JPH09278488A - Production of oxide coating film with noble metal dispersed - Google Patents
Production of oxide coating film with noble metal dispersedInfo
- Publication number
- JPH09278488A JPH09278488A JP9135996A JP9135996A JPH09278488A JP H09278488 A JPH09278488 A JP H09278488A JP 9135996 A JP9135996 A JP 9135996A JP 9135996 A JP9135996 A JP 9135996A JP H09278488 A JPH09278488 A JP H09278488A
- Authority
- JP
- Japan
- Prior art keywords
- noble metal
- fine particles
- metal
- dispersed
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 43
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 43
- 239000011248 coating agent Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000010419 fine particle Substances 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 32
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 30
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 239000002923 metal particle Substances 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 15
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000010931 gold Substances 0.000 abstract description 46
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 32
- 229910052737 gold Inorganic materials 0.000 abstract description 32
- 238000000034 method Methods 0.000 abstract description 12
- 239000006185 dispersion Substances 0.000 abstract description 2
- 239000005357 flat glass Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 41
- 239000002253 acid Substances 0.000 description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 20
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 19
- 239000011521 glass Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000007791 liquid phase Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000004040 coloring Methods 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910002588 FeOOH Inorganic materials 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910003153 β-FeOOH Inorganic materials 0.000 description 2
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/44—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
- C03C2217/45—Inorganic continuous phases
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/47—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
- C03C2217/475—Inorganic materials
- C03C2217/479—Metals
Landscapes
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、貴金属微粒子の表
面プラズモンによる発色を利用した着色材料や非線形光
学素子等として利用できる貴金属微粒子を分散した酸化
物被膜の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide film in which noble metal fine particles are dispersed, which can be used as a coloring material utilizing the coloring of noble metal fine particles by surface plasmons and as a nonlinear optical element.
【0002】[0002]
【従来の技術】金属微粒子の表面プラズモンによる発色
は耐熱性、耐候性に優れており、従来からガラスや陶器
の着色に利用されてきた。一方、金属や半導体の微粒子
は、これら微粒子が有する大きな非線形光学効果を利用
した超高速の光スイッチや光論理素子等機能性材料とし
ての応用が期待されている。このような微粒子に特有の
性質を有効に利用するためには、各々の微粒子が凝集し
ないで独立していなければならず、そのためには微粒子
をガラス等のマトリックス中に分散固定することが必要
となる。2. Description of the Related Art The coloring of fine metal particles by surface plasmons has excellent heat resistance and weather resistance, and has been conventionally used for coloring glass and ceramics. On the other hand, fine particles of metals and semiconductors are expected to be applied as functional materials such as ultra-high-speed optical switches and optical logic elements utilizing the large non-linear optical effect of these fine particles. In order to effectively utilize the characteristics peculiar to such fine particles, each fine particle must be independent without aggregating, and for that purpose it is necessary to disperse and fix the fine particles in a matrix such as glass. Become.
【0003】これら微粒子を分散した材料の製造方法と
しては、溶融急冷法、スパッタリング法、ゾルーゲル
法、イオンプレーティング法等を応用した方法が知られ
ている。例えば、溶融急冷法によりガラス中に微粒子を
分散させる場合には、微粒子原料をガラス原料とともに
溶融した後に急冷することにより、微粒子の原料となる
元素が均一に分散したガラスを作製し、その後にこのガ
ラスを適当な温度で熱処理することによって微粒子をガ
ラス中に析出させる。また、特開平6−191896号
には、金属微粒子を熱処理により析出させた金微粒子−
チタニア−シリカ系被膜の製造方法が開示されている。As a method for producing a material in which these fine particles are dispersed, a method applying a melt quenching method, a sputtering method, a sol-gel method, an ion plating method or the like is known. For example, when the fine particles are dispersed in the glass by the melt-quenching method, the fine particle raw material is melted together with the glass raw material and then rapidly cooled to produce a glass in which the raw material elements of the fine particles are uniformly dispersed. Fine particles are deposited in the glass by heat treating the glass at an appropriate temperature. Further, in JP-A-6-191896, gold fine particles obtained by precipitating metal fine particles by heat treatment
A method of making a titania-silica based coating is disclosed.
【0004】一方、二酸化珪素、酸化チタン等の酸化物
被膜を形成する方法として、液相から過飽和状態にある
金属酸化物を析出させるいわゆる液相析出法が知られて
いる(例えば、特公昭63−65620号、特公平7−
35268号)。On the other hand, as a method for forming an oxide film of silicon dioxide, titanium oxide or the like, there is known a so-called liquid phase deposition method in which a supersaturated metal oxide is deposited from a liquid phase (for example, JP-B-63). -65620, Japanese Patent Fair 7-
35268).
【0005】[0005]
【発明が解決しようとする課題】上記着色ガラスまたは
非線形光学素子は、用途によって程度の差はあるが、一
定濃度以上の貴金属微粒子を含有する必要があり、ま
た、含まれる貴金属微粒子の粒径は制御されていること
が好ましい。しかし、従来、一般的に知られている製造
方法では、これら要請に対応しようとすると操作が煩雑
になり、所望の粒径、濃度の微粒子を分散した材料を必
ずしも効率的に製造することができなかった。The colored glass or non-linear optical element must contain noble metal fine particles at a certain concentration or more, and the particle size of the noble metal fine particles contained in the colored glass or nonlinear optical element varies depending on the use. It is preferably controlled. However, conventionally, in the generally known manufacturing method, the operation becomes complicated when trying to meet these requirements, and it is not always possible to efficiently manufacture a material in which fine particles having a desired particle size and concentration are dispersed. There wasn't.
【0006】本発明は、貴金属微粒子を分散させた材料
を効率的に製造しうる方法を提供することを目的とす
る。また、本発明は、高濃度の貴金属微粒子の分散およ
び微粒子粒径の制御の観点からも好ましい貴金属微粒子
分散材料の製造方法を提供することを目的とする。An object of the present invention is to provide a method capable of efficiently producing a material in which noble metal fine particles are dispersed. It is another object of the present invention to provide a method for producing a precious metal fine particle dispersed material, which is preferable also from the viewpoint of dispersing high concentration precious metal fine particles and controlling the particle diameter of the fine particles.
【0007】[0007]
【課題を解決するための手段】本発明者らは、いわゆる
液相析出法の特徴に着目し、この方法を応用することに
より本発明を完成するに至った。すなわち、本発明に係
る貴金属微粒子含有酸化物被膜の製造方法は、貴金属を
含む化合物を含有し、金属酸化物が過飽和状態にある処
理液と、基材とを接触させることにより、この基材の表
面に前記貴金属を含む金属酸化物被膜を形成する第1の
工程と、この金属酸化物被膜中の貴金属を還元して微粒
子として析出させる第2の工程とを含むことを特徴とす
る。The present inventors have paid attention to the characteristics of the so-called liquid phase precipitation method, and have completed the present invention by applying this method. That is, the method for producing a noble metal fine particle-containing oxide coating film according to the present invention, a treatment liquid containing a compound containing a noble metal, the metal oxide is in a supersaturated state, by contacting the substrate, The method is characterized by including a first step of forming a metal oxide coating containing the noble metal on the surface and a second step of reducing the noble metal in the metal oxide coating to deposit it as fine particles.
【0008】この第2の工程は、例示すれば、第1の工
程で製造した金属酸化物被膜に紫外線を照射する工程で
あり、また、別に例示すれば、第1の工程で製造した金
属酸化物被膜を加熱する工程である。This second step is, for example, a step of irradiating the metal oxide film produced in the first step with ultraviolet rays, and in another example, the metal oxide produced in the first step is oxidized. This is a step of heating the material coating.
【0009】第2の工程を加熱する工程により実施する
場合には、この加熱を、金属酸化物被膜が結晶化する温
度で実施することにより、貴金属を還元して微粒子とし
て析出させるとともに、被膜を結晶化させることとして
もよく、また、この加熱温度を約200℃〜約600℃
とすることにより、貴金属微粒子の平均粒径を1nm〜
10nmとすることとしてもよい。When the second step is carried out by a heating step, this heating is carried out at a temperature at which the metal oxide film is crystallized, thereby reducing the noble metal and precipitating it as fine particles and at the same time forming the film. It may be crystallized, and the heating temperature is about 200 ° C to about 600 ° C.
The average particle diameter of the noble metal fine particles is 1 nm to
The thickness may be 10 nm.
【0010】[0010]
【発明の実施の形態】金属酸化物としては、いわゆる液
相析出法により形成できるものであれば特に制限はな
く、酸化珪素、酸化チタン、酸化ジルコニウム、酸化イ
ンジウム、酸化バナジウム、酸化クロム、酸化マンガ
ン、酸化鉄、酸化コバルト、酸化ニッケルおよび酸化銅
ならびにこれらの複合酸化物等を用いることができる。
金属酸化物には、適宜他の元素をドープしてもよい。The metal oxide is not particularly limited as long as it can be formed by a so-called liquid phase deposition method, and silicon oxide, titanium oxide, zirconium oxide, indium oxide, vanadium oxide, chromium oxide, manganese oxide. , Iron oxide, cobalt oxide, nickel oxide and copper oxide, and complex oxides thereof can be used.
The metal oxide may be appropriately doped with another element.
【0011】処理液としては、例えば、金属酸化物とし
て二酸化珪素を用いる場合には、酸化珪素が過飽和状態
となった珪弗化水素酸溶液等を用いることができる。ま
た、金属酸化物として酸化チタンを用いる場合には、酸
化チタンが過飽和状態となった(NH4)2TiF6 溶液
等を用いることができる。このような過飽和状態の処理
溶液は、金属酸化物が略飽和状態となった処理液の温度
を調整することにより、この金属酸化物の溶解度を減少
させて過飽和状態に至らせてもよく、略飽和状態の処理
液に珪弗化水素酸等の分解を促進するH3BO3、Al等
を添加することにより、金属酸化物量を増大させて過飽
和状態に至らせてもよい。また、水を加えること等他の
手段により、またはこれら各手段を併用して過飽和状態
に至らせてもよい。As the treatment liquid, for example, when silicon dioxide is used as the metal oxide, a hydrosilicofluoric acid solution in which silicon oxide is supersaturated can be used. When titanium oxide is used as the metal oxide, a (NH 4 ) 2 TiF 6 solution in which titanium oxide is in a supersaturated state can be used. In such a supersaturated treatment solution, the solubility of the metal oxide may be decreased to reach a supersaturation state by adjusting the temperature of the treatment solution in which the metal oxide is substantially saturated. The amount of metal oxide may be increased to reach a supersaturated state by adding H 3 BO 3 , Al, etc., which accelerates the decomposition of hydrosilicofluoric acid, to the saturated treatment liquid. Further, other means such as addition of water or a combination of these means may be used to reach the supersaturated state.
【0012】貴金属元素としては、金(Au)、銀(A
g)、白金族(Ru、Rh、Pd、Os、Ir、Pt)
等を使用することができる。本発明では、基本的には、
これらの貴金属元素は、種々の化合物として処理液に添
加、溶解させておく。化合物としては、塩化金酸、塩化
金酸ナトリウム、塩化金酸カリウム、硝酸銀、硫酸銀、
塩化白金酸、塩化白金酸ナトリウム、塩化白金酸カリウ
ム、塩化パラジウム等が例示できる。尚、貴金属元素を
含む化合物を処理液に添加するタイミングは特に限定さ
れない。すなわち、あらかじめ処理液を調合する際に添
加してもよく、液相析出を行う直前ないし析出開始後に
添加してもよい。Noble metal elements include gold (Au) and silver (A
g), platinum group (Ru, Rh, Pd, Os, Ir, Pt)
Etc. can be used. In the present invention, basically,
These noble metal elements are added and dissolved in the treatment liquid as various compounds. Compounds include chloroauric acid, sodium chloroauric acid, potassium chloroauric acid, silver nitrate, silver sulfate,
Examples include chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, and palladium chloride. The timing of adding the compound containing the noble metal element to the treatment liquid is not particularly limited. That is, it may be added at the time of preparing the treatment liquid in advance, or may be added immediately before performing liquid phase precipitation or after starting the precipitation.
【0013】貴金属元素は、通常、本発明の第1工程後
にはイオンの状態で被膜中に存在する。本発明では、第
2工程により、この貴金属イオンを還元して微粒子と
し、酸化物被膜中に分散させる。この還元工程である第
2工程としては、上述のように、被膜の加熱、焼成およ
び紫外光の照射が例示できる。The noble metal element is usually present in the coating in the ionic state after the first step of the present invention. In the present invention, in the second step, the noble metal ions are reduced into fine particles and dispersed in the oxide film. As the second step, which is the reduction step, as described above, heating, baking, and irradiation of ultraviolet light of the coating film can be exemplified.
【0014】被膜を加熱する場合の条件は、金属酸化物
の種類、成膜条件、貴金属の種類、貴金属元素を含む化
合物の種類等によって異なるが、概ね200℃以上であ
れば貴金属微粒子の分散された状態が得られる。もっと
も、被膜の加熱温度によって得られる金属微粒子の粒径
が異なるので、用途に応じて好ましい粒径が得られる加
熱温度を適宜選択することが好ましい。一般に、温度が
高いほど粒径は大きくなる。本発明者は、加熱温度を2
00℃〜600℃とした場合に平均粒径が1nm〜10
nmの金微粒子が得られ、特に、加熱温度を500℃以
下とした場合には平均粒径が1nm〜5nmの金微粒子
が得られることを見出した。The conditions for heating the coating vary depending on the type of metal oxide, the film forming conditions, the type of noble metal, the type of compound containing a noble metal element, etc. It is possible to obtain a good condition. However, since the particle size of the fine metal particles obtained differs depending on the heating temperature of the coating film, it is preferable to appropriately select the heating temperature at which the preferred particle size is obtained depending on the application. Generally, the higher the temperature, the larger the particle size. The inventor has set the heating temperature to 2
When the temperature is 00 ° C to 600 ° C, the average particle size is 1 nm to 10
It has been found that gold fine particles having a particle size of 1 nm to 5 nm are obtained when the heating temperature is 500 ° C. or less.
【0015】また、本発明においては、被膜の加熱によ
り、微粒子の析出とともに、この被膜自体の状態を調整
することもできる。すなわち、本発明の第1工程では、
金属酸化物被膜は、通常、非晶質状態の被膜として形成
されるが、加熱温度をこの金属酸化物被膜が結晶化する
温度で加熱することにより。貴金属微粒子の析出ととも
に、被膜を結晶化することも可能である。本発明者は、
金属酸化物被膜として酸化チタンを用いた場合に、約4
00℃以上の加熱により、酸化チタンが結晶化すること
を確認した。一方、紫外線の照射により微粒子の析出を
行う場合には、金属被膜を結晶化させずに非晶質状態に
保持することが可能であるので、本発明では、用途等に
応じて、適宜、微粒子の析出方法を選択することが好ま
しい。Further, in the present invention, by heating the coating, the state of the coating itself can be adjusted together with the precipitation of fine particles. That is, in the first step of the present invention,
The metal oxide film is usually formed as a film in an amorphous state, but by heating at a heating temperature at which the metal oxide film crystallizes. It is also possible to crystallize the film together with the precipitation of the noble metal fine particles. The inventor has
Approximately 4 when titanium oxide is used as the metal oxide film.
It was confirmed that titanium oxide was crystallized by heating at 00 ° C or higher. On the other hand, when the fine particles are deposited by irradiation with ultraviolet rays, it is possible to keep the metal coating in an amorphous state without being crystallized. Therefore, in the present invention, the fine particles are appropriately used depending on the application etc. It is preferable to select the precipitation method of.
【0016】また、紫外光照射を採用する場合には、あ
らかじめマスキングにより紫外光の照射部と非照射部を
区別することによって、パターニングすることが可能と
なる。このパターニングは、微粒子分散被膜を装飾用途
(例えば装飾用ガラス)に用いる場合には、特に有効な
手法である。When ultraviolet light irradiation is adopted, it is possible to perform patterning by distinguishing the ultraviolet light irradiation part and non-irradiation part by masking in advance. This patterning is a particularly effective method when the fine particle dispersed film is used for decorative purposes (for example, decorative glass).
【0017】本発明により製造される金属酸化物被膜に
分散される貴金属微粒子の量は、基本的には、処理液に
溶解する貴金属元素を含む化合物の量に依存するので、
この化合物の量は、目的とする特性に応じて調整するこ
とが好ましい。本発明では、処理液中の上記化合部の量
を調整するだけで、高濃度に至るまでの所望の濃度の貴
金属を容易に被膜中に取り込むことができる。The amount of the noble metal fine particles dispersed in the metal oxide film produced by the present invention basically depends on the amount of the compound containing the noble metal element dissolved in the treatment liquid.
The amount of this compound is preferably adjusted according to the desired properties. In the present invention, the noble metal having a desired concentration up to a high concentration can be easily incorporated into the coating film only by adjusting the amount of the above-mentioned compound portion in the treatment liquid.
【0018】本発明により製造された貴金属微粒子が分
散された酸化物薄膜は、着色ガラス、非線形光学素子の
みならず、鉛蓄電池集電体の劣化防止膜等としても利用
可能であり、広範な用途を有する。The oxide thin film in which the noble metal fine particles are dispersed according to the present invention can be used not only as a colored glass or a nonlinear optical element but also as a deterioration preventing film for a lead-acid battery current collector and has a wide range of applications. Have.
【0019】[0019]
【実施例】次に、本発明を具体的な実施例により詳細に
説明する。 (実施例1)0.10モル/リットルの濃度のフッ化チ
タン酸アンモニウム水溶液を調合し、これに塩化金酸を
0.10〜1.00ミリモル/リットルの範囲で溶解さ
せて処理液とした。次に、この処理液に0.20モル/
リットルのほう酸を溶解させた。なお、これらの操作は
30℃に保温し、充分に攪拌しながら行った。調合後す
ぐに、この溶液に、50mm×25mm×厚さ1.1m
mの予め洗浄、乾燥したソーダライムシリカガラスを基
板として18時間浸漬した。その後、ガラス基板を取り
出し、洗浄、乾燥を行った。得られた試料には、透明な
干渉色を示す薄膜が観察され、TiO2薄膜が形成され
たものと判断された。Next, the present invention will be described in detail with reference to specific examples. (Example 1) An ammonium fluorotitanate aqueous solution having a concentration of 0.10 mol / liter was prepared, and chloroauric acid was dissolved in the range of 0.10 to 1.00 mmol / liter to obtain a treatment liquid. . Next, 0.20 mol /
1 liter of boric acid was dissolved. These operations were carried out while keeping the temperature at 30 ° C. and sufficiently stirring. Immediately after preparation, add 50 mm x 25 mm x 1.1 m thickness to this solution.
The previously washed and dried soda lime silica glass of m was used as a substrate and immersed for 18 hours. Then, the glass substrate was taken out, washed and dried. A thin film showing a transparent interference color was observed in the obtained sample, and it was judged that a TiO 2 thin film was formed.
【0020】得られた試料を希塩酸水溶液中に一昼夜浸
漬し、得られた溶液をICP発光分析装置(誘導結合高
周波プラズマ発光分析装置)にて定量分析することによ
り、被膜中に含有されたTiおよびAu元素の量を見積
もった。その結果を図1に示す。また、図1に示した結
果から、被膜中のAu/Ti元素比に換算した結果を図
2に示す。これらの結果より、処理液に塩化金酸を溶解
することにより、酸化チタン膜中に金が含有されること
が確認できた。また、塩化金酸の溶解量が増えるに従っ
て、金のチタンに対する含有比率は増大すること、特
に、塩化金酸の濃度が0.7ミリモル/リットル以上と
なると、被膜中の金属に占める金の割合が顕著に増加す
ることが確認された。The obtained sample was dipped in a dilute hydrochloric acid aqueous solution for a whole day and night, and the obtained solution was quantitatively analyzed by an ICP emission spectrometer (inductively coupled high frequency plasma emission spectrometer) to determine Ti and Ti contained in the coating film. The amount of Au element was estimated. The result is shown in FIG. Further, FIG. 2 shows the results converted from the results shown in FIG. 1 into the Au / Ti element ratio in the coating film. From these results, it was confirmed that gold was contained in the titanium oxide film by dissolving chloroauric acid in the treatment liquid. In addition, as the amount of chloroauric acid dissolved increases, the content ratio of gold to titanium increases. Particularly, when the concentration of chloroauric acid is 0.7 mmol / liter or more, the ratio of gold to the metal in the coating film. Was confirmed to be significantly increased.
【0021】(実施例2)実施例1において、塩化金酸
の溶解量を0.29ミリモル/リットルとして被膜形成
を行った。ただし、塩化金酸の溶解を実施例1と同様に
あらかじめ処理液調合と同時に行った場合と、酸化チタ
ン被膜の形成開始後20時間経過した後に行った場合の
2通りとした。また、ソーダライムガラス基板は、いず
れの場合も塩化金酸を溶解した時点で、それぞれ20枚
ずつ浸漬しておき、その後任意の時間経過後に1枚ずつ
取り出し、洗浄、乾燥を行い、試料とした。得られた試
料を実施例1と同様に分析した結果を、図3に示す。こ
れらの結果より、液相析出法における処理液の状態にか
かわらず、塩化金酸を溶解した直後から酸化物被膜中に
金が含有されることが確認された。(Example 2) In Example 1, a film was formed with a dissolved amount of chloroauric acid of 0.29 mmol / liter. However, chloroauric acid was dissolved in the same manner as in Example 1 in advance, at the same time as the preparation of the treatment liquid, and in two cases, 20 hours after the start of the formation of the titanium oxide film. In each case, the soda-lime glass substrate was immersed in 20 sheets each at the time when chloroauric acid was dissolved, and after each arbitrary time, one sheet was taken out, washed and dried to obtain a sample. . The result of analyzing the obtained sample in the same manner as in Example 1 is shown in FIG. From these results, it was confirmed that gold was contained in the oxide film immediately after the chloroauric acid was dissolved, regardless of the state of the treatment liquid in the liquid phase deposition method.
【0022】(実施例3)実施例1において、塩化金酸
の溶解量が0.29ミリモル/リットルの場合の試料
を、100℃、200℃、300℃、400℃、500
℃および600℃の各温度で加熱処理を行った。その結
果、200℃以上で加熱処理した試料すべてが透明から
紫色に変色した。これらの試料について、以下の分析を
実施した。(Example 3) A sample obtained in Example 1 in which the amount of chloroauric acid dissolved was 0.29 mmol / liter was 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500.
The heat treatment was performed at each temperature of ° C and 600 ° C. As a result, all the samples heat-treated at 200 ° C. or higher changed from transparent to purple. The following analyzes were performed on these samples.
【0023】まず、加熱処理を実施していない試料と6
00℃で加熱処理した試料に関して、被膜をESCA
(Electron Spectoropy for Chemical Analysis)により
分析を行った。AuについてのESCA分析の結果を図
4に示す。この結果から、加熱処理を行っていない場合
の4f7/2 のピーク位置は86.1eVであることから
Au+1に同定された。すなわち、加熱処理を実施してい
ない場合の金は、原子もしくは粒子としては存在してお
らず一価のイオンとして存在しているため、透明であっ
たと考えられる。一方、加熱処理後の被膜の結果から、
4f7/2 のピーク位置は83.8eVであることから、
金属のAuと同定された。よって、加熱処理によって金
はイオン状態から金属状態に変化したことが確認され
た。First, a sample not subjected to heat treatment and 6
ESCA coatings on samples heat treated at 00 ° C.
(Electron Spectoropy for Chemical Analysis). The result of ESCA analysis for Au is shown in FIG. From this result, the peak position of 4f7 / 2 in the case where the heat treatment was not carried out was 86.1 eV, so that it was identified as Au +1 . That is, it is considered that the gold without heat treatment was transparent because it did not exist as atoms or particles but existed as monovalent ions. On the other hand, from the results of the coating after heat treatment,
Since the peak position of 4f7 / 2 is 83.8 eV,
It was identified as metallic Au. Therefore, it was confirmed that the heat treatment changed gold from the ionic state to the metallic state.
【0024】(実施例4)実施例3における100℃で
の加熱処理を除くすべての試料について、被膜のX線回
折パターンを測定した。その結果を図5に示す。この結
果より、加熱処理した試料すべてにおいて、金属のAu
に関するピークが観測された。よって、本実施例で得ら
れた試料は、少なくとも200℃以上の温度で加熱処理
を行えば、Auが金属の状態となることが確認された。
また、酸化チタンに関しては、400℃以上でアナター
ゼに同定されるピークが検出され、加熱処理温度と共に
ピーク幅が狭くなることから結晶子が増大することが認
められた。Example 4 The X-ray diffraction patterns of the coatings of all the samples except the heat treatment at 100 ° C. in Example 3 were measured. The result is shown in FIG. From this result, in all the heat-treated samples, metal Au
A peak was observed. Therefore, it was confirmed that the sample obtained in this example is in a metal state when subjected to heat treatment at a temperature of at least 200 ° C. or higher.
Further, regarding titanium oxide, a peak identified by anatase was detected at 400 ° C. or higher, and it was confirmed that the crystallites increased because the peak width narrowed with the heat treatment temperature.
【0025】(実施例5)実施例3における加熱処理後
の各試料のTEM(透過型電子顕微鏡)像を観察した。
その結果、いずれも数nmから数十nmのAuの微粒子
が確認された。これより得られたAu微粒子の粒径分布
を図6に示す。図6より、500℃までの温度で加熱処
理した試料ではAuが単分散しており、平均粒径は5n
m以下であった。また、600℃で加熱処理した試料に
おいては、Auは多分散であったが、最大粒径は20n
m程度であって微粒子状態として安定であることがわか
った。200℃以上で金微粒子は微粒子として析出する
ので、加熱温度を200℃〜600℃とした場合には平
均粒径が1nm〜10nm程度の金微粒子が得られ、特
に、加熱温度を500℃以下とした場合には平均粒径が
1nm〜5nm程度の金微粒子が得られることがわか
る。また、実施例3の各試料の350nm〜800nm
の波長域における吸光係数の結果を図7に示す。これよ
り200℃以上の温度で加熱処理した試料すべてにおい
て、プラズモン共鳴吸収が確認され、また、吸収ピーク
位置は加熱温度と共に550nmから640nmにシフ
トしていくことがわかった。すなわち、本実施例では、
加熱温度を600℃以下とすることにより、プラズモン
共鳴吸収ピーク位置を550nm〜640nmの範囲に
制御可能である。Example 5 The TEM (transmission electron microscope) image of each sample after the heat treatment in Example 3 was observed.
As a result, Au particles of several nm to several tens of nm were confirmed in each case. The particle size distribution of the Au fine particles obtained from this is shown in FIG. From FIG. 6, Au was monodispersed in the sample heat-treated at a temperature up to 500 ° C., and the average particle size was 5 n.
It was m or less. Further, in the sample heat-treated at 600 ° C., Au was polydisperse, but the maximum particle size was 20 n.
It was found that the particle size was about m and was stable as a fine particle state. Since gold fine particles are precipitated as fine particles at 200 ° C. or higher, when the heating temperature is 200 ° C. to 600 ° C., gold fine particles having an average particle size of about 1 nm to 10 nm are obtained, and particularly, the heating temperature is 500 ° C. or lower. It can be seen that fine particles of gold having an average particle size of about 1 nm to 5 nm are obtained in the case of doing. Moreover, 350 nm-800 nm of each sample of Example 3
FIG. 7 shows the results of the extinction coefficient in the wavelength region of. From this, it was found that plasmon resonance absorption was confirmed in all the samples heat-treated at a temperature of 200 ° C. or higher, and the absorption peak position shifted from 550 nm to 640 nm with the heating temperature. That is, in this embodiment,
By setting the heating temperature to 600 ° C. or lower, the plasmon resonance absorption peak position can be controlled within the range of 550 nm to 640 nm.
【0026】(実施例6)実施例1において、塩化金酸
の溶解量が0.29ミリモル/リットルの場合の試料を
用い、試料の中央部の被膜表面上に10mm×10mm
の範囲でマスキングテープを張り付け、100Wの水銀
ランプを用いて被膜側から紫外光を1時間照射した。そ
の後、マスキングテープを剥離した。その結果、マスキ
ングテープにて紫外光が照射されなかった部分は外観上
変化が生じなかったが、その他の部分は紫色に変色し
た。(Example 6) In Example 1, a sample having a dissolved amount of chloroauric acid of 0.29 mmol / liter was used, and 10 mm x 10 mm was formed on the surface of the coating film at the center of the sample.
The masking tape was attached in the range of 1 and the ultraviolet light was irradiated from the coating side for 1 hour using a 100 W mercury lamp. Then, the masking tape was peeled off. As a result, the portion of the masking tape which was not irradiated with the ultraviolet light did not change in appearance, but the other portions changed to purple.
【0027】次に、被膜のx線回折パターンを測定し
た。この結果より、紫外線を照射しなかった部分では、
Auに起因するピークは認められなかったが、紫外線を
照射した部分では、金属のAuに起因するピークが認め
られた。また、酸化チタンに関しては、いずれも明確な
ピークは認められなかった。Next, the x-ray diffraction pattern of the coating was measured. From this result, in the part not irradiated with ultraviolet rays,
No peak due to Au was observed, but a peak due to Au of the metal was observed in the portion irradiated with ultraviolet rays. No clear peak was observed for titanium oxide.
【0028】(実施例7)重フッ化アンモニウム水溶液
にオキシ水酸化鉄を溶解し、FeOOH換算で0.01
モル/リットルの濃度に調節したものを処理液とした。
ここに、実施例1と同様に被膜の形成を実施した。ただ
し、塩化金酸の濃度は0.05〜0.45ミリモル/リ
ットルの範囲で溶解した。得られた試料は、いずれも透
明なオレンジ色を呈し、β−FeOOH薄膜と判断され
るものであった。得られた被膜の組成分析結果を図8お
よび図9に示す。これより、処理液に塩化金酸を溶解す
ることにより、β−FeOOH薄膜中に金が含有される
ことが確認できた。また、塩化金酸の溶解量が増えるに
従って、金の鉄に対する含有比率が増大することが確認
された。(Example 7) Iron oxyhydroxide was dissolved in an aqueous solution of ammonium bifluoride to obtain 0.01 in terms of FeOOH.
The treatment liquid was adjusted to a concentration of mol / liter.
A film was formed here in the same manner as in Example 1. However, the concentration of chloroauric acid dissolved in the range of 0.05 to 0.45 mmol / liter. The obtained samples all showed a transparent orange color and were judged to be β-FeOOH thin films. The composition analysis results of the obtained film are shown in FIGS. 8 and 9. From this, it was confirmed that gold was contained in the β-FeOOH thin film by dissolving chloroauric acid in the treatment liquid. It was also confirmed that the content ratio of gold to iron increases as the amount of chloroauric acid dissolved increases.
【0029】(実施例8)実施例7において、塩化金酸
の溶解量が0.29ミリモル/リットルの場合の試料
を、300℃、400℃、500℃、600℃の各温度
で加熱処理を行った。その結果、加熱処理した試料すべ
てがオレンジ色から焦げ茶色に変色した。(Example 8) In Example 7, the sample in which the amount of chloroauric acid dissolved was 0.29 mmol / l was heat-treated at each temperature of 300 ° C, 400 ° C, 500 ° C and 600 ° C. went. As a result, all the heat-treated samples turned from orange to dark brown.
【0030】これらの試料に対して、被膜のX線回折パ
ターンを測定した。結果を図10に示す各資料につい
て、加熱処理した試料については、α−Fe2O3に起因
するピークおよび金属のAuに起因するピークが観測さ
れた。次に、600℃にて加熱処理した試料について、
TEM像を観察した。その結果、実施例5と同様に、粒
径が数nmから数十nmのAuの微粒子が確認された。For these samples, the X-ray diffraction pattern of the coating was measured. Regarding the data shown in FIG. 10, for the heat-treated sample, a peak due to α-Fe 2 O 3 and a peak due to Au of the metal were observed. Next, regarding the sample heat-treated at 600 ° C.,
The TEM image was observed. As a result, similarly to Example 5, fine particles of Au having a particle diameter of several nm to several tens nm were confirmed.
【0031】[0031]
【発明の効果】本発明では、いわゆる液相析出法によ
り、貴金属微粒子含有被膜を製造しているので、効率的
に、被膜を形成する工程を実施しうるとともに、この工
程により製造した被膜から貴金属微粒子を析出させてい
るので、貴金属微粒子の濃度と粒径を簡便かつ容易に制
御することができる。すなわち、本発明は、いわゆる液
相析出法が、二酸化珪素、酸化チタン等酸化物被膜の形
成に好適であることを利用するに止まらず、この析出法
により形成した被膜が各種用途に応じた微粒子分散材料
の設計に必要な濃度、粒径コントロールに好適であるこ
とを見出して為されたものであり、所定の濃度、粒径の
貴金属分散金属酸化物被膜を効率的に製造しうるもので
ある。また、本発明によれば、高価な貴金属を効率的に
膜中に取り込むことが可能である。INDUSTRIAL APPLICABILITY In the present invention, since the precious metal fine particle-containing coating is produced by the so-called liquid phase deposition method, the step of forming the coating can be carried out efficiently, and the precious metal is removed from the coating produced by this step. Since the fine particles are deposited, the concentration and particle size of the noble metal fine particles can be controlled easily and easily. That is, the present invention is not limited to the fact that the so-called liquid phase deposition method is suitable for forming an oxide film such as silicon dioxide and titanium oxide, and the film formed by this deposition method is a fine particle suitable for various applications. It was made by finding that it is suitable for controlling the concentration and particle size required for the design of a dispersion material, and can efficiently produce a noble metal-dispersed metal oxide coating film having a predetermined concentration and particle size. . Further, according to the present invention, it is possible to efficiently incorporate expensive noble metal into the film.
【図1】 実施例1により製造した金微粒子分散酸化チ
タン被膜中の金属(金およびチタン)の濃度と塩化金酸
濃度との関係を示す図である。FIG. 1 is a diagram showing the relationship between the concentration of metal (gold and titanium) and the concentration of chloroauric acid in the titanium oxide coating with dispersed gold particles produced in Example 1.
【図2】 実施例1により製造した金微粒子分散酸化チ
タン被膜中の金属濃度比(金/チタン)と塩化金酸濃度
との関係を示す図である。FIG. 2 is a graph showing a relationship between a metal concentration ratio (gold / titanium) and a chloroauric acid concentration in a gold fine particle-dispersed titanium oxide film produced in Example 1.
【図3】 実施例2により製造した金微粒子分散酸化チ
タン被膜中の金濃度と反応時間(析出開始後からの時
間)との関係を示す図である。FIG. 3 is a graph showing the relationship between the gold concentration in the titanium oxide film with dispersed gold particles produced in Example 2 and the reaction time (time from the start of precipitation).
【図4】 実施例3により製造した金微粒子分散酸化チ
タン被膜の金についてESCAにより測定した結果を示
す図である。FIG. 4 is a diagram showing a result of measurement by ESCA for gold of a titanium oxide film with dispersed gold particles produced in Example 3.
【図5】 実施例3により製造した金微粒子分散酸化チ
タン被膜について測定したX線回折パターンを示す図で
ある。FIG. 5 is a diagram showing an X-ray diffraction pattern measured for a gold fine particle-dispersed titanium oxide film produced according to Example 3.
【図6】 実施例3により製造した金微粒子分散酸化チ
タン被膜についてTEMにより観察した金微粒子の粒径
分布を示す図である。FIG. 6 is a diagram showing a particle size distribution of gold fine particles observed by TEM for a gold fine particle-dispersed titanium oxide coating film produced in Example 3;
【図7】 実施例3により製造した金微粒子分散酸化チ
タン被膜について350nm〜800nmの波長域にお
ける吸光係数の測定結果を示す図である。FIG. 7 is a diagram showing the results of measurement of the extinction coefficient in the wavelength range of 350 nm to 800 nm for the gold fine particle-dispersed titanium oxide film produced in Example 3.
【図8】 実施例7により製造した金微粒子分散β−F
eOOH被膜中の金属(金および鉄)の濃度と塩化金酸
濃度との関係を示す図である。8] Gold fine particle-dispersed β-F produced according to Example 7
It is a figure which shows the relationship between the density | concentration of the metal (gold and iron) in an eOOH coating, and the chloroauric acid density | concentration.
【図9】 実施例7により製造した金微粒子分散酸化チ
タン被膜中の金属濃度比(金/鉄)と塩化金酸濃度との
関係を示す図である。FIG. 9 is a diagram showing the relationship between the metal concentration ratio (gold / iron) and the chloroauric acid concentration in the gold fine particle-dispersed titanium oxide coating film produced in Example 7.
【図10】 実施例7により製造した金微粒子分散β−
FeOOH被膜について測定したX線回折パターンを示
す図である。FIG. 10: Gold fine particle dispersed β-produced in Example 7
It is a figure which shows the X-ray-diffraction pattern measured about the FeOOH film.
Claims (5)
物が過飽和状態にある処理液と、基材とを接触させるこ
とにより、この基材の表面に前記貴金属を含む金属酸化
物被膜を形成する第1の工程と、 この金属酸化物被膜中の貴金属を還元して微粒子として
析出させる第2の工程とを含むことを特徴とする貴金属
微粒子を分散した酸化物被膜の製造方法。1. A metal oxide coating film containing the noble metal is formed on the surface of the base material by bringing a base material into contact with a treatment liquid containing a compound containing the noble metal and having a metal oxide in a supersaturated state. And a second step of reducing the noble metal in the metal oxide coating to precipitate as fine particles, the method for producing an oxide coating having dispersed noble metal fine particles.
線を照射する工程であることを特徴とする請求項1に記
載の貴金属微粒子を分散した酸化物被膜の製造方法。2. The method for producing an oxide film in which noble metal fine particles are dispersed according to claim 1, wherein the second step is a step of irradiating the metal oxide film with ultraviolet rays.
する工程であることを特徴とする請求項1に記載の貴金
属微粒子を分散した酸化物被膜の製造方法。3. The method for producing an oxide coating in which fine noble metal particles are dispersed according to claim 1, wherein the second step is a step of heating the metal oxide coating.
する温度で加熱することにより、貴金属を還元して微粒
子として析出させるとともに、被膜を結晶化させること
を特徴とする請求項3に記載の貴金属微粒子を分散した
酸化物被膜の製造方法。4. The metal oxide film is heated at a temperature at which the film is crystallized to reduce the noble metal to be precipitated as fine particles and to crystallize the film. 1. A method for producing an oxide film in which fine noble metal particles are dispersed.
00℃で加熱することにより、貴金属微粒子の平均粒径
を1nm〜10nmとすることを特徴とする請求項3ま
たは4に記載の貴金属微粒子を分散した酸化物被膜の製
造方法。5. The metal oxide coating is about 200 ° C. to about 6 ° C.
The average particle diameter of the noble metal fine particles is set to 1 nm to 10 nm by heating at 00 ° C, and the method for producing an oxide coating film containing dispersed noble metal fine particles according to claim 3 or 4, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9135996A JPH09278488A (en) | 1996-04-12 | 1996-04-12 | Production of oxide coating film with noble metal dispersed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9135996A JPH09278488A (en) | 1996-04-12 | 1996-04-12 | Production of oxide coating film with noble metal dispersed |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09278488A true JPH09278488A (en) | 1997-10-28 |
Family
ID=14024201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9135996A Pending JPH09278488A (en) | 1996-04-12 | 1996-04-12 | Production of oxide coating film with noble metal dispersed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09278488A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001030716A1 (en) * | 1999-10-25 | 2001-05-03 | Nippon Sheet Glass Co., Ltd. | Method for preparing article covered with light absorption pattern film and article covered with light absorption pattern film |
WO2002012929A1 (en) * | 2000-08-07 | 2002-02-14 | Nippon Sheet Glass Co., Ltd. | Polarization element and method for preparation thereof |
WO2004017336A1 (en) * | 2002-08-06 | 2004-02-26 | Nippon Sheet Glass Company Limited | Process for producing ferromagnetic fine-particle exothermic element |
JP4854097B2 (en) * | 2007-12-19 | 2012-01-11 | 国立大学法人大阪大学 | Antibacterial fiber treatment method, antibacterial fiber production method, and antibacterial fiber |
-
1996
- 1996-04-12 JP JP9135996A patent/JPH09278488A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001030716A1 (en) * | 1999-10-25 | 2001-05-03 | Nippon Sheet Glass Co., Ltd. | Method for preparing article covered with light absorption pattern film and article covered with light absorption pattern film |
US6790583B2 (en) | 1999-10-25 | 2004-09-14 | Nippon Sheet Glass Co., Ltd. | Light absorbing pattern film coated article production method and light absorbing pattern film coated articles |
WO2002012929A1 (en) * | 2000-08-07 | 2002-02-14 | Nippon Sheet Glass Co., Ltd. | Polarization element and method for preparation thereof |
WO2004017336A1 (en) * | 2002-08-06 | 2004-02-26 | Nippon Sheet Glass Company Limited | Process for producing ferromagnetic fine-particle exothermic element |
JP4854097B2 (en) * | 2007-12-19 | 2012-01-11 | 国立大学法人大阪大学 | Antibacterial fiber treatment method, antibacterial fiber production method, and antibacterial fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6589906B2 (en) | Methods for producing oxides or composites thereof | |
EP0598472B1 (en) | Ultra-fine-particles-dispersed glassy material and method for making the same | |
US20090147370A1 (en) | Nanoparticle and nanocomposite films | |
JP2006502074A (en) | Article having nanoscale structure and method for producing the article | |
US20190256995A1 (en) | Methods of electrochemical deposition | |
WO2010125885A1 (en) | Flaky particles utilizing plasmon phenomenon of fine metal particles, and method of regulating color tone thereof | |
JP2010529290A (en) | Method for producing titanium oxide layer having high photocatalytic activity and titanium oxide layer produced by this method | |
CN102869811A (en) | Process for the surface-modification of flyash and industrial applications thereof | |
JP2008254983A (en) | Nano acicular anatase TiO2 crystal aggregated particles, porous anatase TiO2 crystal film, and production method thereof | |
US5800925A (en) | Nonlinear optical materials and process for producing the same | |
JPH09278488A (en) | Production of oxide coating film with noble metal dispersed | |
CN1142317C (en) | Process for preparing gas-sensitive allochroic WO3 film by vacuum evaporation | |
JPH08190088A (en) | Coated glass product,manufacture thereof and liquid crystal display device | |
JPS63197638A (en) | Multilayer material, surface of which has ultrafine | |
US6306747B1 (en) | Conductive metal oxide based layer | |
KR930009324B1 (en) | Method for the manufacture of a toughened and/or bent pane with solar control coating containing platinum or the like | |
JP3122375B2 (en) | Infrared shielding material | |
CN101261443B (en) | Nanometer crystal graph transfer printing process and nanometer crystal graph material | |
JP2683568B2 (en) | Coloring agent for frosted tinted glass | |
Pal et al. | Ion implantation for the fabrication of plasmonic nanocomposites: a brief review | |
JP3726126B2 (en) | Method for producing patterned oxide ceramic film | |
JP2678336B2 (en) | Method for producing ultrafine particle-dispersed glassy material | |
Onodera et al. | Hybridization of polydiacetylene core and metal shell | |
KR20020096534A (en) | Method of preparing composite of metal and indium tin oxide and transparent conductive composition comprising composite of metal and indium tin oxide prepared by same | |
Suyal | Synthesis of nanocomposite glass-like films containing semiconductor nanocrystals and noble bimetallic colloids by sol-gel route and their characterisation |