JPH0992889A - Seebeck element - Google Patents
Seebeck elementInfo
- Publication number
- JPH0992889A JPH0992889A JP7247391A JP24739195A JPH0992889A JP H0992889 A JPH0992889 A JP H0992889A JP 7247391 A JP7247391 A JP 7247391A JP 24739195 A JP24739195 A JP 24739195A JP H0992889 A JPH0992889 A JP H0992889A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- seebeck
- alloy
- different
- seebeck element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
(57)【要約】
【課題】 量産のきく導電性材料で、起電力の大きな大
電力の供給できるゼーベック素子を提供する。
【解決手段】 2つの異なった導電性物質からなる導体
を互いに2点で接合させて回路を作り、その2つの接合
部を互いに異なった温度に保持し、その開放回路の端子
間に前記異なった温度の温度差に応じて開放電圧を発生
させるゼーベック素子において、2つの異なった前記導
電性物質の一方の材料をFeとし、他方の材料を重量%
でシリコンを4.0乃至6.0含有させたFeとしてい
る。
(57) [PROBLEMS] To provide a Seebeck element which is a conductive material which can be mass-produced and which can supply a large electric power with a large electromotive force. SOLUTION: A conductor is made by joining two conductors made of different conductive materials at two points to form a circuit, and the two joints are held at different temperatures from each other, and the different terminals are provided between the terminals of the open circuit. In a Seebeck element that generates an open-circuit voltage according to a temperature difference, one of the two different conductive materials is Fe and the other material is wt%.
Is used as Fe containing silicon in the range of 4.0 to 6.0.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、温度差を有する
空気、水、海水、地熱など自然エネルギを電気エネルギ
に変換する機能素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional element that converts natural energy such as air, water, seawater, and geothermal heat having a temperature difference into electric energy.
【0002】[0002]
【従来の技術】2つの異なった導電性物質a,bからな
る導体を図1のように接合して回路をつくり、2つの接
合部をそれぞれ異なった温度TH とTL (TH >TL )
に保つと、開放回路の端子間に温度差ΔT=TH −TL
に応じた開放電圧Vabが発生する現象をゼーベック効果
という。また一方の接合部の温度の1℃の変化にたいす
るVabの変化αabを物質aに対する物質bのゼーベック
係数という。2. Description of the Related Art A circuit is made by joining conductors made of two different conductive materials a and b as shown in FIG. 1, and the two joints are made to have different temperatures T H and T L (T H >T> T). L )
, The temperature difference between the terminals of the open circuit ΔT = T H −T L
The phenomenon in which the open circuit voltage V ab is generated according to is called Seebeck effect. Also, the change α ab of V ab with respect to the change of the temperature of one junction by 1 ° C. is referred to as the Seebeck coefficient of the substance b with respect to the substance a.
【0003】大きな開放電圧が得られる物質a,bの組
み合わせとしては従来、アルメル・クロメル、銅・コン
スタンタン、クロメル・コンスタンタンなどが知られて
いる。これらの合金成分は、アルメルは90%Ni−8
%Al−2%Mn、クロメルは90%Ni−10%C
r、コンスタンタンは40%Ni−60%Cuなどであ
り、いずれもニッケルを高濃度に含有することが特徴で
あった(ここに記載する%は重量%の意味であり、以下
の記載も同じ意味である)。Conventionally, as a combination of substances a and b capable of obtaining a large open circuit voltage, alumel-chromel, copper-constantan, chromel-constantan, etc. are known. These alloy components are 90% Ni-8 for Alumel.
% Al-2% Mn, chromel 90% Ni-10% C
r and constantan were 40% Ni-60% Cu, etc., and both were characterized by containing nickel at a high concentration (% described here means% by weight, and the following description has the same meaning). Is).
【0004】[0004]
【発明が解決しようとする課題】図1の開放電圧Vabの
値は温度差ΔTの関数であり、100℃以下の常温付近
の低い温度においても2つの接合部に温度差があれば電
気エネルギの発生が可能である。しかしこの原理により
大電力を発生させるためには、前述のような合金が多量
に必要となるので、きわめて高価なニッケルを高濃度で
含有するこれら合金の使用は、経済的に実用性が無かっ
た。The value of the open circuit voltage V ab in FIG. 1 is a function of the temperature difference ΔT, and if there is a temperature difference between the two junctions even at a low temperature near room temperature of 100 ° C. or less, the electrical energy is reduced. Can occur. However, in order to generate a large amount of power according to this principle, a large amount of the above-mentioned alloys is required, so the use of these alloys containing extremely expensive nickel at a high concentration was not economically practical. .
【0005】そこで本願人は、安価で大量に生産されて
いる鉄と組み合わせて良好なゼーベック効果を示す鉄を
基本とする合金、しかも添加元素が資源的に豊富であ
り、かつ、小量添加で効果のある合金を鋭意調査した結
果、本発明のシリコンを4.0〜6.0%含むFe−S
i合金を開発した。Therefore, the present applicant has found that an iron-based alloy exhibiting a good Seebeck effect in combination with iron that is inexpensively produced in large quantities, is rich in additional elements in terms of resources, and can be added in small amounts. As a result of diligent research on alloys having an effect, Fe-S containing 4.0 to 6.0% of silicon of the present invention.
i alloy was developed.
【0006】本発明の目的は、鉄と接合して得られる起
電力が、同じ温度および温度差のもとでクロメル・コン
スタンタンの接合により得られる起電力の少なくとも3
分の1以上で、大電力が容易に得られる鉄を基本とした
ゼーベック素子を提供せんとするものである。It is an object of the present invention that the electromotive force obtained by joining iron is at least 3 times the electromotive force obtained by joining chromel-constantan under the same temperature and temperature difference.
It is intended to provide a Seebeck element based on iron, which is one-third or more and which can easily obtain high power.
【0007】[0007]
【課題を解決するための手段】この目的を達成するた
め、本発明に係るゼーベック素子は、2つの異なった導
電性物質からなる導体を互いに2点で接合させて回路を
作り、その2つの接合部を互いに異なった温度に保持
し、その開放回路の端子間に前記異なった温度の温度差
に応じて開放電圧を発生させるゼーベック素子におい
て、2つの異なった前記導電性物質の一方の材料をFe
とし、他方の材料を重量%でシリコンを4.0乃至6.
0%含有させたFe−Si合金であることを特徴とする
ものである。In order to achieve this object, the Seebeck element according to the present invention forms a circuit by joining conductors made of two different conductive materials to each other at two points, and joining the two. In the Seebeck element that holds the parts at different temperatures and generates an open circuit voltage between terminals of the open circuit according to the temperature difference of the different temperatures, one of the two different conductive materials is Fe.
And the other material is silicon in an amount of 4.0 to 6.
It is a Fe-Si alloy containing 0%.
【0008】[0008]
【発明の実施の形態】Fe−Si合金にはSiの飽和溶
解度が18.5%のFe−Si固溶体、及びFeSi,
FeSi2 等の中間化合物があるが、本発明の合金はF
e−Si固溶体である。鉄はシリコンの添加により塑性
は減じて硬度は増加する。またSiの増加とともに同素
変態の温度が上昇しSi約3%以上では変態が無くなる
ので、焼きなまし温度を高くして結晶粒を大きくし、ヒ
ステリシス損の減少と低磁束密度における透磁率が増大
する。電気抵抗に関しては、Siが1%増すと鉄の電気
抵抗率は約10μΩ・cmずつ増加する。BEST MODE FOR CARRYING OUT THE INVENTION In a Fe-Si alloy, a Fe-Si solid solution having a saturation solubility of Si of 18.5% and FeSi,
Although there are intermediate compounds such as FeSi 2 , the alloy of the present invention is F
It is an e-Si solid solution. The addition of silicon reduces the plasticity of iron and increases its hardness. Further, the temperature of the allotropic transformation increases with the increase of Si, and the transformation disappears when the Si content is about 3% or more. Therefore, the annealing temperature is increased to increase the size of crystal grains, thereby reducing the hysteresis loss and increasing the magnetic permeability at a low magnetic flux density. . Regarding the electric resistance, if Si increases by 1%, the electric resistivity of iron increases by about 10 μΩ · cm.
【0009】さて零℃以下の温度も含む生活圏の温度範
囲に存在する小さな温度差から産業用電力を獲得するゼ
ーベック効果発電は、そのエネルギ変換効率は極端に低
いものの、機械的駆動部分の全く無い極めて単純な装置
による電力への直接変換方法である。さらに自然エネル
ギは恒久的でありかつ地球環境保存の観点から、産業、
家庭用の電力の生産手段として意義がある。そのための
エネルギ変換用材料として具備すべき主な要件には 常温付近の温度で導電性が良好であること ゼーベック効果が良好であること 資源が豊富で材料が安価に製造できること 加工性が良好であること などがある。前記,の要件から材料は金属、合金に
限られ、の条件、すなわち量的な問題から鉄以外には
考えられず、次にはの条件を満たす合金の開発が必要
とされた。The Seebeck effect power generation, which obtains industrial electric power from a small temperature difference existing in the temperature range of the living sphere including a temperature of 0 ° C. or less, has extremely low energy conversion efficiency, but has no mechanical driving part. This is a direct conversion method to electric power by an extremely simple device that does not exist. Furthermore, renewable energy is permanent, and from the viewpoint of global environmental conservation, industry,
It is significant as a means of producing household electric power. The main requirements for an energy conversion material to achieve this are that it has good conductivity at temperatures near room temperature, that it has a good Seebeck effect, that it has abundant resources and that it can be manufactured at low cost, and that it has good workability. There are things like that. From the above requirements, the materials are limited to metals and alloys, and because of the problem of quantity, that is, iron other than iron, it is necessary to develop an alloy that satisfies the following conditions.
【0010】[0010]
【実施例】以下添附図面を参照し実施例により、本発明
の実施の形態をより具体的に説明する。鉄のゼーベック
係数は−30℃から100℃の温度範囲においてほぼ一
定で+16μV/Kである。図1の回路の発生電圧を大
きくするためには、一方の物質を鉄とすれば他方の物質
のゼーベック係数は正の大きな値をとるか、または負の
大きな値を具備している必要がある。ゼーベック係数が
正の物質をp型、負の物質をn型と称している。鉄はp
型導電体であるので鉄と接合させる相手としてn型導電
体が必要とされ、鉄をn型に転換させる元素として経済
的なシリコンを選定し、Fe−Si合金を作製してゼー
ベック係数の測定を実施した。Embodiments of the present invention will be described more specifically below with reference to the accompanying drawings. The Seebeck coefficient of iron is approximately constant at +16 μV / K in the temperature range of −30 ° C. to 100 ° C. In order to increase the generated voltage of the circuit of FIG. 1, if one substance is iron, the Seebeck coefficient of the other substance must have a large positive value or have a large negative value. . A substance having a positive Seebeck coefficient is called a p-type and a substance having a negative Seebeck coefficient is called an n-type. Iron is p
Since it is a type conductor, an n-type conductor is required as a partner to be joined to iron, economical silicon is selected as an element for converting iron to n-type, and a Fe-Si alloy is produced to measure the Seebeck coefficient. Was carried out.
【0011】純度99.9%の鉄を純度99.8%のシ
リコンとともにアルゴン雰囲気のもとで高周波誘導加熱
により200gの均質なFe−Si合金を溶製した。な
お合金中のSiの組成範囲は0〜10重量%とした。図
2は測定結果で、5.5%Siでゼーベック係数は負で
最小値−9.3μV/Kとなった。したがって、この組
成のFe−Si合金を選び鉄と接合して回路を構成する
とき最大の電圧が発生する。この電圧は2つの接合部の
温度差が1℃につき25.3μVとなり、高い開放電圧
を発生する。Iron having a purity of 99.9% was melted together with silicon having a purity of 99.8% by high frequency induction heating in an argon atmosphere to produce 200 g of a homogeneous Fe-Si alloy. The composition range of Si in the alloy was 0 to 10% by weight. FIG. 2 shows the measurement results, and at 5.5% Si, the Seebeck coefficient is negative and has a minimum value of −9.3 μV / K. Therefore, when a Fe-Si alloy having this composition is selected and joined to iron to form a circuit, the maximum voltage is generated. This voltage produces a high open circuit voltage due to the temperature difference between the two junctions being 25.3 μV per 1 ° C.
【0012】なお、シリコン濃度の上限は、6.0%で
ある。これは5.5%を超えると鉄と接合してゼーベッ
ク電圧が減少する上に、導電率も減少するので、結果的
に出力が低下するために決定されたものである。他方、
シリコン濃度の下限は、シリコン濃度の減少とともに、
導電率は増加するが、ゼーベック電圧は減少するので、
結果的に出力が減少するために4.0%と決定したもの
である。The upper limit of the silicon concentration is 6.0%. This is determined because if the content exceeds 5.5%, the Seebeck voltage is decreased due to bonding with iron, and the conductivity is also decreased, resulting in a decrease in output. On the other hand,
The lower limit of silicon concentration is as the silicon concentration decreases,
The conductivity increases but the Seebeck voltage decreases, so
As a result, the output is reduced, so it was decided to be 4.0%.
【0013】また、鉄の純度については、普通鋼に通常
0.2%以下含まれている炭素、窒素、酸素、硫黄、燐
などの軽元素、および微量の金属元素などは、ゼーベッ
ク電圧にほとんど影響しないことが判明している。Regarding the purity of iron, light elements such as carbon, nitrogen, oxygen, sulfur, and phosphorus, which are usually contained in ordinary steel in an amount of 0.2% or less, and trace amounts of metal elements, are almost in the Seebeck voltage. It is known to have no effect.
【表1】 [Table 1]
【0014】一例として、鉄−5.5%シリコン鉄のゼ
ーベック係数を、従来知られている金属−合金対と比較
したのが表1である。表から明らかなように本発明の鉄
−5.5%シリコン鉄対のゼーベック係数は他の金属−
合金対と比較して劣るものの、5.5%のSi以外は実
質的にすべて鉄であり、高価な添加元素を必要としてい
ない。経済的な量産という観点から、本発明のもつ工業
的価値は大きいと考えられる。As an example, Table 1 compares the Seebeck coefficient of iron-5.5% silicon iron with a conventionally known metal-alloy pair. As is apparent from the table, the Seebeck coefficient of the iron of the present invention-5.5% silicon iron pair is different from that of other metals-
Although inferior to the alloy pair, it is essentially all iron except 5.5% Si and does not require expensive additional elements. From the viewpoint of economical mass production, the industrial value of the present invention is considered to be great.
【0015】本発明に係る合金を用いて熱を直接電気エ
ネルギに変換できることを利用した製品としては、一般
に直流発電機が考えられる。その発電特性から、地熱発
電機、海洋温度差発電機、廃熱利用発電機、太陽熱利用
発電機、原子力発電の廃熱利用発電機、核分裂熱の直接
利用発電機、ゴミ発電機などの、商用電源、自家用電
源、遠隔地用電源、非常用電源に利用するのが好適であ
る。A DC generator is generally considered as a product utilizing the ability to directly convert heat into electric energy using the alloy according to the present invention. Based on its power generation characteristics, commercial power generators such as geothermal generators, ocean temperature difference generators, waste heat utilization generators, solar heat utilization generators, nuclear waste heat utilization generators, nuclear fission heat direct utilization generators, garbage generators, etc. It is suitable to use as a power source, private power source, remote power source, and emergency power source.
【0016】[0016]
【発明の効果】以上説明してきたことから明らかなよう
に、本発明によれば、安価で大量に生産されている鉄と
組み合わせて良好なゼーベック起電力が得られるゼーベ
ック素子を提供することができ、従って大電力のゼーベ
ック素子の提供が可能で、産業、家庭用の電力生産手段
として期待される素子の実現が可能である。As apparent from what has been described above, according to the present invention, it is possible to provide a Seebeck element that can obtain a good Seebeck electromotive force in combination with iron that is inexpensive and mass-produced. Therefore, it is possible to provide a high power Seebeck element, and it is possible to realize an element expected as an industrial or household power production means.
【図1】ゼーベック素子の原理を説明するための図であ
る。FIG. 1 is a diagram for explaining the principle of a Seebeck element.
【図2】Fe・Fe−Si合金ゼーベック素子のSi濃
度とゼーベック係数の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the Si concentration and the Seebeck coefficient of a Fe · Fe—Si alloy Seebeck element.
Claims (1)
を互いに2点で接合させて回路を作り、その2つの接合
部を互いに異なった温度に保持し、その開放回路の端子
間に前記異なった温度の温度差に応じて開放電圧を発生
させるゼーベック素子において、2つの異なった前記導
電性物質の一方の材料をFeとし、他方の材料を重量%
でシリコンを4.0乃至6.0%含有させたFe−Si
合金であることを特徴とするゼーベック素子。1. A circuit is formed by joining conductors made of two different conductive materials at two points to each other, and the two joints are held at different temperatures from each other. In a Seebeck element that generates an open-circuit voltage according to a temperature difference between different temperatures, one of the two different conductive materials is Fe, and the other material is wt%.
Fe containing 4.0 to 6.0% of silicon by
Seebeck element characterized by being an alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7247391A JP2728201B2 (en) | 1995-09-26 | 1995-09-26 | Seebeck element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7247391A JP2728201B2 (en) | 1995-09-26 | 1995-09-26 | Seebeck element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0992889A true JPH0992889A (en) | 1997-04-04 |
JP2728201B2 JP2728201B2 (en) | 1998-03-18 |
Family
ID=17162737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7247391A Expired - Lifetime JP2728201B2 (en) | 1995-09-26 | 1995-09-26 | Seebeck element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2728201B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6131581A (en) * | 1998-06-23 | 2000-10-17 | Dr.-ing. Hans Leysieffer | Process and device for supply of an at least partially implanted active device with electric power |
WO2010021313A1 (en) | 2008-08-18 | 2010-02-25 | 株式会社ダ・ビンチ | Thermoelectric conversion element |
-
1995
- 1995-09-26 JP JP7247391A patent/JP2728201B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6131581A (en) * | 1998-06-23 | 2000-10-17 | Dr.-ing. Hans Leysieffer | Process and device for supply of an at least partially implanted active device with electric power |
WO2010021313A1 (en) | 2008-08-18 | 2010-02-25 | 株式会社ダ・ビンチ | Thermoelectric conversion element |
US8586854B2 (en) | 2008-08-18 | 2013-11-19 | Da Vinci Co., Ltd. | Thermoelectric conversion element |
Also Published As
Publication number | Publication date |
---|---|
JP2728201B2 (en) | 1998-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Enhanced high-temperature thermoelectric properties of Ce-and Dy-doped ZnO for power generation | |
CN202602564U (en) | Temperature differential power generation power supply device | |
JP3725152B2 (en) | Thermoelectric conversion material, thermoelectric conversion element using the material, and power generation method and cooling method using the element | |
Singh et al. | Advancements in thermoelectric materials for efficient waste heat recovery and renewable energy generation | |
JP2009277735A (en) | Method of manufacturing thermoelectric material | |
CN102887488A (en) | Cu-Ga-Sb-Te quaternary thermoelectric semiconductor with chalcopyrite structure, and preparation process for Cu-Ga-Sb-Te quaternary thermoelectric semiconductor | |
US20180294394A1 (en) | Thermoelectric conversion material | |
Mori et al. | Thermoelectric materials developments: past, present, and future | |
KR20100053893A (en) | Thermoelectric materials | |
Tervo et al. | State-of-the-art of thermoelectric materials processing | |
JP2728201B2 (en) | Seebeck element | |
JPH09298318A (en) | Thermoelectric conversion element | |
CN103262272B (en) | There is the metal material of N-shaped thermoelectricity conversion performance | |
Singsoog et al. | Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation | |
JP4920199B2 (en) | Rare earth-containing alloy, method for producing the same, and thermoelectric conversion material | |
JP2010050185A (en) | Mg INTERMETALLIC COMPOUND, AND DEVICE APPLYING THE SAME | |
US3852118A (en) | Thermoelectric composition | |
JPH11135840A (en) | Thermoelectric converting material | |
JPWO2006082926A1 (en) | Thallium compound thermoelectric conversion material and method for producing the same | |
JP2007227755A (en) | Thermoelectric material | |
Subramanyam et al. | Experimental study of thermoelectric energy harvesting | |
Ohtaki et al. | Thermoelectric properties of sintered FeSi2 with microstructural modification | |
JPH0221665B2 (en) | ||
Joshi et al. | Half-heusler modules | |
JP2006049494A (en) | Thermoelectric conversion material and thermoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |