[go: up one dir, main page]

JPH10101334A - Production of powdery starting material for yttrium aluminum garnet - Google Patents

Production of powdery starting material for yttrium aluminum garnet

Info

Publication number
JPH10101334A
JPH10101334A JP8274166A JP27416696A JPH10101334A JP H10101334 A JPH10101334 A JP H10101334A JP 8274166 A JP8274166 A JP 8274166A JP 27416696 A JP27416696 A JP 27416696A JP H10101334 A JPH10101334 A JP H10101334A
Authority
JP
Japan
Prior art keywords
acid
yttrium
salt
aluminum garnet
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8274166A
Other languages
Japanese (ja)
Other versions
JP3801275B2 (en
Inventor
Takakimi Yanagiya
高公 柳谷
Hideki Yagi
秀喜 八木
Moriteru Imagawa
盛輝 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Original Assignee
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNOSHIMA KAGAKU KOGYO KK, Konoshima Chemical Co Ltd filed Critical KOUNOSHIMA KAGAKU KOGYO KK
Priority to JP27416696A priority Critical patent/JP3801275B2/en
Publication of JPH10101334A publication Critical patent/JPH10101334A/en
Application granted granted Critical
Publication of JP3801275B2 publication Critical patent/JP3801275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain powdery starting material for yttrium aluminum garnet having satisfactory dispersibility and giving a transparent sintered compact by adding an org. hydroxy acid to aq. soln. of mineral acid salts of Y and Al mixed in such a ratio as to give a garnet compsn., neutralizing the soln. with urea and calcining the resultant precipitate. SOLUTION: An org. hydroxy acid, one of precursor is added to an aq. soln. of mineral acid salts of Y and Al mixed in such a ratio as to give a garnet compsn., the soln. is neutralized with urea and the resultant precipitate is calcined to produce the objective powdery starting material for yttrium aluminum garnet(YAG) having satisfactory dispersibility and high sinterability and giving a transparent sintered compact. Since sulfuric acid is not used, environmental problem due to gaseous SO2 is not caused at the time of firing. Lactic acid or tartaric acid may be used as the org. hydroxy acid and this acid is added by an amt. (mol) 0.1-5 times the total cocn. of Y and Al ions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、レーザー用発振子、放電
ランプ用エンベロープ、サファイヤ代替用窓材、装飾品
等に用い得る、透光性のイットリウムアルミニウムガー
ネット(YAG)セラミックスの製造に有用なYAG原
料粉末の製造方法に関する。なおYAGの組成はY3Al
5O12で、理論密度は4.55g/cm3である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a YAG aluminum garnet (YAG) ceramic which is useful for producing a translucent yttrium aluminum garnet (YAG) ceramic which can be used for an oscillator for a laser, an envelope for a discharge lamp, a window material for replacing sapphire, a decorative article and the like. The present invention relates to a method for producing a raw material powder. The composition of YAG is Y3Al
In 5 O12, the theoretical density of 4.55 g / cm 3.

【0002】[0002]

【従来技術】透光性YAGセラミックスの製造方法とし
ては、これまでにホットプレスによるもの(米国特許:
3767,745)や、酸化物微粉末のボールミル混合
とCIP成形(静水圧成形)による直接焼結法(特開平
3−218963号)が開示されている。ホットプレス
法では、装置が高価なうえ量産性に乏しく、またセラミ
ックスの重要な特徴である複雑形状品の製造が困難であ
る。酸化物微粉末混合法では透光性の良い焼結体が得ら
れるが、反応性を増し、かつ混合時の比重差によるイッ
トリアとアルミナとの分離を抑制するため、イットリア
の超微粉体を用いる必要がある。このためイットリアと
アルミナを別々に製造する必要がある。また超微粉体を
用いるため成形密度が低く、その結果、焼結時の収縮が
増加し、寸法精度が要求される用途への適用が困難とな
る。さらに量産法として押し出し成形法や射出成形法を
適用した場合、成形圧力が高くなりニーダーやスクリュ
ーの摩耗による汚染が増加し、この結果、良質のセラミ
ックスが得られない。
2. Description of the Related Art Translucent YAG ceramics have been produced by hot pressing (US Patent:
No. 3,767,745), and a direct sintering method by ball mill mixing of oxide fine powder and CIP molding (hydrostatic molding) (Japanese Patent Application Laid-Open No. 3-218963). In the hot press method, the equipment is expensive and the mass productivity is poor, and it is difficult to manufacture a complex-shaped product which is an important feature of ceramics. The oxide fine powder mixing method can provide a sintered body with good translucency.However, in order to increase the reactivity and suppress the separation of yttria and alumina due to the difference in specific gravity during mixing, ultrafine yttria powder is used. Must be used. Therefore, it is necessary to produce yttria and alumina separately. In addition, since the ultrafine powder is used, the molding density is low, and as a result, shrinkage during sintering increases, making it difficult to apply to applications requiring dimensional accuracy. Further, when an extrusion molding method or an injection molding method is applied as a mass production method, the molding pressure is increased, and contamination due to wear of a kneader or a screw is increased. As a result, high quality ceramics cannot be obtained.

【0003】また単一相YAG微粉末の製造方法として
は、これまでにゾルゲル法や水酸化物沈澱法等が報告さ
れているが、透光性焼結体が得られる程度の焼結性は有
していない。これは前駆体の沈澱粒子がゲル状の微細な
粒子で、乾燥凝集の結果、仮焼時の粒子同士の焼き付き
や粒成長が著しくなり、一次粒子の分散性が低下するた
めである。
As a method for producing a single-phase YAG fine powder, a sol-gel method and a hydroxide precipitation method have been reported so far. I do not have. This is because the precipitated particles of the precursor are gel-like fine particles, and as a result of drying and agglomeration, seizure and grain growth of the particles during calcination become remarkable, and the dispersibility of the primary particles decreases.

【0004】この点を改善した例として、硫酸塩の直接
分解法(特開昭59−207555号)や硫酸添加尿素
法(特開平2−92817号公報)が開示されている。
しかしながら硫酸塩の直接分解法では、分解生成する大
量の亜硫酸ガスにより大気汚染が生じ、亜硫酸ガスの回
収に膨大なコストが必要である。さらに硫酸根を大量に
含むため、硫酸根の分解焼成温度を高くせざるを得ず、
一次粒子の成長が著しくなる。このため、MgOやSi
O2の焼結助剤なしでは、良好な透光性焼結体が得られ
ない。硫酸添加尿素法の場合は、焼結助剤を用いること
なく、透光性焼結体が製造可能である。即ちこの方法で
は、凝集が少なく分散性が良い易焼結性の原料粉末が得
られる。しかしこの沈澱は硫酸塩を含むため、分解焼成
時の亜硫酸ガスによる環境問題が生じる。
As an example in which this point is improved, a direct decomposition method of sulfate (JP-A-59-207555) and a sulfuric acid-added urea method (JP-A-2-92817) are disclosed.
However, in the direct sulfate decomposition method, a large amount of sulfur dioxide gas generated by decomposition causes air pollution, and enormous cost is required to recover the sulfur dioxide gas. Furthermore, since it contains a large amount of sulfate, the decomposition and firing temperature of sulfate must be increased,
The growth of primary particles becomes significant. For this reason, MgO or Si
Without a sintering aid of O2, a good translucent sintered body cannot be obtained. In the case of the sulfuric acid-added urea method, a translucent sintered body can be manufactured without using a sintering aid. That is, according to this method, an easily sinterable raw material powder having little aggregation and good dispersibility can be obtained. However, since this precipitate contains sulfate, an environmental problem occurs due to sulfurous acid gas at the time of decomposition and firing.

【0005】[0005]

【発明の課題】本発明は、硫酸を用いずに、透光性YA
G焼結体の原料として有用な、凝集が少なく分散性が良
い易焼結性のYAG原料粉末を製造することを目的とす
る。
An object of the present invention is to provide a transparent YA without using sulfuric acid.
An object of the present invention is to produce an easily sinterable YAG raw material powder that is useful as a raw material for a G sintered body, has low agglomeration and has good dispersibility.

【0006】[0006]

【発明の構成】本発明は、イットリウム塩とアルミニウ
ム塩との混合比がガーネット組成となるように混合した
鉱酸塩の水溶液を、尿素で中和して沈澱を生成させ、得
られた沈澱を仮焼してイットリウムアルミニウムガーネ
ット原料粉末とする方法において、前記鉱酸塩水溶液中
に、有機ヒドロキシ酸及びその前駆体からなる群の少な
くとも一員の物質を含有させたことを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a precipitate by neutralizing an aqueous solution of a mineral acid salt mixed so that the mixing ratio of an yttrium salt and an aluminum salt becomes a garnet composition with urea to form a precipitate. In the method of calcining to obtain yttrium aluminum garnet raw material powder, the mineral salt aqueous solution contains at least one member selected from the group consisting of organic hydroxy acids and precursors thereof.

【0007】ここに有機ヒドロキシ酸とはカルボン酸基
と水酸基とを有する有機化合物で、例えば乳酸や酒石
酸,クエン酸,グリセリン酸がある。そして用いる物質
はこれらの有機ヒドロキシ酸に限らず、これらの塩や酸
無水物のアミド等でも良い。しかし水溶性で、沈澱形成
時に最初からヒドロキシ酸やその塩として存在する物質
が好ましく、このため有機ヒドロキシ酸あるいはその塩
が好ましい。なお塩の形態は沈澱中への異種金属イオン
の混入を避けるため、アンモニウム塩が特に好ましい。
Here, the organic hydroxy acid is an organic compound having a carboxylic acid group and a hydroxyl group, such as lactic acid, tartaric acid, citric acid and glyceric acid. The substance used is not limited to these organic hydroxy acids, but may be salts or amides of acid anhydrides. However, a substance which is water-soluble and which is present as a hydroxy acid or a salt thereof at the time of formation of a precipitate from the beginning is preferred. As the salt form, an ammonium salt is particularly preferred in order to avoid mixing of foreign metal ions into the precipitate.

【0008】好ましくは、前記有機ヒドロキシ酸及びそ
の前駆体からなる群の少なくとも一員の物質の濃度を、
イットリイウムイオンとアルミニウムイオンとの合計濃
度に対するモル比で0.1〜5.0倍とする。この範囲で
アルミニウムやイットリウムの加水分解速度を適切な値
にすることができ、特に焼結性の高いイットリウムアル
ミニウムガーネット原料粉末が得られる。
Preferably, the concentration of at least one member of the group consisting of the organic hydroxy acids and their precursors is
The molar ratio is 0.1 to 5.0 times the total concentration of yttrium ions and aluminum ions. Within this range, the rate of hydrolysis of aluminum or yttrium can be set to an appropriate value, and a yttrium aluminum garnet raw material powder having particularly high sinterability can be obtained.

【0009】[0009]

【発明の作用と効果】本発明の作用と効果とを説明す
る。本発明では尿素法による沈澱の形成に際して、有機
ヒドロキシ酸あるいはその前駆体,即ち反応時に分解し
て有機ヒドロキシ酸として作用する物質を、イットリウ
ム塩とアルミニウム塩との混合物からなる鉱酸塩の水溶
液中に存在させる。有機ヒドロキシ酸やその前駆体の作
用は必ずしも明らかではないが、有機ヒドロキシ酸とア
ルミニウムイオンないしイットリウムイオンとの間で可
溶性のキレートが生成し、これによってアルミニウムな
いしイットリウムの加水分解速度が低下するものと考え
られる。そして加水分解速度が低下すれば、沈澱核の発
生量が低下し、個々の沈澱粒子の粒成長が進み、水洗や
濾過が容易で、沈澱粒子相互の接触が少ないため扱い易
い沈澱となると考えられる。
The operation and effect of the present invention will be described. In the present invention, when a precipitate is formed by the urea method, an organic hydroxy acid or a precursor thereof, that is, a substance which is decomposed during the reaction to act as an organic hydroxy acid, is dissolved in an aqueous solution of a mineral salt comprising a mixture of an yttrium salt and an aluminum salt. To exist. Although the action of the organic hydroxy acid and its precursor is not always clear, a soluble chelate is generated between the organic hydroxy acid and the aluminum ion or yttrium ion, and thereby the hydrolysis rate of aluminum or yttrium is reduced. Conceivable. If the rate of hydrolysis decreases, the amount of precipitate nuclei generated decreases, the grain growth of the individual precipitated particles proceeds, washing and filtration are easy, and the precipitate particles are considered to be easy to handle due to little contact with the precipitated particles. .

【0010】そしてこのような沈澱では、沈澱が粒状で
あるため、仮焼時の二次粒子成長を抑制して、凝集性が
低く分散性に優れた易焼結性のイットリウムアルミニウ
ムガーネット微粉末となると考えられる。
[0010] In such a precipitate, since the precipitate is granular, the growth of secondary particles during calcination is suppressed, and an easily sinterable yttrium aluminum garnet fine powder having low cohesiveness and excellent dispersibility is obtained. It is considered to be.

【0011】有機ヒドロキシ酸やその前駆体としては、
前記のように有機ヒドロキシ酸自体やそのアンモニウム
等の塩が好ましく、特に好ましくは乳酸や酒石酸、及び
これらのアンモニウム等の塩の一員の物質とする。有機
ヒドロキシ酸やその前駆体、(以下単に「有機ヒドロキ
シ化合物」)の濃度は、アルミニウムイオンやイットリ
ウムイオンとのキレート形成を促進して沈澱核の発生を
遅らせるために、アルミニウムイオンとイットリウムイ
オンの合計量に対するモル比で、0.1倍量以上が好ま
しい。また有機ヒドロキシ化合物が多すぎると、可溶性
の金属キレート錯体が安定に生成し、金属イオンの加水
分解が完結しなくなるため、5.0倍量以下が好まし
い。特に乳酸やその塩の場合1.5〜3.5倍量、酒石酸
やその塩の場合0.5〜1.0倍量が好ましい。
As the organic hydroxy acid and its precursor,
As described above, the organic hydroxy acid itself or a salt thereof such as ammonium is preferable, and particularly preferred is lactic acid, tartaric acid, or a substance which is a member of a salt such as ammonium thereof. The concentration of the organic hydroxy acid and its precursor (hereinafter simply referred to as “organic hydroxy compound”) is determined by the sum of aluminum ion and yttrium ion in order to promote the formation of chelates with aluminum ions and yttrium ions and to delay the generation of precipitation nuclei. The molar ratio to the amount is preferably 0.1 times or more. On the other hand, if the amount of the organic hydroxy compound is too large, a soluble metal chelate complex is stably formed, and the hydrolysis of the metal ion is not completed. Therefore, the amount is preferably 5.0 times or less. In particular, lactic acid or a salt thereof is preferably 1.5 to 3.5 times, and tartaric acid or a salt thereof is preferably 0.5 to 1.0 times.

【0012】この発明で得られる粒子状沈澱は、硫酸添
加尿素法によって得られる粒子状沈澱とほぼ同等で、濾
過、水洗性は遜色はない。また沈澱改質剤として硫酸で
はなく有機物を用いるため、仮焼時の分解生成物は炭酸
ガスと水で、亜硫酸ガスの発生がなく、作業環境及び大
気汚染の問題が格段に改善される。
The particulate precipitate obtained by the present invention is almost the same as the particulate precipitate obtained by the sulfuric acid-added urea method, and the filtration and washing properties are comparable. In addition, since an organic substance is used instead of sulfuric acid as the precipitation modifier, decomposition products at the time of calcination are carbon dioxide gas and water, there is no generation of sulfurous acid gas, and the problems of working environment and air pollution are remarkably improved.

【0013】沈澱の形成に際しては、例えばイットリウ
ムとアルミニウムの塩酸や硝酸等の鉱酸塩を水に溶解し
た後、例えば金属イオン濃度が0.005〜1.0mol/L
となるようにYAG組成に合わせて混合する。金属イオ
ン濃度が1.0mol/Lより高い場合、沈澱生成時の粒子同
士の接触が増加するため、仮焼時に粒子同士の焼き付き
が生じ、分散性が低い粉末となる。またこれより低い場
合には、特に問題はないが、生産性が低下するので0.
005mol/L以上が好ましい。
In forming a precipitate, for example, a salt of yttrium and aluminum, such as hydrochloric acid or nitric acid, is dissolved in water, and then, for example, the metal ion concentration is 0.005 to 1.0 mol / L.
And mixed according to the YAG composition. When the metal ion concentration is higher than 1.0 mol / L, the contact between the particles during precipitation is increased, so that the particles are seized at the time of calcination, resulting in a powder having low dispersibility. If it is lower than this, there is no particular problem, but the productivity is reduced.
005 mol / L or more is preferable.

【0014】この溶液に、尿素と、好ましくは金属イオ
ンに対するモル比で0.1〜5.0倍量の、乳酸あるいは
酒石酸やその塩等の有機ヒドロキシ化合物を添加し、混
合溶液とする。乳酸塩や酒石酸塩としては、例えば乳酸
アンモニウム、乳酸ナトリウム、乳酸リチウム、乳酸マ
グネシウム、酒石酸アンモニウム、酒石酸水素アンモニ
ウム、酒石酸ナトリウム等が挙げられるが、これらに限
定するものではない。
To this solution, urea and preferably an organic hydroxy compound such as lactic acid or tartaric acid or a salt thereof in a molar ratio to metal ions of 0.1 to 5.0 times are added to form a mixed solution. Examples of lactate and tartrate include, but are not limited to, ammonium lactate, sodium lactate, lithium lactate, magnesium lactate, ammonium tartrate, ammonium hydrogen tartrate, sodium tartrate, and the like.

【0015】上記の混合溶液を、70〜100℃で攪拌
下数時間反応させる。尿素は加熱によりアンモニアと炭
酸ガスに分解し、これによってアルミニウムとイットリ
ウムが水酸化物や炭酸塩あるいは塩基性炭酸塩として沈
澱する。混合溶液のpHが4.0程度まで上昇すると最
初にアルミニウムの沈澱が生成し始め、さらにpHが上
昇するとイットリウムの沈澱が生成する。pHの上昇は
添加尿素量、有機ヒドロキシ化合物量並びに反応温度に
より制御でき、これらの制御により0.02〜0.5μm
の間で任意の平均粒径を持つ沈澱を生成できる。尿素は
反応溶液中の酸を中和し金属イオンを加水分解するのに
必要な量があればよく、少なすぎると金属イオンの加水
分解が不完全で、また加水分解反応に時間がかかる。尿
素量が多すぎても特に問題はないが、不経済である。こ
れらのため金属イオンの合計量に対するモル比で、尿素
は4〜10倍量が適当である。
The above mixed solution is reacted at 70 to 100 ° C. for several hours with stirring. Urea decomposes into ammonia and carbon dioxide by heating, whereby aluminum and yttrium precipitate as hydroxides, carbonates or basic carbonates. When the pH of the mixed solution rises to about 4.0, aluminum precipitates first begin to form, and when the pH further rises, yttrium precipitates. The increase in pH can be controlled by the amount of added urea, the amount of the organic hydroxy compound, and the reaction temperature.
A precipitate having any average particle size can be formed. It is sufficient that urea has an amount necessary to neutralize the acid in the reaction solution and hydrolyze the metal ions. If the amount is too small, the hydrolysis of the metal ions is incomplete and the hydrolysis reaction takes time. There is no particular problem if the amount of urea is too large, but it is uneconomical. For these reasons, the urea is suitably used in a molar ratio of 4 to 10 times the molar amount based on the total amount of metal ions.

【0016】反応温度が70℃以下では尿素の加水分解
が起こらず、反応温度は70℃以上で反応液の沸点以下
であれば良い。好ましくは反応終了後、室温まで冷却し
た後、沈澱の水洗と濾過を数回繰り返す。これによって
沈澱中の無関係陰イオン、例えば塩素イオンや硝酸イオ
ンを2000wtppm以下まで除去し、仮焼時の二次
粒子成長を防止する。なお、洗浄が不十分で無関係陰イ
オンが沈澱中に含まれていると、仮焼時に粒子同士の焼
き付きが生じる。得られた沈澱を例えば乾燥した後、例
えば650℃以上の温度で仮焼してYAG粉末を得る。
かくして得られたYAG粉末は微粉末で、凝集が少なく
分散性に優れた透光性YAGの原料粉末となる。
When the reaction temperature is 70 ° C. or lower, hydrolysis of urea does not occur, and the reaction temperature may be 70 ° C. or higher and the boiling point of the reaction solution or lower. Preferably, after completion of the reaction, the mixture is cooled to room temperature, and the precipitate is washed with water and filtered several times. This removes irrelevant anions during precipitation, for example, chloride ions and nitrate ions to 2000 wtppm or less, and prevents secondary particle growth during calcination. If the washing is insufficient and irrelevant anions are contained in the precipitate, seizure of the particles occurs during calcination. The obtained precipitate is dried, for example, and then calcined at a temperature of, for example, 650 ° C. or more, to obtain a YAG powder.
The YAG powder thus obtained is a fine powder, and becomes a raw material powder of a translucent YAG having little aggregation and excellent dispersibility.

【0017】本発明では、透光性YAGセラミックスの
原料として有用な、凝集が少なく、分散性の良い、焼結
性に優れたYAGの微粉末を簡単にかつ低コストで製造
できる。また硫酸を用いないので、作業環境や大気汚染
の問題を改善できる。以下に実施例を説明するが、これ
らに限定されるものではない。
According to the present invention, it is possible to easily and inexpensively produce a fine powder of YAG which is useful as a raw material of a translucent YAG ceramic, has less aggregation, has good dispersibility, and has excellent sinterability. Further, since sulfuric acid is not used, problems of working environment and air pollution can be improved. Examples will be described below, but the present invention is not limited to these examples.

【0018】[0018]

【実施例1】1mol/LのYCl3水溶液600mlと1mol/L
のAlCl3水溶液1000mlを5Lビーカーにとり、尿素
及び乳酸アンモニウムをそれぞれ金属イオンの合計量に
対するモル比で、10倍量並びに2倍量添加した。この
混合溶液を95℃に加熱し、3.5時間反応させた。反
応液を室温まで冷却した後に、濾過、水洗を7回繰り返
して、無関係陰イオン濃度が2000wtppm以下の
沈澱を得た。
Example 1 600 ml of 1 mol / L YCl3 aqueous solution and 1 mol / L
Was placed in a 5 L beaker, and urea and ammonium lactate were added in a molar ratio of 10 times and 2 times, respectively, to the total amount of metal ions. This mixed solution was heated to 95 ° C. and reacted for 3.5 hours. After the reaction solution was cooled to room temperature, filtration and washing with water were repeated seven times to obtain a precipitate having an irrelevant anion concentration of 2000 wtppm or less.

【0019】このアモルファス沈澱を空気中120℃で
乾燥した後、空気中で1250℃で2時間仮焼すること
により、分散性に優れたYAG原料粉末が得られた。得
られたYAG原料粉末2gを、20φ金型を用いて10
0kg/cm2の圧力で一次成形した後、1.5Ton/
cm2の圧力でCIP成形(静水圧成形)し、1670
℃にて3時間真空焼結した。得られた焼結体の密度をア
ルキメデス法で測定すると、4.55g/cm3と理論密
度に達しており、両面を鏡面研磨して2mm厚の試料と
し、波長600nmでの光直線透過率を測定すると58
%であった。
After drying this amorphous precipitate at 120 ° C. in air, it was calcined at 1250 ° C. for 2 hours in air to obtain a YAG raw material powder having excellent dispersibility. Using a 20φ mold, 2 g of the obtained YAG raw material powder was
After primary molding at a pressure of 0 kg / cm 2 , 1.5 Ton /
CIP molding (hydrostatic molding) at a pressure of 1 cm 2
Vacuum sintering was performed at 3 ° C. for 3 hours. When the density of the obtained sintered body was measured by Archimedes' method, the theoretical density was 4.55 g / cm 3, and both surfaces were mirror-polished to obtain a sample having a thickness of 2 mm, and the light linear transmittance at a wavelength of 600 nm was measured. 58 when measured
%Met.

【0020】[0020]

【実施例2〜13】操作は実施例1と同様として、金属
イオン濃度、有機ヒドロキシ酸(いずれもアンモニウム
塩として添加)の種類及び添加量、仮焼温度を種々変更
してYAG原料粉末を作製した。各試料の調製条件を表
1に示す。また仮焼後の一次粒子径(平均粒径)や、1
670℃で真空焼結後の密度と光直線透過率とを表2に
示す。表1,表2から、本発明では、透光性の良好なY
AG焼結体用の原料粉末が得られることが分かる。また
乳酸アンモニウムを用いた実施例2〜実施例9で、光直
線透過率が高いのは、乳酸アンモニウムと金属イオンと
のモル比を1.5〜3.5とした実施例3,4,5,7,
8である。また酒石酸アンモニウムを用いた実施例10
〜13で、光直線透過率が高いのは、酒石酸アンモニウ
ムと金属イオンとのモル比を0.5〜1.0とした実施例
10,11である。
Examples 2 to 13 In the same manner as in Example 1, YAG raw material powder was prepared by variously changing the metal ion concentration, the type and amount of organic hydroxy acid (all added as ammonium salts), and the calcination temperature. did. Table 1 shows the preparation conditions for each sample. The primary particle size (average particle size) after calcination,
Table 2 shows the density and the linear light transmittance after vacuum sintering at 670 ° C. From Tables 1 and 2, it can be seen that, in the present invention, Y having good translucency
It can be seen that a raw material powder for an AG sintered body can be obtained. In Examples 2 to 9 in which ammonium lactate was used, the high linear light transmittance was obtained in Examples 3, 4, and 5 in which the molar ratio between ammonium lactate and metal ions was 1.5 to 3.5. , 7,
8 Example 10 using ammonium tartrate
In Examples 10 and 11, the light linear transmittance was high among Examples 13 and 13 in which the molar ratio between ammonium tartrate and metal ions was 0.5 to 1.0.

【0021】各比較例では、有機ヒドロキシ化合物を用
いたにもかかわらず、1670℃焼結では透明なYAG
焼結体が得られなかった。このことから、有機ヒドロキ
シ化合物量が金属イオンとのモル比で0.1倍未満ある
いは5.0倍超の場合、焼結温度をより高める等の対策
が必要であることが分かる。
In each comparative example, despite the use of an organic hydroxy compound, transparent YAG was sintered at 1670 ° C.
No sintered body was obtained. This indicates that when the molar ratio of the organic hydroxy compound to the metal ion is less than 0.1 times or more than 5.0 times, it is necessary to take measures such as increasing the sintering temperature.

【0022】[0022]

【表1】 表1 試料の調製条件* ヒト゛ロキシ酸 金属イオン濃度 ヒト゛ロキシ酸/金属 仮焼温度 (アンモニウム塩) /(mol/L) (モル比) (℃) 実施例2 乳酸 0.05 0.5 1250 実施例3 乳酸 0.05 1.5 1250 実施例4 乳酸 0.05 2.0 1250 実施例5 乳酸 0.05 3.5 1250 実施例6 乳酸 0.05 5.0 1250 実施例7 乳酸 0.1 1.5 1300 実施例8 乳酸 0.1 3.5 1300 実施例9 乳酸 0.1 5.0 1300 実施例10 酒石酸 0.05 0.5 1250 実施例11 酒石酸 0.05 1.0 1250 実施例12 酒石酸 0.05 3.0 1250 実施例13 酒石酸 0.05 5.0 1250 比較例1 乳酸 0.05 0.05 1250 比較例2 乳酸 0.05 7.5 1250 比較例3 乳酸 0.05 10.0 1250 比較例4 乳酸 0.1 0.05 1300 比較例5 乳酸 0.1 10.0 1300 比較例6 酒石酸 0.05 0.05 1150 比較例7 酒石酸 0.05 7.5 1250 * 有機ヒドロキシ酸はいずれもアンモニウム塩として添加, 金属イオン濃度はイットリウムイオンとアルミニウムイオンとの合計濃度, 金属イオンの添加形態はいずれも塩化物塩, 尿素は金属イオンの合計に対するモル比で10倍量添加, 沈澱形成後に濾過と水洗をいずれも7回繰り返し、無関係陰イオン濃度を 2000wtppm以下に低下, 仮焼雰囲気は空気. Table 1 Sample preparation conditions * Human peroxy acid Metal ion concentration Human peroxy acid / metal Calcination temperature (ammonium salt) / (mol / L) (molar ratio) (° C) Example 2 Lactic acid 0.05 0.5 1250 Example 3 Lactic acid 0.05 1.5 1250 Example 4 Lactic acid 0.05 2.0 1250 Example 5 Lactic acid 0.05 3.5 1250 Example 6 Lactic acid 0.05 5.0 1250 Example 7 Lactic acid 0.1 1.5 1300 Example 8 Lactic acid 0.1 3.5 1300 Example 9 Lactic acid 0.1 5.0 1300 Example 10 Tartaric acid 0.05 0.5 1250 Example 11 Tartaric acid 0.05 1.0 1250 Example 12 Tartaric acid 0.05 3.0 1250 Example 13 Tartaric acid 0.05 5.0 1250 Comparative example 1 Lactic acid 0.05 0.05 1250 Comparative example 2 Lactic acid 0.05 7.5 1250 Comparative example 3 Lactic acid 0.05 10.0 1250 Comparative example 4 Lactic acid 0.1 0.05 1300 Comparative Example 5 Lactic acid 0.1 10.0 1300 Comparative Example 6 Tartaric acid 0.05 0.05 1150 Comparative Example 7 Tartaric acid 0.05 7.5 1250 * All organic hydroxy acids are added as ammonium salts. Metal ion concentration is the total concentration of yttrium ion and aluminum ion, metal Regarding the form of ion addition, chloride salt and urea were added in a molar ratio of 10 times the total amount of metal ions. After precipitation, filtration and washing were repeated seven times to reduce the concentration of irrelevant anions to 2000 wtppm or less. The baking atmosphere is air.

【0023】[0023]

【表2】 表2 セラミック特性* 一次粒子径 焼結密度 光直線透過率 (μm) (g/cm3) (%) 実施例2 0.19 4.55 45.2 実施例3 0.21 4.55 59.6 実施例4 0.29 4.55 66.3 実施例5 0.34 4.55 64.1 実施例6 0.35 4.55 45.1 実施例7 0.28 4.55 57.5 実施例8 0.33 4.55 63.2 実施例9 0.37 4.55 46.7 実施例10 0.20 4.55 60.4 実施例11 0.27 4.55 68.2 実施例12 0.33 4.55 54.1 実施例13 0.36 4.55 40.1 比較例1 0.11 4.53 0 比較例2 0.43 4.49 0 比較例3 0.46 4.45 0 比較例4 0.16 4.54 0 比較例5 0.50 4.41 0 比較例6 0.02 4.02 0 比較例7 0.44 4.48 0 * 粒子径はTEM観察により評価. 焼結条件は真空中1670℃×3時間. 理論密度 4.55g/cm3. 光直線透過率は波長600nmにて測定.[Table 2] Table 2 Ceramic properties * Primary particle diameter Sintering density Light linear transmittance (μm) (g / cm 3 ) (%) Example 2 0.19 4.55 45.2 Example 3 0.21 4.55 59.6 Example 4 0.29 4.55 66.3 Example 5 0.34 4.55 64.1 Example 6 0.35 4.55 45.1 Example 7 0.28 4.55 57.5 Example 8 0.33 4.55 63.2 Example 9 0.37 4.55 46.7 Example 10 0.20 4.55 60.4 Example 11 0.27 4.55 68.2 Example 12 0.33 4.55 54.1 Example 13 0.36 4.55 40.1 Comparative example 1 0.11 4.53 0 Comparative example 2 0.43 4.49 0 Comparative example 3 0.46 4.45 0 Comparative example 4 0.16 4.54 0 Comparative example 5 0.50 4.41 0 Comparative example 6 0.02 4.02 0 Comparative example 7 0.44 4.48 0 * Particle size is TEM Evaluated by observation. The sintering condition is 1670 ° C. in vacuum for 3 hours. Theoretical density 4.55 g / cm 3 . Light linear transmittance was measured at a wavelength of 600 nm.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イットリウム塩とアルミニウム塩との混
合比がガーネット組成となるように混合した鉱酸塩の水
溶液を、尿素で中和して沈澱を生成させ、得られた沈澱
を仮焼してイットリウムアルミニウムガーネット原料粉
末とする方法において、 前記鉱酸塩水溶液中に、有機ヒドロキシ酸及びその前駆
体からなる群の少なくとも一員の物質を含有させたこと
を特徴とする、イットリウムアルミニウムガーネット原
料粉末の製造方法。
1. An aqueous solution of a mineral acid salt mixed so that the mixing ratio of an yttrium salt and an aluminum salt becomes a garnet composition is neutralized with urea to form a precipitate, and the obtained precipitate is calcined. A method for producing yttrium aluminum garnet raw material powder, characterized in that the mineral salt aqueous solution contains at least a member of a group consisting of an organic hydroxy acid and a precursor thereof. Method.
【請求項2】 前記有機ヒドロキシ酸及びその前駆体か
らなる群の少なくとも一員の物質の濃度を、イットリイ
ウムイオンとアルミニウムイオンとの合計濃度に対する
モル比で0.1〜5.0倍としたことを特徴とする、請求
項1のイットリウムアルミニウムガーネット原料粉末の
製造方法。
2. The concentration of at least one member of the group consisting of the organic hydroxy acid and its precursor is 0.1 to 5.0 times in molar ratio to the total concentration of yttrium ions and aluminum ions. The method for producing yttrium aluminum garnet raw material powder according to claim 1, characterized in that:
【請求項3】 前記有機ヒドロキシ酸及びその前駆体か
らなる群の少なくとも一員の物質を、乳酸及び酒石酸と
これらの塩からなる群の少なくとも一員の物質としたこ
とを特徴とする、請求項1のイットリウムアルミニウム
ガーネット原料粉末の製造方法。
3. The substance according to claim 1, wherein the at least one member of the group consisting of the organic hydroxy acids and the precursors thereof is at least one member of the group consisting of lactic acid, tartaric acid and salts thereof. A method for producing yttrium aluminum garnet raw material powder.
JP27416696A 1996-09-24 1996-09-24 Method for producing yttrium aluminum garnet raw material powder Expired - Lifetime JP3801275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27416696A JP3801275B2 (en) 1996-09-24 1996-09-24 Method for producing yttrium aluminum garnet raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27416696A JP3801275B2 (en) 1996-09-24 1996-09-24 Method for producing yttrium aluminum garnet raw material powder

Publications (2)

Publication Number Publication Date
JPH10101334A true JPH10101334A (en) 1998-04-21
JP3801275B2 JP3801275B2 (en) 2006-07-26

Family

ID=17537961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27416696A Expired - Lifetime JP3801275B2 (en) 1996-09-24 1996-09-24 Method for producing yttrium aluminum garnet raw material powder

Country Status (1)

Country Link
JP (1) JP3801275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022262B2 (en) 2003-11-25 2006-04-04 Ues, Inc. Yttrium aluminum garnet powders and processing
US7566408B2 (en) 2003-11-25 2009-07-28 Ues, Inc. YAG lasing systems and methods
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022262B2 (en) 2003-11-25 2006-04-04 Ues, Inc. Yttrium aluminum garnet powders and processing
US7566408B2 (en) 2003-11-25 2009-07-28 Ues, Inc. YAG lasing systems and methods
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Also Published As

Publication number Publication date
JP3801275B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JPH0524844A (en) Method for producing hydrated zirconia sol and zirconia powder
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
RU2689721C1 (en) Method of producing high-stoichiometric nano-sized materials based on yttrium-aluminum garnet with rare-earth element oxides
JP3906352B2 (en) Method for producing YAG transparent sintered body
JPH10114519A (en) Production of yttrium aluminum garnet powder
JP3692188B2 (en) Method for producing fine yttrium aluminum garnet powder
JP3798482B2 (en) Method for producing fine yttrium aluminum garnet powder
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
CN112723409A (en) SrTiO3Method for preparing polyhedron
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPH1017324A (en) Production of indium oxide power
RU2721548C1 (en) Complex method of producing low-agglomerated high-stoichiometric nano-sized precursor powders based on yttrium-aluminium garnet with rare-earth element oxides
RU2707840C1 (en) Method of producing highly stoichiometric nano-sized precursor for synthesis of solid solutions of yttrium-aluminium garnet with rare-earth element oxides
JP3265597B2 (en) Method for producing zirconia fine powder
JP3563464B2 (en) Method for producing yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered body using the same
JP4359531B2 (en) Zirconium-based oxide production method and automobile exhaust gas purification catalyst
RU2700074C1 (en) Method of reducing particle size and degree of agglomeration at stage of initial precursors synthesis when producing yttrium aluminium garnet
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JP3125067B2 (en) Method for producing transparent yttria sintered body
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP3896614B2 (en) Zirconia powder and method for producing the same
JP2007015898A (en) Method for manufacturing zirconium oxide powder and zirconium oxide powder
RU2697562C1 (en) Method of producing a low-agglomerated nanosized precursor for synthesis of solid solutions of yttrium-aluminum garnet with rare-earth element oxides
JPH0632615A (en) Production of hydrated zirconia gel and zirconia powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term