[go: up one dir, main page]

JPH0961409A - Ultrasonic signal processor - Google Patents

Ultrasonic signal processor

Info

Publication number
JPH0961409A
JPH0961409A JP7211560A JP21156095A JPH0961409A JP H0961409 A JPH0961409 A JP H0961409A JP 7211560 A JP7211560 A JP 7211560A JP 21156095 A JP21156095 A JP 21156095A JP H0961409 A JPH0961409 A JP H0961409A
Authority
JP
Japan
Prior art keywords
signal
frequency
received signal
phase
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7211560A
Other languages
Japanese (ja)
Inventor
Yutaka Masuzawa
裕 鱒沢
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7211560A priority Critical patent/JPH0961409A/en
Publication of JPH0961409A publication Critical patent/JPH0961409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the ratio of the signal and noise of receiving signal by a means integrating the receiving signal rotated in phase and a means setting the integrated signal to a single frequency band. SOLUTION: Adders 161-16p add mutual receiving signals of the phase correction values to output receiving signals to phase rotation circuits 171-17p and the circuits 171-17p output real components 171i-17pi to an adder 181 and imapinary parts 171q-17pq to an adder 182. A band-pass circuit 190 sets the complex signal outputs of the adders 181-182 to the single signal band on the complex frequency space. In order to obtain the envelop signal of phasing adding output, a circuit operating the sum square root of the outputs I, Q of the circuit 190 is connected. By this constitution, the phasing of extremely many parallel receiving signals can be performed with high accuracy inclusive phase connection and an apparatus can be simplified and can be reduced in cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波信号処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic signal processing device.

【0002】[0002]

【従来の技術】これまで水中あるいは生体中における超
音波撮像の方式が提案されている。このような装置で
は、受信信号の遅延と加算処理を行なう受信整相部の構
成法が装置全体の規模を決定する点で最も重要である。
整相部の構成法として、近年の集積回路技術の急速な発
展により量子化整相法が主要な技術となりつつある。
2. Description of the Related Art There has been proposed an ultrasonic imaging system in water or a living body. In such an apparatus, the method of constructing the reception phasing unit that performs the delay and addition processing of the received signals is the most important in determining the scale of the entire apparatus.
With the rapid development of integrated circuit technology in recent years, the quantized phasing method is becoming the main technique for the phasing section.

【0003】ディジタル信号処理技術を用いた構成とし
て、搬送波周波数による直交標本化(Quadrature Sampli
ng) と標本化周期以下の微小時間移動を搬送波の位相回
転で近似実現した整相方式が知られている。この整相方
式は、例えば「アイイーイーイー トランザクションズ
オン ウルトラソニックス,フェロエレクトリクスア
ンド フリケンシー コントロール(IEEE Transaction
s on Ultrasonics, Ferroelectrics, and Frequency Co
ntrol),Vol. 40, No.3, MAY 1993」等の文献に開示され
ている。
As a configuration using digital signal processing technology, quadrature sampling based on a carrier frequency is performed.
ng) and a minute time movement less than the sampling period are approximated by phase rotation of the carrier wave. This phasing method is, for example, “IEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (IEEE Transaction
s on Ultrasonics, Ferroelectrics, and Frequency Co
ntrol), Vol. 40, No. 3, MAY 1993 ”and the like.

【0004】この整相方式を図20を用いて説明する。
受信信号入力2001はミキサ2021,2022の入力と
なり、互いに位相が直交する正弦波信号2023,20
24のそれぞれと周波数混合が行われる。周波数混合に
より、受信信号は包絡線信号成分(ベースバンド成分)
と高調波成分を持つようになる。周波数混合された結果
はそれぞれ低周波通過フィルタ2031,2032を通
過し、直流近くの包絡線信号帯を残した信号となって標
本化器2041,2042の入力となる。標本化器20
41,2042はアナログ−ディジタル変換器であり、
基本的には包絡線信号帯のナイキスト条件を満たす標本
化周波数で動作させればよい。標本化したディジタル信
号を記憶回路2051,2052に順次記憶し、記憶空
間内の読み出し番地を必要な時間関係によって変化させ
ることにより、標本化周期を単位に所望の遅延を記憶し
た信号に対して与えることができる。記憶回路205
1,2052を経た信号は、位相回転部2067の入力
となる。
This phasing method will be described with reference to FIG.
The reception signal input 2001 becomes an input to the mixers 2021 and 2022, and sine wave signals 2023 and 2020 whose phases are orthogonal to each other.
Frequency mixing is performed with each of the 24. Due to frequency mixing, the received signal is the envelope signal component (baseband component)
And have harmonic components. The results of the frequency mixing pass through the low-frequency pass filters 2031 and 2032, respectively, and become the signals leaving the envelope signal band near DC, and are input to the samplers 2041 and 2042. Sampler 20
41 and 2042 are analog-digital converters,
Basically, it suffices to operate at a sampling frequency that satisfies the Nyquist condition of the envelope signal band. Sampling digital signals are sequentially stored in the storage circuits 2051 and 2052, and a read address in the storage space is changed according to a necessary time relationship, so that a desired delay is given to a signal having a sampling cycle as a unit. be able to. Storage circuit 205
The signal that has passed through 1,2052 is input to the phase rotation unit 2067.

【0005】位相回転部は、複素で得られた受信信号の
包絡線信号成分が持つべき搬送波の位相変化を複素乗算
により補正するものであり、受信信号搬送波周波数と量
子化されない目的の遅延量によって決定する。この遅延
量と搬送波の角周波数から計算される位相ψを持った参
照信号2065,2066により、遅延量の標本化周期
による量子化誤差が搬送波周期を中心として補正される
ことになる。この補正結果は受信素子毎に実部,虚部各
成分の加算器2071,2072で加算する。加算結果
は二乗和平方根演算器2008によって包絡線信号に変
換される。
The phase rotator corrects the phase change of the carrier wave that should be possessed by the envelope signal component of the received signal obtained in complex by complex multiplication, and depends on the received signal carrier wave frequency and the target delay amount which is not quantized. decide. By the reference signals 2065 and 2066 having the phase ψ calculated from the delay amount and the angular frequency of the carrier, the quantization error due to the sampling period of the delay amount is corrected centering on the carrier period. The correction results are added by the adders 2071 and 2072 of the real part and the imaginary part for each receiving element. The addition result is converted into an envelope signal by a square sum square root calculator 2008.

【0006】[0006]

【発明が解決しようとする課題】上記整相方式を用いて
非常に多くの並列受信信号を整相しようとすると、周波
数移動処理部の規模が非常に大きくなる。実部,虚部を
受け持つ各ミキサの直後に乗算により発生する倍周波信
号帯の濾波を目的とした低域通過濾波器とアナログ・デ
ィジタル変換器が必要である。通常はこの濾波器に厳し
い遮断特性と阻止域での減衰特性が要求されるため、同
時に多数の受信信号を実時間並列処理する超音波受信信
号処理装置では回路規模増大を招くために実現困難であ
った。
If a large number of parallel received signals are to be phased by using the above-mentioned phasing method, the scale of the frequency shift processing section becomes very large. Immediately after each mixer that handles the real and imaginary parts, a low-pass filter and an analog-to-digital converter for the purpose of filtering the double-frequency signal band generated by multiplication are required. Normally, this filter is required to have strict cutoff characteristics and attenuation characteristics in the stopband. Therefore, it is difficult to realize in an ultrasonic reception signal processing device that processes many reception signals in parallel in real time, because the circuit scale increases. there were.

【0007】また、特に位相回転部2067の参照信号
2065,2066で与えるべき位相ψの角度精度が高
いものを必要としない場合には位相ψの離散的な値を用
意しておくことができる。このとき、並列受信信号の多
くは確率的な意味での一様さのもとに、特定の位相ψで
等しい位相回転演算を行うため、並列受信信号の全てに
位相回転部を付属させることは望ましくない。
Further, in particular, when it is not necessary to provide the phase rotation section 2067 with the reference signals 2065 and 2066 having high phase accuracy of the phase ψ, a discrete value of the phase ψ can be prepared. At this time, most of the parallel reception signals perform the same phase rotation operation at a specific phase ψ on the basis of the uniformity in a probabilistic sense, so it is not possible to attach a phase rotation unit to all the parallel reception signals. Not desirable.

【0008】本発明の目的はこの問題点を改善して、装
置の簡略化およびコスト低減に適した超音波信号処理装
置を提供することにある。
An object of the present invention is to solve this problem and provide an ultrasonic signal processing apparatus suitable for simplification of the apparatus and cost reduction.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の第一の手段として、本発明の超音波信号処理装置は、
各受信号を標本化する手段と、標本化された各信号を異
なる時間関係に変換する手段と、時間変換された信号の
同一時刻同士の値を加算する手段と、該加算結果の個々
に受信信号の搬送波の位相回転を補償する手段と該位相
回転された受信信号を積算する手段と該積算された信号
を単一の周波数帯とする手段とを含む。上記目的を達成
するための第二の手段として、本発明の超音波信号処理
装置は、第一の手段において、上記位相回転を補償する
手段は、所定の位相の組に対して定まる正弦関数値およ
び余弦関数値を上記時間変換された信号の同一時刻同士
の加算結果に乗算して二つの出力を得る手段とし、かつ
上記位相回転された受信信号を積算する手段は複数得ら
れる前記二つの出力を片側ずつ積算して一対の出力を得
る。
As a first means for achieving the above object, the ultrasonic signal processing apparatus of the present invention is
Means for sampling each received signal, means for converting each sampled signal into a different time relationship, means for adding the values of the time-converted signals at the same time, and reception of the addition results individually It includes means for compensating for phase rotation of the carrier wave of the signal, means for integrating the phase-rotated received signals, and means for making the integrated signal a single frequency band. As a second means for achieving the above object, the ultrasonic signal processing device of the present invention is, in the first means, a means for compensating for the phase rotation, a sine function value determined for a set of predetermined phases. And a cosine function value as means for obtaining two outputs by multiplying the addition result of the time-converted signals at the same time, and means for accumulating the phase-rotated received signals is a plurality of the two outputs Are integrated on each side to obtain a pair of outputs.

【0010】上記目的を達成するための第三の手段とし
て、本発明の超音波信号処理装置は、上記第一の手段に
おいて、上記単一の周波数帯とする手段は、受信信号の
搬送波周波数で複素の周波数移動を行う手段と該周波数
移動後の信号の低周波成分を通過させるフィルタ手段を
備えた。
As a third means for achieving the above object, in the ultrasonic signal processing device of the present invention, in the first means, the means for setting the single frequency band is the carrier frequency of the received signal. A means for performing a complex frequency shift and a filter means for passing a low frequency component of the signal after the frequency shift are provided.

【0011】上記目的を達成するための第四の手段とし
て、本発明の超音波信号処理装置は、上記第一の手段に
おいて、上記単一の周波数帯とする手段は、受信信号の
正または負の搬送波周波数を中心とした帯域通過フィル
タ構成を備えた。
As a fourth means for achieving the above object, in the ultrasonic signal processing device of the present invention, in the first means, the means for setting the single frequency band is positive or negative of the received signal. It has a bandpass filter configuration centered on the carrier frequency of.

【0012】上記目的を達成するための第五の手段とし
て、本発明の超音波信号処理装置は、上記第一の手段に
おいて、各受信号を標本化する手段の出力を受信信号の
搬送波周波数で複素の周波数移動を行う手段をさらに備
え、上記単一の周波数帯とする構成は、該周波数移動さ
れた信号の低周波成分を通過させるフィルタ構成を備え
た。
As a fifth means for achieving the above object, in the ultrasonic signal processing apparatus of the present invention, in the above first means, the output of the means for sampling each received signal is the carrier frequency of the received signal. The configuration for providing a single frequency band further includes a means for performing complex frequency shift, and a filter configuration for passing a low frequency component of the frequency-shifted signal is provided.

【0013】上記目的を達成するための第六の手段とし
て、本発明の超音波信号処理装置は、上記第一の手段に
おいて、上記受信号を標本化する手段は、受信信号の搬
送波周期の四分の一の時間間隔で標本化する動作を所定
の周期ごとに反復する動作が可能な構成とした。
As a sixth means for achieving the above object, in the ultrasonic signal processing apparatus of the present invention, in the above first means, the means for sampling the received signal is four times the carrier wave period of the received signal. The configuration is such that the operation of sampling at a time interval of one-half can be repeated every predetermined period.

【0014】上記目的を達成するための第七の手段とし
て、本発明の超音波信号処理装置は、上記第六の手段に
おいて、上記単一の周波数帯とする手段は、受信信号の
搬送波周波数で複素の周波数移動を行う手段と該周波数
移動後の信号の低周波成分を通過させるフィルタ手段を
備えた。
As a seventh means for achieving the above object, in the ultrasonic signal processing apparatus of the present invention, in the sixth means, the means for setting the single frequency band is the carrier frequency of the received signal. A means for performing a complex frequency shift and a filter means for passing a low frequency component of the signal after the frequency shift are provided.

【0015】上記目的を達成するための第八の手段とし
て、本発明の超音波信号処理装置は、上記第六の手段に
おいて、上記単一の周波数帯とする手段は、受信信号の
正または負の搬送波周波数を中心とした帯域通過フィル
タ手段を備えた。
As an eighth means for achieving the above object, in the ultrasonic signal processing device of the present invention, in the sixth means, the means for setting the single frequency band is positive or negative for the received signal. Band pass filter means centered on the carrier frequency of

【0016】[0016]

【作用】本発明の第一の手段では、各受信号を標本化し
て異なる時間関係に変換したものを同一時刻同士で加算
し、加算結果の個々に受信信号の搬送波の位相回転を補
償することにより、標本化周期以下の時間移動を受信信
号の搬送波の位相回転で実現し、位相回転された受信信
号を積算する手段と積算された信号を単一の周波数帯と
する手段により、受信信号の信号と雑音の比が改善され
る。
According to the first means of the present invention, each received signal is sampled and converted into a different time relationship, and the same time is added to each other, and the addition results are individually compensated for the phase rotation of the carrier wave of the received signal. The time shift of the sampling period or less is realized by the phase rotation of the carrier wave of the received signal, and the means for integrating the phase-rotated received signal and the means for integrating the integrated signal into a single frequency band The signal to noise ratio is improved.

【0017】本発明の第二の手段では、第一の手段で、
所定の位相の組に対して定まる正弦関数値および余弦関
数値を時間変換された信号の同一時刻同士の加算結果に
乗算して二つの出力を得る構成とすることにより搬送波
の位相回転分が補償されて標本化周期以下の時間移動が
実現され、かつ位相回転された受信信号を積算する手段
は、複数得られる前記二つの出力を片側ずつ積算して一
対の出力を得ることにより、只一対の複素成分としての
処理が可能になる。
In the second means of the present invention, the first means is
The phase rotation amount of the carrier wave is compensated by multiplying the addition result of the time-converted signals at the same time with the sine function value and cosine function value that are determined for a predetermined set of phases to obtain two outputs. The time shift of less than the sampling period is realized, and the means for integrating the received signals whose phases have been rotated is such that a plurality of the two outputs obtained are integrated one by one to obtain a pair of outputs. Processing as a complex component becomes possible.

【0018】本発明の第三の手段では、上記第二の手段
で、受信信号の互いに直交する位相の搬送波周波数の正
弦波信号で複素の周波数移動を行うことにより、加算さ
れた受信信号は直流を中心とした信号帯となり、この信
号帯だけを含む低周波成分を通過させるフィルタにより
単一の周波数帯とすることができる。
In the third means of the present invention, by the second means, a complex frequency shift is performed with a sine wave signal having carrier wave frequencies of mutually orthogonal phases of the received signal, so that the added received signal is a direct current. Is a signal band centered on the above, and a single frequency band can be formed by a filter that passes low frequency components including only this signal band.

【0019】本発明の第四の手段では、上記第二の手段
で、受信信号の正または負の搬送波周波数を中心とした
帯域通過フィルタを備えることにより、単一の周波数帯
とすることができる。
In the fourth means of the present invention, the second means is provided with a bandpass filter centering on the positive or negative carrier frequency of the received signal, whereby a single frequency band can be obtained. .

【0020】本発明の第五の手段では、上記第一の手段
で、各受信号を標本化する場合の出力を受信信号の搬送
波周波数で複素の周波数移動を行っておき、周波数移動
された信号の低周波成分を通過させるフィルタを最後に
備えたことにより単一の周波数帯とする。
In a fifth means of the present invention, the output of sampling each received signal is subjected to complex frequency shift by the carrier frequency of the received signal by the above first means, and the frequency-shifted signal is moved. A single frequency band is obtained by finally providing a filter for passing the low frequency component of.

【0021】本発明の第六の手段では、上記第一の手段
で、受信信号を標本化する手段は、受信信号の搬送波周
期の四分の一の時間間隔で標本化する動作を所定の周期
ごとに反復する動作により、搬送波の位相が90度異な
った信号を近似的に標本化したことになる。
In a sixth means of the present invention, the means for sampling the received signal according to the above-mentioned first means performs an operation of sampling at a time interval of a quarter of the carrier wave cycle of the received signal for a predetermined period. By the operation repeated every time, it means that the signals in which the phase of the carrier wave is different by 90 degrees are approximately sampled.

【0022】本発明の第七の手段では、上記第六の手段
で、受信信号の互いに直交する位相の搬送波周波数の正
弦波信号で複素の周波数移動を行うことにより、加算さ
れた受信信号は直流を中心とした信号帯となり、この信
号帯だけを含む低周波成分を通過させるフィルタにより
単一の周波数帯とすることができる。
In the seventh means of the present invention, the added reception signal is converted into a direct current by performing a complex frequency shift by a sinusoidal signal having carrier wave frequencies of mutually orthogonal phases of the reception signal in the sixth means. Is a signal band centered on the above, and a single frequency band can be formed by a filter that passes low frequency components including only this signal band.

【0023】本発明の第八の手段では、上記第六の手段
で、受信信号の正または負の搬送波周波数を中心とした
帯域通過フィルタを備えることにより、単一の周波数帯
とすることができる。
In the eighth means of the present invention, a single frequency band can be obtained by providing a bandpass filter centering on the positive or negative carrier frequency of the received signal in the sixth means. .

【0024】[0024]

【実施例】整相の基準となる素子の受信信号をRc(t)
とし、数1で表されるものとする。
[Embodiment] Rc (t) is a signal received by an element which is a reference for phasing.
And is represented by the equation 1.

【0025】[0025]

【数1】 Rc(t)=A(t)cos(ωs t) …(数1) ここでωsは搬送波の角周波数であり、A(t)は包絡線
波形である。
## EQU1 ## Rc (t) = A (t) cos (ωs t) (Equation 1) where ωs is the angular frequency of the carrier and A (t) is the envelope waveform.

【0026】整相において、各素子の受信信号は数1の
時間tだけが異なる信号が得られるものとする。整相に
おいて与えるべき遅延時間がτuである、第u番素子の
受信信号をRu(t)とする。Ru(t)は数2のように表
せる。
In the phasing, it is assumed that the received signals of the respective elements are signals which differ only in the time t of the equation 1. Let Ru (t) be the received signal of the u-th element, which has a delay time τu to be given in phasing. Ru (t) can be expressed as in Equation 2.

【0027】[0027]

【数2】 Ru(t)=A(t+τu)cos(ωs(t+τu)) =A(t+τu)[exp{jωs(t+τu)}+exp{−jωs(t+τu)}] …(数2) ここでjは虚数単位である。ディジタル処理のための量
子化遅延の単位をTsとし、Gを整数としてτu=G・
Ts+εu,0≦εu<Tsで表されるとする。
## EQU00002 ## Ru (t) = A (t + .tau.u) cos (.omega.s (t + .tau.u)) = A (t + .tau.u) [exp {j.omega.s (t + .tau.u)} + exp {-j.omega.s (t + .tau.u)}] (Equation 2) where j Is an imaginary unit. Quantization delay unit for digital processing is Ts, G is an integer, and τu = G ·
It is assumed that Ts + εu, 0 ≦ εu <Ts.

【0028】数2に量子化遅延G・Tsを与えた結果の
波形Du(t)は、数3で表せる。
The waveform Du (t) obtained as a result of applying the quantization delay G · Ts to Equation 2 can be expressed by Equation 3.

【0029】[0029]

【数3】 Du(t)=Ru(t−G・Ts) =A(t+τu−G・Ts)[exp{jωs(t+τu−G・Ts)} +exp{−jωs(t+τu−G・Ts)}] =A(t+εu)[exp{jωs(t+εu)} +exp{−jωs(t+εu)}] …(数3) このものに位相補正exp(−jωs εu)を与えた結果B
u(t)は数4で表せる。
## EQU00003 ## Du (t) = Ru (t−G · Ts) = A (t + τu−G · Ts) [exp {jωs (t + τu−G · Ts)} + exp {−jωs (t + τu−G · Ts)} ] = A (t + εu) [exp {jωs (t + εu)} + exp {-jωs (t + εu)}] (Equation 3) The result B given the phase correction exp (-jωs εu)
u (t) can be expressed by Equation 4.

【0030】[0030]

【数4】 Bu(t)=Bu(t)exp(−jωs εu) =A(t+εu)[exp{jωs(t+εu)} +exp{−jωs(t+εu)}]exp(−jωs εu) =A(t+εu)exp{jωs t} +A(t+εu)exp{−jωs(t+2εu)} …(数4) 数4の第2項を複素のバンドパスフィルタで十分に減衰
させれば、包絡線に時間誤差だけを持った整相波形P
(t)が得られる。そのようなバンドパスフィルタのイン
パルス応答をH(t)、その群遅延をδ,*は畳み込み演
算を表すとすれば、P(t)は近似的に数5のようにな
る。
Bu (t) = Bu (t) exp (−jωs εu) = A (t + εu) [exp {jωs (t + εu)} + exp {−jωs (t + εu)}] exp (−jωs εu) = A ( t + εu) exp {jωs t} + A (t + εu) exp {-jωs (t + 2εu)} (Equation 4) If the second term of Equation 4 is sufficiently attenuated by the complex bandpass filter, only the time error is generated in the envelope. Phased waveform P with
(t) is obtained. If the impulse response of such a bandpass filter is H (t), and its group delay is δ and * is a convolution operation, then P (t) is approximately given by Equation 5.

【0031】[0031]

【数5】 P(t)=Bu(t)*H(t) ≒A(t+εu−δ)exp{jωs(t−δ)} …(数5) ここでδは全ての受信信号に共通で残るため整相加算結
果に問題はない。また、数4の第2項を複素で周波数移
動してベースバンドに変換した後にローパスフィルタを
用いて十分に減衰させる方法でもよい。この場合は時間
誤差だけを持った包絡線にE(t)が得られる。そのよう
なローパスフィルタのインパルス応答をH′(t)、その
群遅延をδ′とすれば、E(t)は同様な過程で数6のよ
うになる。
## EQU00005 ## P (t) = Bu (t) * H (t) .apprxeq.A (t + .epsilon.u-.delta.) Exp {j.omega.s (t-.delta.)} (Equation 5) where .delta. Is common to all received signals. There is no problem in the phasing addition result because it remains. Alternatively, a method may be used in which the second term of Equation 4 is complexly frequency-shifted to be converted into a baseband and then sufficiently attenuated using a low-pass filter. In this case, E (t) is obtained in the envelope having only the time error. If the impulse response of such a low-pass filter is H '(t) and its group delay is δ', E (t) becomes as shown in Equation 6 in the same process.

【0032】[0032]

【数6】 E(t)=〈Bu(t)exp(-j(ωs t+φ))〉*H′(t) =〈A(t+εu)exp(−jφ)+A(t+εu) exp{−jωs(2t+2εu+φ)}〉*H′(t) ≒A(t+εu−δ′)exp(−jφ) …(数6) ここでδ′は全ての受信信号に共通で残るため整相加算
結果に問題はない。さらに、同様の処理をヒルベルト変
換や搬送波の90度位相差で遅延して信号対としたもの
に対しても実現できる。このような信号は複素信号であ
り、数7のように表される。
## EQU6 ## E (t) = <Bu (t) exp (-j (ωs t + φ))> * H '(t) = <A (t + εu) exp (-jφ) + A (t + εu) exp {-jωs ( 2t + 2εu + φ)}〉 * H ′ (t) ≈A (t + εu−δ ′) exp (−jφ) (Equation 6) Since δ ′ remains common to all received signals, there is no problem in the phasing addition result. . Further, the same processing can be realized for a signal pair that is delayed by a Hilbert transform or a 90-degree phase difference of carrier waves. Such a signal is a complex signal, and is expressed by Equation 7.

【0033】[0033]

【数7】 R′u(t)=A(t+τu)exp{jωs(t+τu)} …(数7) この様な信号では複素の正負の周波数軸上に単一の信号
帯のみ存在するので、数3,数4の場合と同じ処理を経
ることによって、数8のように直接目的の信号B′u
(t)が得られる。
## EQU00007 ## R'u (t) = A (t + .tau.u) exp {j.omega.s (t + .tau.u)} (Equation 7) Since such a signal has only a single signal band on the positive and negative frequency axes of the complex, By performing the same processing as in the case of the equations 3 and 4, the target signal B′u as shown in the equation 8 is directly obtained.
(t) is obtained.

【0034】[0034]

【数8】 B′u(t)=R′u(t−G・Ts)exp(−jωs εu) =A(t+τu−G・Ts)exp{jωs(t+τu−G・Ts)} exp(−jωs εu) =A(t+εu)exp{jωs(t+εu)}exp(−jωs εu) =A(t+εu)exp(jωs t) …(数8) さらに、周波数移動処理を先に行った処理で実現するこ
ともできる。Ru(t)に複素周波数移動を行った結果M
u(t)を数9に示す。
B′u (t) = R′u (t−G · Ts) exp (−jωs εu) = A (t + τu−G · Ts) exp {jωs (t + τu−G · Ts)} exp (− jωs εu) = A (t + εu) exp {jωs (t + εu)} exp (−jωsεu) = A (t + εu) exp (jωst) (Equation 8) Further, the frequency shift process is realized by the process previously performed. You can also Result of complex frequency shift on Ru (t) M
u (t) is shown in Equation 9.

【0035】[0035]

【数9】 Mu(t)=Ru(t)exp(−j(ωs t+φ)) =A(t+τu)[exp{j(ωsτu−φ)} +exp{−j(ωs(2t+τu)+φ)}] …(数9) 数9に量子化遅延G・Tsを与えた結果の波形D′u
(t)は、数10で表せる。
[Equation 9] Mu (t) = Ru (t) exp (−j (ωs t + φ)) = A (t + τu) [exp {j (ωsτu−φ)} + exp {−j (ωs (2t + τu) + φ)}] (Equation 9) Waveform D′ u as a result of applying the quantization delay G · Ts to Equation 9
(t) can be expressed by Equation 10.

【0036】[0036]

【数10】 D′u(t)=Mu(t−G・Ts) =A(t+τu−G・Ts)[exp{j(ωsτu−φ)} +exp{−j(ωs(2(t−G・Ts)+τu)+φ)}] =A(t+εu)[exp{j(ωs τu−φ)} +exp{−j(ωs(2(t−G・Ts)+τu)+φ)}] …(数10) このものに位相補正exp(−jωs τu)を与えた結果
B′u(t)は数11で表せる。
D′ u (t) = Mu (t−G · Ts) = A (t + τu−G · Ts) [exp {j (ωsτu−φ)} + exp {−j (ωs (2 (t−G・ Ts) + τu) + φ)}] = A (t + εu) [exp {j (ωs τu−φ)} + exp {−j (ωs (2 (t−G · Ts) + τu) + φ)}] (Number) 10) The result B′u (t) obtained by applying the phase correction exp (−jωs τu) to this is expressed by the equation 11.

【0037】[0037]

【数11】 B′u(t)=D′u(t)exp(−jωs τu) =A(t+εu)[exp{j(ωs τu−φ)} +exp{−j(ωs(2(t−G・Ts)+τu)+φ)}] exp(−jωs τu) =A(t+εu)exp{−jφ} +A(t+εu)exp{−j(ωs(2(t+εu)+φ)} …(数11) 次に数11の第2項成分をローパスフィルタを用いて十
分に減衰させる。そのようなローパスフィルタのインパ
ルス応答をH′(t)、その群遅延をδ′とすれば、B′
(t)は同様な過程で数12のようになる。
B′u (t) = D′ u (t) exp (−jωsτu) = A (t + εu) [exp {j (ωsτu−φ)} + exp {−j (ωs (2 (t− G · Ts) + τu) + φ)}] exp (−jωs τu) = A (t + εu) exp {−jφ} + A (t + εu) exp {−j (ωs (2 (t + εu) + φ)} (Equation 11) Next Then, the second term component of the equation (11) is sufficiently attenuated by using a low-pass filter, and the impulse response of such a low-pass filter is H '(t) and its group delay is δ'.
In the same process, (t) becomes like Equation 12.

【0038】[0038]

【数12】 E′(t)=B′u(t)*H′(t) =〈A(t+εu)exp{−jφ} +A(t+εu)exp{−j(ωs(2(t+εu)+φ)}〉*H′(t) ≒A(t+εu−δ′)exp(−jφ) …(数12) ここでδ′は全ての受信信号に共通で残るため整相加算
結果に問題はない。
E ′ (t) = B′u (t) * H ′ (t) = <A (t + εu) exp {−jφ} + A (t + εu) exp {−j (ωs (2 (t + εu) + φ) }〉 * H ′ (t) ≈A (t + εu−δ ′) exp (−jφ) (Equation 12) Here, since δ ′ remains common to all received signals, there is no problem in the phasing addition result.

【0039】上述の各信号処理過程では、量子化遅延後
の位相補正exp(−jωs τu)あるいはexp(−jωs
εu)を複素乗算する過程は、θを実数とした関数exp
(−jθ)の周期性を利用して、必要な角度精度で値を用
意しておくことができる。実際のディジタル信号処理で
はexp(−jθ) の値をテーブル参照形式で準備すること
が望ましい。必要な角度精度で用意する値テーブルの大
きさに比べて受信信号の総数が著しく多い場合には、受
信信号の個々にexp(−jωs τu)あるいはexp(−jω
s εu)を乗じる手段を併設するよりも、テーブルで用
意した各角度値の個々に対応してexp(−jθ) の複素乗
算手段を併設するほうが装置の規模を低減することがで
きる。したがって、量子化遅延後の信号を、各角度値の
個々に対応したexp(−jθ) の複素乗算手段の手前で、
一旦全て加算しておき、加算結果につきexp(−jθ) の
複素乗算とその後の全素子加算を行うことで効率良く整
相加算を実現することができる。
In each of the above signal processing steps, the phase correction exp (-jωs τu) or exp (-jωs after the quantization delay is performed.
The process of complex multiplication of εu) is the function exp with θ as a real number.
By using the periodicity of (−jθ), it is possible to prepare a value with required angular accuracy. In actual digital signal processing, it is desirable to prepare the value of exp (-jθ) in a table reference format. When the total number of received signals is significantly larger than the size of the value table prepared with the required angle accuracy, exp (-jωs τu) or exp (-jω
It is possible to reduce the scale of the apparatus by providing a complex multiplying means for exp (-jθ) corresponding to each angle value prepared in the table, rather than providing a means for multiplying s εu). Therefore, the signal after the quantization delay is given before the complex multiplication means of exp (−jθ) corresponding to each angle value,
It is possible to efficiently realize phasing addition by once adding all and performing complex multiplication of exp (−jθ) on the addition result and subsequent addition of all elements.

【0040】本発明の第一の実施例を図1に示す。図1
では数1〜数6の信号処理手順に基づいて整相加算が行
われる。受信素子111〜11nが発生する受信信号群
S1〜Snは標本化回路121〜12nの入力となる。
標本化回路121〜12nは受信信号群S1〜Snの個
々を標本化周期Tsを単位に標本化し、量子化遅延回路
14の入力となる。ここでnは受信素子数である。量子
化遅延回路14は目的とする反射信号に対する各受信信
号の時間関係から標本化周期Tsを単位に量子化遅延を
各受信信号に与える。量子化遅延回路14の出力は選択
器15の入力となる。選択器15は量子化遅延回路14
の出力を加算器161〜16pの入力へ分配する。ここ
でpはnよりも小さな自然数である。
A first embodiment of the present invention is shown in FIG. FIG.
Then, phasing addition is performed based on the signal processing procedure of equations 1 to 6. The reception signal groups S1 to Sn generated by the reception elements 111 to 11n are input to the sampling circuits 121 to 12n.
The sampling circuits 121 to 12n sample each of the reception signal groups S1 to Sn in units of the sampling cycle Ts and serve as inputs to the quantization delay circuit 14. Here, n is the number of receiving elements. The quantizing delay circuit 14 gives a quantizing delay to each received signal in units of the sampling period Ts from the time relationship of each received signal with respect to the target reflected signal. The output of the quantization delay circuit 14 becomes the input of the selector 15. The selector 15 is the quantization delay circuit 14
The output of the above is distributed to the input of the adders 161 to 16p. Here, p is a natural number smaller than n.

【0041】加算器161〜16pは同じ位相補正値の
受信信号同士を加算し、位相回転回路171〜17pへ
遅延された受信信号を出力する。選択器15および加算
器161〜16pを合わせた部分SUMを以下では位相
分配部と呼称する。位相回転回路171〜17pはその
実部(同相)成分出力171i〜17piを加算器18
1に、虚部(直交)成分出力171q〜17pqを加算
器182に出力する。これらの加算出力は帯域通過回路
190の入力となる。帯域通過回路190は加算器18
1,182の複素信号出力を複素周波数空間上の単一の
信号帯とする。整相加算出力の包絡線信号(検波信号)
を得るには、帯域通過回路190の出力I,Qの二乗和
平方根を演算する図1に図示しない回路を接続する。
The adders 161 to 16p add the received signals having the same phase correction value to each other and output the delayed received signals to the phase rotation circuits 171 to 17p. Hereinafter, the partial SUM including the selector 15 and the adders 161 to 16p will be referred to as a phase distributor. The phase rotation circuits 171 to 17p add their real part (in-phase) component outputs 171i to 17pi to the adder 18
The imaginary part (orthogonal) component outputs 171q to 17pq are output to the adder 182. These added outputs are input to the band pass circuit 190. The band pass circuit 190 is an adder 18
The complex signal outputs of 1,182 are set as a single signal band in the complex frequency space. Envelope signal of phasing addition output (detection signal)
To obtain, a circuit (not shown in FIG. 1) for calculating the square root sum of squares of the outputs I and Q of the bandpass circuit 190 is connected.

【0042】図1の標本化回路121〜12nの各々を
図2に示す。受信信号Snは時間により増幅率が可変な
増幅器21の入力となる。増幅器21の出力は受信信号
の帯域上限を元に遮断周波数を設定したアンチエイリア
スフィルタ22を通過し、アナログ・ディジタル変換器
23の入力となるアナログ・ディジタル変換器23は図
示しない全ての受信信号に共通の標本化クロック信号に
応じて標本化周期Tsごとに受信信号を標本化する。標
本化出力はディジタル信号となって図1の量子化遅延回
路14の入力となる。
Each of the sampling circuits 121 to 12n shown in FIG. 1 is shown in FIG. The received signal Sn is input to the amplifier 21 whose amplification factor is variable with time. The output of the amplifier 21 passes through the anti-aliasing filter 22 whose cutoff frequency is set based on the upper limit of the band of the received signal, and the analog / digital converter 23, which is the input of the analog / digital converter 23, is common to all received signals not shown. The received signal is sampled every sampling period Ts according to the sampling clock signal of. The sampling output becomes a digital signal and becomes the input of the quantization delay circuit 14 of FIG.

【0043】図1の量子化遅延回路14について図3を
用いて説明する。量子化遅延回路14は記憶回路321
〜32nと、その読み出し番地を格納する番地記憶回路
341〜34nからなる。図1の標本化回路群121〜
12nの出力311〜31nは順次一斉に標本化周期
毎、記憶回路321〜32nに格納される。格納開始は
書き込み指令Wによって制御される。また、書き込み番
地は書き込み指令Wにしたがってリセットされ、図示し
ないクロック入力によって記憶回路321〜32nに付
帯する計数回路によって所定の最大値で循回される。遅
延は信号の書き込み時点の番地と読み出し時点の番地を
違えることによって実現する。読み出し時点は読み出し
指令R1〜Rnによって制御され、読み出し番地はAD
R1〜ADRnで指定される。読み出し出力331〜3
3nは図1の位相分配部SUMの入力となる。記憶回路3
21〜32nは、RAM,FIFOメモリ等と共に構成
される。読み出し指令R1〜Rnは必要に応じて整相加
算を開始する時点を制御する。読み出し番地信号ADR
1〜ADRnは番地記憶回路341〜34nの読み出し
出力として得られる。この読み出しは、読み出し開始を
指定するクリア信号CLRと読み出し番地を、順次、増
加するための読み出しクロックRCLKとで制御され
る。番地記憶回路341〜34nは図示しない計数回路
が付帯しており、番地記憶回路341〜34n内の読み
出し番地を順次読み出しクロックRCLKにしたがって
計上している。番地記憶回路341〜34nはROMで
構成する。
The quantization delay circuit 14 of FIG. 1 will be described with reference to FIG. The quantization delay circuit 14 is a storage circuit 321.
.About.32n and address storage circuits 341 to 34n for storing the read addresses. The sampling circuit groups 121 to 121 in FIG.
The outputs 311 to 31n of the 12n are sequentially stored in the storage circuits 321 to 32n sequentially for each sampling period. The storage start is controlled by the write command W. Further, the write address is reset according to the write command W, and is circulated at a predetermined maximum value by a counting circuit attached to the memory circuits 321 to 32n by a clock input (not shown). The delay is realized by making the address at the time of writing the signal different from the address at the time of reading the signal. The read time is controlled by the read commands R1 to Rn, and the read address is AD.
It is specified by R1 to ADRn. Read output 331 to 3
3n is an input to the phase distributor SUM in FIG. Memory circuit 3
21-32n are comprised with RAM, a FIFO memory, etc. The read commands R1 to Rn control the time point when the phasing addition is started, if necessary. Read address signal ADR
1 to ADRn are obtained as read outputs from the address storage circuits 341 to 34n. This reading is controlled by a clear signal CLR designating the start of reading and a read clock RCLK for sequentially increasing the read address. The address storage circuits 341 to 34n are additionally provided with a counting circuit (not shown), and the read addresses in the address storage circuits 341 to 34n are sequentially counted according to the read clock RCLK. The address storage circuits 341 to 34n are composed of ROMs.

【0044】図1の位相分配部SUMを図4に示す。位
相分配部SUMは選択器15を形成する単位選択器41
1〜41nと加算器161〜16pからなる。図3の読
み出し出力331〜33nは単位選択器411〜41n
の入力となる。単位選択器411〜41nは受信信号毎
に個別に選択された加算器に331〜33nを出力す
る。図4では信号331が加算器162に、332が加
算器161に、33nが加算器16pに出力されてい
る。また、この信号と加算器の対応付けは異なる信号が
同じ加算器に同時に加算される場合もある。
The phase distributor SUM of FIG. 1 is shown in FIG. The phase distributor SUM is a unit selector 41 forming the selector 15.
1 to 41n and adders 161 to 16p. The read outputs 331 to 33n in FIG. 3 are the unit selectors 411 to 41n.
Will be input. The unit selectors 411 to 41n output 331 to 33n to the adders individually selected for each received signal. In FIG. 4, the signal 331 is output to the adder 162, 332 is output to the adder 161, and 33n is output to the adder 16p. In addition, different signals may be added to the same adder at the same time because the signals and the adders are associated with each other.

【0045】次に加算器16pを図5に示す。加算入力
ap1〜apnは加算器511〜51nのカスケード接
続で演算され、最終出力43pを得る形になっている。
Next, the adder 16p is shown in FIG. The addition inputs ap1 to apn are calculated by the cascade connection of the adders 511 to 51n to obtain the final output 43p.

【0046】次に図1の位相回転回路171〜17pに
ついて図6で説明する。図6は17pを示す。加算器16
pの出力43pに対して一対の補正係数cosψp,sinψ
pを乗算器631,632で乗じる。補正係数cosψ
p,sinψpは係数発生回路621,622より、乗算器6
31,632に出力するが、これは必要に応じて保持値
が書き換え可能なレジスタ、あるいは固定の論理回路に
よって構成される。乗算結果は、実部成分17piは図
1の実部の総和を求める加算器181の入力に、虚部成
分17pqは虚部の総和を求める加算器182の入力と
なり、それぞれ帯域通過回路190の入力となる。
Next, the phase rotation circuits 171 to 17p shown in FIG. 1 will be described with reference to FIG. FIG. 6 shows 17p. Adder 16
A pair of correction coefficients cosψp, sinψ for the output 43p of p
Multiply p by multipliers 631 and 632. Correction coefficient cos ψ
p and sin ψp are multipliers 6 from the coefficient generation circuits 621 and 622.
It is output to 31, 632, which is configured by a register whose retentive value is rewritable as necessary, or a fixed logic circuit. The multiplication result is that the real part component 17pi is the input of the adder 181 that calculates the sum of the real parts of FIG. 1, and the imaginary part component 17pq is the input of the adder 182 that calculates the sum of the imaginary parts. Becomes

【0047】次に図1の帯域通過回路について図7で説
明する。帯域通過回路190は複素周波数移動部700
とフィルタ部701からなる。まず、数1〜数4,数6
の信号処理過程で処理を行う場合には,700,701
の両者を用いる。複素周波数移動部700は互いに直交
する参照波信号と複素数の乗算を実現する。図1の加算
器181の実部総和出力191と加算器182の虚部総
和出力192はそれぞれ乗算器721〜724の入力と
なる。
Next, the band pass circuit of FIG. 1 will be described with reference to FIG. The band pass circuit 190 includes the complex frequency shifter 700.
And a filter unit 701. First, number 1 to number 4, number 6
700, 701 when processing in the signal processing process of
Both are used. The complex frequency shifter 700 realizes multiplication of mutually orthogonal reference wave signals and complex numbers. The real part sum output 191 of the adder 181 and the imaginary part sum output 192 of the adder 182 of FIG. 1 are input to the multipliers 721 to 724, respectively.

【0048】受信信号の搬送波と同じ周波数の参照波信
号cosωst,sinωstは正弦波信号発生回路711,
712によって生成される。これらは、ROMに記憶さ
れた波形値を順次読み出すことによって実現される。乗
算結果は加算器731,732の入力となり、実部,虚部
が計算されて加算結果はフィルタ部701の入力とな
る。
Reference wave signals cosωst and sinωst having the same frequency as the carrier wave of the received signal are sine wave signal generation circuits 711 and
712. These are realized by sequentially reading the waveform values stored in the ROM. The multiplication result is input to the adders 731 and 732, the real part and the imaginary part are calculated, and the addition result is input to the filter unit 701.

【0049】加算器731,732の加算出力はそれぞ
れシフトレジスタSHR1,SHR2の逐次入力となる。シ
フトレジスタの長さはmである。シフトレジスタSHR
1,SHR2の保持値のそれぞれは、係数レジスタMR
1,MR2に保持された係数値のそれぞれと乗算器74
1〜74m,751〜75mによって乗算され、さらに
加算器761,762によって同時に加算される。シフ
トレジスタSHR1,SHR2は転送クロックC4aに
より順次転送し、加算器731,732は加算クロック
C4bにより動作する。このとき、加算クロックC4b
の周期は、C4aの周期の整数倍で長周期とすることがで
きる。係数レジスタMR1,MR2にはそれぞれ、時刻
tの関数として表現することができる関数VI(t), V
Q(t)に基づいた値が保持される。
The addition outputs of the adders 731 and 732 are sequentially input to the shift registers SHR1 and SHR2, respectively. The length of the shift register is m. Shift register SHR
1 and SHR2 are stored in the coefficient register MR.
1 and each of the coefficient values held in MR2 and the multiplier 74
1 to 74 m and 751 to 75 m are multiplied, and the adders 761 and 762 add them simultaneously. The shift registers SHR1 and SHR2 sequentially transfer by the transfer clock C4a, and the adders 731 and 732 operate by the addition clock C4b. At this time, the addition clock C4b
The period can be a long period that is an integral multiple of the period of C4a. Each of the coefficient registers MR1 and MR2 has a function VI (t), V that can be expressed as a function of time t.
A value based on Q (t) is retained.

【0050】数1〜数4,数6の信号処理過程ではVI
(t), VQ(t)は全く同じ関数となり、係数レジスタM
R1,MR2には同じ係数値が保持される。VI(t)あ
るいはVQ(t)の例を図8の81に示す。これは、周波
数空間で矩形の帯域通過特性を有するフィルタ特性のイ
ンパルス時間応答を有限の点数mで打ち切ったものであ
る。このものは、適当な時間周期Twで定まる標本化関
数Sin(πt/Tw)/(πt/Tw)であり、整数d=
−m/2,−m/2+1,0,m/2−1,m/2と図
2の標本化回路の標本化周期Tsをもとにt=dTsを
関数に代入して係数値801,802〜80mを順次求
めることができる。なお、この構成では係数レジスタM
R1,MR2に全く同じ係数が保持されることから、M
R1,MR2を共通として実現できる。
In the signal processing steps of the equations 1 to 4 and 6
(t) and VQ (t) are exactly the same function, and the coefficient register M
The same coefficient value is held in R1 and MR2. An example of VI (t) or VQ (t) is shown at 81 in FIG. This is an impulse time response of a filter characteristic having a rectangular band-pass characteristic in frequency space, truncated at a finite number of points m. This is a sampling function Sin (πt / Tw) / (πt / Tw) determined by an appropriate time period Tw, and an integer d =
Based on −m / 2, −m / 2 + 1,0, m / 2-1 and m / 2 and the sampling period Ts of the sampling circuit of FIG. 2, t = dTs is substituted into the function to obtain the coefficient value 801, It is possible to sequentially obtain 802 to 80 m. In this configuration, the coefficient register M
Since exactly the same coefficients are held in R1 and MR2, M
R1 and MR2 can be commonly used.

【0051】さらに、数1〜数5の信号処理過程では、
複素周波数移動部700を省いた構成とすることができ
る。この場合,図7の入力191,192はそれぞれシ
フトレジスタSHR1,SHR2の逐次入力となる。フ
ィルタ部701はそのままで、係数レジスタMR1,M
R2には図9に示す実部応答関数91(VI(t)に相
当),図10に示す虚部応答関数1001(VQ(t)
に相当)に基づいた係数値911,912〜91m,1
021,1022〜102mが保持される。これは、図
8の係数群801,802〜80mのそれぞれに、互い
に位相が直交し、受信信号搬送波と同じ角周波数ωsの
正弦波cosωst,sinωstを乗じたもので計算され
る。
Furthermore, in the signal processing steps of the equations 1 to 5,
The complex frequency moving unit 700 may be omitted. In this case, the inputs 191 and 192 of FIG. 7 become the sequential inputs of the shift registers SHR1 and SHR2, respectively. The filter unit 701 remains the same, and the coefficient registers MR1 and M
R2 has a real part response function 91 (corresponding to VI (t)) shown in FIG. 9 and an imaginary part response function 1001 (VQ (t) shown in FIG.
Corresponding to the coefficient values 911, 912 to 91m, 1
021, 1022-102m is held. This is calculated by multiplying each of the coefficient groups 801, 802 to 80m in FIG. 8 by the sine waves cosωst and sinωst having the same angular frequency ωs as the received signal carrier, whose phases are orthogonal to each other.

【0052】数1〜数5および、数1〜数4,数6の信
号処理過程では、図7の最終出力I,Qの後段に、図1
1に示すような二乗和平方根演算回路が接続される。こ
れは、複素で得られる信号の包絡線信号を得るために備
えるものあり、整相加算信号の位相成分を取り去るもの
である。入力I,Qはそれぞれ乗算器1101,1102で
二乗され、加算器1103の入力となる。加算結果は平
方根演算器1104の入力となる。平方根演算器110
4は、加算結果のデータ値を元に図示しないROMに記
憶された関数値を参照出力する。
In the signal processing steps of the equations 1 to 5 and the equations 1 to 4 and 6, the output of FIG.
A square sum square root arithmetic circuit as shown in 1 is connected. This is provided in order to obtain the envelope signal of the signal obtained in complex, and removes the phase component of the phasing addition signal. The inputs I and Q are squared by the multipliers 1101 and 1102, respectively, and are input to the adder 1103. The addition result is input to the square root calculator 1104. Square root calculator 110
Reference numeral 4 outputs the function value stored in the ROM (not shown) based on the data value of the addition result.

【0053】本発明の別の実施例を図12に示す。図1
2は数1,数2,数9〜数12の信号処理手順に基づい
て整相加算が行われる。受信素子111〜11nが発生
する受信信号群S1〜Snは複素周波数移動回路122
1〜122nの入力となる。複素周波数移動回路122
1〜122nは受信信号群S1〜Snの個々を標本化周
期Tsを単位に標本化し、互いに位相が直交し、搬送波
と角周波数が同一な参照波信号とそれぞれ乗算し、実部
−虚部一対の出力が量子化遅延回路1204の入力とな
る。ここでnは受信素子数である。量子化遅延回路12
04は目的とする反射信号に対する各受信信号の時間関
係から標本化周期Tsを単位に量子化遅延を各受信信号
に与える。量子化遅延回路1204の出力は選択器12
05の入力となる。
Another embodiment of the present invention is shown in FIG. FIG.
2, the phasing addition is performed based on the signal processing procedure of the equations 1, 2 and 9 to 12. The reception signal groups S1 to Sn generated by the reception elements 111 to 11n are complex frequency shift circuits 122.
It becomes an input of 1-122n. Complex frequency shift circuit 122
1-122n samples each of the reception signal groups S1 to Sn in units of a sampling period Ts, multiplies each by a reference wave signal whose phase is orthogonal to each other, and has the same carrier and angular frequency. Is the input to the quantization delay circuit 1204. Here, n is the number of receiving elements. Quantization delay circuit 12
Numeral 04 gives each received signal a quantization delay in units of sampling period Ts based on the time relationship of each received signal with respect to the target reflected signal. The output of the quantization delay circuit 1204 is the selector 12
It becomes the input of 05.

【0054】選択器1205は量子化遅延回路1204
の出力を加算器1261〜126pの入力へ分配する。
ここでpはnよりも小さな自然数である。加算器126
1〜126pは同じ位相補正値の受信信号同士を実部,
虚部ともに独立して加算し、位相回転回路1271〜1
27pへ遅延された受信信号を出力する。
The selector 1205 is a quantization delay circuit 1204.
The output of the above is distributed to the inputs of the adders 1261 to 126p.
Here, p is a natural number smaller than n. Adder 126
1-126p are real parts of received signals having the same phase correction value,
The imaginary parts are added independently, and the phase rotation circuits 1271-1 to 127-1 are added.
The delayed reception signal is output to 27p.

【0055】量子化遅延回路1204は、図1の量子化
遅延回路14を実部,虚部独立に並列化できる。また、
選択器1205および加算器1261〜126pを合わ
せた部分は、図1の位相分配部SUMを実部,虚部独立
に並列化して実現できる。位相回転回路1271〜12
7pはその実部(同相)成分出力1271i〜127piを
加算器1281に、虚部(直交)成分出力1271q〜
127pqを加算器1282に出力する。これらの加算
出力は帯域通過回路1290の入力となる。帯域通過回
路1290は加算器1281,1282の複素信号出力
を複素周波数空間上の単一の信号帯とする。整相加算出
力の包絡線信号(検波信号)を得るためには、帯域通過
回路1290の出力I,Qの二乗和平方根を演算する図
11のような回路を接続する。
The quantization delay circuit 1204 can parallelize the quantization delay circuit 14 of FIG. 1 independently of the real part and the imaginary part. Also,
The part combining the selector 1205 and the adders 1261 to 126p can be realized by parallelizing the phase distributing unit SUM of FIG. 1 independently of the real part and the imaginary part. Phase rotation circuit 1271-12
7p outputs its real part (in-phase) component outputs 1271i to 127pi to the adder 1281, and outputs the imaginary part (quadrature) component output 1271q to.
127 pq is output to the adder 1282. These addition outputs are input to the band pass circuit 1290. The band pass circuit 1290 makes the complex signal outputs of the adders 1281 and 1282 into a single signal band in the complex frequency space. In order to obtain the envelope signal (detection signal) of the phasing addition output, a circuit as shown in FIG. 11 for calculating the square root of the sum of squares of the outputs I and Q of the band pass circuit 1290 is connected.

【0056】図12の複素周波数移動回路1221〜1
22nの各々を図13に示す。受信信号Snは時間によ
り増幅率が可変な増幅器1301の入力となる。増幅器
1301の出力は受信信号の帯域上限を元に遮断周波数を設
定したアンチエイリアスフィルタ1302を通過し、ア
ナログ・ディジタル変換器1303の入力となるアナロ
グ・ディジタル変換器1303は図示しない全ての受信
信号に共通の標本化クロック信号にしたがって標本化周
期Tsごとに受信信号を標本化する。標本化出力はディ
ジタル信号となって乗算器1341,1342の入力と
なる。乗算器1341,1342は互いに位相が直交
し、受信信号の搬送波と角周波数ωcが同一な参照波信
号cosωct1343と、sinωct1344がそれぞれ
乗算される。参照波信号1343,1344はそれぞれ
全ての受信信号に対して共通でよい。それぞれの乗算器
の出力1351,1352は、図12の量子化遅延回路
1204の入力となる。
Complex frequency shift circuits 1221-1 to 1221-1 of FIG.
Each of the 22n is shown in FIG. The reception signal Sn is input to the amplifier 1301 whose amplification factor is variable with time. amplifier
The output of 1301 passes through the anti-aliasing filter 1302 whose cutoff frequency is set based on the upper limit of the band of the received signal, and the analog / digital converter 1303 which is the input of the analog / digital converter 1303 is common to all received signals not shown. The received signal is sampled every sampling period Ts according to the sampling clock signal. The sampling output becomes a digital signal and is input to the multipliers 1341 and 1342. The multipliers 1341 and 1342 are respectively multiplied by sinωct1344 and reference wave signal cosωct1343 having the same angular frequency ωc as the carrier wave of the received signal. The reference wave signals 1343 and 1344 may be common to all received signals. Outputs 1351 and 1352 of the respective multipliers are inputs to the quantization delay circuit 1204 in FIG.

【0057】次に図11の位相回転回路1271〜12
7pについて図14で説明する。加算器126pの出力
に接続される127pを取り上げて説明する。加算器12
6pの実部出力1400i,虚部出力1400qに一対の
補正係数cosψp,sinψpを乗算器1421〜1424
にて乗じる。補正係数cosψp,sinψpは係数発生回路
1411,1412より、乗算器1421〜1424に
出力するが,これは必要に応じて保持値が書き換え可能
なレジスタ、あるいは固定の論理回路によって構成され
る。四つの乗算結果は、実部成分の加算器1431,虚
部成分の加算器1432の入力となり、それらの加算器
の出力は図12の出力127pi,127pqとなる。
Next, the phase rotation circuits 1271-12 of FIG.
7p will be described with reference to FIG. A description will be given by taking 127p connected to the output of the adder 126p. Adder 12
6p real part output 1400i and imaginary part output 1400q are multiplied by a pair of correction coefficients cos ψp and sin ψp by multipliers 1421 to 1424.
Get on. The correction coefficients cos ψp and sin ψp are output from the coefficient generation circuits 1411 and 1412 to the multipliers 1421 to 1424, which are configured by a register whose retentive value is rewritable or a fixed logic circuit as necessary. The four multiplication results are input to the adder 1431 for the real part component and the adder 1432 for the imaginary part component, and the outputs of these adders are the outputs 127pi and 127pq in FIG.

【0058】さらに、図11の帯域通過回路1290は
図7のフィルタ部701だけと同じ構成でよい。また、
係数群も図8と同じもので実現できる。
Further, the bandpass circuit 1290 of FIG. 11 may have the same structure as only the filter unit 701 of FIG. Also,
The coefficient group can be realized by the same one as in FIG.

【0059】本発明のさらに別の実施例を図15に示
す。図15は数7,数8の信号処理手順に基づいて整相
加算が行われる。受信素子111〜11nが発生する受
信信号群S1〜Snは二次標本化回路1521〜152
nの入力となる。二次標本化回路1521〜152nの
個々は図2の標本化回路と同じであるが、アナログ・デ
ィジタル変換器23に与えるサンプリングクロック(標
本化指令)が必要とする標本化周期を搬送波周期の1/
4ずらして2重になっている点が異なる。即ち、図15
のサンプリングクロックSCL1,SCL2の何れか片
方のパルス毎に標本化を行う。
Yet another embodiment of the present invention is shown in FIG. In FIG. 15, phasing addition is performed based on the signal processing procedure of the equations 7 and 8. The reception signal groups S1 to Sn generated by the reception elements 111 to 11n are secondary sampling circuits 1521 to 152.
It becomes the input of n. Each of the secondary sampling circuits 1521 to 152n is the same as the sampling circuit of FIG. 2, but the sampling cycle required by the sampling clock (sampling command) given to the analog-digital converter 23 is 1 of the carrier wave period. /
The difference is that they are shifted by 4 and overlapped. That is, FIG.
Sampling is performed for each pulse of either one of the sampling clocks SCL1 and SCL2.

【0060】この様子を図16で説明する。いま、受信
波形160の搬送波周波数に比べて包絡線1601の周
波数が十分低いものとする。標本化周期Ts毎にサンプ
リングクロックSCL1に従って、波形上の白点で示し
た点群(点1602を含む)が標本化され、サンプリン
グクロックSCL2に従って波形上の黒点(点1603を含
む)で示した点群が標本化される。サンプリングクロッ
クSCL1,SCL2の周期はそれぞれTsで共通であ
るが、その間にTc/4(Tc:受信信号搬送波周期)
の遅れがある。以降、サンプリングクロックSCL1で
標本化された信号は受信信号の実部成分、サンプリング
クロックSCL2で標本化された信号は受信信号の虚部
成分であるとして扱われる。このような近似が可能であ
るのは、受信波形160の搬送波周波数に比べて包絡線
1601の周波数が十分低いため、Tc/4異なる時刻
の標本化点の間で近似的に包絡線成分が時間的変化をし
ないことを利用している。これは、ヒルベルトフィルタ
等の規模が大きい回路を受信信号毎に設けることなく簡
易的に周波数空間で片側の信号帯だけを得る点で極めて
有利である。
This situation will be described with reference to FIG. Now, it is assumed that the frequency of the envelope 1601 is sufficiently lower than the carrier frequency of the received waveform 160. A point group (including a point 1602) indicated by white points on the waveform is sampled in accordance with the sampling clock SCL1 for each sampling period Ts, and a point indicated by a black point (including a point 1603) on the waveform is sampled according to the sampling clock SCL2. The group is sampled. The cycles of the sampling clocks SCL1 and SCL2 are common to Ts, but Tc / 4 (Tc: reception signal carrier wave cycle) between them.
There is a delay. Hereinafter, the signal sampled by the sampling clock SCL1 is treated as the real part component of the received signal, and the signal sampled by the sampling clock SCL2 is treated as the imaginary part component of the received signal. Such an approximation is possible because the frequency of the envelope 1601 is sufficiently lower than the carrier frequency of the received waveform 160, so that the envelope component is approximately time-dependent between sampling points at different times Tc / 4. It utilizes the fact that it does not change dynamically. This is extremely advantageous in that it is possible to simply obtain only one signal band in the frequency space without providing a large-scale circuit such as a Hilbert filter for each received signal.

【0061】受信信号群S1〜Snの個々は、二次標本
化回路1521〜152nで標本化周期Tsを単位に複
素標本化し虚部信号は実部信号よりTc/4だけ遅れて
いる状態で量子化遅延回路1504の入力となる。ここ
でnは受信素子数である。量子化遅延回路1504は目
的とする反射信号に対する各受信信号の時間関係から標
本化周期Tsを単位に量子化遅延を各受信信号に与え
る。遅延は対になって入力される実部,虚部の両信号に
ついて与えられる。量子化遅延回路1504の出力は選
択器1505の入力となる。選択器1505は量子化遅
延回路1504の出力を加算器1561〜156pの入
力へ分配する。ここでpはnよりも小さな自然数であ
る。加算器1561〜156pは同じ位相補正値の受信
信号同士を実部,虚部ともに独立して加算し、位相回転
回路1571〜157pへ遅延された受信信号を出力す
る。量子化遅延回路1504から加算器1561〜15
6pまでは、サンプリングクロックSCL1,SCL2
を遅延させた図示しないクロック対によって動作を制御
する。これにより、実部,虚部毎の独立した処理は、信
号線を二重化することなく行うことができる。
Each of the reception signal groups S1 to Sn is subjected to complex sampling in the secondary sampling circuits 1521 to 152n in units of the sampling period Ts, and the imaginary part signal is quantized in a state delayed by Tc / 4 from the real part signal. It becomes the input of the digitalization delay circuit 1504. Here, n is the number of receiving elements. The quantization delay circuit 1504 gives a quantization delay to each reception signal in units of the sampling cycle Ts from the time relationship of each reception signal with respect to the target reflected signal. The delay is given for both the real and imaginary signals input in pairs. The output of the quantization delay circuit 1504 becomes the input of the selector 1505. The selector 1505 distributes the output of the quantization delay circuit 1504 to the inputs of the adders 1561 to 156p. Here, p is a natural number smaller than n. The adders 1561 to 156p independently add the received signals having the same phase correction value to each other in the real part and the imaginary part, and output the delayed received signals to the phase rotation circuits 1571 to 157p. From the quantization delay circuit 1504 to the adders 1561 to 15
Up to 6p, sampling clocks SCL1, SCL2
The operation is controlled by a clock pair (not shown) that is delayed. As a result, independent processing for each real part and imaginary part can be performed without duplicating the signal line.

【0062】位相回転回路1571〜157pはその実
部(同相)成分出力1571i〜157piを加算器1
581に、虚部(直交)成分出力1571q〜157p
qを加算器1582に並列出力する。位相回転回路15
71〜157p出力以降は実部と虚部が並列処理され
る。これらの加算出力は帯域通過回路1590の入力と
なる。帯域通過回路1590は加算器1581,158
2の複素信号出力で複素周波数空間上の単一の信号帯以
外の部分の周波数成分を減衰させて信号のS/Nを向上
するために用いるが、目的に応じて省略してもよい。整
相加算出力の包絡線信号(検波信号)を得るためには、
加算器1581,1582の複素信号出力あるいは帯域
通過回路1290の出力I,Qの二乗和平方根を演算す
る図11のような回路を接続する。
The phase rotation circuits 1571 to 157p add their real part (in-phase) component outputs 1571i to 157pi to the adder 1
581, imaginary part (orthogonal) component outputs 1571q to 157p
q is output in parallel to the adder 1582. Phase rotation circuit 15
After the output from 71 to 157p, the real part and the imaginary part are processed in parallel. These added outputs are input to the band pass circuit 1590. The band pass circuit 1590 includes adders 1581 and 158.
It is used to improve the S / N of the signal by attenuating the frequency component of the part other than the single signal band in the complex frequency space by the output of the complex signal of 2, but it may be omitted according to the purpose. To obtain the envelope signal (detection signal) of the phasing addition output,
A circuit as shown in FIG. 11 for calculating a complex signal output of the adders 1581 and 1582 or a square root sum of squares of outputs I and Q of the band pass circuit 1290 is connected.

【0063】次に図15の位相回転回路1571〜15
7pについて図17で説明する。ここでは加算器156
pの出力に接続される157pを取り上げて説明する。
加算器156pの出力が入力170となり、一対の補正
係数cosψp,sinψpを乗算器1701,1702が乗
じる。補正係数cosψp,sinψpは係数発生回路1710,
1720より、乗算器1701,1702に出力する
が、これは必要に応じて保持値が書き換え可能なレジス
タ、あるいは固定の論理回路によって構成される。入力
170は最初実部が、次いで虚部が入力される。これに
より、乗算器1701,1702は二つずつの乗算結果を出
力するが、最初の170の実部と補正係数cosψp,sin
ψpとの積がラッチ回路1703,1704により保持
されて、実部成分の加算器1705,虚部成分の加算器
1706の入力となる。ラッチ回路1703,1704
はクロックCKの立ち上がりを検知して値を保持する。
それらの加算器の出力は別のラッチ回路1707,17
08で保持される。ラッチ回路1707,1708はク
ロックCKの立ち下がりを検知して値を保持する。これ
らの出力は図15の出力157pi,157pqとな
る。図17内の信号参照点(170,1703in,1
704in,CV,SV,157pi,157pq)でのデ
ータの変化を図18に図示した。
Next, the phase rotation circuits 1571 to 1571 shown in FIG.
7p will be described with reference to FIG. Here, the adder 156
A description will be given by taking 157p connected to the output of p.
The output of the adder 156p becomes the input 170, and the multipliers 1701 and 1702 multiply the pair of correction coefficients cos ψp and sin ψp. The correction coefficients cos ψp and sin ψp are the coefficient generation circuit 1710,
Output from 1720 to multipliers 1701 and 1702, which is composed of a register whose retentive value is rewritable as necessary, or a fixed logic circuit. The input 170 is input first with the real part and then with the imaginary part. As a result, the multipliers 1701 and 1702 output two multiplication results, but the real part of the first 170 and the correction coefficient cos ψp, sin
The product of ψp is held by the latch circuits 1703 and 1704 and is input to the adder 1705 of the real part component and the adder 1706 of the imaginary part component. Latch circuits 1703 and 1704
Detects the rising edge of the clock CK and holds the value.
The outputs of those adders are latch circuits 1707 and 17
It is held at 08. The latch circuits 1707 and 1708 detect the falling edge of the clock CK and hold the value. These outputs are the outputs 157pi and 157pq in FIG. Signal reference points (170, 1703in, 1 in FIG. 17)
The change of data at 704 in, CV, SV, 157 pi, 157 pq) is shown in FIG.

【0064】さらに、図15の帯域通過回路1590は
図7と同じでよい。即ち、複素周波数移動部700とフ
ィルタ部701を共に備え、あるいはフィルタ部701
だけを備えた。また、帯域通過回路1590を省いても
よい。
Further, the bandpass circuit 1590 of FIG. 15 may be the same as that of FIG. That is, both the complex frequency moving unit 700 and the filter unit 701 are provided, or the filter unit 701 is provided.
Only equipped. Further, the band pass circuit 1590 may be omitted.

【0065】上述の実施例で述べたように、位相回転回
路171〜17p,1271〜127p,1571〜157
p内で補正係数cosψp,sinψp等を出力する係数発生
回路621,622,1411,1412,1710,
1720は、その一部を保持値が書き換え可能なレジス
タで構成することができる。いま、必要とする整相精度
に基づいて用意する位相値ψがf個であるとする。ま
た、1<f<pとする。ψ1〜ψfに対応する受信信号
数のヒストグラムが図19の19aのグラフのように分
布するとき、各ψに対応する位相補正回路直前の加算器
161〜16f,1261〜126f,1561〜15
6fを全て同じ規模と構成で実現すると、19aのψ2
のような最大の度数に合わせた並列加算能力を備える必
要がある。このような著しく度数が偏る状態よりも、個
々の並列加算能が比較的均等に分布するほうが、回路実
現の上で望ましい。
As described in the above embodiment, the phase rotation circuits 171 to 17p, 1271 to 127p, 1571 to 157.
coefficient generating circuits 621, 622, 1411, 1412, 1710, which output correction coefficients cos ψ p, sin ψ p, etc. in p
A part of 1720 can be configured by a register whose holding value is rewritable. Now, assume that there are f phase values ψ prepared based on the required phasing accuracy. Also, 1 <f <p. When the histogram of the number of received signals corresponding to ψ1 to ψf is distributed as shown in the graph of 19a in FIG. 19, adders 161 to 16f, 1261 to 126f, and 1561 to 15 just before the phase correction circuit corresponding to each ψ are distributed.
If all 6f are realized with the same scale and configuration, ψ2 of 19a
It is necessary to have a parallel addition capability adapted to the maximum frequency such as. Rather than such a state in which the frequencies are significantly biased, it is desirable in terms of circuit implementation that the individual parallel addition capabilities are relatively evenly distributed.

【0066】そこで、p−f個の付加的な位相補正回路
を備え、その位相値ψf+1〜ψpが書き換え可能なレ
ジスタで可変とする。19bのグラフのように、ψf+
1=ψf+2=・・・=ψp=ψ2として元々のψ2の
積算分を分配すれば161〜16p,1261〜126
p,1561〜156p等の各加算器の並列度を著しく
低減することができる。このようなヒストグラムの状態
は受信信号の各時点で異なるために、必要最小限の加算
並列度を整相条件全体から算定する必要がある。
Therefore, pf additional phase correction circuits are provided, and the phase values ψf + 1 to ψp thereof are made variable by a rewritable register. As shown in the graph of 19b, ψf +
If 1 = ψf + 2 = ... = ψp = ψ2 and the original integrated amount of ψ2 is distributed, 161 to 16p, 1261 to 126
It is possible to remarkably reduce the parallelism of each adder such as p, 1561 to 156p. Since the state of such a histogram differs at each time point of the received signal, it is necessary to calculate the minimum necessary addition parallelism from the entire phasing condition.

【0067】[0067]

【発明の効果】本発明によれば、非常に多くの並列受信
信号を位相補正を含めた高い精度で整相することができ
る。これにより装置の簡略化およびコスト低減に適した
超音波信号処理装置を提供できるようになる。
According to the present invention, an extremely large number of parallel received signals can be phased with high accuracy including phase correction. As a result, it is possible to provide an ultrasonic signal processing device suitable for simplification of the device and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の装置の基本ブロック図。FIG. 1 is a basic block diagram of a first device.

【図2】標本化回路図。FIG. 2 is a sampling circuit diagram.

【図3】量子化遅延回路図。FIG. 3 is a quantization delay circuit diagram.

【図4】位相分配部のブロック図。FIG. 4 is a block diagram of a phase distributor.

【図5】同相加算器の説明図。FIG. 5 is an explanatory diagram of an in-phase adder.

【図6】図1の位相補正回路図。6 is a phase correction circuit diagram of FIG.

【図7】帯域通過回路部のブロック図。FIG. 7 is a block diagram of a bandpass circuit unit.

【図8】低周波通過フィルタ係数の説明図。FIG. 8 is an explanatory diagram of low frequency pass filter coefficients.

【図9】帯域通過フィルタ係数実部の説明図。FIG. 9 is an explanatory diagram of a real part of a bandpass filter coefficient.

【図10】帯域通過フィルタ係数虚部の説明図。FIG. 10 is an explanatory diagram of an imaginary part of a bandpass filter coefficient.

【図11】二乗和平方根演算回路の説明図。FIG. 11 is an explanatory diagram of a square sum square root calculation circuit.

【図12】第二の装置基本ブロック図。FIG. 12 is a basic block diagram of a second device.

【図13】図12の複素周波数移動回路のブロック図。13 is a block diagram of the complex frequency shift circuit of FIG.

【図14】図12の位相回転回路の説明図。14 is an explanatory diagram of the phase rotation circuit of FIG.

【図15】第三の装置基本ブロック図。FIG. 15 is a basic block diagram of a third device.

【図16】図15の2次標本化の説明図。16 is an explanatory diagram of the secondary sampling in FIG.

【図17】図15の位相回転回路のブロック図。17 is a block diagram of the phase rotation circuit of FIG.

【図18】図15の位相回転回路のデータ変化と動作の
説明図。
18 is an explanatory diagram of data change and operation of the phase rotation circuit of FIG.

【図19】位相補正データの一部可変動作の説明図。FIG. 19 is an explanatory diagram of a partially variable operation of phase correction data.

【図20】従来位相補正型の従来整相技術の説明図。FIG. 20 is an explanatory diagram of a conventional phase-correction type conventional phasing technique.

【符号の説明】[Explanation of symbols]

111〜11n…受信素子、S1〜Sn…受信信号群、
121〜12n…標本化回路、Ts…標本化周期、14
…量子化遅延回路、15…選択器、161〜16p…加
算器、171〜17p…位相回転回路、181、182
…加算器、190…帯域通過回路。
111 to 11n ... Receiving element, S1 to Sn ... Received signal group,
121 to 12n ... Sampling circuit, Ts ... Sampling period, 14
... Quantization delay circuit, 15 ... Selector, 161 to 16p ... Adder, 171 to 17p ... Phase rotation circuit, 181, 182
... adder, 190 ... band pass circuit.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数の受信素子を有し超音波信号を整相加
算する装置において、各受信信号を標本化する手段と、
標本化された各信号を異なる時間関係に変換する手段
と、時間変換された信号の同一時刻同士の値を加算する
手段と、加算結果の個々に受信信号の搬送波の位相回転
を補償する手段と位相回転された受信信号を積算する手
段と上記積算された信号の単一の周波数帯を通過させる
手段とを含むことを特徴とする超音波信号処理装置。
1. An apparatus having a plurality of receiving elements for phasing and adding an ultrasonic signal, means for sampling each received signal,
Means for converting each sampled signal into a different time relationship, means for adding the values of the time-converted signals at the same time, and means for individually compensating the phase rotation of the carrier wave of the received signal of the addition results. An ultrasonic signal processing apparatus comprising: means for accumulating phase-rotated received signals; and means for allowing a single frequency band of the integrated signals to pass.
【請求項2】請求項1において、上記位相回転を補償す
る手段は、所定の位相の組に対して定まる正弦関数値お
よび余弦関数値を上記時間変換された信号の同一時刻同
士の加算結果に乗算して二つの出力を得る手段とし、上
記位相回転された受信信号を積算する手段は複数得られ
る上記二つの出力を片側ずつ積算して一対の出力を得る
超音波信号処理装置。
2. The means for compensating for phase rotation according to claim 1, wherein the sine function value and cosine function value determined for a predetermined phase set are added to the result of addition of the time-converted signals at the same time. An ultrasonic signal processing apparatus, wherein the means for multiplying to obtain two outputs, and the means for integrating the phase-rotated received signals obtains a pair of outputs by integrating the above-mentioned two outputs obtained one by one.
【請求項3】請求項1において、上記単一の周波数帯を
通過させる手段は、受信信号の搬送波周波数で複素の周
波数移動を行う手段と該周波数移動後の信号の低周波成
分を通過させるフィルタ手段を備えた超音波信号処理装
置。
3. The means for passing the single frequency band according to claim 1, wherein the means for performing a complex frequency shift at the carrier frequency of the received signal and the filter for passing a low frequency component of the signal after the frequency shift. An ultrasonic signal processing apparatus including means.
【請求項4】請求項1において、上記単一の周波数帯を
通過させる手段は、受信信号の正または負の搬送波周波
数を中心とした帯域通過フィルタ手段を備えた超音波信
号処理装置。
4. The ultrasonic signal processing apparatus according to claim 1, wherein the means for passing the single frequency band includes band-pass filter means centering on a positive or negative carrier frequency of the received signal.
【請求項5】請求項1において、各受信号を標本化する
手段の出力を受信信号の搬送波周波数で複素の周波数移
動を行う手段をさらに備え、上記単一の周波数帯を通過
させる手段は、周波数移動された信号の低周波成分を通
過させるフィルタ手段を備えた超音波信号処理装置。
5. The means according to claim 1, further comprising means for performing complex frequency shift of the output of the means for sampling each received signal at the carrier frequency of the received signal, wherein the means for passing the single frequency band comprises: An ultrasonic signal processing apparatus comprising a filter means for passing a low frequency component of a frequency-shifted signal.
【請求項6】請求項1において、上記受信号を標本化す
る手段は、受信信号の搬送波周期の四分の一の時間間隔
で標本化する動作を所定の周期ごとに反復する動作が可
能な手段とした超音波信号処理装置。
6. The means for sampling the received signal according to claim 1, wherein the operation of sampling at a time interval of a quarter of the carrier wave cycle of the received signal can be repeated every predetermined cycle. Ultrasonic signal processing device as means.
【請求項7】請求項6において、上記単一の周波数帯と
する手段は、受信信号の搬送波周波数で複素の周波数移
動を行う手段と該周波数移動後の信号の低周波成分を通
過させるフィルタ手段を備えた超音波信号処理装置。
7. The means for making the single frequency band according to claim 6, wherein the means for performing a complex frequency shift at the carrier frequency of the received signal and the filter means for passing a low frequency component of the signal after the frequency shift. An ultrasonic signal processing device equipped with.
【請求項8】請求項6において、上記単一の周波数帯と
する手段は、受信信号の正または負の搬送波周波数を中
心とした帯域通過フィルタ手段を備えた超音波信号処理
装置。
8. The ultrasonic signal processing apparatus according to claim 6, wherein the means for setting the single frequency band includes band-pass filter means centering on a positive or negative carrier frequency of a received signal.
JP7211560A 1995-08-21 1995-08-21 Ultrasonic signal processor Pending JPH0961409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7211560A JPH0961409A (en) 1995-08-21 1995-08-21 Ultrasonic signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7211560A JPH0961409A (en) 1995-08-21 1995-08-21 Ultrasonic signal processor

Publications (1)

Publication Number Publication Date
JPH0961409A true JPH0961409A (en) 1997-03-07

Family

ID=16607825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7211560A Pending JPH0961409A (en) 1995-08-21 1995-08-21 Ultrasonic signal processor

Country Status (1)

Country Link
JP (1) JPH0961409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216138A (en) * 1998-02-05 1999-08-10 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment beamformer
JP2009240667A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Ultrasonic imaging apparatus and ultrasonic imaging method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184568A (en) * 1992-01-14 1993-07-27 Yokogawa Medical Syst Ltd Digital phase-shifting device
JPH0647043A (en) * 1992-08-03 1994-02-22 Olympus Optical Co Ltd Ultrasonic diagnostic system
JPH0712785A (en) * 1993-06-22 1995-01-17 Hitachi Medical Corp Ultrasonic signal processing device
JPH0723950A (en) * 1993-07-16 1995-01-27 Ge Yokogawa Medical Syst Ltd Ultrasonic wave signal receiving method and ultrasonic diagnostic device
JPH0779976A (en) * 1993-09-20 1995-03-28 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JPH07143982A (en) * 1993-11-24 1995-06-06 Hitachi Ltd Ultrasonic device
JPH07178081A (en) * 1993-12-21 1995-07-18 Toshiba Corp Ultrasonographic diagnostic system and signal processing method therefor
JPH0819536A (en) * 1994-07-05 1996-01-23 Hitachi Medical Corp Ultrasonic signal processing device
JPH08327609A (en) * 1995-05-31 1996-12-13 Hitachi Ltd Ultrasonic device
JPH0919429A (en) * 1995-07-04 1997-01-21 Hitachi Medical Corp Ultrasonic diagnosing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184568A (en) * 1992-01-14 1993-07-27 Yokogawa Medical Syst Ltd Digital phase-shifting device
JPH0647043A (en) * 1992-08-03 1994-02-22 Olympus Optical Co Ltd Ultrasonic diagnostic system
JPH0712785A (en) * 1993-06-22 1995-01-17 Hitachi Medical Corp Ultrasonic signal processing device
JPH0723950A (en) * 1993-07-16 1995-01-27 Ge Yokogawa Medical Syst Ltd Ultrasonic wave signal receiving method and ultrasonic diagnostic device
JPH0779976A (en) * 1993-09-20 1995-03-28 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JPH07143982A (en) * 1993-11-24 1995-06-06 Hitachi Ltd Ultrasonic device
JPH07178081A (en) * 1993-12-21 1995-07-18 Toshiba Corp Ultrasonographic diagnostic system and signal processing method therefor
JPH0819536A (en) * 1994-07-05 1996-01-23 Hitachi Medical Corp Ultrasonic signal processing device
JPH08327609A (en) * 1995-05-31 1996-12-13 Hitachi Ltd Ultrasonic device
JPH0919429A (en) * 1995-07-04 1997-01-21 Hitachi Medical Corp Ultrasonic diagnosing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216138A (en) * 1998-02-05 1999-08-10 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic equipment beamformer
JP2009240667A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Ultrasonic imaging apparatus and ultrasonic imaging method

Similar Documents

Publication Publication Date Title
US5517529A (en) UHF/L-Band monolithic direct digital receiver
US6600438B2 (en) Broadband IF conversion using two ADCs
US4954961A (en) Method of digitally evaluating the frequency and the phase of signals, and a device for implementing such a method
US4231102A (en) Cordic FFT processor
US4893266A (en) Alias tagging time domain to frequency domain signal converter
US5591911A (en) Ultrasound signal processor
US6690748B2 (en) Receiver with improved digital intermediate to base band demodulator
JPH10293171A (en) Ultrasonic beam forming device
KR950013122B1 (en) Digital focusing method of suporsonic signal and apparatus thereof
JPH0961409A (en) Ultrasonic signal processor
JPS6244620B2 (en)
JP3677815B2 (en) Ultrasonic device
JPH06313764A (en) Ultrasonic signal processor
JPS585385B2 (en) Receive beamformer
Lee et al. A hardware efficient beamformer for small ultrasound scanners
Wang et al. Design and FPGA implementation of digital pulse compression for HF chirp radar based on modified orthogonal transformation
JP3331455B2 (en) Complex sampling circuit
JPH0819537A (en) Received wave phasing circuit of ultrasonic device
US20240364573A1 (en) Frequency domain i/q balance compensation, equalization and resampling
Lowdermilk et al. Signal conditioning and data collection in synthetic instruments [ATE systems]
JPS62233781A (en) Measuring instrument for arrival direction
Sánchez et al. Performance of the IMS A100 digital signal processor for real-time deconvolution
JP2856398B2 (en) Electronic watt-hour meter
JP3850150B2 (en) Method and digital signal processor for performing digital signal processing operations
Comoretto et al. Radioastronomic signal processing cores for the SKA radio telescope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224