[go: up one dir, main page]

JPH09330719A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH09330719A
JPH09330719A JP8172984A JP17298496A JPH09330719A JP H09330719 A JPH09330719 A JP H09330719A JP 8172984 A JP8172984 A JP 8172984A JP 17298496 A JP17298496 A JP 17298496A JP H09330719 A JPH09330719 A JP H09330719A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
oxide
weight
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8172984A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujimoto
洋行 藤本
Takuya Sunakawa
拓也 砂川
Hiroshi Watanabe
浩志 渡辺
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8172984A priority Critical patent/JPH09330719A/en
Publication of JPH09330719A publication Critical patent/JPH09330719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery in which the battery characteristic is hardly reduced after storage when a charged battery is stored at high temperature by adding a prescribed transition metal oxide to a lithium-transition metal composite oxide as positive electrode active material to suppress the oxidation decomposition of the solvent of nonaqueous electrolyte. SOLUTION: This lithium secondary battery has a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode contains a lithium-transition metal composite oxide as active material, the negative electrode contains a material capable of electrochemically storing and releasing lithium ions or lithium metal as active material. To the lithium-transition metal composite oxide which is the active material of the positive electrode, at least one transition metal oxide selected from FeOb , CoOc , MnOa , NiOe , TiOf and the like is added. The drawing shows the capacity residual factor, taking the volume residual ration (%) as the ordinate and the addition quantity ratio (wt.%) of transition metal oxide to lithium-transition metal composite oxide as the abscissa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム−遷移金
属複合酸化物を活物質とする正極と、リチウムイオンを
電気化学的に吸蔵及び放出することが可能な物質又は金
属リチウムを活物質とする負極と、非水電解液とを備え
るリチウム二次電池に係わり、詳しくは充電状態の電池
を高温で保存した場合に電池特性の劣化が起こりにくい
リチウム二次電池を提供することを目的とした、正極の
改良に関する。
TECHNICAL FIELD The present invention uses a positive electrode having a lithium-transition metal composite oxide as an active material, and a material capable of electrochemically absorbing and releasing lithium ions or metallic lithium as an active material. Involved in a lithium secondary battery provided with a negative electrode and a non-aqueous electrolyte, specifically, for the purpose of providing a lithium secondary battery in which deterioration of battery characteristics does not easily occur when the battery in a charged state is stored at high temperature, It relates to the improvement of the positive electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】リチウ
ム二次電池の正極活物質としては、高電圧化・高エネル
ギー密度化を可能ならしめるリチウム−遷移金属複合酸
化物がよく知られている。
2. Description of the Related Art As a positive electrode active material for a lithium secondary battery, a lithium-transition metal composite oxide that enables high voltage and high energy density is well known.

【0003】しかしながら、リチウム−遷移金属複合酸
化物を正極活物質に使用したリチウム二次電池では、充
電状態の電池を高温で保存すると、リチウム−遷移金属
複合酸化物中の酸素が放出され、放出された酸素と非水
電解液の溶媒とが反応して非水電解液の溶媒が酸化分解
する。そして、この分解時に発生するガスや分解生成物
により正極活物質粒子(リチウム−遷移金属複合酸化物
粒子)の表面が覆われ、電池の内部抵抗が上昇したり、
保存後の充放電容量が低下したりする。
However, in a lithium secondary battery using a lithium-transition metal composite oxide as a positive electrode active material, when the battery in a charged state is stored at high temperature, oxygen in the lithium-transition metal composite oxide is released and released. The generated oxygen reacts with the solvent of the non-aqueous electrolyte to oxidatively decompose the solvent of the non-aqueous electrolyte. The surface of the positive electrode active material particles (lithium-transition metal composite oxide particles) is covered with the gas or decomposition product generated during the decomposition, and the internal resistance of the battery increases,
The charge / discharge capacity after storage may decrease.

【0004】このように充電状態の電池を高温で保存し
た後の電池特性が低下する原因としては、溶媒の酸化分
解以外に、リチウム−遷移金属複合酸化物中に残留する
アルカリ(合成原料に使用したLiOHなど)や水分が
挙げられる。
The reason why the battery characteristics after the battery in a charged state is stored at a high temperature is deteriorated is that other than the oxidative decomposition of the solvent, the alkali remaining in the lithium-transition metal composite oxide (used as a synthetic raw material) LiOH) and water.

【0005】アルカリや水分に起因する電池特性の低下
を抑制したリチウム二次電池としては、正極活物質(L
iCoO2 )に固体酸(SiO2 、Al2 3 など)を
添加して正極活物質中の残留アルカリや残留水分を除去
したものが提案されている(特開平4−355056号
公報)。
As a lithium secondary battery in which deterioration of battery characteristics due to alkali or moisture is suppressed, a positive electrode active material (L
It has been proposed that solid acid (SiO 2 , Al 2 O 3 or the like) is added to iCoO 2 ) to remove residual alkali and residual water in the positive electrode active material (Japanese Patent Laid-Open No. 4-355056).

【0006】しかしながら、充電状態の電池を高温で保
存した後の電池特性の低下は、溶媒の酸化分解に起因す
るところが大きいために、残留アルカリや残留水分を除
去する方法では、保存後の電池特性の低下を十分に抑制
することはできないことが分かった。
However, the deterioration of the battery characteristics after storing the battery in a charged state at a high temperature is largely due to the oxidative decomposition of the solvent. It has been found that the decrease in γ cannot be sufficiently suppressed.

【0007】したがって、本発明は、充電状態の電池を
高温で保存した場合に、電池特性の劣化が起こりにくい
リチウム二次電池を提供することを目的とする。
Therefore, an object of the present invention is to provide a lithium secondary battery in which deterioration of battery characteristics does not easily occur when the battery in a charged state is stored at a high temperature.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(本発明電池)は、リ
チウム−遷移金属複合酸化物を活物質とする正極と、リ
チウムイオンを電気化学的に吸蔵及び放出することが可
能な物質又は金属リチウムを活物質とする負極と、非水
電解液とを備えるリチウム二次電池であって、前記リチ
ウム−遷移金属複合酸化物に、FeOb (0<b<1.
35)、CoOc (0<c<1.35)、MnOd (0
<d<1.35)、NiOe (0<e<1.1)、Ti
f (0<f<2.0)、VOg (0<g<2.1)、
CrOh (0<h<2.6)及びCuOi (0<i<
1.35)よりなる群から選ばれた少なくとも1種の遷
移金属酸化物が添加されていることを特徴とする。
A lithium secondary battery according to the present invention (a battery according to the present invention) for achieving the above object comprises a positive electrode using a lithium-transition metal composite oxide as an active material, and a lithium ion as an electrode. What is claimed is: 1. A lithium secondary battery comprising a negative electrode using a substance capable of chemically occluding and releasing or a metal lithium as an active material, and a non-aqueous electrolyte, wherein the lithium-transition metal composite oxide is FeO b. (0 <b <1.
35), CoO c (0 <c <1.35), MnO d (0
<D <1.35), NiO e (0 <e <1.1), Ti
O f (0 <f <2.0 ), VO g (0 <g <2.1),
CrO h (0 <h <2.6) and CuO i (0 <i <
1.35), and at least one transition metal oxide selected from the group consisting of 1.35) is added.

【0009】リチウム−遷移金属複合酸化物としては、
式:Lix MOy (0<x<1.1、1.9<y<2.
2、Mは実質的にNi、Co、Fe及びMnよりなる群
から選ばれた少なくとも一種の遷移元素)で表されるリ
チウム−遷移金属複合酸化物が例示され、その具体例と
しては、LiCoO2 、LiNiO2 、LiFeO2
LiMnO2 、LiMn2 4 が挙げられる。
As the lithium-transition metal composite oxide,
Formula: Li x MO y (0 <x <1.1, 1.9 <y <2.
2, M is a lithium-transition metal composite oxide substantially represented by at least one transition element selected from the group consisting of Ni, Co, Fe and Mn, and specific examples thereof include LiCoO 2 , LiNiO 2 , LiFeO 2 ,
Examples thereof include LiMnO 2 and LiMn 2 O 4 .

【0010】遷移金属酸化物の具体例としては、酸化第
一鉄(FeO)、四酸化三鉄(Fe3 4 )、酸化コバ
ルト(II)(CoO)、三酸化二バナジウム(V
2 3 )、酸化第一銅(Cu2 O)、一酸化チタン(T
iO)、酸化マンガン(II)(MnO)、四酸化三マンガ
ン(Mn3 4 )、酸化クロム(II)(CrO)が例示さ
れる。これらの遷移金属酸化物は、一種単独を用いても
よく、必要に応じて二種以上を併用してもよい。
Specific examples of the transition metal oxide include ferrous oxide (FeO), triiron tetraoxide (Fe 3 O 4 ), cobalt (II) oxide (CoO), and vanadium trioxide (V).
2 O 3 ), cuprous oxide (Cu 2 O), titanium monoxide (T
iO), manganese (II) oxide (MnO), trimanganese tetraoxide (Mn 3 O 4 ), and chromium oxide (II) (CrO). These transition metal oxides may be used alone or in combination of two or more as needed.

【0011】遷移金属酸化物が比較的酸化数の低いもの
に限定されるのは、酸化数の高いものではリチウム−遷
移金属複合酸化物から放出された酸素との反応が十分に
起こらず、放出された酸素と非水電解液の溶媒との反応
が主に起こるため、溶媒の酸化分解を有効に抑制するこ
とができないからである。
The transition metal oxides having a relatively low oxidation number are limited to those having a high oxidation number because the reaction with the oxygen released from the lithium-transition metal composite oxide does not sufficiently occur. This is because the generated oxygen mainly reacts with the solvent of the non-aqueous electrolyte, so that the oxidative decomposition of the solvent cannot be effectively suppressed.

【0012】遷移金属酸化物の好適な添加量は、リチウ
ム−遷移金属複合酸化物に対して1〜20重量%であ
る。遷移金属酸化物の添加量が1重量%未満の場合は添
加量が過少なために溶媒の酸化分解を抑制する効果が十
分に発現されず、一方同添加量が20重量%を超えた場
合は、電導度の低い多量の遷移金属酸化物の存在により
正極の電子伝導性が低下するとともに、正極活物質粒子
間の接触面積の減少によりリチウムイオンの拡散が阻害
される結果、放電容量が減少する。
The preferred addition amount of the transition metal oxide is 1 to 20% by weight based on the lithium-transition metal composite oxide. If the amount of the transition metal oxide added is less than 1% by weight, the effect of suppressing the oxidative decomposition of the solvent is not sufficiently exhibited because the amount added is too small, while if the amount added exceeds 20% by weight. The presence of a large amount of a transition metal oxide having a low electric conductivity lowers the electron conductivity of the positive electrode, and the contact area between the positive electrode active material particles is reduced to hinder the diffusion of lithium ions, resulting in a decrease in the discharge capacity. .

【0013】負極の活物質は、リチウムイオンを電気化
学的に吸蔵及び放出することが可能な物質又は金属リチ
ウムである。リチウムイオンを電気化学的に吸蔵及び放
出することが可能な物質としては、リチウム合金(リチ
ウム−アルミニウム合金、リチウム−鉛合金、リチウム
−錫合金など)及び炭素材料(黒鉛、コークス、有機物
焼成体など)が例示される。
The active material of the negative electrode is a material capable of electrochemically inserting and extracting lithium ions or metallic lithium. Examples of substances capable of electrochemically absorbing and desorbing lithium ions include lithium alloys (lithium-aluminum alloys, lithium-lead alloys, lithium-tin alloys, etc.) and carbon materials (graphite, coke, organic burned products, etc.). ) Is illustrated.

【0014】非水電解液の溶質としては、LiPF6
LiBF4 、LiClO4 、LiCF3 SO3 、LiA
sF6 、LiN(CF3 SO2 2 及びLiSO2 (C
23 CF3 が例示され、また非水電解液の溶媒とし
ては、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、ビニレンカーボネート、シ
クロペンタノン、スルホラン、3−メチルスルホラン、
2,4−ジメチルスルホラン、3−メチル−1,3−オ
キサゾリジン−2−オン、γ−ブチロラクトン、ジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネート、メチルプロピルカーボネート、ブチルメ
チルカーボネート、エチルプロピルカーボネート、ブチ
ルエチルカーボネート、ジプロピルカーボネート、1,
2−ジメトキシエタン、テトラヒドロフラン、2−メチ
ルテトラヒドロフラン、1,3−ジオキソラン、酢酸メ
チル、酢酸エチル及びこれらの混合物が例示される。
As the solute of the non-aqueous electrolyte, LiPF 6 ,
LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiA
sF 6 , LiN (CF 3 SO 2 ) 2 and LiSO 2 (C
F 2 ) 3 CF 3 is exemplified, and examples of the solvent for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane,
2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate , Dipropyl carbonate, 1,
Examples are 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate and mixtures thereof.

【0015】正極活物質たるリチウム−遷移金属複合酸
化物に比較的低酸化数の遷移金属酸化物が添加されてい
る本発明電池では、充電状態の電池を高温で保存した場
合に、添加せる遷移金属酸化物がダミー(還元剤)とな
ってリチウム−遷移金属複合酸化物から放出された酸素
と反応するので、溶媒の酸化分解が起こりにくい。而し
て、充電状態のこの種の電池を高温で保存した場合の保
存後の電池特性の低下は、溶媒の酸化分解に原因すると
ころが大きいため、本発明によればこれが有効に抑制さ
れる。
In the battery of the present invention in which a transition metal oxide having a relatively low oxidation number is added to the lithium-transition metal composite oxide as the positive electrode active material, the transition to be added when the battery in the charged state is stored at high temperature. Since the metal oxide serves as a dummy (reducing agent) and reacts with oxygen released from the lithium-transition metal composite oxide, oxidative decomposition of the solvent is less likely to occur. Thus, when the battery of this type in a charged state is stored at a high temperature, the deterioration of the battery characteristics after the storage is largely due to the oxidative decomposition of the solvent. Therefore, according to the present invention, this is effectively suppressed.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲で適宜変更して
実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0017】(実施例1〜6) 〔正極の作製〕リチウム原料〔水酸化リチウム(LiO
H)〕とニッケル原料〔水酸化ニッケル(Ni(OH)
2 )〕とコバルト原料〔水酸化コバルト(Co(OH)
2 〕とをモル比2:1:1で混合し、乾燥空気雰囲気下
にて750°Cで20時間焼成して、式:LiNi0.5
Co0.5 2 で表されるリチウム−遷移金属複合酸化物
を得た。次いで、このリチウム−遷移金属複合酸化物
を、石川式らいかい乳鉢を用いて粉砕して、平均粒径約
5μmの正極活物質粉末を得た。
Examples 1 to 6 [Preparation of positive electrode] Lithium raw material [Lithium hydroxide (LiO
H)] and nickel raw material [nickel hydroxide (Ni (OH)
2 )] and cobalt raw material [cobalt hydroxide (Co (OH)
2 ] with a molar ratio of 2: 1: 1 and calcined in a dry air atmosphere at 750 ° C. for 20 hours to give a formula: LiNi 0.5
A lithium-transition metal composite oxide represented by Co 0.5 O 2 was obtained. Next, this lithium-transition metal composite oxide was pulverized using an Ishikawa type raid mortar to obtain a positive electrode active material powder having an average particle size of about 5 μm.

【0018】次いで、この正極活物質粉末に四酸化三鉄
(Fe3 4 )を0.5重量%、1重量%、5重量%、
10重量%、20重量%又は22重量%添加して合剤粉
末を作製し、各合剤粉末90重量部と、導電剤としての
人造黒鉛粉末5重量部と、PVdF(ポリフッ化ビニリ
デン)5重量部の5重量%NMP(N−メチル−2−ピ
ロリドン)溶液とを混練してスラリーを調製し、これら
のスラリーをドクターブレード法により正極集電体とし
てのアルミニウム箔の両面に塗布し、真空下にて150
°Cで2時間加熱処理し、圧延して、帯状の正極を作製
した。
Next, 0.5 wt%, 1 wt%, 5 wt% of triiron tetroxide (Fe 3 O 4 ) was added to the positive electrode active material powder.
10% by weight, 20% by weight or 22% by weight was added to prepare a mixture powder, 90 parts by weight of each mixture powder, 5 parts by weight of artificial graphite powder as a conductive agent, and 5 parts by weight of PVdF (polyvinylidene fluoride). Parts of 5 wt% NMP (N-methyl-2-pyrrolidone) solution are kneaded to prepare slurries, and these slurries are applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method, and then under vacuum. At 150
Heat treatment was performed at ° C for 2 hours and rolling was performed to produce a strip-shaped positive electrode.

【0019】〔負極の作製〕天然黒鉛粉末(Lc>10
00Å、d002 =3.35Å)95重量部とPVdF5
重量部の5重量%NMP溶液とを混練してスラリーを調
製し、このスラリーをドクターブレード法により負極集
電体としての銅箔の両面に塗布し、真空下にて150°
Cで2時間加熱処理し、圧延して、帯状の負極を作製し
た。
[Production of Negative Electrode] Natural graphite powder (Lc> 10)
00Å, d 002 = 3.35Å) 95 parts by weight and PVdF5
A slurry is prepared by kneading with 5 parts by weight of a 5 wt% NMP solution, and the slurry is applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method, and the temperature is set to 150 ° under vacuum.
It was heat-treated at C for 2 hours and rolled to prepare a strip-shaped negative electrode.

【0020】〔リチウム二次電池の作製〕上記の、各正
極及び負極を用いて、正極容量が負極容量よりも小さい
AAサイズの円筒形のリチウム二次電池A1〜A6を作
製した。なお、セパレータとしてポリプロピレン製の微
多孔膜を、非水電解液としてエチレンカーボネートとジ
メチルカーボネートとの体積比1:1の混合溶媒にLi
PF6 を1モル/リットル溶かしたものを、それぞれ使
用した。
[Preparation of Lithium Secondary Battery] Using the above positive electrodes and negative electrodes, cylindrical lithium secondary batteries A1 to A6 of AA size having a positive electrode capacity smaller than the negative electrode capacity were prepared. It should be noted that a polypropylene microporous film was used as a separator, and Li was added as a non-aqueous electrolyte to a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1.
Those obtained by dissolving 1 mol / liter of PF 6 were used.

【0021】(比較例1)正極の作製において、四酸化
三鉄をリチウム−遷移金属複合酸化物(LiNi0.5
0.5 2 )に添加しなかったこと以外は実施例1〜6
と同様にして、比較電池B1を作製した。
Comparative Example 1 In the production of a positive electrode, triiron tetroxide was mixed with a lithium-transition metal composite oxide (LiNi 0.5 C).
o 0.5 O 2 ) except that no additions were made to Examples 1-6.
Comparative battery B1 was prepared in the same manner as in.

【0022】(実施例7〜12)正極の作製において、
四酸化三鉄に代えて酸化第一鉄(FeO)をリチウム−
遷移金属複合酸化物(LiNi0.5 Co0.5 2 )に
0.5重量%、1重量%、5重量%、10重量%、20
重量%又は22重量%添加したこと以外は実施例1〜6
と同様にして、リチウム二次電池A7〜A12を作製し
た。
(Examples 7 to 12) In the production of the positive electrode,
Instead of triiron tetraoxide, ferrous oxide (FeO) was added to lithium-
0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 20% by weight of transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 )
Examples 1 to 6 except that wt% or 22 wt% was added
Lithium secondary batteries A7 to A12 were produced in the same manner as in.

【0023】(比較例2〜5)正極の作製において、四
酸化三鉄に代えて三酸化二鉄(Fe2 3 )をリチウム
−遷移金属複合酸化物(LiNi0.5 Co0.5 2 )に
1重量%、5重量%、10重量%又は20重量%添加し
たこと以外は実施例1〜6と同様にして、比較電池B2
〜B5を作製した。
(Comparative Examples 2 to 5) In the production of the positive electrode, diiron trioxide (Fe 2 O 3 ) was replaced with lithium-transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 ) in place of triiron tetraoxide. Comparative battery B2 was manufactured in the same manner as in Examples 1 to 6 except that 5% by weight, 5% by weight, 10% by weight or 20% by weight was added.
~ B5 were produced.

【0024】(実施例13〜18)正極の作製におい
て、四酸化三鉄に代えて酸化マンガン(II)(MnO)を
リチウム−遷移金属複合酸化物(LiNi0.5 Co0.5
2 )に0.5重量%、1重量%、5重量%、10重量
%、20重量%又は22重量%添加したこと以外は実施
例1〜6と同様にして、リチウム二次電池A13〜A1
8を作製した。
(Examples 13 to 18) In the production of the positive electrode, manganese (II) oxide (MnO) was used instead of triiron tetroxide, and lithium-transition metal composite oxide (LiNi 0.5 Co 0.5) was used.
Lithium secondary battery A13 ~ in the same manner as in Examples 1 to 6 except that 0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 20% by weight or 22% by weight was added to O 2 ). A1
No. 8 was produced.

【0025】(実施例19〜24)正極の作製におい
て、四酸化三鉄に代えて四酸化三マンガン(Mn
3 4 )をリチウム−遷移金属複合酸化物(LiNi
0.5 Co0.5 2 )に0.5重量%、1重量%、5重量
%、10重量%、20重量%又は22重量%添加したこ
と以外は実施例1〜6と同様にして、リチウム二次電池
A19〜A24を作製した。
(Examples 19 to 24) In the production of the positive electrode, trimanganese tetraoxide (Mn) was used instead of triiron tetraoxide.
3 O 4 ) as a lithium-transition metal composite oxide (LiNi
0.5 Co 0.5 O 2 ) was added in the same manner as in Examples 1 to 6 except that 0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 20% by weight or 22% by weight was added. Batteries A19 to A24 were produced.

【0026】(比較例6〜9)正極の作製において、四
酸化三鉄に代えて二酸化マンガン(MnO2 )をリチウ
ム−遷移金属複合酸化物(LiNi0.5 Co0.5 2
に1重量%、5重量%、10重量%又は20重量%添加
したこと以外は実施例1〜6と同様にして、比較電池B
6〜B9を作製した。
(Comparative Examples 6 to 9) In the production of the positive electrode, manganese dioxide (MnO 2 ) was used instead of triiron tetroxide, and lithium-transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 ) was used.
To Comparative Battery B in the same manner as in Examples 1 to 6 except that 1% by weight, 5% by weight, 10% by weight or 20% by weight was added to
6 to B9 were produced.

【0027】(実施例25〜30)正極の作製におい
て、四酸化三鉄に代えて酸化コバルト(II)(CoO)を
リチウム−遷移金属複合酸化物(LiNi0.5 Co0.5
2 )に0.5重量%、1重量%、5重量%、10重量
%、20重量%又は22重量%添加したこと以外は実施
例1〜6と同様にして、リチウム二次電池A25〜A3
0を作製した。
(Examples 25 to 30) In the production of the positive electrode, cobalt (II) oxide (CoO) was used instead of triiron tetroxide, and lithium-transition metal composite oxide (LiNi 0.5 Co 0.5) was used.
O 2) to 0.5 wt%, 1 wt%, 5 wt%, 10 wt%, except for adding 20 wt% or 22 wt% in the same manner as in Example 1 to 6, A25~ lithium secondary battery A3
0 was produced.

【0028】(実施例31〜36)正極の作製におい
て、四酸化三鉄に代えて一酸化チタン(TiO)をリチ
ウム−遷移金属複合酸化物(LiNi0.5 Co
0.5 2 )に0.5重量%、1重量%、5重量%、10
重量%、20重量%又は22重量%添加したこと以外は
実施例1〜6と同様にして、リチウム二次電池A31〜
A36を作製した。
(Examples 31 to 36) In the production of the positive electrode, titanium monoxide (TiO) was replaced with lithium-transition metal composite oxide (LiNi 0.5 Co) in place of triiron tetraoxide.
0.5 O 2 ) 0.5% by weight, 1% by weight, 5% by weight, 10
In the same manner as in Examples 1 to 6 except that 20% by weight, 22% by weight or 22% by weight was added, the lithium secondary battery A31 to
A36 was produced.

【0029】(比較例10〜13)正極の作製におい
て、四酸化三鉄に代えて二酸化マンガン(TiO2 )を
リチウム−遷移金属複合酸化物(LiNi0.5 Co0.5
2 )に1重量%、5重量%、10重量%又は20重量
%添加したこと以外は実施例1〜6と同様にして、比較
電池B10〜B13を作製した。
(Comparative Examples 10 to 13) In the production of the positive electrode, manganese dioxide (TiO 2 ) was used in place of triiron tetroxide, and lithium-transition metal composite oxide (LiNi 0.5 Co 0.5) was used.
O 2) to 1 wt%, 5 wt%, except for adding 10 wt% or 20 wt% in the same manner as in Example 1-6 was fabricated comparative battery B10~B13.

【0030】(実施例37〜42)正極の作製におい
て、四酸化三鉄に代えて酸化クロム(CrO)をリチウ
ム−遷移金属複合酸化物(LiNi0.5 Co0.5 2
に0.5重量%、1重量%、5重量%、10重量%、2
0重量%又は22重量%添加したこと以外は実施例1〜
6と同様にして、リチウム二次電池A37〜A42を作
製した。
(Examples 37 to 42) In the production of the positive electrode, chromium oxide (CrO) was used instead of triiron tetroxide, and lithium-transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 ) was used.
0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 2
Example 1 except that 0 wt% or 22 wt% was added
Lithium secondary batteries A37 to A42 were produced in the same manner as in No. 6.

【0031】(実施例43〜48)正極の作製におい
て、四酸化三鉄に代えて酸化第一銅(Cu2 O)をリチ
ウム−遷移金属複合酸化物(LiNi0.5 Co
0.5 2 )に0.5重量%、1重量%、5重量%、10
重量%、20重量%又は22重量%添加したこと以外は
実施例1〜6と同様にして、リチウム二次電池A43〜
A48を作製した。
(Examples 43 to 48) In the preparation of the positive electrode, cuprous oxide (Cu 2 O) was replaced with lithium-transition metal composite oxide (LiNi 0.5 Co) instead of triiron tetraoxide.
0.5 O 2 ) 0.5% by weight, 1% by weight, 5% by weight, 10
Lithium secondary battery A43 ~ in the same manner as in Examples 1 to 6 except that 20% by weight, 20% by weight or 22% by weight was added.
A48 was produced.

【0032】(比較例14〜17)正極の作製におい
て、四酸化三鉄に代えて酸化第二銅(CuO)をリチウ
ム−遷移金属複合酸化物(LiNi0.5 Co0.5 2
に1重量%、5重量%、10重量%又は20重量%添加
したこと以外は実施例1〜6と同様にして、比較電池B
14〜B17を作製した。
(Comparative Examples 14 to 17) In the production of the positive electrode, cupric oxide (CuO) was replaced by lithium-transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 ) instead of triiron tetraoxide.
To Comparative Battery B in the same manner as in Examples 1 to 6 except that 1% by weight, 5% by weight, 10% by weight or 20% by weight was added to
14-B17 were produced.

【0033】(実施例49〜54)正極の作製におい
て、四酸化三鉄に代えて三酸化二バナジウム(V
2 3 )をリチウム−遷移金属複合酸化物(LiNi
0.5 Co0.5 2 )に0.5重量%、1重量%、5重量
%、10重量%、20重量%又は22重量%添加したこ
と以外は実施例1〜6と同様にして、順にリチウム二次
電池A49〜A54を作製した。
(Examples 49 to 54) In the production of the positive electrode, divanadium trioxide (V
2 O 3 ) as a lithium-transition metal composite oxide (LiNi
0.5 Co 0.5 O 2 ) was added in the same manner as in Examples 1 to 6 except that 0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 20% by weight or 22% by weight was added. Next batteries A49 to A54 were produced.

【0034】(比較例18〜21)正極の作製におい
て、四酸化三鉄に代えて五酸化バナジウム(V2 5
をリチウム−遷移金属複合酸化物(LiNi0.5 Co
0.5 2 )に1重量%、5重量%、10重量%又は20
重量%添加したこと以外は実施例1〜6と同様にして、
比較電池B18〜B21を作製した。
(Comparative Examples 18 to 21) In the production of the positive electrode, vanadium pentoxide (V 2 O 5 ) was used instead of triiron tetroxide.
A lithium-transition metal composite oxide (LiNi 0.5 Co
0.5 O 2 ) 1% by weight, 5% by weight, 10% by weight or 20%
In the same manner as in Examples 1 to 6 except that the addition of wt% was performed,
Comparative batteries B18 to B21 were produced.

【0035】(実施例55〜60)正極の作製におい
て、四酸化三鉄に代えて酸化ニッケル(NiO)をリチ
ウム−遷移金属複合酸化物(LiNi0.5 Co
0.5 2 )に0.5重量%、1重量%、5重量%、10
重量%、20重量%又は22重量%添加したこと以外は
実施例1〜6と同様にして、順にリチウム二次電池A5
5〜A60を作製した。
(Examples 55 to 60) In the preparation of the positive electrode, nickel oxide (NiO) was used instead of triiron tetroxide to form a lithium-transition metal composite oxide (LiNi 0.5 Co).
0.5 O 2 ) 0.5% by weight, 1% by weight, 5% by weight, 10
Lithium secondary battery A5 in the same manner as in Examples 1 to 6 except that 20% by weight, 20% by weight or 22% by weight was added.
5 to A60 were produced.

【0036】〈各電池の充電保存特性〉各電池を、室温
(25°C)にて、200mAで4.2Vまで充電した
後、200mAで2.75Vまで放電して、保存前の内
部抵抗R1及び放電容量C1を求めた。次いで、これら
の放電後の各電池を、200mAで4.2Vまで充電
し、60°Cで20日間保存した後、200mAで2.
75Vまで放電して、保存後の内部抵抗R2及び放電容
量C2を求めた。保存前の放電容量C1及び保存後の放
電容量C2の各値から、下式に基づき、容量残存率を算
出した。
<Charge storage characteristics of each battery> At room temperature (25 ° C), each battery was charged to 4.2 V at 200 mA and then discharged to 2.75 V at 200 mA to store the internal resistance R1 before storage. And the discharge capacity C1 were determined. Then, each of the discharged batteries was charged at 200 mA to 4.2 V and stored at 60 ° C. for 20 days, and then at 200 mA for 2.
After discharging to 75 V, the internal resistance R2 and the discharge capacity C2 after storage were obtained. From the respective values of the discharge capacity C1 before storage and the discharge capacity C2 after storage, the capacity remaining rate was calculated based on the following formula.

【0037】 容量残存率(%)=(C2/C1)×100Capacity remaining rate (%) = (C2 / C1) × 100

【0038】各電池の保存前の内部抵抗R1及び保存後
の内部抵抗R2を表1〜表8に、また各電池の容量残存
率を図1〜図4に、それぞれ示す。図1〜図4は、いず
れも縦軸に容量残存率(%)を、横軸にリチウム−遷移
金属複合酸化物(LiNi0.5 Co0.5 2 )に対する
遷移金属酸化物の添加量率(重量%)を、それぞれとっ
て示した直交軸座標グラフである。
The internal resistance R1 before storage and the internal resistance R2 after storage of each battery are shown in Tables 1 to 8, and the remaining capacity ratio of each battery is shown in FIGS. In each of FIGS. 1 to 4, the vertical axis represents the capacity residual ratio (%), and the horizontal axis represents the addition amount ratio (% by weight) of the transition metal oxide to the lithium-transition metal composite oxide (LiNi 0.5 Co 0.5 O 2 ). ) Are orthogonal axis coordinate graphs.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【表7】 [Table 7]

【0046】[0046]

【表8】 [Table 8]

【0047】表1〜表8及び図1〜図4に示すように、
本発明電池A1〜A60は、比較電池B1〜B21に比
べて、保存後の内部抵抗の上昇が小さく、容量残存率が
高い。この事実から、本発明電池A1〜A60は比較電
池B1〜B21に比べて充電状態の電池を高温で保存し
た場合に保存後に電池特性が低下しにくいことが分か
る。また、本発明電池のうち同じ遷移金属酸化物を添加
したもの同士を比較すると、本発明電池A2〜A5,A
8〜A11,A14〜A17,A20〜A23,A26
〜A29,A32〜A35,A38〜A41,A44〜
A47,A50〜A53,A56〜A59の保存特性が
特に優れていることから、リチウム−遷移金属複合酸化
物に対する遷移金属酸化物の添加%は1〜20重量%が
好ましいことが分かる。
As shown in Tables 1 to 8 and FIGS. 1 to 4,
Inventive batteries A1 to A60 have a smaller increase in internal resistance after storage and a higher capacity remaining rate than comparative batteries B1 to B21. From this fact, it can be seen that the batteries A1 to A60 of the present invention are less likely to deteriorate in battery characteristics after storage when the batteries in the charged state are stored at a higher temperature than the comparative batteries B1 to B21. In addition, comparing the batteries of the present invention to which the same transition metal oxide was added, the batteries of the present invention A2 to A5, A
8-A11, A14-A17, A20-A23, A26
~ A29, A32 to A35, A38 to A41, A44 ~
Since the storage characteristics of A47, A50 to A53, and A56 to A59 are particularly excellent, it is understood that the addition% of the transition metal oxide to the lithium-transition metal composite oxide is preferably 1 to 20% by weight.

【0048】[0048]

【発明の効果】本発明電池は、添加せる遷移金属酸化物
が非水電解液の溶媒の酸化分解を抑制するので、充電状
態の電池を高温で保存した場合に保存後に電池特性が低
下しにくい。
In the battery of the present invention, the transition metal oxide added suppresses the oxidative decomposition of the solvent of the non-aqueous electrolyte, so that when the battery in a charged state is stored at a high temperature, the battery characteristics are unlikely to deteriorate after storage. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池及び比較電池を充電状態で保存した
場合の容量残存率を示したグラフである。
FIG. 1 is a graph showing a capacity remaining rate when a battery of the present invention and a comparative battery are stored in a charged state.

【図2】本発明電池及び比較電池を充電状態で保存した
場合の容量残存率を示したグラフである。
FIG. 2 is a graph showing a capacity remaining rate when the battery of the present invention and the comparative battery are stored in a charged state.

【図3】本発明電池及び比較電池を充電状態で保存した
場合の容量残存率を示したグラフである。
FIG. 3 is a graph showing a capacity remaining rate when the battery of the present invention and the comparative battery are stored in a charged state.

【図4】本発明電池及び比較電池を充電状態で保存した
場合の容量残存率を示したグラフである。
FIG. 4 is a graph showing a capacity remaining rate when a battery of the present invention and a comparative battery are stored in a charged state.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム−遷移金属複合酸化物を活物質と
する正極と、リチウムイオンを電気化学的に吸蔵及び放
出することが可能な物質又は金属リチウムを活物質とす
る負極と、非水電解液とを備えるリチウム二次電池であ
って、前記リチウム−遷移金属複合酸化物に、FeOb
(0<b<1.35)、CoOc (0<c<1.3
5)、MnOd (0<d<1.35)、NiOe (0<
e<1.1)、TiOf (0<f<2.0)、VO
g (0<g<2.1)、CrOh (0<h<2.6)及
びCuOi (0<i<1.35)よりなる群から選ばれ
た少なくとも1種の遷移金属酸化物が添加されているこ
とを特徴とするリチウム二次電池。
1. A positive electrode using a lithium-transition metal composite oxide as an active material, a negative electrode using a material capable of electrochemically absorbing and desorbing lithium ions or a lithium metal as an active material, and non-aqueous electrolysis. Lithium secondary battery including a liquid, wherein FeO b is added to the lithium-transition metal composite oxide.
(0 <b <1.35), CoO c (0 <c <1.3
5), MnO d (0 <d <1.35), NiO e (0 <
e <1.1), TiO f (0 <f <2.0), VO
at least one transition metal oxide selected from the group consisting of g (0 <g <2.1), CrO h (0 <h <2.6) and CuO i (0 <i <1.35). A lithium secondary battery characterized by being added.
【請求項2】前記リチウム−遷移金属複合酸化物が、
式:Lix MOy (0<x<1.1、1.9<y<2.
2、Mは実質的にNi、Co、Fe及びMnよりなる群
から選ばれた少なくとも一種の遷移元素)で表されるリ
チウム−遷移金属複合酸化物である請求項1記載のリチ
ウム二次電池。
2. The lithium-transition metal composite oxide,
Formula: Li x MO y (0 <x <1.1, 1.9 <y <2.
The lithium secondary battery according to claim 1, wherein 2, M are lithium-transition metal composite oxides substantially represented by at least one transition element selected from the group consisting of Ni, Co, Fe and Mn.
【請求項3】前記遷移金属酸化物が、酸化第一鉄(Fe
O)、四酸化三鉄(Fe3 4 )、酸化コバルト(II)
(CoO)、三酸化二バナジウム(V2 3 )、酸化第
一銅(Cu2 O)、一酸化チタン(TiO)、酸化マン
ガン(II)(MnO)、四酸化三マンガン(Mn3 4
及び酸化クロム(II)(CrO)よりなる群から選ばれた
少なくとも1種の遷移金属酸化物である請求項1又は2
記載のリチウム二次電池。
3. The transition metal oxide is ferrous oxide (Fe
O), triiron tetroxide (Fe 3 O 4 ), cobalt (II) oxide
(CoO), divanadium trioxide (V 2 O 3 ), cuprous oxide (Cu 2 O), titanium monoxide (TiO), manganese (II) oxide (MnO), trimanganese tetraoxide (Mn 3 O 4) )
And at least one transition metal oxide selected from the group consisting of chromium oxide (II) (CrO).
The lithium secondary battery described.
【請求項4】前記遷移金属酸化物が、前記リチウム−遷
移金属複合酸化物に対して1〜20重量%添加されてい
る請求項1〜3のいずれかに記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein 1 to 20% by weight of the transition metal oxide is added to the lithium-transition metal composite oxide.
JP8172984A 1996-06-11 1996-06-11 Lithium secondary battery Pending JPH09330719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8172984A JPH09330719A (en) 1996-06-11 1996-06-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8172984A JPH09330719A (en) 1996-06-11 1996-06-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09330719A true JPH09330719A (en) 1997-12-22

Family

ID=15952023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8172984A Pending JPH09330719A (en) 1996-06-11 1996-06-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09330719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214640A (en) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd Battery
WO2001041249A1 (en) * 1999-12-01 2001-06-07 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
KR100312689B1 (en) * 1999-08-19 2001-11-03 김순택 Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
WO2015137728A1 (en) * 2014-03-11 2015-09-17 경북대학교 산학협력단 Electrode active material containing reduced titanium oxide and electrochemical device using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214640A (en) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd Battery
KR100312689B1 (en) * 1999-08-19 2001-11-03 김순택 Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
WO2001041249A1 (en) * 1999-12-01 2001-06-07 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
US6723472B2 (en) 1999-12-01 2004-04-20 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
KR100690141B1 (en) * 1999-12-01 2007-03-08 마츠시타 덴끼 산교 가부시키가이샤 Lithium secondary battery
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2002075361A (en) * 2000-08-30 2002-03-15 Denso Corp Lithium ion secondary battery
WO2015137728A1 (en) * 2014-03-11 2015-09-17 경북대학교 산학협력단 Electrode active material containing reduced titanium oxide and electrochemical device using same

Similar Documents

Publication Publication Date Title
JP5441328B2 (en) Cathode active material and lithium battery employing the same
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP5339704B2 (en) Cathode active material and lithium battery employing the same
US7927506B2 (en) Cathode active material and lithium battery using the same
JP5232631B2 (en) Non-aqueous electrolyte battery
JP3744870B2 (en) Nonaqueous electrolyte secondary battery
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2002015776A (en) Nonaqueous electrolyte secondary cell
JP2007073487A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2003123749A (en) Positive electron active material for nonaqueous electrolyte secondary battery
JP3670864B2 (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3573971B2 (en) Lithium secondary battery
JP4248258B2 (en) Lithium secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JPH09330719A (en) Lithium secondary battery
JPH1126018A (en) Lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3229769B2 (en) Lithium secondary battery
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3132504B2 (en) Non-aqueous electrolyte secondary battery
WO2012077434A1 (en) Non-aqueous electrolyte secondary battery