube for evaporator of absorption refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11148747A true JPH11148747A (en) | 1999-06-02 |
Family
ID=18101542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31865397A Pending JPH11148747A (en) | 1997-11-19 | 1997-11-19 | Heat transfer tube for evaporator of absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11148747A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003287393A (en) * | 2002-03-27 | 2003-10-10 | Kobe Steel Ltd | Heat transfer pipe for condenser |
WO2009009426A3 (en) * | 2007-07-06 | 2009-03-12 | Wolverine Tube Inc | Finned tube with stepped peaks |
KR20090093500A (en) * | 2008-02-29 | 2009-09-02 | 엘에스엠트론 주식회사 | Heat Transfer Tube of Absorption Type Refrigeration |
CN102121805A (en) * | 2011-04-07 | 2011-07-13 | 金龙精密铜管集团股份有限公司 | Enhanced heat transfer tube used for falling film evaporator |
KR101151872B1 (en) | 2010-03-18 | 2012-05-31 | (주)현대기공 | Heat transfer tube for evaporator of turbo chiller machine |
KR101151871B1 (en) | 2010-03-18 | 2012-05-31 | (주)현대기공 | Heat transfer tube for condenser of turbo chiller machine |
CN104197769A (en) * | 2014-06-09 | 2014-12-10 | 赵炜 | Fin radiator with projection thickness changed along with height |
CN106440898A (en) * | 2016-10-13 | 2017-02-22 | 广东工业大学 | Flat heat pipe composited groove type fluid suction core and preparation method thereof |
CN106642829A (en) * | 2016-11-16 | 2017-05-10 | 金龙精密铜管集团股份有限公司 | Evaporation pipe for absorption unit and preparation method |
CN111457772A (en) * | 2020-05-20 | 2020-07-28 | 珠海格力电器股份有限公司 | Air conditioner heat exchange tube and air conditioner |
CN111589279A (en) * | 2020-06-08 | 2020-08-28 | 福建伊普思实业有限公司 | Heat exchanger of refrigeration dryer |
CN113380737A (en) * | 2021-04-28 | 2021-09-10 | 西安交通大学 | Y-shaped immersed capillary micro-channel enhanced heat dissipation structure and manufacturing method thereof |
CN113432345A (en) * | 2021-07-19 | 2021-09-24 | 珠海格力电器股份有限公司 | Falling film evaporation tube and refrigeration equipment |
CN118744276A (en) * | 2024-08-14 | 2024-10-08 | 广州航海学院 | A method for preparing an ultra-thin vapor chamber wick with high heat transfer performance and an ultra-thin vapor chamber wick |
-
1997
- 1997-11-19 JP JP31865397A patent/JPH11148747A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003287393A (en) * | 2002-03-27 | 2003-10-10 | Kobe Steel Ltd | Heat transfer pipe for condenser |
WO2009009426A3 (en) * | 2007-07-06 | 2009-03-12 | Wolverine Tube Inc | Finned tube with stepped peaks |
KR20090093500A (en) * | 2008-02-29 | 2009-09-02 | 엘에스엠트론 주식회사 | Heat Transfer Tube of Absorption Type Refrigeration |
KR101151872B1 (en) | 2010-03-18 | 2012-05-31 | (주)현대기공 | Heat transfer tube for evaporator of turbo chiller machine |
KR101151871B1 (en) | 2010-03-18 | 2012-05-31 | (주)현대기공 | Heat transfer tube for condenser of turbo chiller machine |
CN102121805A (en) * | 2011-04-07 | 2011-07-13 | 金龙精密铜管集团股份有限公司 | Enhanced heat transfer tube used for falling film evaporator |
WO2012135983A1 (en) * | 2011-04-07 | 2012-10-11 | 金龙精密铜管集团股份有限公司 | Improved heat transfer pipe for falling film evaporator |
CN104197769B (en) * | 2014-06-09 | 2015-11-11 | 赵炜 | Height of projection is along the fin radiator of height change |
CN104197769A (en) * | 2014-06-09 | 2014-12-10 | 赵炜 | Fin radiator with projection thickness changed along with height |
CN106440898A (en) * | 2016-10-13 | 2017-02-22 | 广东工业大学 | Flat heat pipe composited groove type fluid suction core and preparation method thereof |
CN106642829A (en) * | 2016-11-16 | 2017-05-10 | 金龙精密铜管集团股份有限公司 | Evaporation pipe for absorption unit and preparation method |
CN111457772A (en) * | 2020-05-20 | 2020-07-28 | 珠海格力电器股份有限公司 | Air conditioner heat exchange tube and air conditioner |
CN111589279A (en) * | 2020-06-08 | 2020-08-28 | 福建伊普思实业有限公司 | Heat exchanger of refrigeration dryer |
CN113380737A (en) * | 2021-04-28 | 2021-09-10 | 西安交通大学 | Y-shaped immersed capillary micro-channel enhanced heat dissipation structure and manufacturing method thereof |
CN113380737B (en) * | 2021-04-28 | 2024-05-07 | 西安交通大学 | Y-shaped immersed capillary microchannel reinforced heat dissipation structure and manufacturing method thereof |
CN113432345A (en) * | 2021-07-19 | 2021-09-24 | 珠海格力电器股份有限公司 | Falling film evaporation tube and refrigeration equipment |
CN118744276A (en) * | 2024-08-14 | 2024-10-08 | 广州航海学院 | A method for preparing an ultra-thin vapor chamber wick with high heat transfer performance and an ultra-thin vapor chamber wick |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6655451B2 (en) | Heat transfer tube for falling film type evaporator | |
JPH11148747A (en) | Heat transfer tube for evaporator of absorption refrigerator | |
KR100310588B1 (en) | Falling film type heat exchanger tube | |
JPS5942615Y2 (en) | Evaporator | |
KR20140145504A (en) | Heat exchanger and outdoor unit for air-conditioner having the same | |
JP3801771B2 (en) | Heat transfer tube for falling film evaporator | |
JP3916114B2 (en) | Absorption type refrigerator and heat transfer tube used therefor | |
JP2005195192A (en) | Heat transfer pipe with grooved inner face | |
JP3480514B2 (en) | Heat transfer tube for falling film evaporator | |
JPH10318691A (en) | Heat transfer tube for falling liquid film evaporator | |
JP2012167854A (en) | Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same | |
JP3829648B2 (en) | Internal grooved heat transfer tube | |
JPH06281293A (en) | Heat exchanger | |
JP2003240485A (en) | Heat transfer tube with internal groove | |
JPH06147784A (en) | Heat exchanger tube | |
JPH0961080A (en) | Turbo refrigerator | |
JP2001153580A (en) | Heat transfer pipe | |
JP3138010B2 (en) | Absorption refrigerator | |
JP3992833B2 (en) | Absorption heat exchanger heat exchanger tube | |
JP3575071B2 (en) | Heat exchanger for absorption refrigerator | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JP3415013B2 (en) | Heat transfer tube for condenser | |
JP2004301440A (en) | Heat transfer pipe for falling liquid film type evaporator | |
JP3417825B2 (en) | Inner grooved pipe | |
JPH11270980A (en) | Heat transfer pipe for evaporator |