JPH09318386A - Detector - Google Patents
DetectorInfo
- Publication number
- JPH09318386A JPH09318386A JP8133660A JP13366096A JPH09318386A JP H09318386 A JPH09318386 A JP H09318386A JP 8133660 A JP8133660 A JP 8133660A JP 13366096 A JP13366096 A JP 13366096A JP H09318386 A JPH09318386 A JP H09318386A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- detection device
- rotating body
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 495
- 238000001514 detection method Methods 0.000 claims abstract description 124
- 230000004907 flux Effects 0.000 claims abstract description 18
- 238000002485 combustion reaction Methods 0.000 claims description 18
- 239000000696 magnetic material Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 27
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 25
- 230000000694 effects Effects 0.000 description 20
- 238000007493 shaping process Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、磁性体移動体の
移動による磁界の変化を検出する検出装置に関し、特に
例えば内燃機関の回転情報を検出する場合等に用いて好
適な検出装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting device for detecting a change in a magnetic field due to movement of a magnetic body moving body, and more particularly to a detecting device suitable for use in detecting rotation information of an internal combustion engine. is there.
【0002】[0002]
【従来の技術】一般に磁気抵抗素子(以下、MR素子と
いう)は、強磁性体(例えば、Ni−Fe、Ni−Co
等)薄膜の磁化方向と電流方向のなす角度によって抵抗
値が変化する素子である。このMR素子は、電流方向と
磁化方向とが直角に交わるときに抵抗値は最小になり、
0度すなわち電流方向と磁化方向とが同一あるいは全く
逆方向になるとき抵抗値が最大になる。この抵抗値の変
化をMR効果またはMR変化率と呼び、一般にNi−F
eで2〜3%、Ni−Coで5〜6%である。2. Description of the Related Art Generally, a magnetoresistive element (hereinafter referred to as an MR element) is a ferromagnetic material (for example, Ni-Fe, Ni-Co).
Etc.) An element whose resistance value changes depending on the angle formed by the magnetization direction of the thin film and the current direction. This MR element has a minimum resistance value when the current direction and the magnetization direction intersect at right angles,
The resistance value becomes maximum when the current direction and the magnetization direction are the same or completely opposite to each other at 0 degree. This change in resistance value is called the MR effect or MR change rate, and is generally Ni-F.
e is 2 to 3%, and Ni-Co is 5 to 6%.
【0003】図24は従来の検出装置を示す構成図であ
り、図24の(a)はその側面図、図24の(b)はそ
の斜視図である。この検出装置は、回転軸1と、少なく
とも1つ以上の凹凸を有し、回転軸1と同期して回転す
る磁性体回転体2と、この磁性体回転体2と所定の間隙
を持って配置されたMR素子3と、MR素子3に磁界を
与える磁石4とからなり、MR素子3は、磁気抵抗パタ
ーン3aと、薄膜面(感磁面)3bとを有する。そこ
で、磁性体回転体2が回転することでMR素子3の感磁
面3bの磁界が変化し、磁気抵抗パターン3aの抵抗値
が変化する。FIG. 24 is a block diagram showing a conventional detection device. FIG. 24 (a) is a side view thereof, and FIG. 24 (b) is a perspective view thereof. This detection device includes a rotating shaft 1, a magnetic rotating body 2 having at least one unevenness and rotating in synchronization with the rotating shaft 1, and a magnetic body rotating body 2 arranged with a predetermined gap. The MR element 3 has a magnetoresistive pattern 3a and a thin film surface (magnetically sensitive surface) 3b. Therefore, the magnetic field of the magnetic sensitive surface 3b of the MR element 3 changes as the magnetic body rotating body 2 rotates, and the resistance value of the magnetoresistive pattern 3a changes.
【0004】図25は図24のMR素子3および磁石4
を拡大して示す斜視図であって、磁石4は極性N、Sの
1つの磁極を有する。図26は磁性体回転体の凹凸とM
R素子間の磁界の分布を示す図である。図において、図
26の(a)に示すように、MR素子3が磁性体回転体
2の凸部に対向する場合、磁石4のN極より発生された
磁界はMR素子3の感磁面3bを介して磁性体回転体2
の凸部を通り、更に周囲の空中を通って磁石4のS極に
至る分布となり、一方、図26の(b)に示すように、
MR素子3が磁性体回転体2の凹部に対向する場合、磁
石4のN極より発生された磁界はMR素子3の感磁面3
bを介して磁性体回転体2の凹部の側端の部分を通り、
更に周囲の空中を通って磁石4のS極に至る分布とな
る。FIG. 25 shows the MR element 3 and the magnet 4 of FIG.
FIG. 4 is an enlarged perspective view showing a magnet 4 having one magnetic pole having polarities N and S. FIG. FIG. 26 shows the unevenness of the magnetic rotating body and M.
It is a figure which shows the distribution of the magnetic field between R elements. In the figure, as shown in FIG. 26A, when the MR element 3 faces the convex portion of the magnetic rotating body 2, the magnetic field generated from the N pole of the magnet 4 is applied to the magnetic sensitive surface 3 b of the MR element 3. Through the magnetic body rotating body 2
Of the magnet 4 and the south pole of the magnet 4 through the surrounding air. On the other hand, as shown in FIG.
When the MR element 3 faces the concave portion of the magnetic body rotating body 2, the magnetic field generated by the N pole of the magnet 4 is applied to the magnetic sensitive surface 3 of the MR element 3.
through b through the side end of the concave portion of the magnetic body rotating body 2,
Further, the distribution reaches the south pole of the magnet 4 through the surrounding air.
【0005】図27は従来の検出装置の回路構成を概略
的に示すもので、定電流源に接続されたMR素子3は、
磁性体回転体2の凹凸に対応した電圧変化信号SVVを出
力する。いま、磁性体回転体2が回転軸1に同期して回
転すると、その凹凸に応じて図26に示すように、MR
素子3と磁性体回転体2の間に磁界が発生してMR素子
3の感磁面3bの磁界が変化し、磁性体回転体2の凹凸
に対応してMR素子3の出力(電圧変化信号SVV)が得
られる。この出力を図示しない差動増幅回路等で増幅し
た後の波形が、図6の(a)に示す磁性体回転体2の凹
凸に対応して、図6の(d)の破線aで示されている。FIG. 27 schematically shows a circuit configuration of a conventional detection device, in which the MR element 3 connected to a constant current source is
The voltage change signal S VV corresponding to the unevenness of the magnetic body rotating body 2 is output. Now, when the magnetic body rotating body 2 rotates in synchronization with the rotating shaft 1, as shown in FIG.
A magnetic field is generated between the element 3 and the magnetic body rotating body 2 to change the magnetic field of the magnetic sensitive surface 3b of the MR element 3, and the output of the MR element 3 (voltage change signal S VV ) is obtained. A waveform obtained by amplifying this output by a differential amplifier circuit (not shown) or the like is shown by a broken line a in FIG. 6D corresponding to the unevenness of the magnetic body rotating body 2 shown in FIG. ing.
【0006】[0006]
【発明が解決しようとする課題】ところが、従来の検出
装置は、上述のような構成とされているので、以下のよ
うな問題点があった。即ち、MR素子3に磁界を与える
磁石4が1つの磁極を有するものとされ、MR素子3が
磁性体回転体2の凸部に対向する場合(図26の
(a))、MR素子3の感磁面3bに垂直に与えられる
磁界は、MR素子3の感磁面3bの中央部分で実質的に
感磁面3bの一部に限られているので磁界強度が弱く、
また、MR素子3が磁性体回転体2の凹部に対向する場
合(図26の(b))、一点鎖線で示す磁石4の中心か
ら磁性体回転体2に対して垂直に下ろした線と磁界との
なす角度θ1は、磁界が磁性体回転体2の凹部の側端の
部分に向かって広がっているので小さく、結果として磁
界強度も小さいものである。However, since the conventional detecting device is constructed as described above, it has the following problems. That is, when the magnet 4 that gives a magnetic field to the MR element 3 has one magnetic pole, and the MR element 3 faces the convex portion of the magnetic body rotating body 2 ((a) of FIG. 26), the MR element 3 Since the magnetic field applied perpendicularly to the magnetic sensitive surface 3b is substantially limited to a part of the magnetic sensitive surface 3b at the central portion of the magnetic sensitive surface 3b of the MR element 3, the magnetic field strength is weak,
Further, when the MR element 3 faces the concave portion of the magnetic body rotating body 2 ((b) of FIG. 26), a line and a magnetic field drawn perpendicularly to the magnetic body rotating body 2 from the center of the magnet 4 shown by the alternate long and short dash line. The angle θ 1 formed by and is small because the magnetic field spreads toward the side end of the concave portion of the magnetic body rotating body 2, and as a result, the magnetic field strength is also small.
【0007】従って、磁石4によってMR素子3に印加
されている磁界の磁性体回転体2の凹凸部による変化量
が小さく、このため、MR素子の感磁面の磁界の変化量
も小さく、つまり、その磁気抵抗パターンの抵抗値の変
化が小さく、この結果検出出力も小さいので、効率よく
検出することができず、検出精度が悪いという問題点が
あった。Therefore, the amount of change in the magnetic field applied to the MR element 3 by the magnet 4 due to the uneven portion of the magnetic rotor 2 is small, and therefore the amount of change in the magnetic field on the magnetic sensitive surface of the MR element is small, that is, However, since the change in the resistance value of the magnetoresistive pattern is small and the detection output is small as a result, there is a problem that the detection cannot be performed efficiently and the detection accuracy is poor.
【0008】この発明はこのような問題点を解決するた
めになされたもので、磁性体回転体のような磁性体移動
体の凹凸部で磁気検出素子に印加されている磁界の変化
量を大きくして、精度良く、安定して磁性体移動体の凹
凸部に対応した信号を得ることができる検出精度の優れ
た検出装置を得ることを目的とする。The present invention has been made in order to solve such a problem, and makes it possible to increase the amount of change in the magnetic field applied to the magnetic detecting element at the uneven portion of the magnetic body moving body such as the magnetic body rotating body. Then, it is an object of the present invention to obtain a detection device having excellent detection accuracy, which can obtain a signal corresponding to the uneven portion of the magnetic body moving body with high accuracy and stability.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明に係
る検出装置は、複数の磁極を有し、磁界を発生する磁界
発生手段と、磁界発生手段と所定の間隙を持って配置さ
れ、この磁界発生手段によって発生された磁界を変化さ
せる磁界変化付与手段と、この磁界変化付与手段で変化
された磁界に応じて抵抗値が変化する磁気検出素子とを
備えたものである。According to a first aspect of the present invention, there is provided a detecting device having a plurality of magnetic poles, a magnetic field generating means for generating a magnetic field, and a magnetic field generating means arranged with a predetermined gap. It is provided with a magnetic field change applying means for changing the magnetic field generated by the magnetic field generating means, and a magnetic detection element whose resistance value changes according to the magnetic field changed by the magnetic field change applying means.
【0010】請求項2記載の発明に係る検出装置は、請
求項1の発明において、磁界発生手段を磁石と該磁石と
逆極性の磁束ガイドとで構成したものである。According to a second aspect of the present invention, there is provided the detection device according to the first aspect, wherein the magnetic field generating means is composed of a magnet and a magnetic flux guide having a polarity opposite to that of the magnet.
【0011】請求項3記載の発明に係る検出装置は、請
求項2の発明において、磁束ガイドとして磁石の一部を
用いたものである。According to a third aspect of the present invention, there is provided the detection device according to the second aspect, wherein a part of the magnet is used as the magnetic flux guide.
【0012】請求項4記載の発明に係る検出装置は、請
求項2の発明において、磁束ガイドとして磁性体を用い
たものである。According to a fourth aspect of the present invention, there is provided the detection device according to the second aspect, wherein a magnetic body is used as the magnetic flux guide.
【0013】請求項5記載の発明に係る検出装置は、請
求項1の発明において、磁界変化付与手段を少なくとも
1つの凹凸を有する磁性体移動体で構成したものであ
る。According to a fifth aspect of the present invention, there is provided the detection device according to the first aspect, wherein the magnetic field change imparting means is constituted by a magnetic body moving body having at least one concavity and convexity.
【0014】請求項6記載の発明に係る検出装置は、請
求項1〜5のいずれかの発明において、磁気検出素子を
少なくとも1辺に用いたブリッジ回路と、このブリッジ
回路の出力を信号処理する信号処理手段とを備えたもの
である。According to a sixth aspect of the present invention, there is provided a detection device according to any one of the first to fifth aspects, in which a bridge circuit using a magnetic detection element on at least one side and signal processing of an output of the bridge circuit. And signal processing means.
【0015】請求項7記載の発明に係る検出装置は、請
求項1〜6のいずれかの発明において、磁性体移動体
が、回転軸に同期して回転する磁性体回転体であるもの
である。According to a seventh aspect of the present invention, in the detecting device according to any one of the first to sixth aspects, the magnetic body moving body is a magnetic body rotating body that rotates in synchronization with a rotation axis. .
【0016】請求項8記載の発明に係る検出装置は、請
求項7の発明において、少なくとも磁気検出素子を含む
検出装置本体を備え、磁性体回転体を内燃機関のクラン
ク軸またはカム軸に装着し、磁性体回転体が磁気検出素
子に対向するように検出装置本体を内燃機関の近傍に配
置したものである。According to an eighth aspect of the present invention, there is provided the detection device according to the seventh aspect, further comprising a detection device main body including at least a magnetic detection element, wherein the magnetic body rotating body is mounted on a crankshaft or a camshaft of an internal combustion engine. The detection device main body is arranged in the vicinity of the internal combustion engine so that the magnetic rotating body faces the magnetic detection element.
【0017】請求項9記載の発明に係る検出装置は、請
求項8の発明において、磁性体回転体に対して検出装置
本体を回転軸方向に配置したものである。According to a ninth aspect of the present invention, there is provided the detection device according to the eighth aspect, wherein the detection device main body is arranged in the rotation axis direction with respect to the magnetic body rotating body.
【0018】請求項10記載の発明に係る検出装置は、
請求項9の発明において、検出装置本体が、少なくとも
磁気検出素子を内蔵するハウジングを備え、磁性体回転
体を、ハウジングの側面に形成された空間部にこの磁性
体回転体の少なくとも周辺部が磁気検出素子対向して位
置するように配置したものである。According to a tenth aspect of the present invention, there is provided a detection device,
In the invention of claim 9, the main body of the detection device is provided with a housing containing at least a magnetic detection element, and the magnetic body rotating body is provided in a space formed on a side surface of the housing so that at least a peripheral portion of the magnetic body rotating body is magnetic. It is arranged so as to face the detection element.
【0019】[0019]
【発明の実施の形態】以下、この発明に係る検出装置の
一実施の形態を図について説明する。 実施の形態1.図1はこの発明の実施の形態1を示す構
成図であり、図1の(a)はその側面図、図1の(b)
はその斜視図である。この検出装置は、回転軸1と、少
なくとも1つ以上の凹凸を具備し、回転軸1と同期して
回転する磁界変化付与手段としての磁性体回転体2と、
この磁性体回転体2と所定の間隙を持って配置された磁
気検出素子としての巨大磁気抵抗素子(以下、GMR素
子と云う)10と、GMR素子10に磁界を与える磁界
発生手段としての磁石5とからなり、GMR素子10
は、感磁パターンとしての磁気抵抗パターン10aと、
薄膜面(感磁面)10bとを有する。そこで、磁性体回
転体2が回転することでGMR素子10の感磁面10b
の磁界が変化し、磁気抵抗パターン10aの抵抗値が変
化する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a detection apparatus according to the present invention. Embodiment 1. FIG. 1 is a block diagram showing a first embodiment of the present invention. FIG. 1 (a) is a side view thereof, and FIG. 1 (b).
Is a perspective view thereof. This detection device includes a rotating shaft 1 and a magnetic rotating body 2 as a magnetic field change imparting means that has at least one unevenness and rotates in synchronization with the rotating shaft 1.
A giant magnetoresistive element (hereinafter referred to as a GMR element) 10 as a magnetic detection element, which is arranged with a predetermined gap with the magnetic body rotating body 2, and a magnet 5 as a magnetic field generating means for applying a magnetic field to the GMR element 10. And GMR element 10
Is a magnetoresistive pattern 10a as a magnetically sensitive pattern,
And a thin film surface (magnetic surface) 10b. Therefore, when the magnetic body rotating body 2 rotates, the magnetic sensitive surface 10b of the GMR element 10 is
Changes the magnetic field and changes the resistance value of the magnetoresistive pattern 10a.
【0020】ここで、GMR素子10は、例えば日本応
用磁気学会誌Vol.15,No.51991,p813〜821の「人工格子
の磁気抵抗効果」と題する論文に記載されている数オン
グストロームから数十オングストロームの厚さの磁性層
と非磁性層とを交互に積層させた積層体、いわゆる人工
格子膜であり、(Fe/Cr)n、(パーマロイ/Cu
/Co/Cu)n、(Co/Cu)nが知られており、
これは、上述のMR素子と比較して格段に大きなMR効
果(MR変化率)を有すると共に、隣り合った磁性層の
磁化の向きの相対角度にのみ依存するので、外部磁界の
向きが電流に対してどのような角度差をもっていても同
じ抵抗値の変化が得られるいわゆる面内感磁の素子であ
る。Here, the GMR element 10 is, for example, several angstroms to several tens of angstroms described in a paper entitled "Magnetoresistance Effect of Artificial Lattice" in Japanese Society of Applied Magnetics Vol.15, No.51991, p813-821. A laminated body in which magnetic layers and nonmagnetic layers having an angstrom thickness are alternately laminated, that is, a so-called artificial lattice film, (Fe / Cr) n, (Permalloy / Cu
/ Co / Cu) n and (Co / Cu) n are known,
This has a remarkably large MR effect (MR change rate) as compared with the above-mentioned MR element, and depends only on the relative angle of the magnetization directions of the adjacent magnetic layers, so that the direction of the external magnetic field depends on the current. On the other hand, it is a so-called in-plane magnetic sensitive element that can obtain the same change in resistance value regardless of any angle difference.
【0021】そこで、磁界の変化を検出するためにGM
R素子10で実質的に感磁面を形成し、その感磁面の各
端に電極を形成してブリッジ回路を形成し、このブリッ
ジ回路の対向する2つの電極間に定電圧、定電流の電源
を接続し、GMR素子10の抵抗値変化を電圧変化に変
換して、このGMR素子10に作用している磁界変化を
検出することが考えられる。Therefore, in order to detect the change in the magnetic field, the GM
The R element 10 substantially forms a magnetically sensitive surface, and an electrode is formed at each end of the magnetically sensitive surface to form a bridge circuit. A constant voltage and a constant current are applied between two opposing electrodes of the bridge circuit. It is conceivable to connect a power source, convert the resistance value change of the GMR element 10 into a voltage change, and detect the magnetic field change acting on the GMR element 10.
【0022】図2は上述のGMR素子を用いた検出装置
を示すブロック図である。この検出装置は、磁性体回転
体2と所定の間隙を持って配置され、磁石5より磁界が
与えられるGMR素子を用いたホイートストンブリッジ
回路11と、このホイートストンブリッジ回路11の出
力を増幅する差動増幅回路12と、この差動増幅回路1
2の出力を基準値と比較して“O”または“1”の信号
を出力する比較回路13と、この比較回路13の出力を
更に波形整形して立ち上がり、立ち下がりの急峻な
“O”または“1”の信号を出力端子15に出力する波
形整形回路14とを備える。差動増幅回路12、比較回
路13および波形整形回路14は信号処理手段を構成す
る。FIG. 2 is a block diagram showing a detecting device using the above-mentioned GMR element. This detection device is arranged with a predetermined gap from the magnetic body rotating body 2 and uses a Wheatstone bridge circuit 11 using a GMR element to which a magnetic field is given by a magnet 5 and a differential amplifier for amplifying the output of the Wheatstone bridge circuit 11. Amplifier circuit 12 and this differential amplifier circuit 1
A comparison circuit 13 that compares the output of 2 with a reference value and outputs a signal of "O" or "1", and the output of the comparison circuit 13 is further waveform-shaped and rises and falls "O" or The waveform shaping circuit 14 that outputs the signal of “1” to the output terminal 15 is provided. The differential amplifier circuit 12, the comparison circuit 13, and the waveform shaping circuit 14 constitute signal processing means.
【0023】図3は図2のブロック図の具体的回路構成
の一例を示す図である。ホイートストンブリッジ回路1
1は、例えば各辺にそれぞれGMR素子10A,10
B,10Cおよび10Dを有し、GMR素子10Aと1
0Cの各一端は共通接続され、接続点16を介して電源
端子Vccに接続され、GMR素子10Bと10Dの各一
端は共通接続され、接続点17を介して接地され、GM
R素子10Aと10Bの各他端は接続点18に接続さ
れ、GMR素子10Cと10Dの各他端は接続点19に
接続される。FIG. 3 is a diagram showing an example of a specific circuit configuration of the block diagram of FIG. Wheatstone bridge circuit 1
1 is, for example, GMR elements 10A, 10 on each side.
B, 10C and 10D, and GMR elements 10A and 1
Each one end of 0C is commonly connected, is connected to the power supply terminal Vcc through the connection point 16, each one end of GMR elements 10B and 10D is commonly connected, is grounded through the connection point 17, and GM.
The other ends of the R elements 10A and 10B are connected to the connection point 18, and the other ends of the GMR elements 10C and 10D are connected to the connection point 19.
【0024】そして、ホイートストンブリッジ回路11
の接続点18が抵抗器を介して差動増幅回路12のアン
プ12aの反転入力端子に接続され、接続点19が抵抗
器を介してアンプ12aの非反転入力端子に接続される
と共に更に抵抗器を介して基準電源を構成する分圧回路
に接続される。更に、アンプ12aの出力端子は、比較
回路13の反転入力端子に接続され、比較回路13の非
反転入力端子は基準電源を構成する分圧回路に接続され
ると共に抵抗器を介して自己の出力端子に接続される。
そして、比較回路13の出力側が波形整形回路14のト
ランジスタ14aのベースに接続され、そのコレクタは
出力端子15に接続されると共に抵抗器を介して電源端
子Vccに接続され、そのエミッタは接地される。The Wheatstone bridge circuit 11
18 is connected to the inverting input terminal of the amplifier 12a of the differential amplifier circuit 12 via a resistor, and the connection point 19 is connected to the non-inverting input terminal of the amplifier 12a via a resistor and further to the resistor. Is connected to the voltage dividing circuit that constitutes the reference power source. Further, the output terminal of the amplifier 12a is connected to the inverting input terminal of the comparison circuit 13, and the non-inverting input terminal of the comparison circuit 13 is connected to the voltage dividing circuit which constitutes the reference power source and outputs its own output through the resistor. Connected to the terminal.
The output side of the comparison circuit 13 is connected to the base of the transistor 14a of the waveform shaping circuit 14, its collector is connected to the output terminal 15 and also connected to the power supply terminal Vcc via a resistor, and its emitter is grounded. .
【0025】図4は図1のGMR素子10および磁石5
を拡大して示す斜視図であって、磁石5は、ここでは3
つの磁極5a〜5cを有する。そして、GMR素子10
の感磁面10bに対向して磁石5の磁極5a〜5cの極
性をそれぞれS、N、Sの3極となるように配置する。
この構成で、磁性体回転体2が回転した時のその凹凸部
での磁界は図5に示すようになる。図において、図5の
(a)に示すように、GMR素子10が磁性体回転体2
の凸部に対向する場合、磁石5の磁極5aのN極より発
生された磁界は、GMR素子10の感磁面10bを介し
て磁性体回転体2の凸部に至り、これより垂直に再びG
MR素子10の感磁面10bを介して隣の磁極5bおよ
び5cのS極に至る分布となり、一方、図5の(b)に
示すように、GMR素子10が磁性体回転体2の凹部に
対向する場合、磁石5の磁極5aのN極より発生された
磁界は、その大部分がGMR素子10の感磁面10bを
介して直ぐ隣の磁極5bおよび5cのS極に至る分布と
なる。従って、この場合、磁極5bおよび5cは実質的
に一種の磁束ガイドとして働く。FIG. 4 shows the GMR element 10 and the magnet 5 of FIG.
FIG. 3 is an enlarged perspective view showing a magnet 5 here,
It has two magnetic poles 5a to 5c. Then, the GMR element 10
The magnetic poles 5a to 5c of the magnet 5 are arranged so as to have three polarities S, N, and S, respectively, facing the magnetic sensitive surface 10b.
With this configuration, the magnetic field at the uneven portion when the magnetic body rotating body 2 rotates is as shown in FIG. In the figure, as shown in FIG. 5A, the GMR element 10 is a magnetic body rotating body 2.
, The magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5 reaches the convex portion of the magnetic body rotating body 2 via the magnetically sensitive surface 10b of the GMR element 10, and is again perpendicular to the convex portion. G
The distribution reaches the S pole of the adjacent magnetic poles 5b and 5c through the magnetically sensitive surface 10b of the MR element 10. On the other hand, as shown in FIG. 5B, the GMR element 10 is formed in the concave portion of the magnetic rotating body 2. When facing each other, most of the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5 reaches the S pole of the immediately adjacent magnetic poles 5b and 5c via the magnetically sensitive surface 10b of the GMR element 10. Therefore, in this case, the magnetic poles 5b and 5c substantially act as a kind of magnetic flux guide.
【0026】ここで、GMR素子10が磁性体回転体2
の凸部に対向する場合(図5の(a))、GMR素子1
0の感磁面10bには全面に亙ってほぼ垂直な磁界が印
加されるので磁界強度が大きく、また、GMR素子10
が磁性体回転体2の凹部に対向する場合(図5の
(b))、一点鎖線で示す磁石5の(磁極5aの)中心
から磁性体回転体2に対して垂直に下ろした線と磁界と
のなす角度θ2は、磁極5aのN極からの磁界が直ぐ隣
の磁極5aおよび5cのS極に至るので大きく、結果と
して磁界強度も大きくなる。従って、磁石5によってG
MR素子10に印加されている磁界の磁性体回転体2の
凹凸部による変化量が大きく、このため、GMR素子1
0の感磁面10bの磁界の変化量も大きく、つまり、そ
の磁気抵抗パターンの抵抗値の変化が大きくなる。Here, the GMR element 10 is the magnetic body rotating body 2.
When facing the convex portion of the GMR element 1 (FIG. 5A).
Since a substantially perpendicular magnetic field is applied over the entire magnetic sensitive surface 10b of 0, the magnetic field strength is large, and the GMR element 10
Is opposed to the concave portion of the magnetic body rotating body 2 ((b) of FIG. 5), the line and the magnetic field drawn perpendicularly to the magnetic body rotating body 2 from the center of the magnet 5 (of the magnetic pole 5a) shown by the alternate long and short dash line. The angle θ 2 formed by is large because the magnetic field from the N pole of the magnetic pole 5a reaches the S pole of the immediately adjacent magnetic poles 5a and 5c, and as a result, the magnetic field strength is also large. Therefore, by the magnet 5, G
The amount of change in the magnetic field applied to the MR element 10 due to the irregularities of the magnetic rotating body 2 is large, and therefore the GMR element 1
The amount of change in the magnetic field of the magnetic sensitive surface 10b of 0 is also large, that is, the change in the resistance value of the magnetoresistive pattern is large.
【0027】次に、動作について、図6を参照して説明
する。磁性体回転体2が回転することで、図6の(a)
に示すその凹凸に対応して、ホイートストンブリッジ回
路11を構成するGMR素子10Aと10Dには同じ磁
界変化が与えられ、GMR素子10Bと10CにはGM
R素子10A、10Dとは異なる磁界変化が与えられる
ようになる。この結果、磁性体回転体2の凹凸に対応し
てGMR素子10A、10Dと10B、10Cの感磁面
に磁界の変化が発生し、つまり、実質的に一つのGMR
素子の磁界変化の4倍の磁界変化を得られ、その抵抗値
も同様に変化して、GMR素子10A、10Dと10
B、10Cの抵抗値の最大、最少となる位置が逆とな
り、ホイートストンブリッジ回路の接続点18、19の
中点電圧も、図6の(c)に示すように同様に変化す
る。Next, the operation will be described with reference to FIG. By rotating the magnetic body rotating body 2, (a) of FIG.
Corresponding to the unevenness shown in FIG. 1, the same magnetic field change is applied to the GMR elements 10A and 10D that form the Wheatstone bridge circuit 11, and the GM is applied to the GMR elements 10B and 10C.
A magnetic field change different from that of the R elements 10A and 10D is given. As a result, a magnetic field change occurs on the magnetic sensitive surfaces of the GMR elements 10A, 10D and 10B, 10C corresponding to the irregularities of the magnetic body rotating body 2, that is, substantially one GMR element.
A magnetic field change that is four times the magnetic field change of the element can be obtained, and the resistance value of the element changes in the same manner.
The maximum and minimum positions of the resistance values of B and 10C are reversed, and the midpoint voltage of the connection points 18 and 19 of the Wheatstone bridge circuit also changes as shown in (c) of FIG.
【0028】そして、この中点電圧の差が差動増幅回路
12により増幅され、その出力側には、図6の(d)に
実線bで示すような、図6の(a)に示す磁性体回転体
2の凹凸に対応した出力、つまり、実質的に一つのGM
R素子の4倍の出力が得られる。この差動増幅回路12
の出力は比較回路13で基準値と比較されて“O”また
は“1”の信号に変換され、この信号は更に波形整形回
路14で波形整形され、この結果、その出力側即ち出力
端子15には図6の(e)に示すようにその立ち上が
り、立ち下がりの急峻な“O”または“1”の出力が得
られる。The difference in the midpoint voltage is amplified by the differential amplifier circuit 12, and the output side thereof has the magnetic property shown in FIG. 6A as shown by the solid line b in FIG. 6D. Output corresponding to the unevenness of the rotating body 2, that is, substantially one GM
An output four times that of the R element can be obtained. This differential amplifier circuit 12
The output of is compared with the reference value by the comparison circuit 13 and converted into a signal of "O" or "1", and this signal is further waveform-shaped by the waveform shaping circuit 14 and, as a result, is output to its output side, that is, the output terminal 15. As shown in (e) of FIG. 6, an output of "O" or "1" having a sharp rise and fall is obtained.
【0029】かくして、中点電圧の電圧変化の差動を増
幅することで各GMR素子の磁界変化を有効に利用で
き、一つのGMR素子の磁界変化の4倍の磁界変化を得
られる。すなわち、ブリッジ回路構成とすることで磁性
体回転体2の回転による磁界変化を安定して大きな抵抗
値変化量に変換することが可能になる。よって、差動増
幅回路12の出力も大きくなり、比較回路13におけ
る”0”または”1”の信号に波形整形する判定レベル
に対する余裕度が増すことになり、外来ノイズに対して
も強くなり、常に安定した信号を得ることができる。な
お、ここでは、GMR素子でホイートストンブリッジ回
路を構成するとしたが、同様のブリッジ回路構成であれ
ば同じ効果を得ることができる。Thus, by amplifying the differential of the voltage change of the midpoint voltage, the magnetic field change of each GMR element can be effectively utilized, and the magnetic field change four times that of one GMR element can be obtained. That is, the bridge circuit configuration makes it possible to stably convert a magnetic field change due to the rotation of the magnetic body rotating body 2 into a large resistance value change amount. Therefore, the output of the differential amplifier circuit 12 also becomes large, and the margin for the judgment level for waveform shaping into the signal of “0” or “1” in the comparison circuit 13 increases, and it becomes strong against external noise. A stable signal can always be obtained. It should be noted that although the GMR element is used to configure the Wheatstone bridge circuit here, the same effect can be obtained if the bridge circuit configuration is similar.
【0030】このように、本実施の形態では、磁石をそ
の極性がGMR素子の感磁面に対してS、N、Sの3極
となるように配置することで、GMR素子が磁性体回転
体の凸部に対向する場合、GMR素子の感磁面にはほぼ
垂直な磁界が印加され、GMR素子が磁性体回転体の凹
部に対向する場合、GMR素子の感磁面に並行な磁界が
印加された状態となる。これにより、従来の1つの磁極
を有する磁石を配置する構成の場合より、GMR素子の
感磁面の印加磁界の変化量を大きく、磁性体回転体の凹
凸部に対応した磁界の変化を精度良く、効率良く検出で
きるようになり、安定して精度良い信号を得ることがで
きる。なお、上述では、磁石の極性をS、N、Sの3極
としたが、逆の極性であるN、S、Nでも同様の効果を
得ることができる。As described above, in the present embodiment, the magnet is arranged so that the polarities thereof are the three poles S, N and S with respect to the magnetic sensitive surface of the GMR element, so that the GMR element rotates the magnetic body. When facing the convex portion of the body, a substantially perpendicular magnetic field is applied to the magnetic sensitive surface of the GMR element, and when facing the concave portion of the magnetic body rotating body, a magnetic field parallel to the magnetic sensitive surface of the GMR element is applied. It is in the applied state. As a result, the amount of change in the applied magnetic field on the magnetically sensitive surface of the GMR element is larger than in the case of the conventional arrangement in which a magnet having one magnetic pole is arranged, and the change in the magnetic field corresponding to the uneven portion of the magnetic body rotating body is accurately performed. Therefore, it becomes possible to detect efficiently, and a stable and accurate signal can be obtained. In the above description, the polarities of the magnets are three poles S, N, and S, but the same effect can be obtained even when the polarities are N, S, and N.
【0031】実施の形態2.図7はこの発明の実施の形
態2を示す構成図である。なお、同図において、図1お
よび図4と対応する部分には同一符号を付して説明す
る。実施の形態1では、磁石の極性をS、N、Sまたは
N、S、Nの3極となるように配置したが、本実施の形
態では、磁石は1極でその磁極の側方部に磁束ガイドと
しての磁性体を配置するものである。即ち、図7に示す
ように、上述の磁石5の代わりに1つの磁極5aを有す
る磁石5Aを設け、この磁石5Aの側方部にこれを取り
囲むように所定形状例えばUの字形の磁性体6を配置す
る。この磁性体6はその底部が磁極5aの一方の極例え
ばS極に接するように配置する。従って、この磁性体6
はSなる極性を持つようになる。磁石5Aと磁性体6は
磁界発生手段を構成する。Embodiment 2 7 is a block diagram showing a second embodiment of the present invention. In the figure, parts corresponding to those in FIGS. 1 and 4 are designated by the same reference numerals for description. In the first embodiment, the magnets are arranged so that the polarities of the magnets are S, N, S or N, S, N. However, in the present embodiment, the magnet has one pole and is located on the side of the magnetic pole. A magnetic body is arranged as a magnetic flux guide. That is, as shown in FIG. 7, a magnet 5A having one magnetic pole 5a is provided in place of the above-mentioned magnet 5, and a predetermined shape, for example, a U-shaped magnetic body 6 is provided on the side portion of the magnet 5A so as to surround it. To place. The magnetic body 6 is arranged so that its bottom portion contacts one pole of the magnetic pole 5a, for example, the S pole. Therefore, this magnetic body 6
Has a polarity of S. The magnet 5A and the magnetic body 6 constitute magnetic field generating means.
【0032】かくして、GMR素子10の感磁面10b
に対向して、磁石5Aの磁極5aの極性Nと磁性体6の
両端の極性S,Sとの実質的に3極が存在することにな
る。この構成で、磁性体回転体2が回転した時のその凹
凸部での磁界は図8に示すようになる。図において、図
8の(a)に示すように、GMR素子10が磁性体回転
体2の凸部に対向する場合、磁石5Aの磁極5aのN極
より発生された磁界は、GMR素子10の感磁面10b
を介して磁性体回転体2の凸部に至り、これより垂直に
再びGMR素子10の感磁面10bを介して磁性体6の
両端のS極に至る分布となり、一方、図8の(b)に示
すように、GMR素子10が磁性体回転体2の凹部に対
向する場合、磁石5Aの磁極5aのN極より発生された
磁界は、その大部分がGMR素子10の感磁面10bを
介して直ぐ磁性体6の両端のS極に至る分布となる。Thus, the magnetic sensitive surface 10b of the GMR element 10 is
Facing each other, there are substantially three poles of the polarity N of the magnetic pole 5a of the magnet 5A and the polarities S, S of both ends of the magnetic body 6. With this configuration, the magnetic field at the uneven portion when the magnetic body rotating body 2 rotates is as shown in FIG. In the figure, when the GMR element 10 faces the convex portion of the magnetic body rotating body 2 as shown in FIG. 8A, the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A is generated by the GMR element 10. Sensitive surface 10b
The distribution reaches the convex portion of the magnetic body rotating body 2 through the magnetic field, and then reaches the S poles at both ends of the magnetic body 6 through the magnetically sensitive surface 10b of the GMR element 10 perpendicularly again. ), When the GMR element 10 faces the concave portion of the magnetic body rotating body 2, most of the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A is on the magnetic sensitive surface 10b of the GMR element 10. The distribution immediately reaches the S poles at both ends of the magnetic body 6 via the magnetic field.
【0033】ここで、GMR素子10が磁性体回転体2
の凸部に対向する場合(図8の(a))、GMR素子1
0の感磁面10bには全面に亙ってほぼ垂直な磁界が印
加されるので磁界強度が大きく、また、GMR素子10
が磁性体回転体2の凹部に対向する場合(図8の
(b))、一点鎖線で示す磁石5Aの(磁極5aの)中
心から磁性体回転体2に対して垂直に下ろした線と磁界
とのなす角度θ2は、磁極5aのN極からの磁界が直ぐ
磁性体6の両端のS極に至るので大きく、結果として磁
界強度も大きくなる。従って、磁石5AによってGMR
素子10に印加されている磁界の磁性体回転体2の凹凸
部による変化量が大きく、このため、GMR素子10の
感磁面10bの磁界の変化量も大きく、つまり、その磁
気抵抗パターンの抵抗値の変化が大きくなる。Here, the GMR element 10 is the magnetic body rotating body 2.
When facing the convex portion of the GMR element 1 (FIG. 8A), the GMR element 1
Since a substantially perpendicular magnetic field is applied over the entire magnetic sensitive surface 10b of 0, the magnetic field strength is large, and the GMR element 10
Is opposed to the concave portion of the magnetic body rotating body 2 ((b) of FIG. 8), the line and the magnetic field drawn perpendicularly to the magnetic body rotating body 2 from the center (of the magnetic pole 5a) of the magnet 5A shown by the alternate long and short dash line. The angle θ 2 formed by and is large because the magnetic field from the N pole of the magnetic pole 5a immediately reaches the S poles at both ends of the magnetic body 6, resulting in a large magnetic field strength. Therefore, by the magnet 5A, the GMR
The amount of change in the magnetic field applied to the element 10 due to the uneven portion of the magnetic body rotating body 2 is large, and therefore the amount of change in the magnetic field of the magnetic sensitive surface 10b of the GMR element 10 is also large, that is, the resistance of the magnetoresistive pattern. The value changes greatly.
【0034】このように、本実施の形態でも、磁石の極
性をN、磁性体の極性S、Sの実質的に3極となるよう
に磁石と磁性体を配置することで、GMR素子が磁性体
回転体の凸部に対向する場合、GMR素子の感磁面には
ほぼ垂直な磁界が印加され、GMR素子が磁性体回転体
の凹部に対向する場合、GMR素子の感磁面に並行な磁
界が印加された状態となる。これにより、従来の1つの
磁極を有する磁石を配置する構成の場合より、GMR素
子の感磁面の印加磁界の変化量を大きく、磁性体回転体
の凹凸部に対応した磁界の変化を精度良く、効率良く検
出できるようになり、安定して精度良い信号を得ること
ができる。また、磁束ガイドとして磁性体を用いるの
で、コスト的に安価となる。なお、上述では、磁石の極
性をN極としたが、逆のS極でも同様の効果を得ること
ができる。As described above, also in the present embodiment, by arranging the magnet and the magnetic body so that the polarity of the magnet is N and the polarities S and S of the magnetic body are substantially three poles, the GMR element is magnetic. When facing the convex portion of the body rotating body, a substantially perpendicular magnetic field is applied to the magnetic sensitive surface of the GMR element, and when facing the concave portion of the magnetic body rotating body, the magnetic field is parallel to the magnetic sensitive surface of the GMR element. The magnetic field is applied. As a result, the amount of change in the applied magnetic field on the magnetically sensitive surface of the GMR element is larger than in the case of the conventional arrangement in which a magnet having one magnetic pole is arranged, and the change in the magnetic field corresponding to the uneven portion of the magnetic body rotating body is accurately performed. Therefore, it becomes possible to detect efficiently, and a stable and accurate signal can be obtained. Further, since the magnetic body is used as the magnetic flux guide, the cost is low. Note that, in the above description, the polarity of the magnet is the N pole, but the same effect can be obtained with the opposite S pole.
【0035】実施の形態3.図9はこの発明の実施の形
態3を示す構成図である。なお、同図において、図1お
よび図4と対応する部分には同一符号を付して説明す
る。実施の形態1では、磁石の極性をS、N、Sまたは
N、S、Nの3極となるように配置したが、本実施の形
態では、磁石の極性をN、Sの2極となるように配置す
るものである。即ち、図9に示すように、上述の磁石5
の代わりに2つの磁極5a,5bを有する磁界発生手段
としての磁石5Bを設け、GMR素子10の感磁面10
bに対向して磁石5Bの磁極5a、5bの極性をそれぞ
れN、Sの2極となるように配置する。Embodiment 3 FIG. 9 is a configuration diagram showing a third embodiment of the present invention. In the figure, parts corresponding to those in FIGS. 1 and 4 are designated by the same reference numerals for description. In the first embodiment, the magnets are arranged so as to have the three poles S, N, S or N, S, N, but in the present embodiment, the magnets have the two poles N, S. Is to be arranged as follows. That is, as shown in FIG.
In place of the above, a magnet 5B as a magnetic field generating means having two magnetic poles 5a and 5b is provided, and the magnetic sensitive surface 10 of the GMR element 10 is provided.
The magnetic poles 5a and 5b of the magnet 5B are arranged so as to face b and have two polarities, N and S, respectively.
【0036】この構成で、磁性体回転体2が回転した時
のその凹凸部での磁界は図10に示すようになる。図に
おいて、図10の(a)に示すように、GMR素子10
が磁性体回転体2の凸部に対向する場合、磁石5Bの磁
極5aのN極より発生された磁界は、GMR素子10の
感磁面10bを介して磁性体回転体2の凸部に至り、こ
れより垂直に再びGMR素子10の感磁面10bを介し
て隣の磁極5bのS極に至る分布となり、一方、図10
の(b)に示すように、GMR素子10が磁性体回転体
2の凹部に対向する場合、磁石5Bの磁極5aのN極よ
り発生された磁界は、その大部分がGMR素子10の感
磁面10bを介して直ぐ隣の磁極5bのS極に至る分布
となる。この場合、磁極5bは実質的に一種の磁束ガイ
ドとして働く。With this structure, the magnetic field at the uneven portion when the magnetic body rotating body 2 rotates is as shown in FIG. In the figure, as shown in FIG.
, The magnetic field generated by the N pole of the magnetic pole 5a of the magnet 5B reaches the convex portion of the magnetic body rotating body 2 via the magnetically sensitive surface 10b of the GMR element 10. , The distribution is perpendicular to the S pole of the adjacent magnetic pole 5b through the magnetically sensitive surface 10b of the GMR element 10 again.
(B), when the GMR element 10 faces the concave portion of the magnetic body rotating body 2, most of the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5B is magnetically sensitive to the GMR element 10. The distribution reaches the S pole of the immediately adjacent magnetic pole 5b via the surface 10b. In this case, the magnetic pole 5b substantially acts as a kind of magnetic flux guide.
【0037】ここで、GMR素子10が磁性体回転体2
の凸部に対向する場合(図10の(a))、GMR素子
10の感磁面10bにはほぼ全面に亙ってほぼ垂直な磁
界が印加されるので磁界強度が大きく、また、GMR素
子10が磁性体回転体2の凹部に対向する場合(図10
の(b))、一点鎖線で示す磁石5Bの(磁極5aの)
中心から磁性体回転体2に対して垂直に下ろした線と磁
界とのなす角度θ2は、磁極5aのN極からの磁界が直
ぐ隣の磁極5aのS極に至るので大きく、結果として磁
界強度も大きくなる。従って、磁石5BによってGMR
素子10に印加されている磁界の磁性体回転体2の凹凸
部による変化量が大きく、このため、GMR素子10の
感磁面10bの磁界の変化量も大きく、つまり、その磁
気抵抗パターンの抵抗値の変化が大きくなる。Here, the GMR element 10 is the magnetic body rotating body 2.
10 (a) in FIG. 10, the magnetic field strength is large because a substantially perpendicular magnetic field is applied to the magnetic sensitive surface 10b of the GMR element 10 over almost the entire surface. 10 is opposed to the concave portion of the magnetic body rotating body 2 (see FIG. 10).
(B)) of the magnet 5B (of the magnetic pole 5a) shown by the alternate long and short dash line
The angle θ 2 formed by the magnetic field from a line drawn from the center perpendicularly to the magnetic body rotating body 2 is large because the magnetic field from the N pole of the magnetic pole 5a reaches the S pole of the immediately adjacent magnetic pole 5a, resulting in a magnetic field. The strength also increases. Therefore, the GMR is changed by the magnet 5B.
The amount of change in the magnetic field applied to the element 10 due to the uneven portion of the magnetic body rotating body 2 is large, and therefore the amount of change in the magnetic field of the magnetic sensitive surface 10b of the GMR element 10 is also large, that is, the resistance of the magnetoresistive pattern. The value changes greatly.
【0038】このように、本実施の形態でも、磁石をそ
の極性がGMR素子の感磁面に対してN、Sの2極とな
るように配置することで、GMR素子が磁性体回転体の
凸部に対向する場合、GMR素子の感磁面にはほぼ垂直
な磁界が印加され、GMR素子が磁性体回転体の凹部に
対向する場合、GMR素子の感磁面に並行な磁界が印加
された状態となる。これにより、従来の1つの磁極を有
する磁石を配置する構成の場合より、GMR素子の感磁
面の印加磁界の変化量を大きく、磁性体回転体の凹凸部
に対応した磁界の変化を精度良く、効率良く検出できる
ようになり、安定して精度良い信号を得ることができ
る。なお、上述では、磁石の極性をN、Sの2極とした
が、逆の極性であるS、Nでも同様の効果を得ることが
できる。As described above, also in the present embodiment, the GMR element is arranged so that the polarities thereof are the two poles of N and S with respect to the magnetic sensitive surface of the GMR element, so that the GMR element serves as a magnetic rotating body. When facing the convex portion, a magnetic field almost perpendicular to the magnetic sensitive surface of the GMR element is applied, and when facing the concave portion of the magnetic rotating body, a parallel magnetic field is applied to the magnetic sensitive surface of the GMR element. It will be in a state of being. As a result, the amount of change in the applied magnetic field on the magnetically sensitive surface of the GMR element is larger than in the case of the conventional arrangement in which a magnet having one magnetic pole is arranged, and the change in the magnetic field corresponding to the uneven portion of the magnetic body rotating body is accurately performed. Therefore, it becomes possible to detect efficiently, and a stable and accurate signal can be obtained. In the above description, the polarity of the magnet is N and S, but the same effect can be obtained with S and N having opposite polarities.
【0039】実施の形態4.図11はこの発明の実施の
形態4を示す構成図である。なお、同図において、図1
および図4と対応する部分には同一符号を付して説明す
る。実施の形態1では、磁石の極性をS、N、Sまたは
N、S、Nの3極となるように配置したが、本実施の形
態では、磁石は1極でその磁極の側方部に磁束ガイドと
しての磁性体を配置するものである。即ち、図11に示
すように、上述の磁石5の代わりに1つの磁極5aを有
する磁石5Aを設け、この磁石5Aの側方部に所定形状
例えばLの字形の磁性体6Aを配置する。この磁性体6
Aはその一端が磁極5aの一方の極例えばS極に接する
ように配置する。従って、この磁性体6AはSなる極性
を持つようになる。磁石5Aと磁性体6Aは磁界発生手
段を構成する。Fourth Embodiment FIG. 11 is a configuration diagram showing a fourth embodiment of the present invention. In FIG. 1, FIG.
The same reference numerals are given to the portions corresponding to those in FIG. 4 for description. In the first embodiment, the magnets are arranged so that the polarities of the magnets are S, N, S or N, S, N. However, in the present embodiment, the magnet has one pole and is located on the side of the magnetic pole. A magnetic body is arranged as a magnetic flux guide. That is, as shown in FIG. 11, a magnet 5A having one magnetic pole 5a is provided in place of the magnet 5 described above, and a magnetic body 6A having a predetermined shape, for example, an L-shape, is arranged on a side portion of the magnet 5A. This magnetic body 6
A is arranged so that one end thereof contacts one pole of the magnetic pole 5a, for example, the S pole. Therefore, the magnetic substance 6A has a polarity of S. The magnet 5A and the magnetic body 6A constitute magnetic field generating means.
【0040】かくして、GMR素子10の感磁面10b
に対向して、磁石5Aの磁極5aの極性Nと磁性体6A
の極性Sとの実質的に2極が存在することになる。この
構成で、磁性体回転体2が回転した時のその凹凸部での
磁界は図12に示すようになる。図において、図12の
(a)に示すように、GMR素子10が磁性体回転体2
の凸部に対向する場合、磁石5Aの磁極5aのN極より
発生された磁界は、GMR素子10の感磁面10bを介
して磁性体回転体2の凸部に至り、これより垂直に再び
GMR素子10の感磁面10bを介して磁性体6AのS
極に至る分布となり、一方、図12の(b)に示すよう
に、GMR素子10が磁性体回転体2の凹部に対向する
場合、磁石5Aの磁極5aのN極より発生された磁界
は、その大部分がGMR素子10の感磁面10bを介し
て直ぐ磁性体6AのS極に至る分布となる。Thus, the magnetic sensitive surface 10b of the GMR element 10 is
The magnetic pole 6a of the magnet 5A and the magnetic substance 6A.
There will be substantially two poles with the polarity S of. With this structure, the magnetic field at the uneven portion when the magnetic body rotating body 2 rotates is as shown in FIG. In the figure, as shown in FIG. 12A, the GMR element 10 is the magnetic body rotating body 2.
, The magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A reaches the convex portion of the magnetic body rotating body 2 via the magnetically sensitive surface 10b of the GMR element 10, and is again perpendicular to the convex portion. S of the magnetic body 6A is passed through the magnetically sensitive surface 10b of the GMR element 10.
On the other hand, when the GMR element 10 faces the concave portion of the magnetic body rotating body 2 as shown in FIG. 12B, the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A becomes Most of the distribution reaches the S pole of the magnetic body 6A immediately via the magnetically sensitive surface 10b of the GMR element 10.
【0041】ここで、GMR素子10が磁性体回転体2
の凸部に対向する場合(図12の(a))、GMR素子
10の感磁面10bには全面に亙ってほぼ垂直な磁界が
印加されるので磁界強度が大きく、また、GMR素子1
0が磁性体回転体2の凹部に対向する場合(図12の
(b))、一点鎖線で示す磁石5Aの(磁極5aの)中
心から磁性体回転体2に対して垂直に下ろした線と磁界
とのなす角度θ2は、磁極5aのN極からの磁界が直ぐ
磁性体6Aの一端のS極に至るので大きく、結果として
磁界強度も大きくなる。従って、磁石5AによってGM
R素子10に印加されている磁界の磁性体回転体2の凹
凸部による変化量が大きく、このため、GMR素子10
の感磁面10bの磁界の変化量も大きく、つまり、その
磁気抵抗パターンの抵抗値の変化が大きくなる。Here, the GMR element 10 is the magnetic body rotating body 2.
12 (a) of FIG. 12, the magnetic field strength is large because a magnetic field almost perpendicular is applied to the entire magnetic sensitive surface 10b of the GMR element 10, and the GMR element 1
When 0 is opposed to the concave portion of the magnetic body rotating body 2 ((b) of FIG. 12), a line perpendicular to the magnetic body rotating body 2 is drawn from the center (of the magnetic pole 5a) of the magnet 5A indicated by the alternate long and short dash line. The angle θ 2 formed with the magnetic field is large because the magnetic field from the N pole of the magnetic pole 5a immediately reaches the S pole at one end of the magnetic body 6A, and as a result, the magnetic field strength also increases. Therefore, by the magnet 5A, GM
The amount of change in the magnetic field applied to the R element 10 due to the uneven portion of the magnetic body rotating body 2 is large.
The amount of change in the magnetic field of the magnetic sensitive surface 10b is also large, that is, the change in the resistance value of the magnetoresistive pattern is large.
【0042】このように、本実施の形態でも、磁石の極
性Nと磁性体の一端の極性Sで実質的に2極となるよう
に磁石と磁性体を配置することで、GMR素子が磁性体
回転体の凸部に対向する場合、GMR素子の感磁面には
ほぼ垂直な磁界が印加され、GMR素子が磁性体回転体
の凹部に対向する場合、GMR素子の感磁面に並行な磁
界が印加された状態となる。これにより、従来の1つの
磁極を有する磁石を配置する構成の場合より、GMR素
子の感磁面の印加磁界の変化量を大きく、磁性体回転体
の凹凸部に対応した磁界の変化を精度良く、効率良く検
出できるようになり、安定して精度良い信号を得ること
ができる。また、磁束ガイドとして磁性体を用いるの
で、コスト的に安価となる。なお、上述では、磁石の極
性をN極としたが、逆のS極でも同様の効果を得ること
ができる。As described above, also in the present embodiment, by arranging the magnet and the magnetic body so that the polarity N of the magnet and the polarity S at one end of the magnetic body are substantially two poles, the GMR element becomes a magnetic body. When facing the convex portion of the rotating body, a magnetic field almost perpendicular to the magnetic sensitive surface of the GMR element is applied, and when facing the concave portion of the magnetic rotating body, the magnetic field parallel to the magnetic sensitive surface of the GMR element. Is applied. As a result, the amount of change in the applied magnetic field on the magnetically sensitive surface of the GMR element is larger than in the case of the conventional arrangement in which a magnet having one magnetic pole is arranged, and the change in the magnetic field corresponding to the uneven portion of the magnetic body rotating body is accurately performed. Therefore, it becomes possible to detect efficiently, and a stable and accurate signal can be obtained. Further, since the magnetic body is used as the magnetic flux guide, the cost is low. Note that, in the above description, the polarity of the magnet is the N pole, but the same effect can be obtained with the opposite S pole.
【0043】実施の形態5.図13はこの発明の実施の
形態5を示す構成図である。なお、同図において、図1
および図4と対応する部分には同一符号を付して説明す
る。実施の形態1では、磁石の極性をS、N、Sまたは
N、S、Nの3極となるように配置したが、本実施の形
態では、磁石は1極でその磁極の側方部にこれと離隔し
て磁束ガイドとしての磁性体を平行に配置するものであ
る。即ち、図13に示すように、上述の磁石5の代わり
に1つの磁極5aを有する磁石5Aを設け、この磁石5
Aの側方部にこれと離隔して所定形状例えば棒状の磁性
体6Bを配置する。Fifth Embodiment 13 is a configuration diagram showing a fifth embodiment of the present invention. In FIG. 1, FIG.
The same reference numerals are given to the portions corresponding to those in FIG. 4 for description. In the first embodiment, the magnets are arranged so that the polarities of the magnets are S, N, S or N, S, N. However, in the present embodiment, the magnet has one pole and is located on the side of the magnetic pole. A magnetic body serving as a magnetic flux guide is arranged in parallel with this in a spaced relationship. That is, as shown in FIG. 13, instead of the magnet 5 described above, a magnet 5A having one magnetic pole 5a is provided.
A magnetic body 6B having a predetermined shape, for example, a rod shape, is arranged at a side portion of A and is separated from the side portion.
【0044】かくして、GMR素子10の感磁面10b
に対向して、磁石5Aの磁極5aの極性Nの1極と磁性
体6Bの一端とが存在することになる。磁石5Aと磁性
体6Bは実質的に磁界発生手段を構成する。この構成
で、磁性体回転体2が回転した時のその凹凸部での磁界
は図14に示すようになる。図において、図14の
(a)に示すように、GMR素子10が磁性体回転体2
の凸部に対向する場合、磁石5Aの磁極5aのN極より
発生された磁界は、GMR素子10の感磁面10bを介
して磁性体回転体2の凸部に至り、これより垂直に再び
GMR素子10の感磁面10bを介して磁性体6Bの一
端に至る分布となり、一方、図14の(b)に示すよう
に、GMR素子10が磁性体回転体2の凹部に対向する
場合、磁石5Aの磁極5aのN極より発生された磁界
は、その大部分がGMR素子10の感磁面10bを介し
て直ぐ磁性体6Bの一端に至る分布となる。Thus, the magnetic sensitive surface 10b of the GMR element 10
One pole having the polarity N of the magnetic pole 5a of the magnet 5A and one end of the magnetic body 6B are present facing each other. The magnet 5A and the magnetic body 6B substantially constitute magnetic field generating means. With this configuration, the magnetic field at the uneven portion when the magnetic body rotating body 2 rotates is as shown in FIG. In the figure, as shown in FIG. 14A, the GMR element 10 is the magnetic body rotating body 2.
, The magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A reaches the convex portion of the magnetic body rotating body 2 via the magnetically sensitive surface 10b of the GMR element 10, and is again perpendicular to the convex portion. When the distribution reaches the one end of the magnetic body 6B through the magnetically sensitive surface 10b of the GMR element 10, while the GMR element 10 faces the concave portion of the magnetic body rotating body 2 as shown in FIG. Most of the magnetic field generated from the N pole of the magnetic pole 5a of the magnet 5A has a distribution that reaches the one end of the magnetic body 6B immediately via the magnetically sensitive surface 10b of the GMR element 10.
【0045】ここで、GMR素子10が磁性体回転体2
の凸部に対向する場合(図14の(a))、GMR素子
10の感磁面10bには全面に亙ってほぼ垂直な磁界が
印加されるので磁界強度が大きく、また、GMR素子1
0が磁性体回転体2の凹部に対向する場合(図14の
(b))、一点鎖線で示す磁石5Aの(磁極5aの)中
心から磁性体回転体2に対して垂直に下ろした線と磁界
とのなす角度θ2は、磁極5aのN極からの磁界が直ぐ
磁性体6Bの一端に至るので大きく、結果として磁界強
度も大きくなる。従って、磁石5AによってGMR素子
10に印加されている磁界の磁性体回転体2の凹凸部に
よる変化量が大きく、このため、GMR素子10の感磁
面10bの磁界の変化量も大きく、つまり、その磁気抵
抗パターンの抵抗値の変化が大きくなる。Here, the GMR element 10 is the magnetic body rotor 2.
14 (a) in FIG. 14, the magnetic field strength is large because a substantially perpendicular magnetic field is applied over the entire magnetic sensitive surface 10b of the GMR element 10, and the GMR element 1
When 0 is opposed to the concave portion of the magnetic body rotating body 2 ((b) of FIG. 14), a line is drawn vertically from the center (of the magnetic pole 5a) of the magnet 5A shown by the alternate long and short dash line to the magnetic body rotating body 2. The angle θ 2 formed with the magnetic field is large because the magnetic field from the N pole of the magnetic pole 5a immediately reaches one end of the magnetic body 6B, and as a result, the magnetic field strength also increases. Therefore, the amount of change in the magnetic field applied to the GMR element 10 by the magnet 5A is large due to the uneven portion of the magnetic body rotating body 2, and therefore the amount of change in the magnetic field of the magnetic sensitive surface 10b of the GMR element 10 is also large, that is, The change in the resistance value of the magnetoresistive pattern becomes large.
【0046】このように、本実施の形態でも、磁石の極
性Nと磁性体の一端で実質的に2極となるように配置す
ることで、GMR素子が磁性体回転体の凸部に対向する
場合、GMR素子の感磁面にはほぼ垂直な磁界が印加さ
れ、GMR素子が磁性体回転体の凹部に対向する場合、
GMR素子の感磁面に並行な磁界が印加された状態とな
る。これにより、従来の1つの磁極を有する磁石を配置
する構成の場合より、GMR素子の感磁面の印加磁界の
変化量を大きく、磁性体回転体の凹凸部に対応した磁界
の変化を精度良く、効率良く検出できるようになり、安
定して精度良い信号を得ることができる。また、磁束ガ
イドとして磁性体を用いるので、コスト的に安価とな
る。なお、上述では、磁石の極性をN極としたが、逆の
S極でも同様の効果を得ることができる。As described above, also in the present embodiment, the GMR element is opposed to the convex portion of the magnetic body rotating body by arranging so that the polarity N of the magnet and the one end of the magnetic body have substantially two poles. In this case, when a substantially perpendicular magnetic field is applied to the magnetically sensitive surface of the GMR element and the GMR element faces the concave portion of the magnetic body rotating body,
A parallel magnetic field is applied to the magnetically sensitive surface of the GMR element. As a result, the amount of change in the applied magnetic field on the magnetically sensitive surface of the GMR element is larger than in the case of the conventional arrangement in which a magnet having one magnetic pole is arranged, and the change in the magnetic field corresponding to the uneven portion of the magnetic body rotating body is accurately performed. Therefore, it becomes possible to detect efficiently, and a stable and accurate signal can be obtained. Further, since the magnetic body is used as the magnetic flux guide, the cost is low. Note that, in the above description, the polarity of the magnet is the N pole, but the same effect can be obtained with the opposite S pole.
【0047】実施の形態6.図15〜図18は、本装置
を一例として内燃機関に適用した場合のこの発明の実施
の形態6を示すもので、図15はその全体を示す構成
図、図16は検出装置本体と磁性体回転体の配置関係を
示す斜視図、図17は検出装置本体を示す斜視図、図1
8はその内部構成図である。図において、検出装置本体
50が内燃機関60に近傍に設けられ、そのクランク軸
やカム軸等を利用した回転軸51にシグナルプレートと
しての少なくとも1つ以上の凹凸を具備する上述の磁性
体回転体2相当の磁性体回転体52がこれと同期して回
転するように設けられる。また、コントロールユニット
61が検出装置本体50の回路部に接続されると共に、
内燃機関60の吸気管62内に設けられたスロットル弁
63に接続される。Embodiment 6 FIG. 15 to 18 show Embodiment 6 of the present invention when the present device is applied to an internal combustion engine as an example. FIG. 15 is a configuration diagram showing the whole thereof, and FIG. 16 is a detection device main body and a magnetic body. 1 is a perspective view showing the positional relationship of the rotating bodies, FIG. 17 is a perspective view showing the main body of the detection device, and FIG.
Reference numeral 8 is an internal configuration diagram thereof. In the figure, the detection device main body 50 is provided in the vicinity of the internal combustion engine 60, and the rotating shaft 51 utilizing the crank shaft, cam shaft, etc. is provided with at least one or more irregularities as a signal plate. Two magnetic body rotating bodies 52 are provided so as to rotate in synchronization with this. Further, the control unit 61 is connected to the circuit section of the detection device main body 50, and
It is connected to a throttle valve 63 provided in an intake pipe 62 of the internal combustion engine 60.
【0048】検出装置本体50は、磁性体回転体52に
対して検出装置本体50内のGMR素子の感磁面が対向
するように、内燃機関60の近傍に配置される。検出装
置本体50は、図17に示すように、樹脂または非磁性
体からなるハウジング53および取付け部54を備え、
ハウジング53の底部より入出力用のリード線を用いた
電源端子、グランド端子、出力端子等の端子55が取り
出される。ハウジング53の内部には、図18に示すよ
うに、図3で説明したような回路が配置された基板56
が設けられ、この基板56の一部に例えばそれぞれ上述
のGMR素子10および例えば磁石5相当のGMR素子
57および磁石58が搭載される。The detector main body 50 is arranged near the internal combustion engine 60 so that the magnetic sensitive surface of the GMR element in the detector main body 50 faces the magnetic body rotating body 52. As shown in FIG. 17, the detection device main body 50 includes a housing 53 and a mounting portion 54 made of resin or a non-magnetic material,
From the bottom of the housing 53, terminals 55 such as power supply terminals, ground terminals, and output terminals using lead wires for input and output are taken out. Inside the housing 53, as shown in FIG. 18, a substrate 56 on which the circuit as described in FIG. 3 is arranged.
The GMR element 10 and the GMR element 57 and the magnet 58 corresponding to the magnet 5, for example, are mounted on a part of the substrate 56, respectively.
【0049】次に、動作について説明する。いま、内燃
機関60の起動により回転軸51の回転に同期して磁性
体回転体52が回転すると、その凹凸に対応して、検出
装置本体50内のGMR素子57の感磁面の磁界が変化
し、その抵抗値も同様に変化する。そして、GMR素子
57等で構成されるホイートストンブリッジ回路の中点
電圧の差が差動増幅回路により増幅され、その出力が比
較回路で基準値と比較されて“O”または“1”の信号
に変換され、この信号は更に波形整形回路で波形整形さ
れ、“O”または“1”の信号としてコントロールユニ
ット61に供給される。これにより、コントロールユニ
ット61は、内燃機関60の各気筒に対応したクランク
軸やカム軸の回転角度や回転数等を知ることができる。
そして、コントロールユニット61は、検出装置の出
力、即ち“O”または“1”の信号や、スロットル弁6
3からの開度情報等に基づいて制御信号を形成し、この
制御信号により図示しない点火プラグの点火タイミング
や燃料噴射弁の噴射タイミング等を制御する。Next, the operation will be described. Now, when the magnetic body rotating body 52 rotates in synchronization with the rotation of the rotating shaft 51 due to the startup of the internal combustion engine 60, the magnetic field of the magnetic sensitive surface of the GMR element 57 in the detection device body 50 changes corresponding to the unevenness. However, the resistance value also changes. Then, the difference in the midpoint voltage of the Wheatstone bridge circuit composed of the GMR element 57 and the like is amplified by the differential amplifier circuit, and the output thereof is compared with the reference value by the comparison circuit to become the signal of "O" or "1". The converted signal is further waveform-shaped by the waveform-shaping circuit and supplied to the control unit 61 as an "O" or "1" signal. As a result, the control unit 61 can know the rotation angle and the rotation speed of the crankshaft and the camshaft corresponding to each cylinder of the internal combustion engine 60.
Then, the control unit 61 controls the output of the detection device, that is, the signal of “O” or “1” and the throttle valve 6
A control signal is formed based on the opening degree information and the like from 3, and the control signal controls the ignition timing of an ignition plug (not shown), the injection timing of a fuel injection valve, and the like.
【0050】なお、上述の例では、検出装置本体50に
対する入出力用の端子55としてリード線を用いる場合
であるが、図19に示すように、ハウジング53に対し
て着脱可能なコネクタ59を用いてもよい。この場合、
端子55はコネクタ59に組み込まれ、このコネクタ5
9がハウジング53側に差し込まれると、端子55が基
板56の回路部と接続されることになる。これにより、
取り扱いが容易で、構造的にも簡単となり、また、装置
の組み込みも容易となる。In the above example, a lead wire is used as the input / output terminal 55 for the detection device main body 50, but as shown in FIG. May be. in this case,
The terminal 55 is incorporated in the connector 59, and the connector 5
When 9 is inserted into the housing 53 side, the terminal 55 is connected to the circuit portion of the substrate 56. This allows
It is easy to handle, structurally simple, and easy to assemble the device.
【0051】このように、本実施の形態では、その極性
がGMR素子の感磁面に対して複数極となるように配置
した磁石を搭載しているので、GMR素子の感磁面の印
加磁界の変化量を大きく、磁性体回転体の凹凸部に対応
した磁界の変化を精度良く、しかも効率良く検出でき、
以て、小型で安価な検出装置を用いて内燃機関のクラン
ク軸やカム軸の回転角度(回転数)を精度よく検出で
き、細かい制御が可能となり、また、内燃機関への搭載
性を向上でき、取り付けが容易で、スペース的にも有利
である。As described above, in the present embodiment, since the magnets arranged so that the polarities thereof have a plurality of poles with respect to the magnetic sensitive surface of the GMR element, the magnetic field applied to the magnetic sensitive surface of the GMR element is mounted. The amount of change in the magnetic field is large, and changes in the magnetic field corresponding to the irregularities of the magnetic body rotating body can be detected accurately and efficiently,
As a result, the rotation angle (rotation speed) of the crankshaft and camshaft of the internal combustion engine can be accurately detected using a small and inexpensive detection device, fine control is possible, and the mountability on the internal combustion engine can be improved. It is easy to install and is advantageous in terms of space.
【0052】実施の形態7.図20は、この発明の実施
の形態7を示すもので、図20の(a)は検出装置本体
と磁性体回転体の配置関係を示す斜視図、図20の
(b)はその側面図である。図において、図16と対応
する部分には同一符号を付し、その詳細説明を省略す
る。上述の各実施の形態では、検出装置本体を回転軸に
対して垂直方向に設ける場合であったが、本実施の形態
では、検出装置本体を回転軸に対して同軸方向に設ける
ものである。即ち、図20の(a)に示すように、回転
軸51に対して検出装置本体50を同軸方向に設け、図
20の(b)に示すように、磁性体回転体52の凹凸部
52aが検出装置本体50のGMR素子の感磁面に対向
するように配置する。Embodiment 7. 20 shows Embodiment 7 of the present invention. (A) of FIG. 20 is a perspective view showing the positional relationship between the detection device main body and the magnetic rotating body, and (b) of FIG. 20 is a side view thereof. is there. In the figure, parts corresponding to those in FIG. 16 are designated by the same reference numerals, and detailed description thereof will be omitted. In each of the above-described embodiments, the detection device body is provided in the direction perpendicular to the rotation axis, but in the present embodiment, the detection device body is provided in the direction coaxial with the rotation axis. That is, as shown in (a) of FIG. 20, the detection device body 50 is provided coaxially with the rotation shaft 51, and as shown in (b) of FIG. It is arranged so as to face the magnetically sensitive surface of the GMR element of the detection device body 50.
【0053】かくして、本実施の形態でも、上記実施の
形態6と同様の効果が得られると共に、更に、本実施の
形態では、検出装置本体を回転軸方向に配置できるの
で、実質的に回転軸のスペースを共用でき、半径方向に
装置の形状が大きくならず、小型化を更に向上できる。Thus, in the present embodiment, the same effect as in the sixth embodiment can be obtained, and further, in the present embodiment, the main body of the detection device can be arranged in the rotation axis direction, so that the rotation axis is substantially the same. The space can be shared, the shape of the device does not become large in the radial direction, and the miniaturization can be further improved.
【0054】実施の形態8.図21および図22は、こ
の発明の実施の形態8を示すもので、図21はその側断
面図、図22は検出装置本体の概略図である。図におい
て、図16および図18と対応する部分には同一符号を
付し、その詳細説明を省略する。上述の各実施の形態で
は、検出装置本体のGMR素子と磁性体回転体が所定の
間隙を持って離れた状態で配置される場合であったが、
本実施の形態では、検出装置本体のGMR素子と磁石の
間に磁性体回転体を所定の間隙を持って挟み込むように
配置するものである。Embodiment 8. 21 and 22 show Embodiment 8 of the present invention. FIG. 21 is a side sectional view thereof, and FIG. 22 is a schematic view of a detection device main body. In the figure, parts corresponding to those in FIGS. 16 and 18 are designated by the same reference numerals, and detailed description thereof will be omitted. In each of the above-described embodiments, the GMR element of the detection device main body and the magnetic rotating body are arranged in a state of being separated from each other with a predetermined gap.
In the present embodiment, the magnetic rotating body is arranged so as to be sandwiched between the GMR element of the detection device main body and the magnet with a predetermined gap.
【0055】検出装置本体50Aは、例えば樹脂または
非磁性体からなるハウジング70と、このハウジング7
0内の空洞部70aに設けられた上述のGMR素子10
相当のGMR素子57等を保護するためのカバー71
と、取付け部74とを備え、ハウジング70内の空洞部
70aには図3で説明したような回路が配置された基板
(図示せず)が設けられ、この基板の一部にGMR素子
57が搭載される。GMR素子57にはターミナル72
が電気的に接続され、このターミナル72が検出装置本
体50Aの内部を通って底部まで延在し、これにに入出
力用のリード線を用いた電源端子、グランド端子、出力
端子等の端子73が接続されて外部に取り出される。ま
た、ハウジング70の側面の空間部70bの下側に空間
部70b内のGMR素子57の感磁面と対向して磁石5
8が設けられ、これらGMR素子57と磁石58の間
を、回転軸51と同期して回転する磁性体回転体52の
少なくともその凹凸部が通るように、磁性体回転体52
が配置される。The detection device main body 50A includes a housing 70 made of, for example, a resin or a non-magnetic material, and the housing 7.
The GMR element 10 described above provided in the cavity 70a
Cover 71 for protecting a considerable GMR element 57 and the like
And a mounting portion 74, and the cavity 70a in the housing 70 is provided with a substrate (not shown) on which the circuit as described in FIG. 3 is arranged, and the GMR element 57 is provided in a part of this substrate. It will be installed. The GMR element 57 has a terminal 72.
Are electrically connected to each other, and the terminal 72 extends to the bottom through the inside of the detection device main body 50A, and terminals 73 such as a power supply terminal, a ground terminal, an output terminal, etc. using lead wires for input and output thereto. Is connected and taken out. The magnet 5 is provided below the space 70b on the side surface of the housing 70 so as to face the magnetically sensitive surface of the GMR element 57 in the space 70b.
8 is provided, and the magnetic body rotating body 52 is provided such that at least the uneven portion of the magnetic body rotating body 52 that rotates in synchronization with the rotating shaft 51 passes between the GMR element 57 and the magnet 58.
Is arranged.
【0056】このような構成とすることにより、磁石5
8、磁性体回転体52およびGMR素子57を通る磁路
が実質的に形成され、GMR素子57と磁石58の間
に、磁性体回転体52の凹部が位置する状態では、磁石
58からの磁界がGMR素子57の感磁面にそのまま与
えられ、一方、磁性体回転体52の凸部が位置する状態
では、磁石58からの磁界が磁性体回転体52の方に流
れて実質的にGMR素子57の感磁面に与えられない。
つまり、このことは、実質的に磁性体回転体52の少な
くとも一部が磁石で構成されているのと同様の状態とな
り、従って、この場合、検出装置に電源が供給された瞬
間から磁性体回転体52の凹凸に対応する正確な信号を
得るいわゆるパワーオン機能が得られる。With such a structure, the magnet 5
8, the magnetic path passing through the magnetic body rotating body 52 and the GMR element 57 is substantially formed, and the magnetic field from the magnet 58 is generated when the concave portion of the magnetic body rotating body 52 is located between the GMR element 57 and the magnet 58. Is applied to the magnetically sensitive surface of the GMR element 57 as it is, while the magnetic field from the magnet 58 flows toward the magnetic body rotating body 52 in a state where the convex portion of the magnetic body rotating body 52 is positioned, and the GMR element is substantially. It cannot be applied to the magnetic sensitive surface of 57.
In other words, this is substantially the same as the state in which at least a part of the magnetic body rotating body 52 is composed of a magnet, and in this case, therefore, the magnetic body rotating body is rotated from the moment the power is supplied to the detection device. A so-called power-on function for obtaining an accurate signal corresponding to the unevenness of the body 52 can be obtained.
【0057】なお、上述の例では、ハウジング70の側
面の空間部70bの下側に空間部70b内のGMR素子
57の感磁面と対向して磁石58を設けた場合である
が、図23に示すように、空間部70bの下側と磁石5
8の間にコア75を設け、磁気回路を構成するようにし
てもよい。これにより、磁石58−磁性体回転体52−
GMR素子57−磁性体回転体52−コア75−磁石5
8の閉磁路が実質的に形成され、更に確実な磁気回路が
確立され、検出性が向上する。In the above example, the magnet 58 is provided below the space 70b on the side surface of the housing 70 so as to face the magnetically sensitive surface of the GMR element 57 in the space 70b. As shown in FIG.
A core 75 may be provided between the two to form a magnetic circuit. As a result, the magnet 58-the magnetic body rotating body 52-
GMR element 57-magnetic body rotating body 52-core 75-magnet 5
The closed magnetic circuit of 8 is substantially formed, a more reliable magnetic circuit is established, and the detectability is improved.
【0058】かくして、本実施の形態でも、上記実施の
形態6と同様の効果が得られると共に、更に、本実施の
形態では、GMR素子と磁石の間の磁性体回転体の位置
決めを考慮する必要があるも、パワーオン機能が得られ
る。Thus, in the present embodiment as well, the same effect as that of the sixth embodiment can be obtained, and further, in the present embodiment, it is necessary to consider the positioning of the magnetic rotating body between the GMR element and the magnet. However, the power-on function can be obtained.
【0059】実施の形態9.なお、上述した各実施の形
態では、磁界変化付与手段としての磁性体移動体が、回
転軸に同期して回転する磁性体回転体の場合について説
明したが、直線変位する移動体についても同様に適用で
き、同様の効果を奏する。この場合、例えば内燃機関に
おけるEGRバルブの弁開度の検出等への適用が考えら
れる。また、上述した実施の形態6〜8では、磁界発生
手段として実施の形態1における形態のものを使用した
場合について説明したが、実施の形態2〜5における形
態のものを使用してもよく同様の効果を奏する。また、
上述した各実施の形態では、磁気検出素子としてGMR
素子の場合について説明したが、磁気検出が可能な素子
であればその他の素子例えばMR素子を用いてもい。Embodiment 9 In each of the above-described embodiments, the magnetic body moving body as the magnetic field change imparting means is described as a magnetic body rotating body that rotates in synchronization with the rotation axis, but the same applies to a linearly displaced moving body. It can be applied and has the same effect. In this case, for example, application to detection of the valve opening degree of the EGR valve in the internal combustion engine or the like can be considered. Further, in the above-described Embodiments 6 to 8, the case where the magnetic field generating means in the form of the first embodiment is used has been described, but the form in the second to fifth embodiments may be used. Produce the effect of. Also,
In each of the above-described embodiments, the GMR is used as the magnetic detection element.
Although the case of the element has been described, any other element such as an MR element may be used as long as it is an element capable of magnetic detection.
【0060】[0060]
【発明の効果】以上のように、請求項1記載の発明によ
れば、複数の磁極を有し、磁界を発生する磁界発生手段
と、磁界発生手段と所定の間隙を持って配置され、この
磁界発生手段によって発生された磁界を変化させる磁界
変化付与手段と、この磁界変化付与手段で変化された磁
界に応じて抵抗値が変化する磁気検出素子とを備えたの
で、磁気検出素子の感磁面の印加磁界の変化量を大き
く、効率良く検出でき、安定して精度良い信号を得るこ
とが可能となり、検出精度を向上できるという効果があ
る。As described above, according to the first aspect of the present invention, the magnetic field generating means having a plurality of magnetic poles for generating a magnetic field and the magnetic field generating means are arranged with a predetermined gap therebetween. Since the magnetic field change applying means for changing the magnetic field generated by the magnetic field generating means and the magnetic detecting element whose resistance value changes according to the magnetic field changed by the magnetic field change applying means are provided, There is an effect that the change amount of the applied magnetic field on the surface is large, the detection can be performed efficiently, a stable and accurate signal can be obtained, and the detection accuracy can be improved.
【0061】請求項2記載の発明に係る検出装置は、請
求項1の発明において、磁界発生手段を磁石と該磁石と
逆極性の磁束ガイドとで構成したので、磁気検出素子に
与えられる磁界強度が増大し、精度の高い検出が可能に
なるという効果がある。According to a second aspect of the present invention, in the first aspect of the invention, the magnetic field generating means is composed of a magnet and a magnetic flux guide having a polarity opposite to that of the magnet. Is increased, and highly accurate detection is possible.
【0062】請求項3記載の発明に係る検出装置は、請
求項2の発明において、磁束ガイドとして磁石の一部を
用いたので、磁気検出素子に与えられる磁界強度を確実
に増大することができ、より精度の高い検出が可能にな
るという効果がある。。In the detection device according to the third aspect of the present invention, since part of the magnet is used as the magnetic flux guide in the second aspect of the invention, the magnetic field strength applied to the magnetic detection element can be reliably increased. There is an effect that more accurate detection becomes possible. .
【0063】請求項4記載の発明に係る検出装置は、請
求項2の発明において、磁束ガイドとして磁性体を用い
たので、装置の低廉化を図ることができるという効果が
ある。According to the invention of claim 4, in the invention of claim 2, since the magnetic body is used as the magnetic flux guide, there is an effect that the cost of the device can be reduced.
【0064】請求項5記載の発明に係る検出装置は、請
求項1の発明において、磁界変化付与手段を少なくとも
1つの凹凸を有する磁性体移動体で構成したので、小さ
な凹凸の検出まで対応可能となり、検出精度を更に向上
できるという効果がある。In the detection device according to the invention of claim 5, in the invention of claim 1, the magnetic field change imparting means is composed of a magnetic body moving body having at least one concavo-convex, so that even small irregularities can be detected. There is an effect that the detection accuracy can be further improved.
【0065】請求項6記載の発明に係る検出装置は、請
求項1〜5のいずれかの発明において、磁気検出素子を
少なくとも1辺に用いたブリッジ回路と、このブリッジ
回路の出力を信号処理する信号処理手段とを備えたの
で、磁界変化を安定して検出可能となり、磁気検出素子
の抵抗変化量も安定して大きくなるため、信号処理手段
の出力も大きくなり、この信号処理手段における”0”
または”1”の信号に変換する際の判定レベルに対する
余裕度が増すことになり、外来ノイズに対しても強くな
り、安定した信号を得ることができるという効果があ
る。A detection apparatus according to a sixth aspect of the present invention is the detection apparatus according to any one of the first to fifth aspects, wherein a bridge circuit using a magnetic detection element on at least one side and signal processing of the output of the bridge circuit are provided. Since the signal processing means is provided, the change in the magnetic field can be detected in a stable manner, and the resistance change amount of the magnetic detection element also increases in a stable manner, so that the output of the signal processing means also increases and "0" in this signal processing means. ”
Alternatively, the margin with respect to the determination level at the time of conversion into the signal of "1" is increased, the resistance against external noise is increased, and a stable signal can be obtained.
【0066】請求項7記載の発明に係る検出装置は、請
求項1〜6のいずれかの発明において、磁性体移動体
は、回転軸に同期して回転する磁性体回転体であるの
で、磁性体回転体の回転による磁界の変化を確実に検出
できるという効果がある。According to a seventh aspect of the present invention, in the detecting device according to any one of the first to sixth aspects, the magnetic body moving body is a magnetic body rotating body that rotates in synchronization with the rotation axis. There is an effect that it is possible to reliably detect a change in the magnetic field due to the rotation of the rotating body.
【0067】請求項8記載の発明に係る検出装置は、請
求項7の発明において、少なくとも磁気検出素子を含む
検出装置本体を備え、磁性体回転体を内燃機関のクラン
ク軸またはカム軸に装着し、磁性体回転体が磁気検出素
子に対向するように検出装置本体を内燃機関の近傍に配
置したので、内燃機関のクランク軸やカム軸の回転角度
(回転数)を精度よく検出でき、細かい制御が可能とな
り、また、内燃機関への搭載性を向上でき、取り付けが
容易で、スペース的にも有利で、装置のコンパクト化が
可能になるという効果がある。According to an eighth aspect of the present invention, there is provided a detection device according to the seventh aspect, which comprises a detection device main body including at least a magnetic detection element, and the magnetic rotating body is mounted on a crankshaft or a camshaft of an internal combustion engine. Since the main body of the detection device is arranged in the vicinity of the internal combustion engine so that the magnetic rotating body faces the magnetic detecting element, it is possible to accurately detect the rotation angle (rotation speed) of the crankshaft and camshaft of the internal combustion engine, and to perform fine control. Further, there is an effect that it is possible to improve the mountability to the internal combustion engine, the mounting is easy, the space is advantageous, and the device can be made compact.
【0068】請求項9記載の発明に係る検出装置は、請
求項8の発明において、磁性体回転体に対して検出装置
本体を回転軸方向に配置したので、実質的に回転軸のス
ペースを共用でき、半径方向に装置の形状が大きくなら
ず、小型化を更に促進できるという効果がある。According to a ninth aspect of the present invention, in the eighth aspect of the invention, since the detection device main body is arranged in the rotation axis direction with respect to the magnetic body rotating body, the space of the rotation axis is substantially shared. Therefore, there is an effect that the size of the device does not become large in the radial direction and the size reduction can be further promoted.
【0069】請求項10記載の発明に係る検出装置は、
請求項9の発明において、検出装置本体は、少なくとも
磁気検出素子を内蔵するハウジングを備え、磁性体回転
体を、ハウジングの側面に形成された空間部にこの磁性
体回転体の少なくとも周辺部が磁気検出素子対向して位
置するように配置したので、磁性体回転体と磁気検出素
子を通る磁路が実質的に形成され、磁性体回転体の少な
くとも一部が磁石で構成されているのと同様の状態とな
り、以て、検出装置に電源が供給された瞬間から磁性体
回転体の回転角度に対応した出力を正確に得ることが可
能となり、パワーオン機能が得られるという効果があ
る。The detector according to the invention of claim 10 is
In the invention of claim 9, the main body of the detection device includes a housing containing at least a magnetic detection element, and the magnetic body rotating body is provided with a space formed on a side surface of the housing in which at least a peripheral portion of the magnetic body rotating body is magnetic. Since it is arranged so as to face the detection element, a magnetic path passing through the magnetic body rotating body and the magnetic detection element is substantially formed, and at least a part of the magnetic body rotating body is composed of a magnet. In this state, the output corresponding to the rotation angle of the magnetic rotating body can be accurately obtained from the moment the power is supplied to the detection device, and the power-on function can be obtained.
【図1】 この発明に係る検出装置の実施の形態1を示
す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of a detection device according to the present invention.
【図2】 この発明に係る検出装置の実施の形態1の回
路構成を示すブロック図である。FIG. 2 is a block diagram showing a circuit configuration of the detection device according to the first embodiment of the present invention.
【図3】 図2の具体的回路構成の一例を示す回路図で
ある。FIG. 3 is a circuit diagram showing an example of a specific circuit configuration of FIG. 2;
【図4】 実施の形態1におけるGMR素子および磁石
を拡大して示す斜視図である。FIG. 4 is an enlarged perspective view showing a GMR element and a magnet according to the first embodiment.
【図5】 実施の形態1における磁性体回転体の凹凸と
GMR素子間の磁界の分布を示す図である。FIG. 5 is a diagram showing the unevenness of the magnetic body rotating body and the distribution of the magnetic field between the GMR elements in the first embodiment.
【図6】 図3の動作説明に供するための波形図であ
る。FIG. 6 is a waveform diagram for explaining the operation of FIG.
【図7】 この発明に係る検出装置の実施の形態2にお
けるGMR素子および磁石を拡大して示す斜視図であ
る。FIG. 7 is an enlarged perspective view showing a GMR element and a magnet in a second embodiment of the detection device according to the present invention.
【図8】 実施の形態2における磁性体回転体の凹凸と
GMR素子間の磁界の分布を示す図である。FIG. 8 is a diagram showing unevenness of a magnetic body rotating body and a magnetic field distribution between GMR elements according to the second embodiment.
【図9】 この発明に係る検出装置の実施の形態3にお
けるGMR素子および磁石を拡大して示す斜視図であ
る。FIG. 9 is an enlarged perspective view showing a GMR element and a magnet in a third embodiment of a detection device according to the present invention.
【図10】 実施の形態3における磁性体回転体の凹凸
とGMR素子間の磁界の分布を示す図である。FIG. 10 is a diagram showing unevenness of a magnetic rotating body and a magnetic field distribution between GMR elements according to the third embodiment.
【図11】 この発明に係る検出装置の実施の形態4に
おけるGMR素子および磁石を拡大して示す斜視図であ
る。FIG. 11 is an enlarged perspective view showing a GMR element and a magnet in a fourth embodiment of the detection apparatus according to the present invention.
【図12】 実施の形態4における磁性体回転体の凹凸
とGMR素子間の磁界の分布を示す図である。FIG. 12 is a diagram showing the magnetic field distribution between the concave and convex portions of the magnetic rotating body and the GMR element according to the fourth embodiment.
【図13】 この発明に係る検出装置の実施の形態5に
おけるGMR素子および磁石を拡大して示す斜視図であ
る。FIG. 13 is an enlarged perspective view showing a GMR element and a magnet in a fifth embodiment of the detection apparatus according to the present invention.
【図14】 実施の形態5における磁性体回転体の凹凸
とGMR素子間の磁界の分布を示す図である。FIG. 14 is a diagram showing the unevenness of a magnetic rotating body and the distribution of a magnetic field between GMR elements in the fifth embodiment.
【図15】 この発明に係る検出装置の実施の形態6を
示す構成図である。FIG. 15 is a configuration diagram showing a sixth embodiment of a detection device according to the present invention.
【図16】 この発明に係る検出装置の実施の形態6に
おける検出装置本体と磁性体回転体の配置関係を示す斜
視図である。FIG. 16 is a perspective view showing an arrangement relationship between a detection device main body and a magnetic rotating body in a sixth embodiment of the detection device according to the present invention.
【図17】 この発明に係る検出装置の実施の形態6に
おける検出装置本体を示す斜視図である。FIG. 17 is a perspective view showing a detection device body according to a sixth embodiment of the detection device of the present invention.
【図18】 この発明に係る検出装置の実施の形態6に
おける検出装置本体の内部構成図である。FIG. 18 is an internal configuration diagram of a detection device body in the sixth embodiment of the detection device according to the present invention.
【図19】 この発明に係る検出装置の実施の形態6に
おける検出装置本体の他の例を示す側断面図である。FIG. 19 is a side sectional view showing another example of the detection device body in the sixth embodiment of the detection device according to the present invention.
【図20】 この発明に係る検出装置の実施の形態7を
示す構成図である。FIG. 20 is a configuration diagram showing a seventh embodiment of a detection device according to the present invention.
【図21】 この発明に係る検出装置の実施の形態8を
示す側断面図である。FIG. 21 is a side sectional view showing an eighth embodiment of the detection device according to the present invention.
【図22】 この発明に係る検出装置の実施の形態8に
おける検出装置本体を示す斜視図である。FIG. 22 is a perspective view showing a detection device main body according to the eighth embodiment of the detection device of the present invention.
【図23】 この発明に係る検出装置の実施の形態8に
おける他の例をを示す側断面図である。FIG. 23 is a side sectional view showing another example of the detection device according to the eighth embodiment of the present invention.
【図24】 従来の検出装置を示す構成図である。FIG. 24 is a configuration diagram showing a conventional detection device.
【図25】 従来の検出装置におけるMR素子および磁
石を拡大して示す斜視図である。FIG. 25 is an enlarged perspective view showing an MR element and a magnet in a conventional detection device.
【図26】 従来の検出装置における磁性体回転体の凹
凸とMR素子間の磁界の分布を示す図である。FIG. 26 is a diagram showing the magnetic field distribution between the MR element and the concavities and convexities of the magnetic rotating body in the conventional detection device.
【図27】 従来の検出装置の回路構成を概略的に示す
である。FIG. 27 is a schematic diagram showing a circuit configuration of a conventional detection device.
1,51 回転軸、2,52 磁性体回転体、5,5
A,5B 磁石、5a〜5c 磁極、6,6A,6B
磁性体、10,10A〜10D GMR素子、11 ホ
イートストンブリッジ回路、12 差動増幅回路、13
比較回路、14波形整形回路、50,50A 検出装
置本体、53 ハウジング。1,51 rotating shaft, 2,52 magnetic rotating body, 5,5
A, 5B magnets, 5a-5c magnetic poles, 6, 6A, 6B
Magnetic material, 10, 10A to 10D GMR element, 11 Wheatstone bridge circuit, 12 Differential amplifier circuit, 13
Comparison circuit, 14 waveform shaping circuit, 50, 50A detection device main body, 53 housing.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 渉 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 大橋 豊 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Wataru Fukui 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Corporation (72) Inventor Yutaka Ohashi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd.
Claims (10)
発生手段と、 上記磁界発生手段と所定の間隙を持って配置され、該磁
界発生手段によって発生された磁界を変化させる磁界変
化付与手段と、 該磁界変化付与手段で変化された磁界に応じて抵抗値が
変化する磁気検出素子とを備えたことを特徴とする検出
装置。1. A magnetic field generating means having a plurality of magnetic poles for generating a magnetic field, and a magnetic field change imparting means arranged to have a predetermined gap from the magnetic field generating means and changing the magnetic field generated by the magnetic field generating means. A detection device comprising: a magnetic field detection element, and a magnetic detection element whose resistance value changes according to the magnetic field changed by the magnetic field change applying means.
性の磁束ガイドとで構成したことを特徴とする請求項1
記載の検出装置。2. The magnetic field generating means comprises a magnet and a magnetic flux guide having a polarity opposite to that of the magnet.
The detection device described.
用いたことを特徴とする請求項2記載の検出装置。3. The detection device according to claim 2, wherein a part of the magnet is used as the magnetic flux guide.
とを特徴とする請求項2記載の検出装置。4. The detection device according to claim 2, wherein a magnetic material is used as the magnetic flux guide.
の凹凸を有する磁性体移動体で構成したことを特徴とす
る請求項1記載の検出装置。5. The detection device according to claim 1, wherein the magnetic field change imparting means is constituted by a magnetic body moving body having at least one unevenness.
たブリッジ回路と、該ブリッジ回路の出力を信号処理す
る信号処理手段とを備えたことを特徴とする請求項1〜
5のいずれかに記載の検出装置。6. A bridge circuit using the magnetic detection element on at least one side, and signal processing means for signal-processing the output of the bridge circuit.
5. The detection device according to any one of 5.
回転する磁性体回転体であることを特徴とする請求項1
〜6のいずれかに記載の検出装置。7. The magnetic body moving body is a magnetic body rotating body that rotates in synchronization with a rotation axis.
The detection device according to any one of to 6.
装置本体を備え、上記磁性体回転体を内燃機関のクラン
ク軸またはカム軸に装着し、上記磁性体回転体が上記磁
気検出素子に対向するように上記検出装置本体を上記内
燃機関の近傍に配置したことを特徴とする請求項7記載
の検出装置。8. A detection device main body including at least the magnetic detection element, wherein the magnetic body rotating body is mounted on a crankshaft or a cam shaft of an internal combustion engine so that the magnetic body rotating body faces the magnetic detection element. The detection device according to claim 7, wherein the detection device main body is disposed in the vicinity of the internal combustion engine.
本体を回転軸方向に配置したことを特徴とする請求項8
記載の検出装置。9. The detection device main body is arranged in the rotation axis direction with respect to the magnetic body rotating body.
The detection device described.
磁気検出素子を内蔵するハウジングを備え、上記磁性体
回転体を、上記ハウジングの側面に形成された空間部に
該磁性体回転体の少なくとも周辺部が上記磁気検出素子
対向して位置するように配置したことを特徴とする請求
項9記載の検出装置。10. The detection device main body includes a housing containing at least the magnetic detection element, and the magnetic body rotating body is provided in a space formed on a side surface of the housing, at least a peripheral portion of the magnetic body rotating body. 10. The detection device according to claim 9, wherein the magnetic detection element is arranged so as to face the magnetic detection element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8133660A JPH09318386A (en) | 1996-05-28 | 1996-05-28 | Detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8133660A JPH09318386A (en) | 1996-05-28 | 1996-05-28 | Detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09318386A true JPH09318386A (en) | 1997-12-12 |
Family
ID=15109964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8133660A Pending JPH09318386A (en) | 1996-05-28 | 1996-05-28 | Detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09318386A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019174436A (en) * | 2018-03-27 | 2019-10-10 | Tdk株式会社 | Magnetic sensor |
-
1996
- 1996-05-28 JP JP8133660A patent/JPH09318386A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019174436A (en) * | 2018-03-27 | 2019-10-10 | Tdk株式会社 | Magnetic sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5801529A (en) | Magnetoresistance sensing device without hystersis influence | |
US5982171A (en) | Sensing device for detecting the angular displacement and relative position of a member of magnetic material | |
US6476600B2 (en) | Angular position measuring device | |
US7126327B1 (en) | Asymmetrical AMR wheatstone bridge layout for position sensor | |
JPH11304415A (en) | Magnetism detecting device | |
JP3028377B2 (en) | Magnetoresistive proximity sensor | |
JPH10232242A (en) | Detector | |
JPH10221114A (en) | Detecting device | |
JPH11304414A (en) | Magnetism detecting device | |
JPH09329462A (en) | Detector | |
JPH09318387A (en) | Detector | |
JP4367966B2 (en) | Magnetic displacement detector | |
JP3086563B2 (en) | Rotation angle sensor | |
JP3448209B2 (en) | Magnetic detector | |
JP2002228733A (en) | Magnetism detecting device | |
JPH10239338A (en) | Detector | |
JP4947250B2 (en) | Angle detector | |
JPH09318386A (en) | Detector | |
JPH09311135A (en) | Detector | |
JP2022176783A (en) | Magnetic sensor, and magnetic detection system | |
KR100323906B1 (en) | Magnetic Detection Device_ | |
JPH11304416A (en) | Magnetic detecting device | |
JP4773066B2 (en) | Gear sensor | |
JPH09287911A (en) | Apparatus for detecting rotational shift | |
JP2000028395A (en) | Magnetism detecting apparatus |