JPH09298300A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH09298300A JPH09298300A JP27048896A JP27048896A JPH09298300A JP H09298300 A JPH09298300 A JP H09298300A JP 27048896 A JP27048896 A JP 27048896A JP 27048896 A JP27048896 A JP 27048896A JP H09298300 A JPH09298300 A JP H09298300A
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor
- layer
- forming
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 150000001875 compounds Chemical class 0.000 claims abstract description 25
- 239000010410 layer Substances 0.000 claims description 75
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000005468 ion implantation Methods 0.000 claims description 16
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 11
- 239000011229 interlayer Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 19
- 238000000137 annealing Methods 0.000 abstract description 5
- 125000004430 oxygen atom Chemical group O* 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 2
- 229910008479 TiSi2 Inorganic materials 0.000 abstract 2
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 abstract 2
- 238000005755 formation reaction Methods 0.000 abstract 2
- 229910021332 silicide Inorganic materials 0.000 abstract 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract 2
- 230000001629 suppression Effects 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 27
- 229910008484 TiSi Inorganic materials 0.000 description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 description 13
- 239000012535 impurity Substances 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- SWXQKHHHCFXQJF-UHFFFAOYSA-N azane;hydrogen peroxide Chemical compound [NH4+].[O-]O SWXQKHHHCFXQJF-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- CABDFQZZWFMZOD-UHFFFAOYSA-N hydrogen peroxide;hydrochloride Chemical compound Cl.OO CABDFQZZWFMZOD-UHFFFAOYSA-N 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願の発明は、半導体と金属
との化合物層を半導体領域の表面に自己整合的に形成す
る半導体装置の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which a compound layer of a semiconductor and a metal is formed on the surface of a semiconductor region in a self-aligned manner.
【0002】[0002]
【従来の技術】MOSトランジスタ等の半導体装置を微
細化、高速化するためには、半導体基板に形成されてい
る拡散層や半導体で形成されている配線の低抵抗化が必
要であり、そのために、半導体と金属との化合物層を半
導体領域の表面に自己整合的に形成する構造が考えられ
ている。2. Description of the Related Art In order to miniaturize and speed up a semiconductor device such as a MOS transistor, it is necessary to reduce the resistance of a diffusion layer formed on a semiconductor substrate and wiring formed of a semiconductor. A structure in which a compound layer of a semiconductor and a metal is formed on the surface of a semiconductor region in a self-aligned manner is considered.
【0003】図8、9は、この様な化合物層を有し且つ
LDD構造であるMOSトランジスタの製造方法の一従
来例を示している。この一従来例では、図8(a)に示
す様に、Si基板11の表面にSiO2 膜12を選択的
に形成して素子分離領域を決定し、SiO2 膜12に囲
まれている素子活性領域の表面にゲート酸化膜としての
SiO2 膜13を形成する。8 and 9 show a conventional example of a method for manufacturing a MOS transistor having such a compound layer and having an LDD structure. In this conventional example, as shown in FIG. 8A, a SiO 2 film 12 is selectively formed on the surface of a Si substrate 11 to determine an element isolation region, and an element surrounded by the SiO 2 film 12 is defined. A SiO 2 film 13 as a gate oxide film is formed on the surface of the active region.
【0004】その後、多結晶SiからなるSi膜14で
ゲート電極を形成し、低濃度の拡散層15を形成し、更
に、SiO2 膜16等からなる側壁をSi膜14に形成
する。そして、犠牲酸化膜としてのSiO2 膜17を全
面に形成し、このSiO2 膜17を介した不純物のイオ
ン注入で、高濃度の拡散層21を形成する。After that, a gate electrode is formed of the Si film 14 made of polycrystalline Si, a low-concentration diffusion layer 15 is formed, and a side wall made of a SiO 2 film 16 and the like is formed on the Si film 14. Then, a SiO 2 film 17 as a sacrificial oxide film is formed on the entire surface, and a high-concentration diffusion layer 21 is formed by ion implantation of impurities through the SiO 2 film 17.
【0005】次に、図8(b)に示す様に、イオン注入
を行って、Si膜14及び拡散層21の表面に非晶質層
14a、21aを形成する。そして、SiO2 膜17を
除去した後、Ti膜22を全面に形成し、非晶質層14
a、21aとTi膜22とを窒素雰囲気中の熱処理で反
応させて、図8(c)に示す様に、Si膜14及び拡散
層21の表面にC49相のTiSi2 膜23を形成す
る。Next, as shown in FIG. 8B, ion implantation is performed to form amorphous layers 14a and 21a on the surfaces of the Si film 14 and the diffusion layer 21. Then, after removing the SiO 2 film 17, a Ti film 22 is formed on the entire surface, and the amorphous layer 14 is formed.
By reacting a and 21a with the Ti film 22 by heat treatment in a nitrogen atmosphere, a C49 phase TiSi 2 film 23 is formed on the surfaces of the Si film 14 and the diffusion layer 21, as shown in FIG. 8C.
【0006】次に、図9(a)に示す様に、図8(c)
の工程における熱処理よりも高温の熱処理を行った後、
図9(b)に示す様に、未反応のまま残っているTi膜
22や、SiO2 膜12、16上に形成されているTi
N膜を除去する。そして、図9(c)に示す様に、図9
(a)の工程における熱処理よりも高温の熱処理を行っ
て、C49相のTiSi2 膜23から低抵抗のC54相
のTiSi2 膜24へ相転移させる。Next, as shown in FIG. 9A, as shown in FIG.
After performing heat treatment at a higher temperature than the heat treatment in the process of
As shown in FIG. 9B, the Ti film 22 left unreacted and the Ti film formed on the SiO 2 films 12 and 16
The N film is removed. Then, as shown in FIG.
A heat treatment at a higher temperature than the heat treatment in the step (a) is performed to cause a phase transition from the C49 phase TiSi 2 film 23 to the low resistance C54 phase TiSi 2 film 24.
【0007】ところで、Ti膜22からTiSi2 膜2
3を形成するための第1段階の熱処理と、TiSi2 膜
23からTiSi2 膜24へ相転移させるための第2段
階の熱処理との、2段階の熱処理のみでTiSi2 膜2
4を形成すると、図6のグラフ中の曲線で示す様に、
TiSi2 膜24を含めた拡散相21のシート抵抗が細
線領域では所望の5Ω/□程度まで低下しないという所
謂細線効果が生じる。By the way, from the Ti film 22 to the TiSi 2 film 2
3 for forming the TiSi 2 film 2 by only a two-step heat treatment, that is, a first-step heat treatment for forming No. 3 and a second-step heat treatment for causing a phase transition from the TiSi 2 film 23 to the TiSi 2 film 24.
4 is formed, as shown by the curve in the graph of FIG.
A so-called thin line effect occurs in which the sheet resistance of the diffusion phase 21 including the TiSi 2 film 24 does not drop to a desired level of about 5Ω / □ in the thin line region.
【0008】このため、上述の一実施例の様に、Si膜
14及び拡散層21の表面に非晶質層14a、21aを
形成することによってシリサイド化反応を促進し、且つ
上述の2段階の熱処理の中間に図9(a)に示した熱処
理を追加することが考えられている(例えば、特開平5
−291180号公報)。この様な一従来例では、図6
のグラフ中の曲線で示す様に、細線効果が殆ど生じな
い。Therefore, as in the above-described embodiment, by forming the amorphous layers 14a and 21a on the surfaces of the Si film 14 and the diffusion layer 21, the silicidation reaction is promoted, and the two steps described above are performed. It has been considered to add the heat treatment shown in FIG. 9A to the middle of the heat treatment (see, for example, Japanese Patent Laid-Open No. Hei 5
No. 291180). In such a conventional example, as shown in FIG.
As shown by the curve in the graph, the thin line effect hardly occurs.
【0009】[0009]
【発明が解決しようとする課題】ところが、2段階の熱
処理の中間に追加した熱処理の温度は、800℃であ
り、第2段階の熱処理の温度である800℃と同程度で
あって、第1段階の熱処理の温度である650度よりも
相当に高い。この様な高温の熱処理を行うと、Si膜1
4及び拡散層21から、SiO2 膜12、16上のTi
膜22中へSi原子が拡散する。However, the temperature of the heat treatment added in the middle of the two-stage heat treatment is 800 ° C., which is about the same as the temperature of the second-stage heat treatment of 800 ° C. It is considerably higher than the temperature of 650 degrees for the heat treatment of the stage. When such a high temperature heat treatment is performed, the Si film 1
4 and the diffusion layer 21 from the Ti on the SiO 2 films 12 and 16
Si atoms diffuse into the film 22.
【0010】このため、図9(a)に示した様に、追加
の熱処理によってTiSi2 膜23がSi膜14及び拡
散層21上からSiO2 膜12、16上へはみ出し成長
し、このTiSi2 膜23から相転移されたTiSi2
膜24を介してSi膜14と拡散層21とが短絡するお
それがあった。従って、上述の一従来例では、このMO
Sトランジスタを高い歩留りで製造することが困難であ
った。[0010] Therefore, as shown in FIG. 9 (a), protruding from the top TiSi 2 film 23 by the additional heat treatment is Si film 14 and the diffusion layer 21 onto the SiO 2 film 12 and 16 is grown, the TiSi 2 TiSi 2 phase-transformed from the film 23
The Si film 14 and the diffusion layer 21 may be short-circuited via the film 24. Therefore, in the above-mentioned conventional example, this MO
It has been difficult to manufacture S transistors with high yield.
【0011】[0011]
【課題を解決するための手段】請求項1の半導体装置の
製造方法は、半導体領域の表面から半導体酸化膜を除去
した状態でこの半導体領域にイオン注入を行ってこの半
導体領域の表面に非晶質層を形成する工程と、前記非晶
質層と金属とを第1の熱処理で反応させて前記表面に反
応物層を形成する工程と、前記反応物層に第2の熱処理
を行って化合物層を形成する工程とを具備することを特
徴としている。According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device in which a semiconductor oxide film is removed from a surface of a semiconductor region, ions are implanted into the semiconductor region, and the surface of the semiconductor region is amorphous. Forming a crystalline layer, a step of reacting the amorphous layer with a metal in a first heat treatment to form a reactant layer on the surface, and a second heat treatment of the reactant layer to form a compound. And a step of forming a layer.
【0012】請求項2の半導体装置の製造方法は、請求
項1の半導体装置の製造方法において、前記化合物層を
形成する工程の次に半導体窒化膜を全面に形成する工程
を具備することを特徴としている。A method for manufacturing a semiconductor device according to a second aspect is the method for manufacturing a semiconductor device according to the first aspect, further comprising a step of forming a semiconductor nitride film over the entire surface after the step of forming the compound layer. I am trying.
【0013】請求項3の半導体装置の製造方法は、請求
項2の半導体装置の製造方法において、前記半導体窒化
膜とはエッチング特性が異なる層間絶縁膜をこの半導体
窒化膜上に形成する工程と、前記化合物層に対する接続
孔のパターンで、前記半導体窒化膜をストッパにして前
記層間絶縁膜をエッチングする工程と、前記エッチング
の後に、前記パターンで、前記半導体窒化膜のみをエッ
チングして前記接続孔を開口する工程とを具備すること
を特徴としている。A method of manufacturing a semiconductor device according to claim 3 is the method of manufacturing a semiconductor device according to claim 2, wherein an interlayer insulating film having etching characteristics different from those of the semiconductor nitride film is formed on the semiconductor nitride film. A step of etching the interlayer insulating film using the semiconductor nitride film as a stopper in a pattern of connection holes for the compound layer; and, after the etching, etching only the semiconductor nitride film in the pattern to form the connection holes. And a step of opening.
【0014】請求項1の半導体装置の製造方法では、化
合物層を形成すべき半導体領域の表面から半導体酸化膜
を除去した状態でイオン注入を行ってこの半導体領域の
表面に非晶質層を形成しているので、イオン注入で半導
体領域にノック・オンされた酸素原子によって半導体と
金属との化合反応が抑制されるのを防止することができ
ると共に、十分な厚さの非晶質層を形成することができ
て半導体と金属との化合反応を促進することができる。In the method of manufacturing a semiconductor device according to the first aspect, ion implantation is performed with the semiconductor oxide film removed from the surface of the semiconductor region where the compound layer is to be formed, and an amorphous layer is formed on the surface of this semiconductor region. Therefore, it is possible to prevent the chemical reaction between the semiconductor and the metal from being suppressed by the oxygen atoms knocked on the semiconductor region by the ion implantation, and to form an amorphous layer with a sufficient thickness. Therefore, the compounding reaction between the semiconductor and the metal can be promoted.
【0015】このため、非晶質層の形成並びに第1及び
第2の熱処理のみで低抵抗の化合物層を半導体領域の表
面に形成することができ、第1の熱処理と第2の熱処理
との中間に追加の熱処理を行う必要がないので、半導体
領域から半導体領域外への反応物質または化合物層のは
み出し成長を防止して、半導体領域の表面にのみ自己整
合的に化合物層を形成することができる。Therefore, the low resistance compound layer can be formed on the surface of the semiconductor region only by the formation of the amorphous layer and the first and second heat treatments, and the first heat treatment and the second heat treatment are combined. Since it is not necessary to perform additional heat treatment in the middle, it is possible to prevent the reactive substance or the compound layer from bulging out from the semiconductor region to the outside of the semiconductor region and form the compound layer in a self-aligned manner only on the surface of the semiconductor region. it can.
【0016】請求項2の半導体装置の製造方法では、化
合物層を形成する工程の次の工程として半導体窒化膜を
形成しているので、化合物層を形成する工程の次の工程
として半導体酸化膜を形成する場合に比べて、化合物層
への酸素の混入が少なくて化合物層の凝集によるシート
抵抗の上昇を抑制することができる。In the method of manufacturing a semiconductor device according to the second aspect, since the semiconductor nitride film is formed as a step subsequent to the step of forming the compound layer, the semiconductor oxide film is formed as a step subsequent to the step of forming the compound layer. Compared to the case of forming the layer, oxygen is less mixed into the compound layer, and the increase in sheet resistance due to aggregation of the compound layer can be suppressed.
【0017】請求項3の半導体装置の製造方法では、層
間絶縁膜及び半導体窒化膜を選択的にエッチングして接
続孔を開孔しているので、半導体領域を囲んでいる絶縁
膜と層間絶縁膜とのエッチング特性が略等しく且つ接続
孔が化合物層上から位置ずれしても、半導体領域を囲ん
でいる絶縁膜が接続孔の開口と同様にエッチングされる
ことがなく、接続孔内に形成される配線と半導体領域を
囲んでいる絶縁膜下の配線との短絡を防止することがで
きる。In the method of manufacturing a semiconductor device according to the third aspect of the present invention, since the interlayer insulating film and the semiconductor nitride film are selectively etched to open the connection hole, the insulating film surrounding the semiconductor region and the interlayer insulating film are formed. Even if the etching characteristics are substantially equal to each other and the connection hole is displaced from the compound layer, the insulating film surrounding the semiconductor region is not etched like the opening of the connection hole and is formed in the connection hole. It is possible to prevent a short circuit between the wiring under the insulating film surrounding the semiconductor region and the wiring under the insulating film.
【0018】[0018]
【発明の実施の形態】以下、LDD構造であるCMOS
トランジスタの製造に適用した本願の発明の第1〜第3
実施形態を、図1〜6を参照しながら説明する。図1〜
3が、第1実施形態を示している。この第1実施形態で
は、図1(a)に示す様に、温度が950℃のウェット
酸化を行うLOCOS法によって、Si基板11の表面
にSiO2 膜12を選択的に形成して素子分離領域を決
定する。LOCOS素子分離の代わりに、トレンチ素子
分離等を採用しても良い。BEST MODE FOR CARRYING OUT THE INVENTION A CMOS having an LDD structure will be described below.
First to Third Inventions of the Present Invention Applied to Manufacturing of Transistor
An embodiment will be described with reference to FIGS. Figure 1
3 shows 1st Embodiment. In the first embodiment, as shown in FIG. 1A, the SiO 2 film 12 is selectively formed on the surface of the Si substrate 11 by the LOCOS method of performing wet oxidation at a temperature of 950 ° C. To decide. Instead of LOCOS element isolation, trench element isolation or the like may be adopted.
【0019】その後、適当なウェル(図示せず)を形成
し、ソース/ドレイン間のパンチスルーを抑制するため
の埋め込み層(図示せず)をウェル内に形成すること
や、しきい値電圧を調整するための不純物のイオン注入
等を行う。そして、温度が850℃のパイロジェニック
酸化によって、SiO2 膜12に囲まれている素子活性
領域の表面に、膜厚が8nm程度のSiO2 膜13をゲ
ート酸化膜として形成する。After that, an appropriate well (not shown) is formed, a buried layer (not shown) for suppressing punch-through between the source and the drain is formed in the well, and a threshold voltage is set. Ion implantation of impurities for adjustment is performed. Then, a SiO 2 film 13 having a film thickness of about 8 nm is formed as a gate oxide film on the surface of the element active region surrounded by the SiO 2 film 12 by pyrogenic oxidation at a temperature of 850 ° C.
【0020】その後、原料ガスがSiH4 で堆積温度が
620℃である減圧CVD法によって多結晶Siからな
るSi膜14を堆積させ、フォトリソグラフィ及びドラ
イエッチングによってSi膜14をゲート電極のパター
ンに加工する。上記Si基板11とSi膜14とが、本
発明における半導体(半導体領域)になる。Thereafter, the Si film 14 made of polycrystalline Si is deposited by the low pressure CVD method in which the source gas is SiH 4 and the deposition temperature is 620 ° C., and the Si film 14 is processed into a gate electrode pattern by photolithography and dry etching. To do. The Si substrate 11 and the Si film 14 serve as a semiconductor (semiconductor region) in the present invention.
【0021】次に、Si膜14及びSiO2 膜12と適
当なフォトレジスト(図示せず)とをマスクにして、N
MOSトランジスタの形成領域には20keVの加速エ
ネルギー及び6×1012cm-2のドーズ量でAs+ をイ
オン注入し、PMOSトランジスタの形成領域には20
keVの加速エネルギー及び2×1013cm-2のドーズ
量でBF2 + をイオン注入して、図1(b)に示す様
に、低濃度の拡散層15を形成する。Next, using the Si film 14 and the SiO 2 film 12 and a suitable photoresist (not shown) as a mask, N
As + is ion-implanted into the formation region of the MOS transistor at an acceleration energy of 20 keV and a dose amount of 6 × 10 12 cm −2.
BF 2 + is ion-implanted at an acceleration energy of keV and a dose amount of 2 × 10 13 cm −2 to form a low-concentration diffusion layer 15 as shown in FIG.
【0022】次に、図1(c)に示すように、膜厚が1
50nm程度のSiO2 膜16を常圧CVD法で堆積さ
せ、異方性ドライエッチングでSiO2 膜16をエッチ
バックすることによって、このSiO2 膜16からなる
側壁をSi膜14に形成する。TEOSを原料とする減
圧CVD法やO3 +TEOSを原料とする常圧CVD法
で堆積させたSiO2 膜や、減圧CVD法で堆積させた
SiN膜等をSiO2膜16の代わりに用いても良い。Next, as shown in FIG. 1C, the film thickness is 1
A SiO 2 film 16 having a thickness of about 50 nm is deposited by the atmospheric pressure CVD method, and the SiO 2 film 16 is etched back by anisotropic dry etching to form a side wall of the SiO 2 film 16 on the Si film 14. A SiO 2 film deposited by a low pressure CVD method using TEOS as a raw material or an atmospheric pressure CVD method using O 3 + TEOS as a raw material, a SiN film deposited by a low pressure CVD method, or the like may be used instead of the SiO 2 film 16. good.
【0023】次に、Si膜14及びSiO2 膜12、1
6と適当なフォトレジスト(図示せず)とをマスクにし
て、NMOSトランジスタの形成領域には60keVの
加速エネルギー及び3×1015cm-2のドーズ量でAs
+ をイオン注入し、PMOSトランジスタの形成領域に
は40keVの加速エネルギー及び3×1015cm-2の
ドーズ量でBF2 + をイオン注入して、図1(d)に示
す様に、高濃度の拡散層21を形成する。Next, the Si film 14 and the SiO 2 films 12, 1
6 and an appropriate photoresist (not shown) as a mask, and in the formation region of the NMOS transistor, the acceleration energy of 60 keV and the dose amount of 3 × 10 15 cm −2 are used.
+ Is ion-implanted, BF 2 + is ion-implanted into the formation region of the PMOS transistor at an acceleration energy of 40 keV and a dose amount of 3 × 10 15 cm −2 , and as shown in FIG. The diffusion layer 21 is formed.
【0024】これらのイオン注入は、膜厚が10nm程
度の犠牲酸化膜を全面に形成した状態で行ってもよく、
Si基板11等に対して直接に行ってもよい。その後、
温度が1000〜1100℃で時間が10秒の短時間ア
ニールや、温度が850〜950℃で時間が10分程度
の炉アニール等を行って、拡散層15、21中の不純物
を活性化させる。These ion implantations may be performed with a sacrificial oxide film having a film thickness of about 10 nm formed on the entire surface.
You may perform directly with respect to Si substrate 11 grade. afterwards,
Impurities in the diffusion layers 15 and 21 are activated by performing short-time annealing at a temperature of 1000 to 1100 ° C. for 10 seconds and furnace annealing at a temperature of 850 to 950 ° C. for about 10 minutes.
【0025】上述の様に、拡散層21を形成するための
イオン注入時に犠牲酸化膜を用いていれば、この時点
で、犠牲酸化膜が全面に残っている。また、犠牲酸化膜
を用いていなくても、拡散層21を形成するためのイオ
ン注入や、拡散層15、21中の不純物を活性化させる
ための熱処理等を行っている間に、Si基板11やSi
膜14の表面には、膜厚が3nm程度の自然酸化膜25
が形成されている。As described above, if the sacrificial oxide film is used during the ion implantation for forming the diffusion layer 21, the sacrificial oxide film remains on the entire surface at this point. Further, even if the sacrificial oxide film is not used, the Si substrate 11 is formed while performing ion implantation for forming the diffusion layer 21 and heat treatment for activating the impurities in the diffusion layers 15 and 21. And Si
A natural oxide film 25 having a thickness of about 3 nm is formed on the surface of the film 14.
Are formed.
【0026】次に、弗酸と弗化アンモニウムとの混合液
である緩衝弗酸や弗酸等を用いて、エッチング速度が3
nm/分程度のウェットエッチングを行って、図1
(e)に示す様に、自然酸化膜25(犠牲酸化膜を用い
た場合には犠牲酸化膜)を除去する。この自然酸化膜2
5(または犠牲酸化膜)が本発明における半導体酸化膜
になる。ここでは、ガス:CHF3 /CO=60/24
0sccm、圧力=5.3Pa、出力=1200W、温
度=30℃のマグネトロン方式の異方性ドライエッチン
グを、ウェットエッチングの代わりに用いても良い。Then, using a mixed solution of hydrofluoric acid and ammonium fluoride, such as buffered hydrofluoric acid or hydrofluoric acid, the etching rate is set to 3
Wet etching of about nm / min is performed, and FIG.
As shown in (e), the natural oxide film 25 (the sacrificial oxide film when the sacrificial oxide film is used) is removed. This natural oxide film 2
5 (or sacrificial oxide film) becomes the semiconductor oxide film in the present invention. Here, gas: CHF 3 / CO = 60/24
Magnetron type anisotropic dry etching of 0 sccm, pressure = 5.3 Pa, output = 1200 W, temperature = 30 ° C. may be used instead of wet etching.
【0027】次に、図2(a)に示す様に、40keV
の加速エネルギー及び3×1014cm-2のドーズ量でA
s+ をイオン注入して、Si膜14及び拡散層21の表
面に非晶質層14a、21aを形成する。この時、自然
酸化膜25を除去した状態でイオン注入を行っているの
で、酸素原子のノック・オンが生じないのみならず、十
分な厚さの非晶質層14a、21aが形成される。As
+ の代わりに、Sb+やSi+ 等を用いても良い。Next, as shown in FIG. 2A, 40 keV
A at acceleration energy of 3 × 10 14 cm -2
Amorphous layers 14a and 21a are formed on the surfaces of the Si film 14 and the diffusion layer 21 by ion implantation of s + . At this time, since the ion implantation is performed with the natural oxide film 25 removed, not only oxygen atom knock-on does not occur, but also the amorphous layers 14a and 21a having a sufficient thickness are formed. As
Instead of + may be used Sb + or Si + or the like.
【0028】次に、図2(b)に示す様に、CVD法や
蒸着法でTi膜(本発明における金属の膜)22を全面
に形成する。Tiの代わりに、Co、Ni、Pt等の他
の高融点金属を用いても良い。その後、窒素雰囲気中に
おいて温度が650℃で時間が30秒の短時間アニール
を行い、非晶質層14a、21aとTi膜22とを反応
させて、図2(c)に示す様に、Si膜14及び拡散層
21の表面にC49相のTiSi2 膜(本発明における
反応物層)23を形成する。Next, as shown in FIG. 2B, a Ti film (metal film in the present invention) 22 is formed on the entire surface by a CVD method or a vapor deposition method. Instead of Ti, another refractory metal such as Co, Ni or Pt may be used. After that, annealing is performed in a nitrogen atmosphere at a temperature of 650 ° C. for a short time of 30 seconds to cause the amorphous layers 14a and 21a and the Ti film 22 to react with each other, and as shown in FIG. A C49 phase TiSi 2 film (reactant layer in the present invention) 23 is formed on the surfaces of the film 14 and the diffusion layer 21.
【0029】SiO2 膜12、16とTi膜22とはシ
リサイド化反応を生じないので、SiO2 膜12、16
上にはTi膜22が未反応のまま残る。TiSi2 膜2
3を形成するシリサイド化反応を生じさせるための熱処
理は、アルゴン雰囲気中で行っても良い。Since the SiO 2 films 12 and 16 and the Ti film 22 do not cause a silicidation reaction, the SiO 2 films 12 and 16
The Ti film 22 remains unreacted on top. TiSi 2 film 2
The heat treatment for causing the silicidation reaction to form 3 may be performed in an argon atmosphere.
【0030】次に、アンモニア過水(NH3 :H
2 O2 :H2 O=1:2:6)を用い、温度が室温で時
間が10分のウェットエッチングによって、図2(d)
に示す様に、未反応のまま残っているTi膜22を選択
的に除去する。アンモニア過水の代わりに、塩酸過水や
硫酸過水等を用いても良い。Next, ammonia hydrogen peroxide (NH 3 : H
2 O 2 : H 2 O = 1: 2: 6) and the temperature is room temperature and the time is 10 minutes.
As shown in, the Ti film 22 which remains unreacted is selectively removed. Instead of ammonia hydrogen peroxide, hydrochloric acid hydrogen peroxide or sulfuric acid hydrogen peroxide may be used.
【0031】次に、窒素雰囲気中またはアルゴン雰囲気
中において温度が800℃で時間が30秒の短時間アニ
ールを行って、図2(e)に示す様に、C49相のTi
Si 2 膜23から、シート抵抗が5Ω/□程度と低抵抗
であるC54相のTiSi2膜(本発明における化合物
層)24へ相転移させる。その後、図3(a)に示す様
に、層間絶縁膜26を形成する。Next, in a nitrogen atmosphere or an argon atmosphere
The temperature is 800 ℃ and the time is 30 seconds.
As shown in FIG. 2 (e), Ti of C49 phase
Si TwoFrom the film 23, sheet resistance is as low as 5Ω / □
C54 phase TiSi which isTwoMembrane (compound in the present invention
Layer) 24. After that, as shown in Fig. 3 (a)
Then, the interlayer insulating film 26 is formed.
【0032】次に、図3(b)に示す様に、TiSi2
膜24に達する接続孔27を層間絶縁膜26に開孔し、
タングステンプラグ31等で接続孔27を埋める。そし
て、第1層目のAl膜32で配線を形成し、表面が平坦
なSiO2 膜33でAl膜32等を覆い、第2層目のA
l膜(図示せず)から成る配線等をSiO2 膜33上に
形成して、このCMOSトランジスタを完成させる。Next, as shown in FIG. 3B, TiSi 2
A contact hole 27 reaching the film 24 is opened in the interlayer insulating film 26,
The connection hole 27 is filled with a tungsten plug 31 or the like. Then, the wiring is formed by the first-layer Al film 32, and the Al film 32 and the like are covered by the SiO 2 film 33 having a flat surface.
A wiring or the like made of an I film (not shown) is formed on the SiO 2 film 33 to complete this CMOS transistor.
【0033】図6のグラフ中の曲線は、以上の様な第
1実施形態中で形成したTiSi2膜24を含めた拡散
層21のシート抵抗を示している。この第1実施形態で
は、Ti膜22からTiSi2 膜23を形成するための
第1段階の熱処理と、TiSi2 膜23からTiSi2
膜24へ相転移させるための第2段階の熱処理との中間
で追加の熱処理を行っていないにもかかわらず、曲線
で示されている一従来例のシート抵抗と同様のシート抵
抗が得られている。The curve in the graph of FIG. 6 shows the sheet resistance of the diffusion layer 21 including the TiSi 2 film 24 formed in the first embodiment as described above. In the first embodiment, the first stage heat treatment for forming the TiSi 2 film 23 from the Ti film 22 and the TiSi 2 film 23 to the TiSi 2 film are performed.
Although no additional heat treatment was performed in the middle of the second-stage heat treatment for causing the phase transition to the film 24, the same sheet resistance as that of the conventional example shown by the curve was obtained. There is.
【0034】上記第1実施形態では、Si膜14として
非晶質Siを用いても良い。この場合、図1(a)に示
す工程では、減圧CVD法によって非晶質Siからなる
Si膜14を100〜300nm程度の膜厚で成膜す
る。このSi膜14は、不純物(例えばリン)がドープ
された非晶質Siでも良く、また不純物がドープされて
いない(ノンドープ)非晶質Siでも良い。ただし、ノ
ンドープの非晶質SiからなるSi膜14を成膜した場
合には、後の工程でこのSi膜14中に不純物を導入す
る工程を行うこととする。以下に、それぞれのSi膜1
4の成膜条件の一例を記す。In the first embodiment, amorphous Si may be used as the Si film 14. In this case, in the step shown in FIG. 1A, the Si film 14 made of amorphous Si is formed to a thickness of about 100 to 300 nm by the low pressure CVD method. The Si film 14 may be amorphous Si doped with impurities (for example, phosphorus) or amorphous Si not doped with impurities (non-doped). However, when the Si film 14 made of non-doped amorphous Si is formed, a step of introducing impurities into the Si film 14 will be performed in a later step. Below, each Si film 1
An example of the film forming conditions of No. 4 will be described.
【0035】a.リンドープの非晶質SiからなるSi
膜14の成膜条件 成膜圧力 : 50〜400Pa 成膜温度 :500〜600℃ 成膜ガス及び流量:SiH4 =50〜2000sccm PH3 =10〜 500sccmA. Si composed of phosphorus-doped amorphous Si
Film forming conditions of film 14 Film forming pressure: 50 to 400 Pa Film forming temperature: 500 to 600 ° C. Film forming gas and flow rate: SiH 4 = 50 to 2000 sccm PH 3 = 10 to 500 sccm
【0036】b.ノンドープの非晶質SiからなるSi
膜14の成膜条件 成膜圧力 : 50〜400Pa 成膜温度 :500〜600℃ 成膜ガス及び流量:SiH4 =50〜2000sccmB. Si made of non-doped amorphous Si
Film forming conditions of film 14 Film forming pressure: 50 to 400 Pa Film forming temperature: 500 to 600 ° C. Film forming gas and flow rate: SiH 4 = 50 to 2000 sccm
【0037】以上のようにして、非晶質SiからなるS
i膜14を成膜した後、このSi膜14をゲート電極の
パターンに加工し、次に、図1(b)〜図1(e)を用
いて説明した工程を上述と同様に行う。その後、図2
(a)に示す工程では、上述と同様にイオン注入を行
う。これによって、図1(d)を用いて説明した拡散層
15、21中の不純物を活性化させるための熱処理で僅
かに多結晶化されたSi膜14の表面層に、非晶質層1
4aを形成する。また、拡散層21の表面層に非晶質層
21aを形成する。As described above, S made of amorphous Si is used.
After forming the i film 14, the Si film 14 is processed into a pattern of the gate electrode, and then the steps described with reference to FIGS. 1B to 1E are performed in the same manner as described above. After that, Figure 2
In the step shown in (a), ion implantation is performed as described above. As a result, the surface layer of the Si film 14 slightly polycrystallized by the heat treatment for activating the impurities in the diffusion layers 15 and 21 described with reference to FIG.
4a is formed. Further, the amorphous layer 21a is formed on the surface layer of the diffusion layer 21.
【0038】この際、上述と同様に、自然酸化膜25
(犠牲酸化膜を形成した場合には犠牲酸化膜)を除去し
た状態でイオン注入を行っているので、当該イオン注入
による酸素原子のノック・オンが生じないのみならず、
十分な厚さの非晶質層14a、21aが形成される。し
かも、Si膜14は、もともと非晶質Siとして成膜さ
れたものであるため、多結晶SiからなるSi膜14を
成膜した場合と比較して、イオン注入によってSi膜1
4表面に形成される非晶質層21aの非晶質度が高くな
り、反応性のより良好な非晶質層21aが得られる。At this time, similar to the above, the natural oxide film 25 is formed.
Since the ion implantation is performed in a state where (the sacrificial oxide film when the sacrificial oxide film is formed) is removed, not only the knock-on of oxygen atoms due to the ion implantation does not occur,
The amorphous layers 14a and 21a having a sufficient thickness are formed. Moreover, since the Si film 14 is originally formed as amorphous Si, the Si film 1 is formed by ion implantation as compared with the case where the Si film 14 made of polycrystalline Si is formed.
4 The amorphousness of the amorphous layer 21a formed on the surface is increased, and the amorphous layer 21a having better reactivity can be obtained.
【0039】以上までの工程を行った後、図2(b)〜
図3(b)を用いて説明した工程を上述と同様に行い、
これによって、CMOSトランジスタを完成させる。After performing the above steps, the process shown in FIG.
The steps described with reference to FIG. 3B are performed in the same manner as above,
This completes the CMOS transistor.
【0040】図7のグラフ中において、曲線は、以上
の様な第1実施形態中でN型の多結晶SiからなるSi
膜14を成膜した場合のゲート電極のシート抵抗を示し
ている。また、曲線は、同P型の多結晶Siからなる
Si膜14を成膜した場合のゲート電極のシート抵抗を
示している。さらに、曲線は、同N型の非晶質Siか
らなるSi膜14を成膜した場合のゲート電極のシート
抵抗を示している。そして、曲線は、同P型の非晶質
SiからなるSi膜14を成膜した場合のゲート電極の
シート抵抗を示している。尚、これらのSi膜14の表
面には、同一条件のイオン注入によって非晶質層14a
を形成した。In the graph of FIG. 7, a curved line represents Si made of N-type polycrystalline Si in the first embodiment as described above.
The sheet resistance of the gate electrode when the film 14 is formed is shown. The curve shows the sheet resistance of the gate electrode when the Si film 14 made of the same P-type polycrystalline Si is formed. Further, the curve shows the sheet resistance of the gate electrode when the Si film 14 made of the same N-type amorphous Si is formed. The curve shows the sheet resistance of the gate electrode when the Si film 14 made of the same P-type amorphous Si is formed. It should be noted that the surface of these Si films 14 is subjected to ion implantation under the same conditions by the amorphous layer 14a.
Was formed.
【0041】これらの各曲線〜に示すように、非晶
質SiからなるSi膜14を成膜することで、多結晶S
iからなるSi膜14を成膜した場合と比較して、より
細線領域でシート抵抗の上昇が抑えられていることが分
かる。As shown in each of these curves, by forming the Si film 14 made of amorphous Si, the polycrystalline S
It can be seen that the increase of the sheet resistance is suppressed in the thinner line region as compared with the case where the Si film 14 made of i is formed.
【0042】図4は、第2実施形態を示している。この
第2実施形態は、Si膜34及びWSi2 膜35から成
るポリサイド層36とこのポリサイド層36上のSiO
2 膜37とをゲート電極のパターンに加工し、ゲート電
極の表面にはTiSi2 膜24を形成しないことを除い
て、上述の第1実施形態と実質的に同様の工程を実行す
る。この様な第2実施形態でも、第1実施形態と同様の
作用効果を奏することができる。FIG. 4 shows a second embodiment. In the second embodiment, the polycide layer 36 including the Si film 34 and the WSi 2 film 35 and the SiO 2 on the polycide layer 36 are formed.
Substantially the same steps as those in the first embodiment described above are performed except that the 2 film 37 and the gate electrode pattern are processed and the TiSi 2 film 24 is not formed on the surface of the gate electrode. In the second embodiment as described above, the same operational effect as that of the first embodiment can be obtained.
【0043】図5は、第3実施形態を示している。こお
第3実施形態は、TiSi2 膜24を形成した後の工程
としてSiN膜38を全面に形成することを除いて、上
述の第2実施形態と実質的に同様の工程を実行する。こ
の様な第3実施形態では、接続孔27の開孔に際して、
SiN膜38をストッパにして層間絶縁膜26をエッチ
ングし、更にSiO2 膜16、37、12をストッパに
してSiN膜38のみをエッチングすることができる。FIG. 5 shows a third embodiment. The third embodiment executes substantially the same steps as the above-described second embodiment except that the SiN film 38 is formed on the entire surface as a step after the TiSi 2 film 24 is formed. In the third embodiment like this, when the connection hole 27 is opened,
The interlayer insulating film 26 can be etched using the SiN film 38 as a stopper, and only the SiN film 38 can be etched using the SiO 2 films 16, 37 and 12 as stoppers.
【0044】このため、接続孔27を開孔する前のフォ
トリソグラフィ工程で合わせずれが生じて、接続孔27
がTiSi2 膜24上から位置ずれしても、接続孔27
の開孔と同時にSiO2 膜16、37、12がエッチン
グされることなく、タングステンプラグ31とポリサイ
ド層36との短絡を防止することができる。Therefore, misalignment occurs in the photolithography process before opening the connection hole 27, and the connection hole 27 is misaligned.
Is displaced from the top of the TiSi 2 film 24, the connection hole 27
It is possible to prevent a short circuit between the tungsten plug 31 and the polycide layer 36 without etching the SiO 2 films 16, 37 and 12 at the same time as the opening.
【0045】なお、以上の第1〜第3実施形態は、LD
D構造であるCMOSトランジスタの製造に本願の発明
を適用したものであるが、非LDD構造のCMOSトラ
ンジスタや非相補型のMOSトランジスタやMOSトラ
ンジスタ以外の半導体装置等の構造にも、本願の発明を
適用することができる。The first to third embodiments described above are LDs.
Although the invention of the present application is applied to the manufacture of a CMOS transistor having a D structure, the invention of the present application is also applied to the structure of a non-LDD structure CMOS transistor, a non-complementary MOS transistor, or a semiconductor device other than a MOS transistor. Can be applied.
【0046】[0046]
【発明の効果】請求項1の半導体装置の製造方法では、
低抵抗の化合物相を半導体領域の表面にのみ自己整合的
に形成することができるので、低抵抗の化合物相を半導
体領域の表面に形成しても半導体領域間の短絡を防止す
ることができて、微細で且つ高速な半導体装置を高い歩
留りで製造することができる。According to the method of manufacturing a semiconductor device of the first aspect,
Since the low resistance compound phase can be formed only on the surface of the semiconductor region in a self-aligned manner, it is possible to prevent a short circuit between the semiconductor regions even if the low resistance compound phase is formed on the surface of the semiconductor region. Therefore, a fine and high-speed semiconductor device can be manufactured with a high yield.
【0047】請求項2の半導体装置の製造方法では、化
合物層への酸素の混入が少なくて化合物層の凝集による
シート抵抗の上層を抑制することができるので、更に高
速の半導体装置を製造することができる。In the method of manufacturing a semiconductor device according to the second aspect, since the upper layer of the sheet resistance due to the aggregation of the compound layer can be suppressed because oxygen is less mixed into the compound layer, the semiconductor device can be manufactured at a higher speed. You can
【0048】請求項3の半導体装置の製造方法では、接
続項内に形成される配線と半導体領域を囲んでいる絶縁
膜下の配線との短絡を防止することができるので、微細
で且つ高速な半導体装置を更に高い歩留りで製造するこ
とができる。In the method of manufacturing the semiconductor device according to the third aspect, since it is possible to prevent a short circuit between the wiring formed in the connection clause and the wiring under the insulating film surrounding the semiconductor region, it is fine and high speed. Semiconductor devices can be manufactured with a higher yield.
【図1】本願の発明の第1実施形態の初期の工程を順次
に示す側断面図である。FIG. 1 is a side sectional view sequentially showing an initial step of a first embodiment of the invention of the present application.
【図2】第1実施形態の中期の工程を順次に示す側断面
図である。FIG. 2 is a side sectional view sequentially showing a middle stage process of the first embodiment.
【図3】第1実施形態の終期の工程を順次に示す側断面
図である。FIG. 3 is a side sectional view sequentially showing a final step of the first embodiment.
【図4】本願の発明の第2実施形態の途中の工程を示す
側断面図である。FIG. 4 is a side sectional view showing a step in the middle of the second embodiment of the present invention.
【図5】本願の発明の第3実施形態の途中の工程を示す
側断面図である。FIG. 5 is a side sectional view showing a step in the middle of the third embodiment of the present invention.
【図6】従来の技術で示した2方法及び本願の発明の第
1〜第3実施形態でそれぞれ形成した拡散層の幅とシー
ト抵抗との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the sheet resistance and the width of the diffusion layer formed in each of the two methods shown in the related art and the first to third embodiments of the present invention.
【図7】本願の発明の第1〜第3実施形態で、多結晶S
iからなるSi膜を成膜した場合と非晶質Siからなる
Si膜を成膜した場合におけるゲート電極の幅とシート
抵抗との関係を示すグラフである。FIG. 7 is a schematic view of the polycrystalline S according to the first to third embodiments of the invention of the present application.
5 is a graph showing the relationship between the width of the gate electrode and the sheet resistance when a Si film made of i is formed and when a Si film made of amorphous Si is formed.
【図8】本願の発明の一従来例の前半の工程を順次に示
す側断面図である。FIG. 8 is a side sectional view sequentially showing the first half steps of a conventional example of the present invention.
【図9】一従来例の後半の工程を順次に示す側断面図で
ある。FIG. 9 is a side sectional view sequentially showing the latter half of the steps of a conventional example.
14 Si膜 14a 非晶質層 21 拡散層
21a 非晶質層 22 Ti膜 23 TiSi2 膜 24 TiS
i2 膜 25 自然酸化膜 26 層間絶縁膜 27 接続
孔 38 SiN膜14 Si film 14a Amorphous layer 21 Diffusion layer
21a amorphous layer 22 Ti film 23 TiSi 2 film 24 TiS
i 2 film 25 natural oxide film 26 interlayer insulating film 27 connection hole 38 SiN film
Claims (3)
の表面に形成する半導体装置の製造方法において、 前記半導体領域の表面から半導体酸化膜を除去した状態
でこの半導体領域にイオン注入を行ってこの半導体領域
の表面に非晶質層を形成する工程と、 前記非晶質層と前記金属とを第1の熱処理で反応させて
前記表面に反応物層を形成する工程と、 前記反応物層に第2の熱処理を行って前記化合物層を形
成する工程とを具備することを特徴とする半導体装置の
製造方法。1. A method of manufacturing a semiconductor device, wherein a compound layer of a semiconductor and a metal is formed on a surface of a semiconductor region, wherein ion implantation is performed on the semiconductor region in a state where a semiconductor oxide film is removed from the surface of the semiconductor region. Forming an amorphous layer on the surface of the semiconductor region; reacting the amorphous layer with the metal in a first heat treatment to form a reactant layer on the surface; And a step of forming a compound layer by performing a second heat treatment, the method of manufacturing a semiconductor device.
体窒化膜を全面に形成する工程を具備することを特徴と
する請求項1記載の半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a semiconductor nitride film on the entire surface after the step of forming the compound layer.
異なる層間絶縁膜をこの半導体窒化膜上に形成する工程
と、 前記化合物層に対する接続孔のパターンで、前記半導体
窒化膜をストッパにして前記層間絶縁膜をエッチングす
る工程と、 前記エッチングの後に、前記パターンで、前記半導体窒
化膜のみをエッチングして前記接続孔を開口する工程と
を具備することを特徴とする請求項2記載の半導体装置
の製造方法。3. A step of forming an interlayer insulating film having an etching characteristic different from that of the semiconductor nitride film on the semiconductor nitride film, and a pattern of connection holes for the compound layer, wherein the semiconductor nitride film is used as a stopper to form the interlayer insulating film. 3. The semiconductor device according to claim 2, further comprising: a step of etching an insulating film; and a step of etching only the semiconductor nitride film with the pattern to open the connection hole after the etching. Production method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27048896A JPH09298300A (en) | 1996-03-05 | 1996-10-14 | Manufacture of semiconductor device |
KR1019970052452A KR19980032793A (en) | 1996-10-14 | 1997-10-14 | Manufacturing Method of Semiconductor Device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7521796 | 1996-03-05 | ||
JP8-75217 | 1996-03-05 | ||
JP27048896A JPH09298300A (en) | 1996-03-05 | 1996-10-14 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09298300A true JPH09298300A (en) | 1997-11-18 |
Family
ID=26416378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27048896A Pending JPH09298300A (en) | 1996-03-05 | 1996-10-14 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09298300A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6107154A (en) * | 1998-05-12 | 2000-08-22 | United Microelectronics Corp. | Method of fabricating a semiconductor embedded dynamic random-access memory device |
KR100459932B1 (en) * | 2001-12-24 | 2004-12-04 | 동부전자 주식회사 | Method for fabricating semiconductor device |
KR100483027B1 (en) * | 2001-12-26 | 2005-04-15 | 주식회사 하이닉스반도체 | A method for forming a silicide layer of a semiconductor device |
US7087114B2 (en) | 2001-10-09 | 2006-08-08 | Sumitomo Electric Industries, Ltd. | Single crystal GaN substrate, method of growing single crystal GaN and method of producing single crystal GaN substrate |
US7354477B2 (en) | 2001-10-09 | 2008-04-08 | Sumitomo Electric Industries, Ltd. | Method of growing GaN crystal, method of producing single crystal GaN substrate, and single crystal GaN substrate |
US7473315B2 (en) | 2001-10-09 | 2009-01-06 | Sumitomo Electric Industries, Ltd. | AlxInyGa1-x-yN mixture crystal substrate, method of growing AlxInyGa1-x-yN mixture crystal substrate and method of producing AlxInyGa1-x-yN mixture crystal substrate |
EP2107597A1 (en) | 2001-09-19 | 2009-10-07 | Sumitomo Electric Industries, Ltd. | Gallium nitride crystal |
US8067300B2 (en) | 2001-09-19 | 2011-11-29 | Sumitomo Electric Industries, Ltd. | AlxInyGa1-x-yN mixture crystal substrate, method of growing same and method of producing same |
-
1996
- 1996-10-14 JP JP27048896A patent/JPH09298300A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6107154A (en) * | 1998-05-12 | 2000-08-22 | United Microelectronics Corp. | Method of fabricating a semiconductor embedded dynamic random-access memory device |
EP2107597A1 (en) | 2001-09-19 | 2009-10-07 | Sumitomo Electric Industries, Ltd. | Gallium nitride crystal |
US8067300B2 (en) | 2001-09-19 | 2011-11-29 | Sumitomo Electric Industries, Ltd. | AlxInyGa1-x-yN mixture crystal substrate, method of growing same and method of producing same |
US8198177B2 (en) | 2001-09-19 | 2012-06-12 | Sumitomo Electric Industries, Ltd. | AlxInyGal-x-yN mixture crystal substrate, method of growing same and method of producing same |
US7087114B2 (en) | 2001-10-09 | 2006-08-08 | Sumitomo Electric Industries, Ltd. | Single crystal GaN substrate, method of growing single crystal GaN and method of producing single crystal GaN substrate |
US7354477B2 (en) | 2001-10-09 | 2008-04-08 | Sumitomo Electric Industries, Ltd. | Method of growing GaN crystal, method of producing single crystal GaN substrate, and single crystal GaN substrate |
US7473315B2 (en) | 2001-10-09 | 2009-01-06 | Sumitomo Electric Industries, Ltd. | AlxInyGa1-x-yN mixture crystal substrate, method of growing AlxInyGa1-x-yN mixture crystal substrate and method of producing AlxInyGa1-x-yN mixture crystal substrate |
US7534310B2 (en) | 2001-10-09 | 2009-05-19 | Sumitomo Electric Industries, Ltd. | Single crystal GaN substrate, method of growing single crystal GaN and method of producing single crystal GaN substrate |
EP2146384A1 (en) | 2001-10-09 | 2010-01-20 | Sumitomo Electric Industries, Ltd. | Method of making a laser diode |
US7794543B2 (en) | 2001-10-09 | 2010-09-14 | Sumitomo Electric Industries, Ltd. | Method of growing GaN crystal, method of producing single crystal GaN substrate, and single crystal GaN substrate |
KR100459932B1 (en) * | 2001-12-24 | 2004-12-04 | 동부전자 주식회사 | Method for fabricating semiconductor device |
KR100483027B1 (en) * | 2001-12-26 | 2005-04-15 | 주식회사 하이닉스반도체 | A method for forming a silicide layer of a semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7348636B2 (en) | CMOS transistor having different PMOS and NMOS gate electrode structures and method of fabrication thereof | |
US5933741A (en) | Method of making titanium silicide source/drains and tungsten silicide gate electrodes for field effect transistors | |
JP2002170954A (en) | Method for forming gate electrode of semiconductor device | |
JPH09298300A (en) | Manufacture of semiconductor device | |
US20010025994A1 (en) | Process for producing semiconductor device and semiconductor device | |
JPH0917998A (en) | Mos transistor manufacturing method | |
JP3496723B2 (en) | Method for manufacturing semiconductor device | |
JPH0982812A (en) | Method for manufacturing semiconductor device | |
JP3394083B2 (en) | Semiconductor device and manufacturing method thereof | |
US6764912B1 (en) | Passivation of nitride spacer | |
JP3581253B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2738402B2 (en) | Method for manufacturing semiconductor device | |
JP3435943B2 (en) | Semiconductor device and manufacturing method thereof | |
KR19980032793A (en) | Manufacturing Method of Semiconductor Device | |
JP3640079B2 (en) | Manufacturing method of CMOS transistor | |
JP3918218B2 (en) | Manufacturing method of semiconductor device | |
JP2842284B2 (en) | Method for manufacturing semiconductor device | |
JPH1117182A (en) | Semiconductor device and manufacture thereof | |
JPH10294459A (en) | Manufacture of semiconductor device | |
JPH11145453A (en) | Manufacture of insulated gate semiconductor device | |
JP3920959B2 (en) | Method for manufacturing complementary semiconductor device | |
JP2002217193A (en) | Method for manufacturing semiconductor device | |
JPH08130305A (en) | Manufacture of semiconductor device | |
JPH10303422A (en) | Fabrication of semiconductor device | |
JPH11163335A (en) | Semiconductor device and its manufacture |