[go: up one dir, main page]

JPH09291313A - Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic

Info

Publication number
JPH09291313A
JPH09291313A JP10500196A JP10500196A JPH09291313A JP H09291313 A JPH09291313 A JP H09291313A JP 10500196 A JP10500196 A JP 10500196A JP 10500196 A JP10500196 A JP 10500196A JP H09291313 A JPH09291313 A JP H09291313A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
oriented silicon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10500196A
Other languages
Japanese (ja)
Other versions
JP3268198B2 (en
Inventor
Hiroaki Toda
広朗 戸田
Hiroshi Yamaguchi
山口  広
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10500196A priority Critical patent/JP3268198B2/en
Publication of JPH09291313A publication Critical patent/JPH09291313A/en
Application granted granted Critical
Publication of JP3268198B2 publication Critical patent/JP3268198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet excellent in magnetic properties and film characteristic by controlling respective degrees of oxidation of atmosphere in a stage of temp. raise and in a soaking stage at the time of decarburizing annealing. SOLUTION: Hot rolling is performed by using a slab for grain oriented silicon steel sheet, having a composition containing, by weight, 0.01-0.05% sol.Al and 0.004-0.012% N, as a stock. The resultant steel plate is cold-rolled once or is cold-rolled two or more times while process-annealed between cold rolling stages. After decarburizing annealing, a separation agent at annealing is applied and final finish annealing is carried out. The grain oriented silicon steel sheet is produced by means of a series of stages mentioned above. At this time, the value of the ratio of partial pressure of water vapor to partial pressure of hydrogen in the atmosphere in the decarburizing annealing process is regulated so that it is <0.70 in the soaking stage and lower in the stage of temp. raise than in the soaking stage. Further, the separation agent at annealing is prepared by combinedly adding 0.5-15 pts.wt. TiO2 , 0.1-10 pts.wt. SnO2 , and 0.1-10 pts.wt. of Sr compound expressed in terms of Sr to 100 pts.wt. of MgO. By this method, the grain oriented silicon steel sheet excellent in magnetic properties and film characteristic can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、方向性けい素鋼
板の製造方法に関し、特に脱炭焼鈍工程及び焼鈍分離剤
組成を工夫することによって磁気特性及び被膜特性を大
幅に改善しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and particularly to improve the magnetic properties and coating properties by devising the decarburizing annealing step and the composition of the annealing separator. is there.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器あ
るいは回転機器等の鉄心材料として使用され、磁気特性
として磁束密度が高く、鉄損及び磁気歪が小さいことが
要求される。磁気特性に優れる方向性けい素鋼板を得る
には、{110}<001>方位、いわゆるゴス方位に
高度に集積した2次再結晶組織を得ることが肝要であ
る。
2. Description of the Related Art Grained silicon steel sheets are mainly used as iron core materials for transformers and rotating equipment, and are required to have high magnetic flux density and small iron loss and magnetostriction as magnetic characteristics. In order to obtain a grain-oriented silicon steel sheet having excellent magnetic properties, it is important to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation.

【0003】かかる方向性けい素鋼板は、2次再結晶に
必要なインヒビター、例えばMnS, MnSe, AlN等を含む方
向性けい素鋼スラブを加熱して熱間圧延を行ったのち、
必要に応じて焼鈍を行い、1回あるいは中間焼鈍を挟む
2回以上の冷間圧延によって最終板厚とし、次いで脱炭
焼鈍を行ったのち、鋼板にMgO を主成分とする焼鈍分離
剤を塗布してから最終仕上げ焼鈍を行うことによって製
造される。そして、この方向性けい素鋼板の表面には、
特殊な場合を除いて、フォルステライト(Mg2SiO4)質絶
縁被膜(以下、単にフォルステライト絶縁被膜またはフ
ォルステライト被膜という)が形成されているのが普通
である。この被膜は表面の電気的絶縁だけでなく、その
低熱膨張性に起因する引張応力を鋼板に付与することに
より、鉄損さらには磁気歪をも効果的に改善する。
Such a grain-oriented silicon steel sheet is obtained by heating a grain-oriented silicon steel slab containing an inhibitor necessary for secondary recrystallization, such as MnS, MnSe, AlN, etc., and hot rolling it.
Annealing is performed as necessary, and cold rolling is performed once or twice or more with intervening intermediate annealing to obtain the final thickness, and then decarburization annealing is performed, and then an annealing separator containing MgO as a main component is applied to the steel sheet. Then, it is manufactured by performing final finish annealing. And on the surface of this grain-oriented silicon steel sheet,
Except for special cases, a forsterite (Mg 2 SiO 4 ) insulating film (hereinafter simply referred to as forsterite insulating film or forsterite film) is usually formed. This coating not only electrically insulates the surface, but also imparts tensile stress due to its low thermal expansion property to the steel sheet, thereby effectively improving iron loss and magnetostriction.

【0004】このフォルステライト被膜は仕上焼鈍にお
いて形成されるが、その被膜形成挙動は鋼中のMnS, MnS
e, AlN等のインヒビターの挙動に影響するため、優れる
磁気特性を得るために必須の過程である2次再結晶その
ものにも影響を及ぼす。また、形成されたフォルステラ
イト被膜は、2次再結晶が完了したあとには不用となる
インヒビター成分を被膜中に吸い上げて鋼を純化するこ
とによっても鋼板の磁気特性の向上に貢献する。従っ
て、このフォルステライト被膜形成過程を制御して被膜
を均一に生成させることは、優れた品質の方向性けい素
鋼板を得るうえで非常に重要である。
[0004] This forsterite film is formed by finish annealing, and its film forming behavior is based on MnS, MnS
e, Influences the behavior of inhibitors such as AlN, thus affecting the secondary recrystallization itself, which is an essential process for obtaining excellent magnetic properties. Further, the formed forsterite coating also contributes to the improvement of the magnetic properties of the steel sheet by absorbing the inhibitor component, which becomes unnecessary after the secondary recrystallization, into the coating to purify the steel. Therefore, it is very important to control the forsterite film formation process to uniformly form a film in order to obtain a grain-oriented silicon steel sheet of excellent quality.

【0005】また、当然のことながら形成されたフォル
ステライト被膜は外観が均一で欠陥のないこと、かつせ
ん断、打抜き及び曲げ加工等において被膜のはく離を生
じないようにするため、密着性に優れることが要求され
る。さらに、その表面は平滑で鉄心として積層した時
に、高い占績率を有することが要求とされる。
[0005] Naturally, the formed forsterite film has a uniform appearance and is free from defects, and has excellent adhesion in order to prevent peeling of the film during shearing, punching, bending and the like. Is required. Further, the surface thereof is required to be smooth and have a high occupation rate when laminated as an iron core.

【0006】かように製品品質に多大な影響を及ぼすフ
ォルステライト絶縁被膜は、一般に以下のような工程で
形成される。まず、所望の最終板厚に冷間圧延された方
向性けい素鋼板用の最終冷延板を、湿水素中で700 〜90
0 ℃の温度で連続焼鈍を行う。この焼鈍(脱炭焼鈍)に
より 冷間圧延後の組織を、最終仕上げ焼鈍において適正
な2次再結晶が起こるように1次再結晶させ、 最終仕上げ焼鈍における2次再結晶を完全に行わせ
るとともに、製品の磁気特性の時効劣化を防止するた
め、鋼中に0.01〜0.10wt%程度含まれる炭素を0.003 %
程度以下までに脱炭し、 鋼中Siの酸化によって、SiO2を含むサブスケールを
鋼板表層に生成させる。その後、MgO を主成分とする焼
鈍分離剤を鋼板上に塗布し、コイル状に巻取って還元あ
るいは非酸化性雰囲気にて2次再結晶焼鈍と純化焼鈍を
兼ねた最終仕上げ焼鈍を最高1200℃程度の温度で行うこ
とにより、主として以下の反応式で示される固相反応に
よってフォルステライト絶縁被膜を形成させるのであ
る。
The forsterite insulating coating, which has a great influence on the product quality, is generally formed by the following steps. First, the final cold-rolled sheet for grain-oriented silicon steel sheet cold-rolled to the desired final sheet thickness is heated to 700-90 in wet hydrogen.
Continuous annealing is performed at a temperature of 0 ° C. By this annealing (decarburization annealing), the structure after cold rolling is primary recrystallized so that proper secondary recrystallization occurs in the final finish annealing, and the secondary recrystallization in the final finish annealing is performed completely. In order to prevent aging deterioration of the magnetic properties of the product, 0.003% of carbon is contained in steel in the range of 0.01 to 0.10wt%.
It is decarburized to below a certain level and the subscale containing SiO 2 is generated on the surface layer of the steel sheet by the oxidation of Si in the steel. After that, an annealing separator containing MgO as the main component is applied to the steel sheet, wound into a coil and subjected to final re-annealing and purification annealing in a reducing or non-oxidizing atmosphere at a maximum of 1200 ° C. The forsterite insulating film is formed mainly by a solid-phase reaction represented by the following reaction formula by carrying out at about the temperature.

【数1】2MgO +SiO2→Mg2SiO4 [Equation 1] 2MgO + SiO 2 → Mg 2 SiO 4

【0007】このフォルステライト絶縁被膜は、1μm
前後の微細結晶が緻密に集積したセラミクッス被膜であ
り、上述の如く、脱炭焼鈍により鋼板表層に生成したSi
O2を含有するサブスケールを一方の原料物質として、そ
の鋼板上に生成させるものであるから、このサブスケー
ルの種類、量、分布等はフォルステライトの核生成や粒
成長挙動に関与するとともに被膜結晶粒の粒界や粒その
ものの強度にも影響を及ぼし、従って仕上げ焼鈍後の被
膜品質にも多大な影響を及ぼす。
This forsterite insulating coating is 1 μm
This is a ceramic coating film in which the front and rear fine crystals are densely integrated, and as described above, the Si formed on the surface layer of the steel sheet by decarburizing annealing.
Since the subscale containing O 2 is formed on the steel sheet as one of the raw materials, the type, amount, distribution, etc. of this subscale contribute to the nucleation and grain growth behavior of forsterite, and It also affects the grain boundaries of the crystal grains and the strength of the grains themselves, and thus has a great effect on the coating quality after finish annealing.

【0008】また、他方の原料物質であるMgO を主体と
する焼鈍分離剤は、水に懸濁したスラリーとして鋼板に
塗布されるため、乾燥させたのちも物理的に吸着したH2
O を保有するほか、一部が水和してMg(OH)2 に変化して
いる。そのため、仕上げ焼鈍中は800 ℃付近まで少量な
がらH2O を放出し続ける。このH2O により仕上げ焼鈍中
に鋼板表面は酸化される。この酸化もフォルステライト
の生成挙動に影響を及ぼすとともにインヒビターの挙動
にも影響を与え、この追加酸化が多いと磁気特性が劣化
する要因となる。このMgO が放出するH2O による酸化し
易さも、脱炭焼鈍で形成されたサブスケールの物性に大
きく影響される。また、当然ながら、焼鈍分離剤中に配
合されるMgO 以外の添加物も、たとえ添加量が少量であ
っても、被膜形成および2次再結晶過程に大きく影響す
る。
Further, the annealing separating agent mainly composed of MgO, which is the other raw material, is applied to the steel sheet as a slurry suspended in water, and therefore H 2 which is physically adsorbed even after being dried is used.
In addition to possessing O 2 , it is partially hydrated and converted to Mg (OH) 2 . Therefore, during the finish annealing, a small amount of H 2 O is continuously released up to around 800 ° C. This H 2 O oxidizes the steel sheet surface during finish annealing. This oxidation also affects the behavior of forsterite as well as the behavior of the inhibitor, and if this additional oxidation is large, it becomes a factor that deteriorates the magnetic properties. The easiness of oxidation by H 2 O released from this MgO is also greatly affected by the physical properties of the subscale formed by decarburization annealing. In addition, as a matter of course, additives other than MgO 2 mixed in the annealing separator have a great influence on the film formation and the secondary recrystallization process even if the amount added is small.

【0009】特にインヒビター成分としてAlN を含む方
向性けい素鋼板においては、このサブスケールの物性が
仕上げ焼鈍中の脱窒挙動あるいは焼鈍雰囲気からの侵窒
挙動に大きく影響を及ぼし、従って磁気特性にも大きく
影響を与える。すなわち、脱窒が進行し過ぎるとインヒ
ビターの抑制力は弱まり、十分に2次再結晶せず磁気特
性の劣化をもたらす。逆に侵窒が進行し過ぎるとインヒ
ビターの抑制力が過剰となって2次再結晶したとして
も、正常な2次再結晶が生じにくくなり、この場合も磁
気特性の劣化が生じる。このように、インヒビターとし
てAlN を用いる場合には、高磁束密度が得られる反面、
2 次再結晶が不安定になる傾向があり、その主要な原因
のひとつとしてサブスケールの物性のばらつきが影響し
ていると考えられている。
Particularly in grain-oriented silicon steel sheets containing AlN as an inhibitor component, the physical properties of this subscale have a great influence on the denitrification behavior during finish annealing or the nitriding behavior from the annealing atmosphere, and therefore also on the magnetic properties. Have a great impact. That is, if denitrification proceeds too much, the inhibitory force of the inhibitor weakens and secondary recrystallization does not occur sufficiently, resulting in deterioration of magnetic properties. On the contrary, if the nitriding progresses too much, even if the inhibitory force of the inhibitor becomes excessive and secondary recrystallization occurs, normal secondary recrystallization becomes difficult to occur, and also in this case, the magnetic characteristics deteriorate. Thus, when AlN is used as the inhibitor, a high magnetic flux density can be obtained, but
Secondary recrystallization tends to become unstable, and it is thought that one of the main causes is the variation in the physical properties of the subscale.

【0010】以上述べたように、脱炭焼鈍において鋼板
表層に形成されるサブスケールの物性を制御すること
は、優れたフォルステライト質絶縁被膜を適切な温度で
均一に形成させるために、また、2 次再結晶を正常に発
現させるために欠かせない技術であり、方向性けい素鋼
板の製造技術の重要な項目の一つである。
As described above, controlling the physical properties of the subscale formed on the surface layer of the steel sheet during decarburization annealing is performed in order to form an excellent forsterite insulating coating uniformly at an appropriate temperature. This technology is essential for the normal development of secondary recrystallization and is one of the important items in the production technology of grain-oriented silicon steel sheets.

【0011】これまで方向性けい素鋼板の脱炭焼鈍に関
しては、例えば、特開昭59−185725号公報に開示されて
いるように、脱炭焼鈍後鋼板の酸素含有量を制御する方
法、特公昭57−1575号公報に開示されているように、雰
囲気の酸化度を脱炭焼鈍の前部領域では0.15以上とし、
引き続く後部領域の酸化度を0.75以下でかつ前部領域よ
りも低くする方法、特開平2−240215号公報や特公昭54
−24686 号公報に示されているように脱炭焼鈍後に非酸
化性雰囲気中で850 〜1050℃の熱処理を行う方法、ある
いは特公平3−57167 号公報に開示されているように、
脱炭焼鈍後の冷却を750 ℃以下の温度域では酸化度を0.
008 以下として冷却する方法等が知られている。
Regarding decarburization annealing of grain-oriented silicon steel sheets, a method for controlling the oxygen content of the steel sheet after decarburization annealing, as disclosed in, for example, JP-A-59-185725, has been disclosed. As disclosed in Japanese Patent Publication No. 57-1575, the degree of oxidation of the atmosphere is set to 0.15 or more in the front region of decarburization annealing,
A method in which the degree of oxidation in the subsequent rear region is 0.75 or less and lower than that in the front region is disclosed in JP-A-2-240215 and JP-B-54.
No. 24686, a method of performing heat treatment at 850 to 1050 ° C. in a non-oxidizing atmosphere after decarburization annealing, or as disclosed in Japanese Patent Publication No. 3-57167,
When the cooling after decarburization annealing is performed in the temperature range of 750 ° C or less, the degree of oxidation is 0.
A method of cooling as 008 below is known.

【0012】また、上述した脱炭焼鈍に関する提案とは
別に、磁気特性の向上を目的に焼鈍分離剤中に配合され
るMgO 以外の添加物として、特公昭54−14567 号公報に
開示されているように、Cu, Sn, Ni, Coあるいはそれら
を含む化合物を0.01〜15重量部(金属元素として)添加
する方法、特開昭60−243282号公報に開示されているよ
うにTiO2またはTiO を0.5 〜10重量部とSrS, SnS, CuS
を0.1 〜5.0 重量部、またはそれに加えて硝酸アンチモ
ンを0.05〜2.0 重量部添加する方法、特開昭61−79780
号公報に示されているように、コロイド状のSbもしくは
Sbを含む化合物またはコロイド状のSnもしくはSnを含む
化合物を添加する方法等が知られている。
In addition to the above-mentioned proposal concerning decarburization annealing, it is disclosed in Japanese Patent Publication No. 54-14567 as an additive other than MgO to be incorporated in an annealing separator for the purpose of improving magnetic properties. As described above, a method of adding 0.01 to 15 parts by weight (as a metal element) of Cu, Sn, Ni, Co or a compound containing them, TiO 2 or TiO 2 as disclosed in JP-A-60-243282. 0.5-10 parts by weight and SrS, SnS, CuS
0.1 to 5.0 parts by weight, or 0.05 to 2.0 parts by weight of antimony nitrate in addition thereto.
As shown in Japanese Patent Publication, colloidal Sb or
A method of adding a compound containing Sb or colloidal Sn or a compound containing Sn is known.

【0013】一方、被膜特性の改善に関しては焼鈍分離
剤中に主成分であるMgO に加えてTiO2等のTi化合物を含
有させる技術が数多く開示されている。例えば特公昭51
−12451 号公報では、Mg化合物100 重量部に対しTi化合
物が2〜40重量部となるように配合することにより、い
ずれもフォルステライト被膜の均一性と密着性が向上す
る方法が開示されている。また、特公昭56−15466 号公
報では焼鈍分離剤に用いるTiO2を微細粒とすることによ
り、Ti化合物からなる黒点状付着物を消滅させる方法が
開示されている。さらに、特公昭57−32716 号公報で
は、フォルステライト絶縁被膜を密着性が良くかつ優れ
た均一性をもって形成させる方法として、Sr化合物をSr
換算で0.1 〜10重量部配合する技術が提案されている。
On the other hand, with respect to the improvement of coating properties, many techniques have been disclosed in which an annealing separator contains a Ti compound such as TiO 2 in addition to MgO which is a main component. For example, Japanese Patent Publication Sho 51
No. 12451 discloses a method of improving uniformity and adhesion of a forsterite coating by adding 2 to 40 parts by weight of a Ti compound to 100 parts by weight of a Mg compound. . Further, Japanese Patent Publication No. 56-15466 discloses a method of eliminating black dot deposits made of a Ti compound by making fine particles of TiO 2 used as an annealing separator. Further, in Japanese Patent Publication No. 57-32716, a method for forming a forsterite insulating coating with good adhesion and excellent uniformity is described using Sr compounds as Sr compounds.
A technique of blending 0.1 to 10 parts by weight in conversion has been proposed.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記の
脱炭焼鈍時の雰囲気制御法は、いずれも一定の効果は認
められるとはいえ必ずしも十分なものではなく、ストリ
ップの幅方向あるいは長手方向で磁気特性やフォルステ
ライト絶縁被膜の密着性、厚みあるいは均一性などが劣
化する場合があり、優れた品質を有する製品を安定生産
し、さらなる歩留まり向上を図るためには、いまだ改善
の余地を残すものであった。特に前述したように、AlN
をインヒビターとして利用することにより高磁束密度の
方向性けい素鋼板を製造する場合には、2次再結晶が不
安定になって磁気特性がばらつく傾向が往々にしてみら
れた。
However, the above-mentioned atmosphere control method during decarburization annealing is not always sufficient although certain effects can be recognized, and the magnetic field is controlled in the width direction or the longitudinal direction of the strip. The characteristics, adhesion, thickness, or uniformity of the forsterite insulating coating may deteriorate, and there is still room for improvement in order to stably produce products with excellent quality and further improve yield. there were. In particular, as mentioned above, AlN
When a grain-oriented silicon steel sheet having a high magnetic flux density is produced by utilizing γ as an inhibitor, secondary recrystallization is often unstable and magnetic properties tend to vary.

【0015】また、上記焼鈍分離剤中に配合されるMgO
以外の添加物についても、いずれもそれなりの効果は認
められるとはいえ必ずしも十分なものではなかった。さ
らにいえば、フォルステライト絶縁被膜は脱炭焼鈍時に
生成するサブスケールを一方の原料として、またMgO を
主体とする焼鈍分離剤を他方の原料として生成するもの
であるから、その両者がフォルステライト絶縁被膜の品
質のばらつき及び磁気特性のばらつきに大きく影響する
と思われるが、その観点から、サブスケールと焼鈍分離
剤との相互関係を考慮して、それらを同時に検討した例
はなかった。
In addition, the MgO compounded in the annealing separator is
Although the effects of each of the additives other than those mentioned above were recognized, they were not always sufficient. Furthermore, since the forsterite insulation coating forms the subscale produced during decarburization annealing as one raw material and the annealing separator mainly composed of MgO as the other raw material, both of them are forsterite insulating coatings. Although it seems that it has a great influence on the variation of coating quality and the variation of magnetic properties, from this point of view, there was no example in which they were studied at the same time in consideration of the interrelationship between the subscale and the annealing separator.

【0016】この本発明は、上記問題点を有利に解決し
ようとするものであり、コイルの全幅及び全長にわたっ
て欠陥のない均一で密着性に優れたフォルステライト絶
縁被膜を有し、かつ磁気特性にも優れる方向性けい素鋼
板を得るための製造方法を提案することを目的とする。
The present invention is intended to advantageously solve the above-mentioned problems, and has a forsterite insulating coating film which is uniform and has excellent adhesion without defects over the entire width and the entire length of the coil, and has excellent magnetic properties. Another object is to propose a manufacturing method for obtaining an excellent grain-oriented silicon steel sheet.

【0017】[0017]

【課題を解決するための手段】前述したように、フォル
ステライト絶縁被膜は脱炭焼鈍時に生成するサブスケー
ルを一方の原料として、またMgO を主体とする焼鈍分離
剤を他方の原料として生成するものであるから、それら
両者がフォルステライト絶縁被膜の品質のばらつき及び
磁気特性のばらつきに大きく影響すると考えられる。発
明者らは、この観点に基づき、ストリップにおけるフォ
ルステライト絶縁被膜の品質のばらつき及び磁気特性の
ばらつきの原因を詳細に調査したところ、脱炭焼鈍にお
いて鋼板表層に生成するサブスケールの量及び質のばら
つきが大きく影響していることを見いだした。このこと
は、ストリップの幅方向あるいは長手方向において、サ
ブスケール形成反応が必ずしも均一には起こっていない
ことを意味する。
[Means for Solving the Problems] As described above, the forsterite insulating coating forms the subscale produced during decarburization annealing as one of the raw materials and the annealing separator mainly composed of MgO as the other raw material. Therefore, it is considered that both of them greatly influence the variation in quality and the variation in magnetic characteristics of the forsterite insulating coating. Based on this viewpoint, the inventors have investigated in detail the causes of the variations in the quality and magnetic properties of the forsterite insulating coating in the strip, and as a result, the amount and quality of the subscale generated in the steel sheet surface layer during decarburization annealing I found that the variation had a great influence. This means that the subscale formation reaction does not necessarily occur uniformly in the width direction or the length direction of the strip.

【0018】この原因について更に調査を進めたとこ
ろ、特に脱炭焼鈍の昇温過程における雰囲気の酸化性の
変動が関係していることを見いだした。さらにMgO に加
えて焼鈍分離剤中に配合する添加物を検討したところ、
TiO2, SnO2, Sr化合物の複合添加が磁気特性および被膜
特性の更なる向上に効果があることを見いだした。すな
わち、いかにサブスケールを均一に生成させても、鋼板
をコイル状に巻取って最終仕上げ焼鈍する以上、コイル
の内・中・外巻では磁気特性・被膜特性にある程度の差
が生じてしまう。その差を抑制し、さらなる特性の向上
を図るのにこれらの添加物が有効であることがわかっ
た。この発明は以上の知見にもとづいてなされたもので
あり、その要旨とするところは以下の通りである。
As a result of further investigation on the cause of this, it was found that the fluctuation of the oxidizing property of the atmosphere was involved especially in the temperature rising process of decarburization annealing. In addition to MgO, we investigated the additives to be added to the annealing separator.
It was found that the combined addition of TiO 2 , SnO 2 , and Sr compounds is effective in further improving the magnetic properties and coating properties. That is, no matter how evenly the subscale is generated, as long as the steel sheet is wound into a coil and subjected to final finish annealing, there will be some difference in magnetic properties and coating properties between the inner, middle and outer windings of the coil. It was found that these additives are effective in suppressing the difference and further improving the characteristics. The present invention has been made based on the above findings, and the gist thereof is as follows.

【0019】sol Al:0.01〜0.05wt% および、N:0.00
4 〜0.012 wt% を含有する方向性けい素鋼板用スラブを
素材として、熱間圧延し、その後1回または中間焼鈍を
挟む2回以上の冷間圧延を行い、ついで、脱炭焼鈍を施
したのち、MgO を主体とする焼鈍分離材を塗布してか
ら、最終仕上げ焼鈍を施す一連の工程により方向性けい
素鋼板を製造するにあたり、脱炭焼鈍工程における雰囲
気中の水素分圧に対する水蒸気分圧の比:P(H2O)/P
(H2)の値を、その均熱過程で0.70未満、その昇温過程で
は上記均熱熱過程より低い値とし、焼鈍分離剤が、MgO
:100 重量部に対して、TiO2を0.5 〜15重量部、SnO2
を0.1 〜10重量部およびSr化合物をSr換算で0.1 〜10重
量部のそれぞれの範囲内で複合添加したものであること
を特徴とする磁気特性・被膜特性に優れる方向性けい素
鋼板の製造方法である。
Sol Al: 0.01 to 0.05 wt% and N: 0.00
Using a slab for grain-oriented silicon steel sheet containing 4 to 0.012 wt% as a raw material, hot rolling was performed, and then cold rolling was performed once or twice or more with intermediate annealing sandwiched, and then decarburization annealed. After that, in order to manufacture the grain-oriented silicon steel sheet by a series of processes in which the annealing separator mainly composed of MgO is applied and then the final finish annealing is performed, the partial pressure of water vapor relative to the hydrogen partial pressure in the atmosphere in the decarburization annealing process is Ratio: P (H 2 O) / P
The value of (H 2 ) is less than 0.70 in the soaking process, and is lower than the soaking process in the heating process, and the annealing separator is
: 0.5 to 15 parts by weight of TiO 2 with respect to 100 parts by weight, SnO 2
Of 0.1 to 10 parts by weight and Sr compound in the range of 0.1 to 10 parts by weight in terms of Sr in the respective ranges, and a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and coating properties. Is.

【0020】[0020]

【発明の実施の形態】さて、発明者らは、脱炭焼鈍にお
ける雰囲気の酸化性、すなわち、水素分圧に対する水蒸
気分圧の比:P(H2O) /P(H2)(以下、単にP(H2O) /
P(H2)で表わす)と焼鈍分離剤中のMgO に加える添加物
が被膜外観、密着性および磁気特性ならびにそれらの特
性の均一性に及ぼす影響について、詳細に調査した。こ
れらの調査結果を以下に列記する。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention will now describe the oxidizing property of the atmosphere during decarburization annealing, that is, the ratio of the partial pressure of water vapor to the partial pressure of hydrogen: P (H 2 O) / P (H 2 ) (hereinafter Simply P (H 2 O) /
The effects of P (represented by P (H 2 )) and additives added to MgO 2 in the annealing separator on the film appearance, adhesion and magnetic properties and the uniformity of those properties were investigated in detail. The results of these surveys are listed below.

【0021】実験1 C:0.07wt%(以下単に%で示す)、Si:3.30%、Mn:
0.069 %、Se:0.020%、sol Al:0.025 %、N:0.008
5%、およびSb:0.025 %を含有し、残部は実質的にFe
の組成からなる複数の方向性けい素鋼板用スラブを、そ
れぞれ熱間圧延したのち、1000℃の温度で均一化焼鈍を
行ってから、1000℃の温度で2分間の中間焼鈍を挟む2
回の冷間圧延によって最終冷延板厚:0.23mmとした。つ
いで、これらの冷延板を脱脂して表面を清浄化したの
ち、H2−H2O −N2雰囲気中にて840℃の温度で2分間の
脱炭焼鈍を施した。
Experiment 1 C: 0.07 wt% (hereinafter simply expressed as%), Si: 3.30%, Mn:
0.069%, Se: 0.020%, sol Al: 0.025%, N: 0.008
5%, and Sb: 0.025%, with the balance being essentially Fe.
Each of the slabs for grain-oriented silicon steel sheets having the composition of No. 1 is hot-rolled, homogenized at 1000 ° C, and then annealed for 2 minutes at 1000 ° C. 2
Final cold-rolled sheet thickness: 0.23 mm was obtained by performing cold rolling once. Then, these cold-rolled sheets were degreased to clean their surfaces, and then decarburized and annealed at a temperature of 840 ° C. for 2 minutes in an H 2 —H 2 O—N 2 atmosphere.

【0022】この脱炭焼鈍の際、昇温過程および均熱過
程での雰囲気の酸化性を露点とH2ガス濃度の調整によっ
て、P(H2O) /P(H2)が0.2 〜0.8 の範囲でそれぞれ独
自に変化させた。
During the decarburization annealing, the P (H 2 O) / P (H 2 ) of 0.2 to 0.8 can be adjusted by adjusting the dew point and the H 2 gas concentration of the oxidizing property of the atmosphere during the temperature rising process and the soaking process. Each range was changed independently.

【0023】その後、MgO にTiO2を6%配合した焼鈍分
離剤をスラリー状にしてそれぞれの脱炭焼鈍板コイルに
塗布し乾燥させたのち、H2雰囲気中で1200℃・10時間の
2次再結晶・純化焼鈍(仕上げ焼鈍)に供した。
Then, an annealing separator containing 6% of TiO 2 mixed with MgO was made into a slurry and applied to each decarburized annealed plate coil and dried, and then the secondary separation was conducted at 1200 ° C. for 10 hours in a H 2 atmosphere. It was subjected to recrystallization / purification annealing (finish annealing).

【0024】かくして得られた各コイル内・中・外巻部
のフォルステライト被膜の外観および均一性を評価する
とともに、磁気特性(磁束密度B8 、鉄損W17 50)を
調査した。
[0024] Thus with assessing the appearance and uniformity of the forsterite film in in-and outdoor winding portion coils obtained were investigated magnetic properties (magnetic flux density B 8, iron loss W 17/50).

【0025】フォルステライト被膜の評価結果を図1〜
3に示す。ここで図1はコイル内巻部、図2はコイル中
巻部および図3はコイル外巻部におけるそれぞれ脱炭焼
鈍時の昇温過程および均熱過程でのP(H2O) /P(H2)と
仕上げ焼鈍後のフォルステライト被膜の外観との関係を
示すグラフである。
The evaluation results of the forsterite coating are shown in FIG.
3 is shown. Here, FIG. 1 is an inner coil winding portion, FIG. 2 is an inner coil winding portion, and FIG. 3 is an outer coil winding portion. P (H 2 O) / P (P (H 2 O) / P ( 3 is a graph showing the relationship between H 2 ) and the appearance of the forsterite coating after finish annealing.

【0026】図1〜3から明らかなように、脱炭焼鈍時
の均熱過程でのP(H2O) /P(H2)の値が0.7 未満で、昇
温過程でのP(H2O) /P(H2)の値が均熱過程より低い場
合に、光沢のある美麗な灰色の均一な被膜が得られてい
る。ただし、コイル層間の雰囲気の流通性の悪いと考え
られるコイル中巻部の被膜の均一性は、コイルの内巻部
および外巻部に比しやや劣っている。一方、均熱過程で
のP(H2O) /P(H2)の値を0.7 以上とすると、昇温過程
でのP(H2O) /P(H2)の値の如何にかかわらず優れる被
膜特性は得られない。
As is clear from FIGS. 1 to 3, the value of P (H 2 O) / P (H 2 ) in the soaking process during decarburization annealing is less than 0.7, and P (H 2 When the value of 2 O) / P (H 2 ) is lower than that in the soaking process, a glossy, beautiful gray uniform coating is obtained. However, the uniformity of the coating film in the coil middle winding portion, which is considered to have poor circulation of the atmosphere between the coil layers, is slightly inferior to the inner winding portion and outer winding portion of the coil. On the other hand, when the value of P in the soaking process (H 2 O) / P ( H 2) and 0.7 or more, independent of the value of P in the heating process (H 2 O) / P ( H 2) Therefore, excellent coating properties cannot be obtained.

【0027】ついで、磁気特性の調査結果の一例を表1
に示す。
Next, an example of the results of investigation of magnetic properties is shown in Table 1.
Shown in

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、均熱過程でのP
(H2O) /P(H2)の値が0.7 未満で、かつ、昇温過程での
P(H2O) /P(H2)が均熱過程より低い場合にのみ良好な
磁気特性が得られている。しかし、コイルの中巻部の磁
気特性は内巻部及び外巻部より若干劣っている。
As is clear from Table 1, P in the soaking process
Good magnetic properties only when the value of (H 2 O) / P (H 2 ) is less than 0.7 and P (H 2 O) / P (H 2 ) in the heating process is lower than in the soaking process. Has been obtained. However, the magnetic characteristics of the middle winding part of the coil are slightly inferior to those of the inner winding part and the outer winding part.

【0030】ここに、けい素鋼板の表面に生成する酸化
物の平衡状態図を図4に示す。この図4によると、P(H
2O) /P(H2)=0.7 は明らかにFeO の生成域である。よ
って、このような条件のもとで形成されるサブスケール
は保護性が悪くて仕上焼鈍中にMgO が放出するH2O によ
る酸化が激しく、良好なフォルステライト被膜が得られ
なくなるものと考えられる。
FIG. 4 shows an equilibrium phase diagram of oxides formed on the surface of a silicon steel sheet. According to this FIG. 4, P (H
2 O) / P (H 2 ) = 0.7 is clearly the FeO 2 production region. Therefore, it is considered that the subscales formed under such conditions have poor protection properties and are heavily oxidized by H 2 O released by MgO during finish annealing, and a good forsterite coating cannot be obtained. .

【0031】なお、上記したように均熱過程より昇温過
程のP(H2O) /P(H2)を低くすることによってフォルス
テライト被膜の品質が向上する詳細な理由は明らかでな
いが、昇温過程で生成するサブスケールが均熱過程で生
成するサブスケールの保護性を高めるためと考えられ
る。
The detailed reason why the quality of the forsterite coating is improved by lowering P (H 2 O) / P (H 2 ) in the temperature rising process than in the soaking process is not clear, but It is considered that the subscale generated during the temperature raising process enhances the protection of the subscale generated during the soaking process.

【0032】実験2 コイル中巻部の被膜特性や磁気特性が内巻部および外巻
部に比し劣ることから、それらの向上をはかるため、Mg
O を主体とする焼鈍分離剤へ添加する添加物の磁気特性
に及ぼす影響を調査した。
Experiment 2 Since the coating properties and magnetic properties of the middle winding part of the coil are inferior to those of the inner winding part and the outer winding part, Mg
The effects of the additives added to the O 2 -based annealing separator on the magnetic properties were investigated.

【0033】C:0.065 %、Si:3.35%、Mn:0.072
%、Se:0.018 %、sol Al:0.023 %、N:0.0080%、
およびSb:0.026 %を含有し、残部は実質的にFeの組成
からな複数の方向性けい素鋼板用スラブを、それぞれ熱
間圧延したのち、1000℃の温度で2分間の中間焼鈍を挟
む2回の冷間圧延によって最終冷延板厚:0.23mmとし
た。ついで、これらの冷延板を脱脂して表面を清浄化し
たのち、昇温過程のP(H2O) /P(H2):0.4 、均熱過程
のP(H2O) /P(H2):0.5 の条件のH2−H2O −N2雰囲気
中にて、840 ℃の温度で2分間の脱炭焼鈍を施した。
C: 0.065%, Si: 3.35%, Mn: 0.072
%, Se: 0.018%, sol Al: 0.023%, N: 0.0080%,
And Sb: 0.026%, and the balance is composed of a plurality of slabs for grain-oriented silicon steel sheets, each of which has a substantially Fe composition. Each slab is hot-rolled, and then an intermediate annealing is performed at a temperature of 1000 ° C. for 2 minutes. Final cold-rolled sheet thickness: 0.23 mm was obtained by performing cold rolling once. Then, after degreasing these cold-rolled sheets to clean the surface, P (H 2 O) / P (H 2 ): 0.4 in the temperature rising process, P (H 2 O) / P ( H 2 ): In a H 2 —H 2 O—N 2 atmosphere of 0.5 condition, decarburization annealing was performed at a temperature of 840 ° C. for 2 minutes.

【0034】その後、MgO :100 重量部に対して、TiO2
を0〜20重量部、SnO2を0〜15重量部、Sr化合物として
Sr(OH)2 ・8H2O をSr換算で0〜15重量部のそれぞれの
範囲で変化させて配合した焼鈍分離剤をスラリーとして
脱炭焼鈍板コイルにそれぞれ塗布し乾燥させたのち、最
終仕上焼鈍として、25%N2含有のH2気流中で15℃/hの
昇温速度で1200℃の温度までの昇温に続いてH2雰囲気中
で1200℃・5時間の焼鈍を行った。しかるのち、りん酸
マグネシウムとコロイダルシリカを主成分とするコーテ
ィングを施した。
Then, TiO 2 was added to 100 parts by weight of MgO.
As 0 to 20 parts by weight, SnO 2 as 0 to 15 parts by weight, as Sr compound
Annealing separating agent mixed by changing Sr (OH) 2 .8H 2 O in the range of 0 to 15 parts by weight in terms of Sr is applied as slurry to the decarburized annealed plate coil, dried, and finally finished. As the annealing, the temperature was raised to 1200 ° C. at a temperature rising rate of 15 ° C./h in an H 2 stream containing 25% N 2, and subsequently, annealing was performed at 1200 ° C. for 5 hours in an H 2 atmosphere. After that, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0035】かくして得られた各製品コイルの内巻部、
中巻部および外巻部について、磁束密度(B8)、鉄損(W
17/50 ) 、被膜の曲げ密着性および被膜の外観などにつ
いて調査した。
Inner winding part of each product coil thus obtained,
Magnetic flux density (B 8 ) and iron loss (W
17/50 ), and the bending adhesion of the coating and the appearance of the coating were investigated.

【0036】なお、被膜の曲げ密着性は5mm間隔の種々
の径を有する丸棒に試験片を巻き付け、被膜がはく離し
ない最小径を測定したものである。これらの結果を表2
〜4に示す。
The bending adhesion of the coating is measured by winding a test piece around a round bar having various diameters at intervals of 5 mm and measuring the minimum diameter at which the coating does not peel. Table 2 shows these results.
~ 4.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】ここで、表2はTiO2の添加量を6重量部と
一定にした場合、表3はSnO2の添加量を5重量部と一定
にした場合、表4はSr(OH)2 ・8H2O の添加量をSr換算
で5重量部と一定にした場合のものである。
[0040] Here, Table 2 if you constant at 6 parts by weight the amount of TiO 2, Table 3 if you constant at 5 parts by weight the amount of SnO 2, Table 4 Sr (OH) 2・ 8H 2 O is added in a constant amount of 5 parts by weight in terms of Sr.

【0041】これらの表から明らかなように、MgO :10
0 重量部に対して、TiO2を0.5 〜15重量部の範囲、SnO2
を0.1 〜10重量部の範囲、Sr化合物をSr換算で0.1 〜10
重量部の範囲で複合添加した焼鈍分離剤を、均熱過程の
P(H2O) /P(H2)が0.70未満で、かつ、昇温過程のP(H
2O) /P(H2)が均熱過程のそれよりも低い条件で脱炭焼
鈍を行って生成したサブスケールを有する鋼板に塗布し
て仕上げ焼鈍を実施することで、被膜特性および磁気特
性に極めて優れる製品がコイル全長にわたって得られる
ことが分る。
As is clear from these tables, MgO: 10
0 to 15 parts by weight of TiO 2 in the range of 0.5 to 15 parts by weight, SnO 2
In the range of 0.1 to 10 parts by weight, and Sr compounds in the range of 0.1 to 10 in terms of Sr.
In the annealing separator which was added in the range of parts by weight, P (H 2 O) / P (H 2 ) in the soaking process was less than 0.70, and P (H 2
2 O) / P (H 2 ) is applied to a steel sheet having a subscale produced by decarburizing annealing under conditions where the temperature is lower than that in the soaking process, and finish annealing is performed to obtain coating properties and magnetic properties. It can be seen that an extremely excellent product can be obtained over the entire length of the coil.

【0042】特に、雰囲気の流通性の悪いコイル中巻部
での被膜、磁気特性ともに改善効果が大きいことがわか
る。また、コイル外巻部および内巻部では、添加物を上
記範囲内で複合添加した焼鈍分離剤を塗布したものは、
そうでないものに比し、被膜特性と磁束密度(B8)は同
等であるものの鉄損が著しく改善されている。
In particular, it can be seen that the effect of improving both the coating and magnetic properties in the coil middle winding portion where the atmosphere has poor flowability is great. Further, in the coil outer winding portion and the inner winding portion, those coated with the annealing separator which is a composite addition of additives within the above range,
The iron loss is significantly improved, although the coating properties and the magnetic flux density (B 8 ) are the same, as compared with those that are not.

【0043】このように、最終仕上げ焼鈍時の雰囲気の
流通性が悪いコイル中巻部で被膜特性および磁気特性
(磁束密度、鉄損とも)が大きく改善されるのは、焼鈍
分離剤中の添加物であるTiO2, SnO2およびSr化合物の3
者が共存することにより、被膜形成過程が大きく変化
し、それを反映して2次再結晶過程も変化することによ
るものと考えられる。
As described above, the coating properties and magnetic properties (both magnetic flux density and iron loss) are greatly improved in the coil middle winding portion where the atmosphere does not flow well during final finish annealing. Of TiO 2 , SnO 2 and Sr compounds
It is conceivable that the coexistence of a person causes a large change in the film formation process, and the secondary recrystallization process also changes due to the change.

【0044】これらの現象に関する2,3の調査結果を
以下に記す。MgO :100 重量部、TiO2:6重量部、Sn
O2:5重量部およびSr化合物をSr換算で:2重量部の組
成になる焼鈍分離剤を用いて仕上げ焼鈍を行ったとき
の、仕上げ焼鈍過程でのSn分析結果を図5に示す。図5
(a) は温度と被膜付き鋼板のSn含有量との関係、図5
(b) は温度と鋼中のSn含有量との関係のグラフである。
The results of a few investigations relating to these phenomena are described below. MgO: 100 parts by weight, TiO 2 : 6 parts by weight, Sn
FIG. 5 shows Sn analysis results in the finish annealing process when finish annealing was performed using an annealing separator having a composition of O 2 : 5 parts by weight and Sr compound in terms of Sr: 2 parts by weight. FIG.
(a) is the relationship between the temperature and the Sn content of the coated steel sheet, Fig. 5
(b) is a graph of the relationship between temperature and Sn content in steel.

【0045】これらの図から明らかなように、仕上げ焼
鈍中にSnO2が分解してSnが鋼中に侵入していくことがわ
かる。この時、当然のことながらSnO2の分解によって酸
素が放出されてコイル層間の雰囲気に影響を及ぼすこと
が考えられる。
As can be seen from these figures, SnO 2 decomposes during finish annealing and Sn penetrates into the steel. At this time, of course, it is considered that oxygen is released due to the decomposition of SnO 2 and affects the atmosphere between the coil layers.

【0046】つぎに、焼鈍分離剤として、 A---MgO:100 重量部に対してTiO2:6重量部添加(こ
の発明に不適合) B---MgO:100 重量部に対してTiO2:6重量部、SnO2
3重量部およびSr化合物としてSr(OH)2 ・8H2OをSr換算
で:2重量部複合添加(この発明に適合) の2種類をそれぞれ脱炭焼鈍板に塗布し、仕上げ焼鈍中
に試料を引きだして、各温度での鋼板表面の蛍光X線分
析(酸素)測定を行った。これらの測定結果を図6に示
す。また、図7および図8に仕上焼鈍中900 ℃および10
50℃の温度での鋼板表面における反射赤外吸収スペクト
ルを測定した結果を示す。
Next, as an annealing separator, TiO 2 : 6 parts by weight was added to A --- MgO: 100 parts by weight (incompatible with the present invention) B --- MgO: 100 parts by weight TiO 2 : 6 parts by weight, SnO 2 :
Two parts of 3 parts by weight and Sr (OH) 2 .8H 2 O as Sr compound in terms of Sr: 2 parts by weight composite addition (conforming to this invention) were applied to the decarburized annealed plate respectively, and the sample was subjected to finish annealing. Was taken out, and fluorescent X-ray analysis (oxygen) measurement of the steel plate surface at each temperature was performed. The results of these measurements are shown in FIG. 7 and 8 show that 900 ° C and 10 ° C during finish annealing.
The result of having measured the reflection infrared absorption spectrum in the steel plate surface in the temperature of 50 degreeC is shown.

【0047】これらの図から、焼鈍分離剤にAを用いた
場合に対しBを用いた場合では、2次再結晶開始前の95
0 ℃以下の温度では被膜(オリビン)の形成が抑制され
ているが、2次再結晶が進行中あるいは進行した975 ℃
以上の温度では逆に被膜(フォルステライト)の形成が
促進されていることがわかるとともに、焼鈍分離にTiO2
を単独で添加したものとTiO2,SnO2およびSr化合物を複
合添加したものとでは被膜の形成状況が明らかに異なる
ことを示している。
From these figures, in the case of using B as compared with the case of using A as the annealing separator, it was found that 95% before the start of secondary recrystallization.
Formation of the film (olivine) is suppressed at temperatures below 0 ° C, but secondary recrystallization is in progress or has progressed at 975 ° C.
On the contrary, it was found that the formation of the coating (forsterite) was promoted at the above temperature, and TiO 2
Formation conditions of the film indicates a different apparent in what was added in combination have been added and the TiO 2, SnO 2 and Sr compound alone.

【0048】また、MgO を主体とする焼鈍分離剤にTi
O2、SnO2およびSr化合物の3者が共存した場合に磁気特
性(特に鉄損)が改善される理由を調査するため、上記
の焼鈍分離剤AおよびBをそれぞれ脱炭焼鈍板に塗布
し、仕上げ焼鈍を行った製品板について、1.7(T)・50Hz
における直流磁化鉄損 (Wh17/50 ) すなわちヒステリシ
ス損を測定した。それらの結果を図9に示す。
Further, as an annealing separator mainly composed of MgO, Ti
In order to investigate the reason why the magnetic properties (especially iron loss) are improved when O 3 , SnO 2 and Sr compounds coexist, the above annealing separators A and B were applied to decarburized annealed sheets, respectively. , 1.7 (T) ・ 50Hz for the product sheet after finish annealing
DC magnetization iron loss (Wh 17/50 ), that is, hysteresis loss at was measured. The results are shown in FIG.

【0049】図9は、焼鈍分離剤にA(TiO2単独添加)
とB(TiO2、SnO2およびSr化合物の複合添加)とをそれ
ぞれ使用した場合の、磁束密度(B8)とヒステリシス損
(Wh 17/50 )との関係を示すグラフである。
FIG. 9 shows that the annealing separator is A (TiO 2).Two(Single addition)
And B (TiOTwo, SnOTwoAnd Sr compound combined addition)
Magnetic flux density (B8) And hysteresis loss
 (Wh 17/50) Is a graph showing the relationship with.

【0050】この図から、焼鈍分離剤にBを使用した場
合はAを使用した場合に比し、磁束密度(B8)が同等の
値を示していてもヒステリシス損が低い値を示している
ことがわかる。したがって、焼鈍分離剤中にTiO2、SnO2
およびSr化合物を複合添加した場合の磁気特性の改善効
果はヒステリシス損の減少が大きく寄与しているものと
考えられる。
From this figure, when B is used as the annealing separator, the hysteresis loss is low as compared with the case where A is used, even though the magnetic flux density (B 8 ) shows the same value. I understand. Therefore, TiO 2 , SnO 2
It is considered that the decrease in hysteresis loss largely contributes to the effect of improving the magnetic properties when the alloy and the Sr compound are added in combination.

【0051】実験3 さらに、この発明に適合する条件で製造した場合、すな
わち、均熱過程のP(H 2O) /P(H2)が0.70未満で、か
つ、昇温過程のP(H2O) /P(H2)が均熱過程のそれより
も低い条件で脱炭焼鈍を行ってサブスケールを生成させ
た鋼板に、MgO を主成分とする焼鈍分離剤中に添加物と
してTiO2、SnO2およびSr化合物の3者を共存させた場合
のヒステリシス損の改善に関する調査を行った。
Experiment 3 In addition, when manufactured under the conditions compatible with the present invention,
That is, P (H TwoO) / P (HTwo) Is less than 0.70,
, P (HTwoO) / P (HTwo) Is more than that of the soaking process
Decarburization annealing under low conditions to generate subscale
Steel sheet with additives in the annealing separator containing MgO as the main component.
Then TiOTwo, SnOTwoAnd three Sr compounds coexist
A study was conducted on the improvement of the hysteresis loss of.

【0052】C:0.062 %、Si:3.25%、Mn:0.071
%、Se:0.022 %、sol Al:0.027 %、N:0.0082%お
よびSb:0.026 %を含有し、残部は実質的にFeの組成か
らなる複数の方向性けい素鋼板用スラブをそれぞれ熱間
圧延したのち、1000℃の温度で均一化焼鈍を行ってか
ら、1000℃の温度で2分間の中間焼鈍を挟む2回の冷間
圧延によって最終冷延板厚:0.23mmとした。ついで、こ
れらの冷延板を脱脂して表面を清浄化したのち、昇温過
程のP(H2O) /P(H2):0.35、均熱過程のP(H2O)/P
(H2):0.4 のH2−H2O −N雰囲気中にて840 ℃の温度で
2分間の脱炭焼鈍を施した。
C: 0.062%, Si: 3.25%, Mn: 0.071
%, Se: 0.022%, sol Al: 0.027%, N: 0.0082% and Sb: 0.026% with the balance substantially Fe composition. After that, homogenized annealing was performed at a temperature of 1000 ° C., and then cold rolling was performed twice at a temperature of 1000 ° C. with an intermediate annealing for 2 minutes to obtain a final cold-rolled sheet thickness: 0.23 mm. Then, after the surface was cleaned by degreasing these cold-rolled sheet, the heating process P (H 2 O) / P (H 2): 0.35, the soaking process P (H 2 O) / P
(H 2 ): Decarburization annealing was performed for 2 minutes at a temperature of 840 ° C. in an H 2 —H 2 O—N atmosphere of 0.4.

【0053】その後、焼鈍分離剤として、 C---MgO 100重量部に対して、TiO2を10重量部添加した
スラリー(この発明に不適合) D---MgO 100重量部に対して、TiO2を10重量部、SnO2
5重量部およびSr化合物としてSrSO4 をSr換算で5重量
部添加したスラリー(この発明に適合) の2種類を、それぞれ脱炭焼鈍板コイルに塗布して乾燥
させたのち、H2雰囲気中で、1150℃の温度で5時間お
よび1200℃の温度で5時間の2次再結晶・純化焼鈍に
それぞれ供したのち、りん酸マグネシウムとコロイダル
シリカを主成分とするコーティングを施した。
Then, as an annealing separator, 10 parts by weight of TiO 2 was added to 100 parts by weight of C --- MgO (incompatible with the present invention). D --- MgO was added to 100 parts by weight of TiO 2. 2 kinds of slurry (complying with the present invention) in which 10 parts by weight of 2 is added by 5 parts by weight of SnO 2 and 5 parts by weight of SrSO 4 as an Sr compound (conforming to the present invention) are applied to a decarburized annealed plate coil and dried. Then, after subjecting to secondary recrystallization and purification annealing at a temperature of 1150 ° C. for 5 hours and at a temperature of 1200 ° C. for 5 hours in an H 2 atmosphere, magnesium phosphate and colloidal silica as main components Coated.

【0054】かくして得られた製品コイルにおける内巻
部、中巻部および外巻部の磁束密度(B8) 、鉄損(W
17/50)、ヒステリシス損(Wh 17/50)、被膜の密着性およ
びその外観をそれぞれ調査した。これらの調査結果を表
5にまとめて示す。
In the product coil thus obtained, the magnetic flux density (B 8 ) and core loss (W 8 ) of the inner winding part, the middle winding part and the outer winding part
17/50 ), hysteresis loss (Wh 17/50 ), adhesion of the coating and its appearance were investigated. Table 5 summarizes the results of these investigations.

【0055】[0055]

【表5】 [Table 5]

【0056】表5より、この発明に不適合の焼鈍分離剤
を用いた場合にくらべ、この発明に適合する焼鈍分離剤
を用いた場合では、純化焼鈍温度を1200℃にすると被膜
特性および磁気特性は大幅に向上しているが、1150℃と
低くしても被膜特性および磁気特性の劣化が少なく、特
にヒステリシス損の劣化が少なくなっていることがわか
る。
From Table 5, as compared with the case where the annealing separator which is incompatible with the present invention is used, when the annealing separator suitable for the present invention is used, when the purification annealing temperature is 1200 ° C., the coating properties and the magnetic properties are improved. Although it is significantly improved, it can be seen that even at a low temperature of 1150 ° C, the deterioration of the film characteristics and the magnetic characteristics is small, and particularly the deterioration of the hysteresis loss is small.

【0057】この現象は前記したように、この発明に適
合する焼鈍分離剤組成を用いた場合には、仕上げ焼鈍に
おいて2次再結晶が進行した時点で被膜形成が促進され
る。そのため、純化焼鈍が1150℃と低くても、インヒビ
ター成分の被膜中への吸い上げが十分に進行し、また、
被膜が十分に生成するため被膜特性および磁気特性の劣
化が少ないと思われる。
This phenomenon, as described above, accelerates the film formation when the secondary recrystallization proceeds in the final annealing when the annealing separator composition suitable for the present invention is used. Therefore, even if the purification annealing is as low as 1150 ° C, the absorption of the inhibitor component into the coating proceeds sufficiently, and
Since the film is sufficiently formed, it is considered that the film properties and magnetic properties are less deteriorated.

【0058】このように、この発明によれば、純化焼鈍
温度を1150℃と低くしても、従来以上の被膜特性および
磁気特性を有する製品が得られること、すなわち、純化
焼鈍温度を低くできることは、使用するエネルギーが少
なくてすみ、経済的利点が大きく、さらに最終仕上げ焼
鈍時にコイル下側に生じる耳歪も少なくなるので、製品
の歩留り向上に大きな効果がある。また、1200℃の温度
で純化焼鈍した場合は、被膜特性および磁気特性が大幅
に向上するという効果も有する。
As described above, according to the present invention, even if the purification annealing temperature is lowered to 1150 ° C., it is possible to obtain a product having coating properties and magnetic characteristics higher than those of the conventional products, that is, the purification annealing temperature can be lowered. Since less energy is used, the economical advantage is large, and the ear strain generated on the lower side of the coil during the final annealing is also small, which is very effective in improving the yield of products. In addition, when the annealing is performed at a temperature of 1200 ° C., the film characteristics and magnetic characteristics are significantly improved.

【0059】以上の一連の実験結果より、脱炭焼鈍にお
ける、均熱過程でのP(H2O) /P(H 2)を0.7 未満とし、
昇温過程でのP(H2O) /P(H2)を均熱過程のそれよりも
低い条件で脱炭焼鈍を行ってサブスケールを生成させ、
このサブスケールを生成させた鋼板に塗布するMgO を主
体とする焼鈍分離剤中に、TiO2, SnO2およびSr化合物を
共存させた場合、コイル全長にわたって、非常に優れる
被膜特性および磁気特性を有する製品が得られること、
磁気特性の改善効果は主にヒステリシス損の減少による
ものと考えられることなどが明らかとなった。
From the results of the above series of experiments, decarburization annealing was performed.
P (H in the soaking processTwoO) / P (H Two) Is less than 0.7,
P (HTwoO) / P (HTwo) Than that of the soaking process
Decarburization annealing is performed under low conditions to generate subscale,
The MgO that is applied to the steel plate that produced this subscale is mainly
In the annealing separator that forms the body, TiOTwo, SnOTwoAnd Sr compound
Excellent coexistence over the entire length of the coil
To obtain a product with coating and magnetic properties,
The improvement effect of magnetic properties is mainly due to the decrease of hysteresis loss
It became clear that it was thought to be a thing.

【0060】それらの理由は明確ではないが、脱炭焼鈍
時に生成するサブスケールがかなり均一で保護性の高い
ものとなることと相まって、焼鈍分離剤中にTiO2, SnO2
およびSr化合物を共存させたため、焼鈍分離剤中の添加
物の作用も従来のものと大きく異なることから、被膜形
成過程とそれを反映した2次再結晶過程に差が生じ、非
常に大きな被膜特性および磁気特性の向上がもたらされ
たものと思われる。
Although the reason for them is not clear, coupled with the fact that the subscale generated during decarburization annealing is fairly uniform and has a high protective property, TiO 2 and SnO 2 are contained in the annealing separator.
Since Sr and Sr compounds coexist, the action of the additives in the annealing separator also differs greatly from the conventional one, resulting in a difference between the film formation process and the secondary recrystallization process that reflects it, resulting in extremely large film properties. It is believed that this has resulted in improvement of magnetic properties.

【0061】なお、従来より公知の焼鈍分離剤への添加
物の作用については、前記した、特公昭51−12451 号公
報によれば、TiO2は2次再結晶中に生成したMgO −TiO2
の混合物が鋼板表層のSiO2と反応して緻密にして良質の
ガラス状被膜を形成するために被膜の均一性と密着性の
向上に、特公昭54−14567 号公報によれば、Snあるいは
Sn化合物は仕上げ焼鈍時の雰囲気の調節機能により磁気
特性の向上に、特公昭57−32716 号公報によれば、Sr化
合物は鋼板の表面直下のフォルステライト粒を消失させ
ることにより磁気特性の向上にそれぞれ効果があること
が記載されているのみである。
Regarding the action of the additives to the conventionally known annealing separator, according to the above-mentioned Japanese Patent Publication No. 51-12451, TiO 2 is MgO-TiO 2 produced during secondary recrystallization.
In order to improve the uniformity and adhesion of the coating in order to form a high quality glassy coating by reacting the mixture of SiO 2 with SiO 2 on the surface of the steel sheet, according to Japanese Patent Publication No. 54-14567, Sn or
The Sn compound improves the magnetic properties by adjusting the atmosphere during finish annealing, and according to JP-B-57-32716, the Sr compound improves the magnetic properties by eliminating the forsterite grains just below the surface of the steel sheet. It is only described that each has an effect.

【0062】つぎにこの発明の成分組成の限定理由およ
び好適範囲について述べる。この発明の対象とするけい
素鋼板用スラブの成分組成については、sol Alを0.01〜
0.05%、Nを0.004 〜0.012 %の範囲で含有する方向性
けい素鋼板として通常用いられている成分組成のもので
よく、例えば、C:0.02〜0.10%、Si:2.0〜4.0 %、M
n:0.02〜0.20%を含み、かつ、SおよびSeのうちの少
なくとも一方を単独、または双方合計で0.010 〜0.040
%を含む組成が好ましい。その他、必要に応じて、Sb:
0.01〜0.20%、Cu:0.02〜0.20%、Mo:0.01〜0.05%、
Sn:0.02〜0.30%、Ge:0.02〜0.30%およびNi:0.01〜
0.20%の範囲で含有させることもよい。
Next, the reasons for limiting the component composition of the present invention and the preferable ranges will be described. The composition of the slab for silicon steel sheet that is the subject of the present invention, sol Al 0.01 ~
The composition may be that which is usually used as a grain-oriented silicon steel sheet containing 0.05% and N in the range of 0.004 to 0.012%. For example, C: 0.02 to 0.10%, Si: 2.0 to 4.0%, M
n: 0.02 to 0.20%, and at least one of S and Se alone or 0.010 to 0.040 in total
% Is preferred. In addition, if necessary, Sb:
0.01 to 0.20%, Cu: 0.02 to 0.20%, Mo: 0.01 to 0.05%,
Sn: 0.02-0.30%, Ge: 0.02-0.30% and Ni: 0.01-
It may be contained in the range of 0.20%.

【0063】sol AlおよびNは、AlN インヒビターを形
成させるため必要である。Alは少なすぎると磁束密度が
低下し、多すぎると2次再結晶が安定しなくなるため、
solAlの含有量は0.01〜0.05%の範囲に限定する。また
Nは、少なすぎるとAlN インヒビターの量が不足して磁
束密度が低下し、多すぎるとブリスターと呼ばれる表面
欠陥が製品に多発するため、その含有量を0.004 〜0.01
2 %の範囲とする。
Sol Al and N are needed to form the AlN inhibitor. If the Al content is too low, the magnetic flux density will decrease, and if it is too high, the secondary recrystallization will become unstable.
The content of solAl is limited to the range of 0.01 to 0.05%. When N is too small, the amount of AlN inhibitor is insufficient and the magnetic flux density is lowered, and when it is too large, surface defects called blister frequently occur in the product, so the content is 0.004 to 0.01.
The range is 2%.

【0064】Cは、熱間圧延時のα−γ変態を利用して
結晶組織の改善を行うために重要な成分であり、含有量
が0.02%に満たないと良好な一次再結晶組織が得られ
ず、0.10%を超えると脱炭が難しくなって脱炭不良とな
り磁気特性が劣化するので0.02〜0.10%程度が好まし
い。
C is an important component for improving the crystal structure by utilizing the α-γ transformation during hot rolling. If the content is less than 0.02%, a good primary recrystallized structure is obtained. If it exceeds 0.10%, decarburization becomes difficult and decarburization becomes poor and the magnetic properties deteriorate, so about 0.02 to 0.10% is preferable.

【0065】Siは、製品の電気抵抗を高め、渦電流損を
低減させる上で重要な成分であり、含有量が、2.0 %に
満たないと最終仕上げ焼鈍中にα−γ変態によって結晶
方位が損なわれ、4.0 %を超えると冷延性に問題がある
ため、2.0 〜4.0 %程度が好ましい。
Si is an important component for increasing the electric resistance of the product and reducing the eddy current loss. If the content is less than 2.0%, the crystal orientation is changed by α-γ transformation during final finish annealing. If it exceeds 4.0%, there is a problem in cold rolling property, so 2.0 to 4.0% is preferable.

【0066】MnとSe及びSはインヒビターとして機能す
るもので、Mn量が0.02%未満または、S,Seの単独もし
くは合計量が0.010 %未満であるとインヒビター機能が
不十分となり、Mn量が0.20%を超えまたは、S,Seの単
独もしくは合計量が0.040 %を超えるとスラブ加熱の際
に必要とする温度が高すぎて実用的でないので、Mnは0.
02〜0.20%、SまたはSeは単独あるいは合計量として0.
010 〜0.040 %とするのが好ましい。
Mn, Se and S function as inhibitors. If the amount of Mn is less than 0.02% or the amount of S or Se alone or in total is less than 0.010%, the inhibitor function becomes insufficient and the amount of Mn is 0.20. %, Or the total amount of S and Se alone or in total exceeds 0.040%, the temperature required for slab heating is too high to be practical, so Mn is 0.
02 to 0.20%, S or Se alone or as a total amount of 0.
Preferably, it is 010 to 0.040%.

【0067】さらに磁束密度を向上させるためにSb, C
u, Sn, Ge, Niなどを単独または複合して添加すること
が可能である。Sbは含有量が、0.20%を超えると脱炭性
が悪くなり、0.01%に満たないと効果がないので、その
含有量は0.01〜0.20%が好ましい。Cuは含有量が0.20%
を超えると酸洗性が悪化し、0.01%に満たないと効果が
ないので、その含有量は0.01〜0.20%が好ましい。Sn,
Geは含有量が0.30%を超えると良好な一次再結晶組織が
得られず、0.02%未満では効果がないので、それぞれの
含有量は0.02〜0.30%が好ましい。Niは含有量が0.20%
を超えると熱間強度が低下し、0.01%未満では効果がな
いので、その含有量は0.01〜0.20%が好ましい。
To further improve the magnetic flux density, Sb, C
It is possible to add u, Sn, Ge, Ni, etc. alone or in combination. If the content of Sb exceeds 0.20%, the decarburization property deteriorates, and if it is less than 0.01%, there is no effect, so the content is preferably 0.01 to 0.20%. Cu content is 0.20%
If the content exceeds 0.01%, the acid washability deteriorates, and if the content is less than 0.01%, there is no effect. Sn,
If the content of Ge exceeds 0.30%, a good primary recrystallized structure cannot be obtained, and if the content is less than 0.02%, there is no effect. Therefore, the content of each is preferably 0.02 to 0.30%. Ni content 0.20%
If the content exceeds 0.01%, the hot strength decreases, and if it is less than 0.01%, there is no effect, so the content is preferably 0.01% to 0.20%.

【0068】また、表面性状を改善するためにMoを添加
できる。含有量が0.05%を超えると脱炭性が悪くなり、
0.01%に満たないと効果がないので、その含有量は0.01
〜0.05%が好ましい。
Mo may be added to improve the surface properties. If the content exceeds 0.05%, the decarburization property deteriorates,
If less than 0.01%, there is no effect, so the content is 0.01
~ 0.05% is preferred.

【0069】つぎに、この発明の対象としている方向性
けい素鋼板の製造条件について述べる。従来より用いら
れている製鋼法で上記成分組成に調整した溶鋼を連続鋳
造法あるいは造塊法で鋳造し、必要に応じて分塊工程を
挟んでスラブを得、続いて熱間圧延をし、必要に応じて
熱延板焼鈍を行ったのち、1回ないし中間焼鈍を挟む2
回以上の冷間圧延により最終板厚の冷延板とする。
Next, the manufacturing conditions of the grain-oriented silicon steel sheet which is the subject of the present invention will be described. The molten steel adjusted to the above-mentioned composition by the steelmaking method conventionally used is cast by a continuous casting method or an ingot making method, and a slab is obtained by sandwiching a slabbing step if necessary, followed by hot rolling, If necessary, perform hot-rolled sheet annealing, then insert once or intermediate annealing 2
A cold rolled sheet with the final sheet thickness is obtained by performing cold rolling more than once.

【0070】ついで、前記したこの発明に従う雰囲気中
のP(H2O) /P(H2)を制御した脱炭焼鈍を行う。この脱
炭焼鈍での昇温速度は、通常の10〜20℃/sの範囲に限
るものではなく、5〜30℃/sのより広範囲で行うこと
ができる。しかし昇温速度が5℃/sに満たなかった
り、30℃/sを上回る場合には、たとえ他の条件を満
たした脱炭焼鈍であっても、良好なフォルステライト被
膜が得られなくなるうれいがある。
Then, decarburization annealing in which P (H 2 O) / P (H 2 ) is controlled in the atmosphere according to the present invention described above is performed. The temperature rising rate in this decarburization annealing is not limited to the usual range of 10 to 20 ° C / s, but can be performed in a wider range of 5 to 30 ° C / s. However, if the heating rate is less than 5 ° C / s or more than 30 ° C / s, a good forsterite coating cannot be obtained even if decarburization annealing satisfies other conditions. There is.

【0071】この脱炭焼鈍を施した鋼板表面に、前記し
たこの発明に従うMgO にTiO2、SnO2およびSr化合物を添
加した焼鈍分離剤を、スラリー状にして塗布したのち乾
燥する。
On the surface of the decarburized and annealed steel sheet, an annealing separator, which is obtained by adding TiO 2 , SnO 2 and Sr compound to MgO according to the present invention, is applied in a slurry form and then dried.

【0072】ここで、焼鈍分離剤に用いるMgO は、水和
量(20℃×6分間にて水和後、100℃×1時間の強熱に
よる減量)が1〜5%の範囲のものを用いることがよ
い。これは、MgO の水和量が1%未満ではフォルステラ
イト被膜の生成が不十分となり、5%を超えるとコイル
層間への持込み水分量が多くなりすぎ鋼板の追加酸化量
が多くなるため、良好なフォルステライト被膜が得られ
なくなるおそれがあるからである。
Here, the MgO used as the annealing separator has a hydration amount (amount of hydration at 20 ° C. for 6 minutes and then a loss of 100 ° C. for 1 hour due to ignition) in the range of 1 to 5%. Good to use. This is because if the hydration amount of MgO is less than 1%, the formation of forsterite coating is insufficient, and if it exceeds 5%, the amount of water carried into the coil layer becomes too large and the amount of additional oxidation of the steel sheet increases, which is good. This is because there is a possibility that a good forsterite coating may not be obtained.

【0073】また、焼鈍分離剤の塗布量は鋼板片面当り
4〜10g/m2の範囲で塗布することができる。これは、
塗布量が4g/m2より少ないとフォルステライトの生成が
不十分となり、10g/m2を超えるとフォルステライト被膜
が過剰に生成し厚くなるため占積率の低下をきたすから
である。
Further, the coating amount of the annealing separator can be applied in the range of 4 to 10 g / m 2 per one side of the steel sheet. this is,
This is because if the coating amount is less than 4 g / m 2 , the forsterite is insufficiently produced, and if it exceeds 10 g / m 2 , the forsterite coating is excessively produced and becomes thick, resulting in a decrease in space factor.

【0074】なお、焼鈍分離剤中への添加物のひとつで
あるSr化合物は、従来より公知の、例えばSrSO4 ,Sr(O
H)2 ・8H2O ,SrCO3 ,Sr(NO)3 などがあり、これらの
うちから選ばれる1種または2種以上をそれぞれ単独ま
たは複合して添加してよい。
The Sr compound, which is one of the additives to the annealing separator, is a conventionally known compound such as SrSO 4 , Sr (O
H) 2 · 8H 2 O, SrCO 3 , Sr (NO) 3, and the like, and one or more selected from these may be added alone or in combination.

【0075】焼鈍分離剤塗布後は、1000〜1200℃の温度
域で3〜50時間程度の2次再結晶・純化焼鈍(仕上げ焼
鈍)を行って製品板とする。
After the annealing separator is applied, secondary recrystallization / purification annealing (finish annealing) is performed in a temperature range of 1000 to 1200 ° C. for about 3 to 50 hours to obtain a product plate.

【0076】その後さらに、りん酸塩系の絶縁コーティ
ング好ましくは張力を付与する絶縁コーティングを施す
ことは有利である。また、最終冷延後、最終仕上焼鈍後
あるいは絶縁コーティング後に既知の磁区細分化処理を
行うこともよく、さらなる鉄損の低減に有効である。
It is then advantageous to further apply a phosphate-based insulating coating, preferably a tension-imparting insulating coating. Further, a known domain refinement treatment may be performed after the final cold rolling, after the final finish annealing or after the insulating coating, which is effective in further reducing the iron loss.

【0077】[0077]

【実施例】【Example】

実施例1 C:0.071 %、Si:3.34%、Mn:0.069 %、Se:0.019
%、Al:0.025 %、N:0.090 %、Cu:0.10%およびS
b:0.027 %を含有し、残部は実質的にFeの組成からな
る複数のけい素鋼スラブを、それぞれ1430℃の温度で30
分間加熱後、熱間圧延を施して板厚:2.2mm の熱延板と
した。ついで、1000℃・1分間の熱延板焼鈍後、冷間圧
延にて板厚:1.5mm とし、1100℃・2分間の中間焼鈍の
のち、2回目の冷間圧延により最終板厚:0.23mmに仕上
げた。
Example 1 C: 0.071%, Si: 3.34%, Mn: 0.069%, Se: 0.019
%, Al: 0.025%, N: 0.090%, Cu: 0.10% and S
b: a plurality of silicon steel slabs containing 0.027% and the balance being substantially Fe, each at a temperature of 1430 ° C.
After heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.2 mm. Then, after hot-rolled sheet annealing at 1000 ° C for 1 minute, cold rolled to a sheet thickness of 1.5 mm, after intermediate annealing at 1100 ° C for 2 minutes, final cold rolled sheet has a final sheet thickness of 0.23 mm. Finished.

【0078】これらの冷延板に、H2−H2O −N2雰囲気中
にて840 ℃・2分間の脱炭焼鈍を施した。この時、昇温
過程および均熱過程の雰囲気の酸化性〔P(H2O) /P(H
2)〕を表6に示すように変化させた。
These cold-rolled sheets were subjected to decarburization annealing at 840 ° C. for 2 minutes in an H 2 —H 2 O—N 2 atmosphere. At this time, the oxidizing atmosphere of the heating process and a soaking process [P (H 2 O) / P (H
2 )] was changed as shown in Table 6.

【0079】[0079]

【表6】 [Table 6]

【0080】その後、表6に併記した組成の焼鈍分離剤
をそれぞれ鋼板に塗布し、N2雰囲気中での850 ℃・20時
間の保定に続いて、H2: 75vol%、N2: 25vol%の雰囲
気中で20℃/h の速度で1150℃まで昇温する2次再結晶
焼鈍を行い、引き続き1200℃のH2雰囲気中で5時間の純
化焼鈍を行った。しかるのち、りん酸マグネシウムとコ
ロイダルシリカを主成分とするコーティングを施した。
Then, the annealing separator having the composition shown in Table 6 was applied to each of the steel sheets, followed by holding at 850 ° C. for 20 hours in an N 2 atmosphere, followed by H 2 : 75 vol% and N 2 : 25 vol%. In this atmosphere, secondary recrystallization annealing was performed by raising the temperature to 1150 ° C at a rate of 20 ° C / h, followed by purification annealing for 5 hours in H 2 atmosphere at 1200 ° C. After that, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0081】かくして得られた各製品について、磁束密
度(B8 ) 、鉄損(W17/50 ) 、被膜の曲げ密着性および外
観について調査した。これらの調査結果を上掲表6に併
記して示す。
The magnetic flux density (B 8 ), iron loss (W 17/50 ), bending adhesion of the coating and appearance of each of the products thus obtained were investigated. The results of these investigations are also shown in Table 6 above.

【0082】表6から明らかなように、この発明に従う
条件で製造した適合例は、いずれも良好な磁気特性およ
び被膜特性を示している。
As is apparent from Table 6, all the conforming examples manufactured under the conditions according to the present invention show good magnetic properties and coating properties.

【0083】実施例2 C:0.075 %、Si:3.27%、Mn:0.068 %、Se:0.021
%、Al:0.026 %、N:0.0085%およびSb:0.025 %を
含有し、残部は実質的にFeの組成からなる複数のけい素
鋼スラブを、それぞれ1430℃の温度で30分間加熱後、熱
間圧延を施して板厚:2.2mm の熱延板とした。ついで、
1000℃・1分間の熱延板焼鈍後、冷間圧延にて板厚:1.
5mm とし、1100℃・2分間の中間焼鈍ののち、2回目の
冷間圧延により最終板厚:0.23mmに仕上げた。
Example 2 C: 0.075%, Si: 3.27%, Mn: 0.068%, Se: 0.021
%, Al: 0.026%, N: 0.0085%, and Sb: 0.025%, the balance consisting of a plurality of silicon steel slabs consisting essentially of Fe was heated for 30 minutes at a temperature of 1430 ° C. Hot rolling was performed by hot rolling with a plate thickness of 2.2 mm. Then
After hot-rolled sheet annealing at 1000 ℃ for 1 minute, cold rolled sheet thickness: 1.
After 5 mm, intermediate annealing at 1100 ° C. for 2 minutes, and the second cold rolling, the final thickness was 0.23 mm.

【0084】これらの冷延板にH2−H2O −N2雰囲気中に
て840 ℃・2分間の脱炭焼鈍を行った。この時、昇温過
程および均熱過程の雰囲気の酸化性を表7に示すように
変化させた。
These cold-rolled sheets were subjected to decarburization annealing at 840 ° C. for 2 minutes in an H 2 —H 2 O—N 2 atmosphere. At this time, the oxidizing properties of the atmosphere during the temperature raising process and the soaking process were changed as shown in Table 7.

【0085】[0085]

【表7】 [Table 7]

【0086】その後、表7に併記した組成の焼鈍分離剤
をそれぞれ鋼板に塗布し、N2雰囲気中での850 ℃・20時
間の保定に続いて、H2: 85vol%、N2: 15vol%の雰囲
気中で15℃/h の速度で1100℃の温度まで昇温する2次
再結晶焼鈍を行い、引き続き1160℃のH2雰囲気中で5時
間の純化焼鈍を行った。しかるのち、りん酸マグネシウ
ムとコロイダルシリカを主成分とするコーティングを施
した。
Then, each of the annealing separators having the compositions shown in Table 7 was applied to the steel sheet, followed by holding at 850 ° C. for 20 hours in an N 2 atmosphere, followed by H 2 : 85 vol%, N 2 : 15 vol%. In this atmosphere, secondary recrystallization annealing was performed at a rate of 15 ° C./h to a temperature of 1100 ° C., followed by purification annealing for 5 hours in an H 2 atmosphere of 1160 ° C. After that, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0087】かくして得られた各製品について、実施例
1と同様の調査を行った。それらの調査結果を上掲表7
に併記して示す。表7から明らかなように、この発明の
適合例はいずれも良好な磁気特性および被膜特性を示し
ている。
The same investigation as in Example 1 was conducted on each of the products thus obtained. The survey results are shown in Table 7 above.
Are shown together. As is apparent from Table 7, all the conforming examples of the present invention show good magnetic properties and coating properties.

【0088】実施例3 C:0.073 %、Si:3.30%、Mn:0.070 %、Se:0.020
%、Al:0.027 %、N:0.0083%、Cu:0.08%およびS
b:0.026 %を含有し、残部は実質的にFeの組成からな
る複数のけい素鋼スラブを、それぞれ1430℃の温度で30
分間加熱後、熱間圧延を施して板厚:2.7mm の熱延板と
した。ついで、1000℃・1分間の熱延板焼鈍後、冷間圧
延にて板厚:2.0mm とし、1100℃・2分間の中間焼鈍の
のち、2回目の冷間圧延により最終板厚:0.35mmに仕上
げた。
Example 3 C: 0.073%, Si: 3.30%, Mn: 0.070%, Se: 0.020
%, Al: 0.027%, N: 0.0083%, Cu: 0.08% and S
b: a plurality of silicon steel slabs containing 0.026% and the balance being substantially Fe, each at a temperature of 1430 ° C.
After heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a plate thickness of 2.7 mm. Then, after hot-rolled sheet annealing at 1000 ° C for 1 minute, cold rolled to a sheet thickness of 2.0 mm, after intermediate annealing at 1100 ° C for 2 minutes, the final sheet thickness by a second cold rolling: 0.35 mm. Finished.

【0089】これらの冷延板にH2−H2O −N2雰囲気中に
て840 ℃・3分間の脱炭焼鈍を行った。この時、昇温過
程および均熱過程の雰囲気酸化性を表8に示すように変
化させた。
These cold-rolled sheets were subjected to decarburization annealing at 840 ° C. for 3 minutes in an H 2 —H 2 O—N 2 atmosphere. At this time, the atmospheric oxidizability during the temperature raising process and the soaking process was changed as shown in Table 8.

【0090】[0090]

【表8】 [Table 8]

【0091】その後、表8に併記した組成の焼鈍分離剤
をそれぞれ鋼板に塗布し、N2雰囲気中で850 ℃・20時間
の保定に続いて、H2: 75vol%、N2: 25vol%の雰囲気
中で15℃/h の速度で1150℃まで昇温する2次再結晶焼
鈍を行い、引き続き1180℃の温度のH2雰囲気中で5時間
の純化焼鈍を行った。しかるのち、りん酸マグネシウム
とコロイダルシリカを主成分とするコーティングを施し
た。
Then, the annealing separator having the composition shown in Table 8 was applied to each of the steel sheets, and the steel sheet was held in an N 2 atmosphere at 850 ° C. for 20 hours, followed by H 2 : 75 vol% and N 2 : 25 vol%. Secondary recrystallization annealing was performed at a rate of 15 ° C./h to 1150 ° C. in the atmosphere, followed by purification annealing for 5 hours in an H 2 atmosphere at a temperature of 1180 ° C. After that, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0092】かくして得られた製品について、実施例1
と同様の調査を行った。これらの調査結果を上掲表8に
併記して示す。表8から明らかなように、この発明の適
合例は良好な磁気特性および被膜特性を示している。
Regarding the product thus obtained, Example 1
The same survey was conducted. The results of these investigations are also shown in Table 8 above. As can be seen from Table 8, the adaptations of this invention show good magnetic and coating properties.

【0093】[0093]

【発明の効果】この発明は、AlN 系インヒビターを有す
る方向性けい素鋼板の製造にあたり、脱炭焼鈍の昇温過
程および均熱過程での雰囲気の酸化度をそれぞれ制御す
ることと相まって、TiO2, SnO2およびSr化合物を複合添
加したMgO を主体とする焼鈍分離剤を用いるものであ
り、この発明によれば、磁気特性、被膜特性ともに極め
て優れる方向性けい素鋼板を安定して生産することがで
きるようになる。また、最終仕上げ温度を低くすること
ができるので、経済性に優れるとともに、製品の歩留り
向上および生産性の向上にも寄与することができる。
Effects of the Invention The present invention, in the production of grain oriented silicon steel sheet having an AlN-based inhibitor, together with controlling the degree of oxidation of atmosphere in the Atsushi Nobori process and soaking processes of decarburization annealing, respectively, TiO 2 According to the present invention, it is possible to stably produce a grain-oriented silicon steel sheet having excellent magnetic properties and coating properties, by using an annealing separating agent mainly composed of MgO to which SnO 2 and Sr compounds are added in combination. Will be able to. Further, since the final finishing temperature can be lowered, it is excellent in economic efficiency and can contribute to the improvement of product yield and the improvement of productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】コイル内巻部における、脱炭焼鈍時の昇温過程
および均熱過程でのP(H2O) /P(H2)と仕上げ焼鈍後の
フォルステライト被膜の外観との関係を示すグラフであ
る。
FIG. 1 shows the relationship between P (H 2 O) / P (H 2 ) in the temperature rising process and soaking process during decarburization annealing and the appearance of the forsterite film after finish annealing in the coil inner winding part. It is a graph shown.

【図2】コイル中巻部における、脱炭焼鈍時の昇温過程
および均熱過程でのP(H2O) /P(H2)と仕上げ焼鈍後の
フォルステライト被膜の外観との関係を示すグラフであ
る。
FIG. 2 shows the relationship between P (H 2 O) / P (H 2 ) in the temperature rising process and soaking process during decarburization annealing in the middle coil part and the appearance of the forsterite coating film after finish annealing. It is a graph shown.

【図3】コイル外巻部における、脱炭焼鈍時の昇温過程
および均熱過程でのP(H2O) /P(H2)と仕上げ焼鈍後の
フォルステライト被膜の外観との関係を示すグラフであ
る。
FIG. 3 shows the relationship between P (H 2 O) / P (H 2 ) in the temperature rising process and soaking process during decarburization annealing in the outer coil part of the coil and the appearance of the forsterite coating film after finish annealing. It is a graph shown.

【図4】けい素鋼板の表面に生成する酸化物の平衡状態
図である。
FIG. 4 is an equilibrium state diagram of oxides formed on the surface of a silicon steel sheet.

【図5】仕上げ焼鈍過程でのSn分析結果を示すグラフで
ある。(a) は、温度と被膜付き鋼板のSn含有量との関係
のグラフである。(b) は、温度と鋼中のSn含有量との関
係のグラフである。
FIG. 5 is a graph showing a Sn analysis result in a finish annealing process. (a) is a graph of the relationship between temperature and Sn content of a coated steel sheet. (b) is a graph of the relationship between temperature and Sn content in steel.

【図6】仕上げ焼鈍中の各温度での鋼板表面の蛍光X線
酸素分析結果を示すグラフである。
FIG. 6 is a graph showing the results of fluorescent X-ray oxygen analysis of the steel sheet surface at each temperature during finish annealing.

【図7】仕上げ焼鈍中の900 度の温度での波数と吸収ス
ペクトル強度との関係のグラフである。
FIG. 7 is a graph showing the relationship between wave number and absorption spectrum intensity at a temperature of 900 ° C. during finish annealing.

【図8】仕上げ焼鈍中の1050℃の温度での波数と吸収ス
ペクトル強度との関係のグラフである。
FIG. 8 is a graph showing the relationship between wave number and absorption spectrum intensity at a temperature of 1050 ° C. during finish annealing.

【図9】焼鈍分離剤にA(TiO2単独添加)とB(TiO2
SnO2およびSr化合物の複合添加)とをそれぞれ使用した
場合の、磁束密度(B8) とヒステリシス損(Wh17/50)と
の関係を示すグラフである。
FIG. 9: A (TiO 2 alone added) and B (TiO 2 ,
3 is a graph showing the relationship between the magnetic flux density (B 8 ) and the hysteresis loss (Wh 17/50 ) when SnO 2 and Sr compound are added together ).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 sol Al:0.01〜0.05wt% および、N:0.
004 〜0.012 wt% を含有する方向性けい素鋼板用スラブ
を素材として、熱間圧延し、その後1回または中間焼鈍
を挟む2回以上の冷間圧延を行い、ついで、脱炭焼鈍を
施したのち、MgO を主体とする焼鈍分離材を塗布してか
ら、最終仕上げ焼鈍を施す一連の工程により方向性けい
素鋼板を製造するにあたり、 脱炭焼鈍工程における雰囲気中の水素分圧に対する水蒸
気分圧の比:P(H2O)/P(H2)の値を、その均熱過程で
0.70未満、その昇温過程では上記均熱熱過程より低い値
とし、 焼鈍分離剤が、MgO :100 重量部に対して、TiO2を0.5
〜15重量部、SnO2を0.1 〜10重量部およびSr化合物をSr
換算で0.1 〜10重量部のそれぞれの範囲内で複合添加し
たものであることを特徴とする磁気特性・被膜特性に優
れる方向性けい素鋼板の製造方法。
1. Sol Al: 0.01 to 0.05 wt% and N: 0.
A slab for grain-oriented silicon steel sheet containing 004 to 0.012 wt% was hot-rolled, then hot-rolled once or twice or more with intermediate annealing sandwiched, and then decarburized-annealed. After that, in order to manufacture grain-oriented silicon steel sheets by a series of processes in which an annealing separator mainly composed of MgO is applied and then final finishing annealing is performed, the partial pressure of water vapor relative to the hydrogen partial pressure in the atmosphere during the decarburization annealing process is Ratio: P (H 2 O) / P (H 2 ) value in the soaking process
It is less than 0.70, lower than the soaking and heating process in the temperature rising process, and the annealing separator has 0.5% of TiO 2 with respect to 100 parts by weight of MgO.
~ 15 parts by weight, 0.1 to 10 parts by weight of SnO 2 and Sr compound to Sr.
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and coating properties, which is characterized by being added in a combined amount within the range of 0.1 to 10 parts by weight.
JP10500196A 1996-04-25 1996-04-25 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties Expired - Fee Related JP3268198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10500196A JP3268198B2 (en) 1996-04-25 1996-04-25 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10500196A JP3268198B2 (en) 1996-04-25 1996-04-25 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties

Publications (2)

Publication Number Publication Date
JPH09291313A true JPH09291313A (en) 1997-11-11
JP3268198B2 JP3268198B2 (en) 2002-03-25

Family

ID=14395856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10500196A Expired - Fee Related JP3268198B2 (en) 1996-04-25 1996-04-25 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties

Country Status (1)

Country Link
JP (1) JP3268198B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325534B1 (en) * 1997-12-27 2002-07-18 이구택 Manufacturing method of oriented electrical steel sheet with beautiful surface characteristics
JP2011099155A (en) * 2009-11-09 2011-05-19 Nippon Steel Corp Thin grain oriented electrical steel sheet, and insulating film-covered thin grain oriented electrical steel sheet
JP2019536893A (en) * 2016-09-29 2019-12-19 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss directional silicon steel product for low noise transformer and method of manufacturing the same
JP2021123766A (en) * 2020-02-06 2021-08-30 日本製鉄株式会社 Grain-oriented electrical steel sheet, manufacturing method of grain-oriented electrical steel sheet, and annealing separator
WO2024053608A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325534B1 (en) * 1997-12-27 2002-07-18 이구택 Manufacturing method of oriented electrical steel sheet with beautiful surface characteristics
JP2011099155A (en) * 2009-11-09 2011-05-19 Nippon Steel Corp Thin grain oriented electrical steel sheet, and insulating film-covered thin grain oriented electrical steel sheet
JP2019536893A (en) * 2016-09-29 2019-12-19 バオシャン アイアン アンド スティール カンパニー リミテッド Low iron loss directional silicon steel product for low noise transformer and method of manufacturing the same
US11633808B2 (en) 2016-09-29 2023-04-25 Baoshan Iron & Steel Co., Ltd. Silicon steel product with low iron loss for low-noise transformer, and manufacturing method thereof
JP2021123766A (en) * 2020-02-06 2021-08-30 日本製鉄株式会社 Grain-oriented electrical steel sheet, manufacturing method of grain-oriented electrical steel sheet, and annealing separator
WO2024053608A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP3268198B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP6995010B2 (en) A method for producing directional silicon steel with improved forsterite coating properties.
JPH09184017A (en) Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation
JP2019507239A (en) INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL STEEL, INSULATION COATING FORMATION METHOD FOR DIRECTIONAL ELECTRIC STEEL STEEL
JPH0756048B2 (en) Method for manufacturing thin grain oriented silicon steel sheet with excellent coating and magnetic properties
JP3873489B2 (en) Method for producing grain-oriented silicon steel sheet having excellent coating properties and magnetic properties
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3707085B2 (en) Method for producing grain-oriented silicon steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP4029432B2 (en) Method for producing grain-oriented silicon steel sheet
JP3896786B2 (en) Method for producing grain-oriented electrical steel sheet
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
JP3480332B2 (en) Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties
JPH0797631A (en) Production of high magnetix flux density grain oriented silicon steel sheet excellent in magnetic property and film property
JPH0741861A (en) Production of grain-oriented silicon steel sheet
JPH108133A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08143973A (en) Production of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees