JPH09264614A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH09264614A JPH09264614A JP7548496A JP7548496A JPH09264614A JP H09264614 A JPH09264614 A JP H09264614A JP 7548496 A JP7548496 A JP 7548496A JP 7548496 A JP7548496 A JP 7548496A JP H09264614 A JPH09264614 A JP H09264614A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- indoor heat
- conditioning load
- air conditioning
- outdoor heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 claims abstract description 65
- 239000003507 refrigerant Substances 0.000 claims abstract description 56
- 238000001816 cooling Methods 0.000 claims abstract description 42
- 238000005057 refrigeration Methods 0.000 claims abstract description 12
- 230000007423 decrease Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 36
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は空気調和機の冷媒流
路の切り換え制御に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to switching control of a refrigerant flow path of an air conditioner.
【0002】[0002]
【従来の技術】空気調和機は図7に示すように圧縮機
1,四方弁2,室外熱交換器3,減圧器4,室内熱交換
器5を配管で接続して冷媒が循環する冷凍サイクルを構
成している。2. Description of the Related Art As shown in FIG. 7, an air conditioner is a refrigeration cycle in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5 are connected by piping to circulate a refrigerant. Are configured.
【0003】実開平7−32460号公報には次のよう
な空気調和機が開示されている。この空気調和機は、冷
房運転と暖房運転の切り換えのために四方弁2が切り換
えられて室内熱交換器5を流れる冷媒の向きが反転する
ことに伴って、暖房運転中には室内熱交換器5を1パス
で運転し、冷房運転中には室内熱交換器5を2パスで運
転して、冷房運転時と暖房運転時のどちらも効率よく運
転できるようにしている。Japanese Utility Model Publication No. 7-32460 discloses the following air conditioner. In this air conditioner, the four-way valve 2 is switched for switching between the cooling operation and the heating operation and the direction of the refrigerant flowing through the indoor heat exchanger 5 is reversed, so that the indoor heat exchanger is operated during the heating operation. 5 is operated in one pass, and the indoor heat exchanger 5 is operated in two passes during the cooling operation so that both the cooling operation and the heating operation can be efficiently operated.
【0004】[0004]
【発明が解決しようとする課題】このように、運転モー
ドに応じて室内熱交換器5のパス数を切り換えることに
よって、定格条件における冷房運転時と暖房運転時の効
率を改善できるが、定格条件を外れた運転状態では効率
の改善を期待できないのが現状である。As described above, by switching the number of paths of the indoor heat exchanger 5 according to the operation mode, the efficiency in the cooling operation and the heating operation in the rated condition can be improved. Under the current operating conditions, it is not possible to expect improvement in efficiency.
【0005】本発明は定格条件における冷房運転時と暖
房運転時の効率の改善だけでなく、定格条件を外れた運
転状態においても効率の改善を実現できる空気調和機を
提供することを目的とする。An object of the present invention is to provide an air conditioner capable of not only improving the efficiency during cooling operation and heating operation under rated conditions but also improving the efficiency under operating conditions outside the rated conditions. .
【0006】[0006]
【課題を解決するための手段】請求項1記載の空気調和
機は、室内熱交換器と室外熱交換器を介装して冷凍サイ
クルを形成した空気調和機であって、前記室内熱交換器
と室外熱交換器のうちの少なくとも一方の熱交換器のパ
ス数を、空調負荷の大小に応じて変更する冷媒流路切換
制御手段を設けたことを特徴とする。An air conditioner according to claim 1 is an air conditioner in which a refrigeration cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, and the indoor heat exchanger. And a heat exchanger of at least one of the outdoor heat exchanger, the refrigerant passage switching control means for changing the number of paths according to the magnitude of the air conditioning load.
【0007】請求項2記載の空気調和機は、室内熱交換
器と室外熱交換器を介装して冷凍サイクルを形成した空
気調和機であって、冷房運転と暖房運転の別を表す運転
モードに応じて前記室内熱交換器と室外熱交換器のパス
数を変更する冷媒流路切換制御手段を設けたことを特徴
とする。An air conditioner according to a second aspect of the present invention is an air conditioner in which a refrigerating cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, and an operation mode indicating a cooling operation and a heating operation. A refrigerant flow path switching control means for changing the number of passes of the indoor heat exchanger and the outdoor heat exchanger according to the above is provided.
【0008】請求項3記載の空気調和機は、請求項1に
おいて、冷媒流路切換制御手段は、冷房運転と暖房運転
の別を表す運転モードならびに冷媒循環量に基づいて熱
交換器のパス数を変更することを特徴とする。The air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect, in which the refrigerant flow path switching control means determines the number of paths of the heat exchanger based on the operation mode indicating the cooling operation and the heating operation and the refrigerant circulation amount. It is characterized by changing.
【0009】請求項4記載の空気調和機は、請求項1に
おいて、冷媒流路切換制御手段は、前記冷凍サイクルに
介装されている圧縮機の回転数,運転電流値,蒸発器温
度,蒸発器圧力,圧縮機の吸入圧力のうちの少なくとも
1つと、冷房運転と暖房運転の別を表す運転モードとに
基づいて熱交換器のパス数を変更することを特徴とす
る。The air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect, wherein the refrigerant flow path switching control means includes the number of revolutions of the compressor interposed in the refrigeration cycle, an operating current value, an evaporator temperature, and an evaporator. It is characterized in that the number of passes of the heat exchanger is changed based on at least one of the unit pressure and the suction pressure of the compressor, and the operation mode representing the distinction between the cooling operation and the heating operation.
【0010】請求項5記載の空気調和機は、請求項1に
おいて、冷房運転中の冷媒流路切換制御手段は、空調負
荷が定格出力の場合に室内熱交換器を2パスで運転し、
室外熱交換器を1パスで運転し、空調負荷が小さくなる
と室内熱交換器と室外熱交換器をともに1パスで運転
し、空調負荷が大きくなると室内熱交換器と室外熱交換
器をともに2パスで運転することを特徴とする。The air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect, wherein the refrigerant flow path switching control means during the cooling operation operates the indoor heat exchanger with two passes when the air conditioning load has a rated output.
When the outdoor heat exchanger is operated in one pass, the indoor heat exchanger and the outdoor heat exchanger are both operated in one pass when the air conditioning load is small, and the indoor heat exchanger and the outdoor heat exchanger are both operated when the air conditioning load is large. It is characterized by driving on a pass.
【0011】請求項6記載の空気調和機は、請求項1に
おいて、暖房運転中の冷媒流路切換制御手段は、空調負
荷が定格出力の場合に室内熱交換器を1パスで運転し、
室外熱交換器を2パスで運転し、空調負荷が小さくなる
と室内熱交換器と室外熱交換器をともに1パスで運転
し、空調負荷が大きくなると室内熱交換器と室外熱交換
器をともに2パスで運転することを特徴とする。The air conditioner according to a sixth aspect of the present invention is the air conditioner according to the first aspect, wherein the refrigerant flow path switching control means during the heating operation operates the indoor heat exchanger in one pass when the air conditioning load has a rated output.
When the outdoor heat exchanger is operated in two passes, the indoor heat exchanger and the outdoor heat exchanger are both operated in one pass when the air conditioning load is small, and the indoor heat exchanger and the outdoor heat exchanger are both operated when the air conditioning load is large. It is characterized by driving on a pass.
【0012】請求項7記載の空気調和機は、請求項1に
おいて、冷媒流路切換制御手段は、冷房運転中には冷房
運転と暖房運転の別を表す運転モードならびに空調負荷
の大小に応じて、空調負荷が定格出力の場合に室内熱交
換器を2パスで運転し、室外熱交換器を1パスで運転
し、空調負荷が小さくなると室内熱交換器と室外熱交換
器をともに1パスで運転し、空調負荷が大きくなると室
内熱交換器と室外熱交換器をともに2パスで運転し、暖
房運転中には冷房運転と暖房運転の別を表す運転モード
ならびに空調負荷の大小に応じて、空調負荷が定格出力
の場合に室内熱交換器を1パスで運転し、室外熱交換器
を2パスで運転し、空調負荷が小さくなると室内熱交換
器と室外熱交換器をともに1パスで運転し、空調負荷が
大きくなると室内熱交換器と室外熱交換器をともに2パ
スで運転することを特徴とする。The air conditioner according to a seventh aspect of the present invention is the air conditioner according to the first aspect, wherein the refrigerant flow path switching control means is responsive to an operation mode indicating a distinction between the cooling operation and the heating operation during the cooling operation and the magnitude of the air conditioning load. , When the air conditioning load is the rated output, the indoor heat exchanger is operated in two passes, the outdoor heat exchanger is operated in one pass, and when the air conditioning load decreases, both the indoor heat exchanger and the outdoor heat exchanger are in one pass. When the air conditioning load increases, both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes, and during the heating operation, depending on the operation mode indicating the distinction between the cooling operation and the heating operation and the magnitude of the air conditioning load, When the air conditioning load is the rated output, the indoor heat exchanger is operated in one pass, the outdoor heat exchanger is operated in two passes, and when the air conditioning load is small, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass. However, if the air conditioning load increases, the indoor heat Characterized by operating at both 2 pass exchanger and the outdoor heat exchanger.
【0013】[0013]
【発明の実施の形態】以下、本発明の空気調和機の実施
の形態を図1〜図6に基づいて説明する。図1に示すよ
うに、圧縮機1,四方弁2,室外熱交換器3,減圧器
4,室内熱交換器5を配管で接続して冷媒が循環する冷
凍サイクルを構成している。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an air conditioner according to the present invention will be described below with reference to FIGS. As shown in FIG. 1, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a decompressor 4, and an indoor heat exchanger 5 are connected by piping to constitute a refrigeration cycle in which a refrigerant circulates.
【0014】室外熱交換器3は冷媒流路3a,3bを有
しており、三方弁6a,6bによって冷媒流路3a,3
bを1パス状態と2パス状態とに切り換えられるよう構
成されている。The outdoor heat exchanger 3 has refrigerant flow paths 3a and 3b, and the three-way valves 6a and 6b allow the refrigerant flow paths 3a and 3b.
It is configured so that b can be switched between a one-pass state and a two-pass state.
【0015】室内熱交換器5も室外熱交換器3と同様に
冷媒流路5a,5bと三方弁7a,7bを有しており、
1パス状態と2パス状態とに切り換えられるよう構成さ
れている。Like the outdoor heat exchanger 3, the indoor heat exchanger 5 also has refrigerant flow paths 5a and 5b and three-way valves 7a and 7b.
It is configured to switch between a one-pass state and a two-pass state.
【0016】三方弁6a,6b,7a,7bは制御部8
によって、運転モードと空調負荷の大小に応じて図2に
示すテーブルAに従って切り換えられる。この実施の形
態において請求の範囲の冷媒流路切換制御手段は、三方
弁6a,6b,7a,7bと制御部8によって構成され
ている。The three-way valves 6a, 6b, 7a and 7b are control units 8
According to the operation mode and the magnitude of the air conditioning load, switching is performed according to the table A shown in FIG. In this embodiment, the refrigerant flow path switching control means in the claims is composed of three-way valves 6a, 6b, 7a, 7b and a control unit 8.
【0017】マイクロコンピュータで構成されている制
御部8は、運転モードが冷房運転中には図3に示すフロ
ーを実行し、運転モードが暖房運転中には図4に示すフ
ローを実行するように構成されている。なお、実行中の
運転モードは、利用者が設定スイッチで冷房運転または
暖房運転を設定した場合には、その設定スイッチから読
み取った内容に基づいて運転モードが決定され、利用者
が設定スイッチで自動運転を選択した場合には、室内側
の目標設定温度と室内吸い込み温度の温度差とから必要
な運転モードを自動判定して運転される。The control unit 8 composed of a microcomputer executes the flow shown in FIG. 3 when the operation mode is the cooling operation, and executes the flow shown in FIG. 4 when the operation mode is the heating operation. It is configured. When the user sets the cooling operation or the heating operation with the setting switch, the operating mode being executed is determined based on the contents read from the setting switch, and the user automatically uses the setting switch. When the operation is selected, the necessary operation mode is automatically determined based on the temperature difference between the indoor target temperature and the indoor suction temperature.
【0018】まず、図3に示すフローに基づいて冷房運
転中に室外熱交換器3と室内熱交換器5のそれぞれのパ
ス数が、空調負荷の大小に応じて制御部8によってどの
ように切り換えられるのかを説明する。なお、圧縮機1
は各種のセンサ〔図示せず〕の検出値に基づいて室内温
度が目標温度に近づくようにその回転数が自動制御され
ている。First, based on the flow shown in FIG. 3, how the number of paths of each of the outdoor heat exchanger 3 and the indoor heat exchanger 5 is switched by the control unit 8 in accordance with the magnitude of the air conditioning load during the cooling operation. Explain if it can be done. The compressor 1
Is automatically controlled in its rotation speed so that the room temperature approaches the target temperature based on the detection values of various sensors (not shown).
【0019】制御部8は図3に示す〔ステップ1〕(以
下、図では“ステップ”を#と表記する。)で、現在の
空調負荷の大小を判定するに必要な運転データを収集す
る。具体的には、圧縮機1の回転数をサンプル値として
読み込む。The control unit 8 collects the operation data necessary for judging the present magnitude of the air conditioning load in [Step 1] shown in FIG. 3 (hereinafter, "Step" is represented by # in the drawing). Specifically, the rotation speed of the compressor 1 is read as a sample value.
【0020】〔ステップ2〕では、〔ステップ1〕で読
み込んだサンプル値を基準値と比較して現在の空調負荷
の大小を判定する。図2と図3に示す実施の形態では、
基準値と比較して定格条件である“定格能力”、定格能
力の1/2の“中間能力”、さらに空調負荷の小さな
“低能力”、定格能力よりも空調負荷の大きな“高能
力”の何れに属しているかを判定する。In [Step 2], the sample value read in [Step 1] is compared with a reference value to determine the magnitude of the current air conditioning load. In the embodiment shown in FIGS. 2 and 3,
Compared to the standard value, the rated conditions are "rated capacity", "intermediate capacity" of 1/2 of rated capacity, "low capacity" with a small air conditioning load, and "high capacity" with a larger air conditioning load than the rated capacity. Which one it belongs to is determined.
【0021】なお、“定格能力”とはJIS条件“C9
612−19XX”で決定される能力区分であり、空気
調和機の構成とその冷却方式によって決定される能力ラ
ンクを云う。The "rated capacity" means JIS condition "C9".
It is a capacity classification determined by “612-19XX” and refers to a capacity rank determined by the configuration of the air conditioner and its cooling system.
【0022】圧縮機1の回転数から現在の空調負荷が
“定格能力”であると〔ステップ2〕において判定され
た場合には、〔ステップ3〕を実行して図2に示したテ
ーブルAに従って、室外熱交換器3を1パス状態に切り
換え、室内熱交換器5を2パス状態に切り換えて運転す
る。この場合の三方弁6a,6b,7a,7bの切換状
態と冷媒の流れを図5の(a)に示す。矢印は冷媒の流
れ方向を示している。If it is determined in step 2 that the current air conditioning load is "rated capacity" from the number of revolutions of the compressor 1, step 3 is executed and table A shown in FIG. The outdoor heat exchanger 3 is switched to the 1-pass state, and the indoor heat exchanger 5 is switched to the 2-pass state to operate. The switching state of the three-way valves 6a, 6b, 7a, 7b and the flow of the refrigerant in this case are shown in FIG. The arrow indicates the flow direction of the refrigerant.
【0023】図5の(a)では、圧縮機1から送り出さ
れた圧縮冷媒は三方弁6aから冷媒配管3cと三方弁6
bを介して室外熱交換器3の冷媒流路3aを流れ、再び
室外熱交換器3の冷媒流路3bを流れる。そして減圧弁
4を介して室内熱交換器5の冷媒流路5aと三方弁7a
と四方弁2を介して圧縮機1へ戻る。また、室内熱交換
器5において冷媒は三方弁7bを介して冷媒流路5bを
流れて三方弁7aと四方弁2を介して圧縮機1へ戻る。In FIG. 5A, the compressed refrigerant sent from the compressor 1 is transferred from the three-way valve 6a to the refrigerant pipe 3c and the three-way valve 6.
It flows through the refrigerant flow path 3a of the outdoor heat exchanger 3 via b, and again flows through the refrigerant flow path 3b of the outdoor heat exchanger 3. Then, via the pressure reducing valve 4, the refrigerant flow path 5a of the indoor heat exchanger 5 and the three-way valve 7a
And returns to the compressor 1 via the four-way valve 2. In the indoor heat exchanger 5, the refrigerant flows through the refrigerant flow path 5b via the three-way valve 7b and returns to the compressor 1 via the three-way valve 7a and the four-way valve 2.
【0024】図3の〔ステップ1〕〜〔ステップ3〕を
繰り返し実行中に、〔ステップ2〕において空調負荷が
例えば“低能力”に変わったと判定した場合には、〔ス
テップ3〕を実行せずに〔ステップ4〕を実行して三方
弁7a,7bを切り換えて冷媒配管5c介して流れるよ
う室内熱交換器5を図5の(b)に示すように1パス状
態に切り換えてサイクル性能の向上を実現する。When it is determined in [Step 2] that the air conditioning load has changed to, for example, "low capacity" while repeatedly executing [Step 1] to [Step 3] in FIG. 3, execute [Step 3]. Without executing [Step 4], the three-way valves 7a and 7b are switched to switch the indoor heat exchanger 5 to the one-pass state as shown in FIG. Realize improvement.
【0025】この室内熱交換器5のパス切り換えによる
サイクル性能の向上を図6の(a)(b)に示す特性図
に基づいて説明する。図6の(a)は熱交換器における
冷媒流量と管内熱伝導率の関係を示し、図6の(b)は
冷媒流量と圧力損失の関係を示す。ここで重要なことは
特性線の傾きの違いにある。冷媒流量が第1の流量9a
から第2の流量9bに増加変化した場合をみると、管内
熱伝達効率の変化Δαと圧力損失の変化Δβは、Δαよ
りもΔβの方が大きく変化している。The improvement of cycle performance by switching the path of the indoor heat exchanger 5 will be described based on the characteristic diagrams shown in FIGS. 6 (a) and 6 (b). 6A shows the relationship between the refrigerant flow rate in the heat exchanger and the thermal conductivity in the tube, and FIG. 6B shows the relationship between the refrigerant flow rate and the pressure loss. What is important here is the difference in the slope of the characteristic line. Refrigerant flow rate is first flow rate 9a
From the above, when the increase is changed to the second flow rate 9b, the change Δα in the heat transfer efficiency in the pipe and the change Δβ in the pressure loss are larger in Δβ than in Δα.
【0026】室内熱交換器5と室外熱交換器3は、冷房
運転時には実際のp−h線図に基づいて室内熱交換器5
を2パス,室外熱交換器3を1パスで運転し、サイクル
性能が最適になるように設計されている。During the cooling operation, the indoor heat exchanger 5 and the outdoor heat exchanger 3 are based on the actual ph diagram and the indoor heat exchanger 5 is used.
Is operated in two passes and the outdoor heat exchanger 3 is operated in one pass to optimize cycle performance.
【0027】定格能力で運転中に空調負荷が低負荷に変
化した場合には、圧縮機1の回転数が低下して冷媒流量
が低下し、それに伴う圧力損失も僅かになるため、管内
熱伝達率を優先させるように〔ステップ4〕を実行して
室内熱交換器5を1パス,室外熱交換器3を1パスで運
転してサイクル性能の悪化を低減する。〔ステップ2〕
で中間能力と判定された場合には〔ステップ5〕を実行
し、〔ステップ2〕で高能力と判定された場合には〔ス
テップ6〕を実行する。When the air conditioning load changes to a low load during operation at the rated capacity, the rotational speed of the compressor 1 decreases, the refrigerant flow rate decreases, and the accompanying pressure loss also becomes small. [Step 4] is executed so as to prioritize the rate to operate the indoor heat exchanger 5 in one pass and the outdoor heat exchanger 3 in one pass to reduce deterioration of cycle performance. [Step 2]
When it is determined that the ability is intermediate, the step 5 is executed, and when it is determined that the ability is high, the step 6 is executed.
【0028】したがって、従来のように運転モードが暖
房運転では、室外熱交換器と室内熱交換器を共に1パス
状態で運転し、冷房運転では、室外熱交換器を1パス状
態、室内熱交換器を2パス状態で運転している空気調和
機に比べて、現行のシーズンエネルギ効率(SEER)
の評価基準において冷房SEERの向上を図ることがで
きる。Therefore, when the operation mode is the heating operation as in the prior art, both the outdoor heat exchanger and the indoor heat exchanger are operated in the 1-pass state, and in the cooling operation, the outdoor heat exchanger is in the 1-pass state and the indoor heat exchange is performed. Current Season Energy Efficiency (SEER) compared to an air conditioner that operates a two-pass conditioner
It is possible to improve the cooling SEER based on the evaluation criteria.
【0029】なお、SEERは日本工業規格において、
冷房期間エネルギー消費効率(CSPF)と暖房期間エ
ネルギー消費効率(HSPF)で決定すると規定されて
いる。SEER is a Japanese Industrial Standard,
It is stipulated that the energy consumption efficiency (CSPF) in the cooling period and the energy consumption efficiency (HSPF) in the heating period determine.
【0030】運転モードが暖房運転中(四方弁2が図1
に破線で示す位置に切り換わっている)には、制御部8
は図4に示す〔ステップ7〕で、現在の空調負荷の大小
を判定するに必要な運転データを収集する。具体的に
は、圧縮機1の回転数をサンプル値として読み込む。The operation mode is the heating operation (the four-way valve 2 is shown in FIG.
Is switched to the position indicated by the broken line in FIG.
In [Step 7] shown in FIG. 4, the operation data necessary for judging the current air conditioning load is collected. Specifically, the rotation speed of the compressor 1 is read as a sample value.
【0031】〔ステップ8〕では、〔ステップ7〕で読
み込んだサンプル値を基準値と比較して現在の空調負荷
の大小を判定する。ここではでは、基準値と比較して定
格条件である“定格能力”、定格能力の1/2の“中間
能力”、さらに空調負荷の小さな“低能力”、定格能力
よりも空調負荷の大きな“高能力”の何れに属している
かを判定する。In [Step 8], the sample value read in [Step 7] is compared with the reference value to determine the current air conditioning load. Here, compared to the standard value, the rated condition is "rated capacity", "intermediate capacity" of 1/2 of rated capacity, "low capacity" with small air conditioning load, and "large capacity" with air conditioning load larger than rated capacity. Which of the "high abilities" it belongs to is determined.
【0032】圧縮機1の回転数から現在の空調負荷が
“定格能力”であったと〔ステップ8〕において判定さ
れた場合には、〔ステップ9〕を実行して図2に示した
テーブルAに従って、室外熱交換器3を2パス状態に切
り換え、室内熱交換器5を1パス状態に切り換えて運転
する。When it is determined in step 8 that the current air conditioning load is "rated capacity" from the number of revolutions of the compressor 1, step 9 is executed and table A shown in FIG. The outdoor heat exchanger 3 is switched to the 2-pass state, and the indoor heat exchanger 5 is switched to the 1-pass state to operate.
【0033】図4の〔ステップ7〕〜〔ステップ9〕を
繰り返し実行中に、〔ステップ8〕において空調負荷が
例えば“低能力”に変わったと判定した場合には、〔ス
テップ9〕を実行せずに〔ステップ10〕を実行して三
方弁6a,6bを切り換えて室内熱交換器3を1パス状
態に切り換えてサイクル性能の向上を実現する。〔ステ
ップ8〕で中間能力と判定された場合には〔ステップ1
1〕を実行し、〔ステップ8〕で高能力と判定された場
合には〔ステップ12〕を実行する。〔ステップ8〕で
暖房低温と判定された場合には〔ステップ13〕を実行
する。If it is determined in step 8 that the air conditioning load has changed to, for example, "low capacity" while repeatedly executing [step 7] to [step 9] in FIG. 4, execute [step 9]. Instead, [Step 10] is executed to switch the three-way valves 6a and 6b to switch the indoor heat exchanger 3 to the one-pass state and improve the cycle performance. If it is judged that the intermediate ability is obtained in [Step 8], [Step 1
1] is executed, and if it is determined that the ability is high in [Step 8], [Step 12] is executed. When it is determined that the heating temperature is low in [Step 8], [Step 13] is executed.
【0034】したがって、従来のように運転モードが暖
房運転では、室外熱交換器と室内熱交換器を共に1パス
状態で運転し、冷房運転では、室外熱交換器を1パス状
態、室内熱交換器を2パス状態で運転している空気調和
機に比べて、現行のシーズンエネルギ効率(SEER)
の評価基準において暖房SEERの向上を図ることがで
きる。Therefore, when the operation mode is the heating operation as in the prior art, both the outdoor heat exchanger and the indoor heat exchanger are operated in the 1-pass state, and in the cooling operation, the outdoor heat exchanger is in the 1-pass state and the indoor heat exchange is performed. Current Season Energy Efficiency (SEER) compared to an air conditioner that operates a two-pass conditioner
It is possible to improve the heating SEER based on the evaluation criteria.
【0035】上記の実施の形態では、室外熱交換器3と
室内熱交換器5の両方のパス数を切り換えられるように
三方弁6a,6b,7a,7bを設けたが、室外熱交換
器3は1パス状態だけで室内熱交換器5は三方弁7a,
7bを設けて冷房運転において三方弁7a,7bを空調
負荷に応じて切り換えて室内熱交換器5のパス数を切り
換えたり、室内熱交換器5は1パス状態だけで室外熱交
換器3は三方弁6a,6bを設けて冷房運転において三
方弁6a,6bを空調負荷に応じて切り換えて室外熱交
換器3のパス数を切り換えるだけでも従来に比べてサイ
クル性能の改善を実現できる。In the above embodiment, the three-way valves 6a, 6b, 7a, 7b are provided so that the number of paths of both the outdoor heat exchanger 3 and the indoor heat exchanger 5 can be switched, but the outdoor heat exchanger 3 Is a one-pass state, the indoor heat exchanger 5 is a three-way valve 7a,
7b is provided to switch the three-way valves 7a and 7b according to the air conditioning load to switch the number of passes of the indoor heat exchanger 5 in the cooling operation, or the indoor heat exchanger 5 is in only one pass state and the outdoor heat exchanger 3 is three-way. Even if the valves 6a and 6b are provided and the three-way valves 6a and 6b are switched according to the air conditioning load in the cooling operation to switch the number of paths of the outdoor heat exchanger 3, the cycle performance can be improved as compared with the conventional case.
【0036】上記の各実施の形態において、制御部8は
運転モードと圧縮機1の回転数から時々の空調負荷(冷
媒循環量)を検出したが、運転モードと下記の何れかの
単数または複数から空調負荷を判定しても同様の効果を
期待できる。In each of the above embodiments, the control unit 8 detects the air conditioning load (refrigerant circulation amount) from time to time based on the operation mode and the number of revolutions of the compressor 1. Even if the air conditioning load is determined from the above, the same effect can be expected.
【0037】・電源電流値から圧縮機の回転数を推測す
る ・圧縮機の吸入圧力 ・蒸発器の温度 上記の各実施の形態では、室外熱交換器3,室内熱交換
器5のパス数の切り換えは1パス状態と2パス状態であ
ったが、2パス状態と4パス状態などでもよく、1パス
状態と2パス状態の切り換えに限定されるものではな
い。-Estimating the number of revolutions of the compressor from the value of the power supply current-Suction pressure of the compressor-Temperature of the evaporator In each of the above embodiments, the number of passes of the outdoor heat exchanger 3 and the indoor heat exchanger 5 The switching is performed in the one-pass state and the two-pass state, but may be performed in the two-pass state and the four-pass state, and is not limited to the switching between the one-pass state and the two-pass state.
【0038】[0038]
【発明の効果】請求項1の構成によると、室内熱交換器
と室外熱交換器を介装して冷凍サイクルを形成した空気
調和機であって、前記室内熱交換器と室外熱交換器のう
ちの少なくとも一方の熱交換器のパス数を、空調負荷の
大小に応じて変更する冷媒流路切換制御手段を設けたた
め、冷房運転では室外熱交換器を1パス、室内熱交換器
を2パスで運転しているだけの従来の空気調和機に比べ
てより広い領域でサイクル性能の向上を図ることができ
る。According to the first aspect of the present invention, there is provided an air conditioner in which a refrigeration cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, wherein the indoor heat exchanger and the outdoor heat exchanger are Since the refrigerant flow path switching control means for changing the number of paths of at least one of the heat exchangers according to the magnitude of the air conditioning load is provided, in the cooling operation, one path is used for the outdoor heat exchanger and two paths are used for the indoor heat exchanger. It is possible to improve the cycle performance in a wider area as compared with the conventional air conditioner that is only operated at.
【0039】請求項2の構成によると、室内熱交換器と
室外熱交換器を介装して冷凍サイクルを形成した空気調
和機であって、冷房運転と暖房運転別を表す運転モード
に応じて前記室内熱交換器と室外熱交換器のパス数を変
更する冷媒流路切換制御手段を設けたため、運転モード
に応じて室内熱交換器と室外熱交換器のうちの一方の熱
交換器のパス数を変更しているだけの従来の空気調和機
と比べてより広い領域でサイクル性能の向上を図ること
ができる。According to the second aspect of the present invention, there is provided an air conditioner in which a refrigeration cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, depending on an operation mode indicating a cooling operation and a heating operation. Since the refrigerant flow path switching control means for changing the number of paths of the indoor heat exchanger and the outdoor heat exchanger is provided, the path of one of the indoor heat exchanger and the outdoor heat exchanger is changed according to the operation mode. It is possible to improve the cycle performance in a wider area as compared with the conventional air conditioner in which only the number is changed.
【0040】請求項3の構成によると、請求項1の冷媒
流路切換制御手段を、冷房運転と暖房運転の別を表す運
転モードならびに冷媒循環量に基づいて熱交換器のパス
数を変更するように構成したため、運転モードと冷媒循
環量に応じて熱交換器のパス数を決定してより広い領域
で冷凍サイクル性能の向上を図ることができる。According to the third aspect of the present invention, the refrigerant flow path switching control means of the first aspect changes the number of passes of the heat exchanger based on the operation mode indicating the cooling operation and the heating operation and the refrigerant circulation amount. With this configuration, it is possible to improve the refrigeration cycle performance in a wider area by determining the number of passes of the heat exchanger according to the operation mode and the refrigerant circulation amount.
【0041】請求項4の構成によると、請求項1の冷媒
流路切換制御手段を、冷凍サイクルに介装されている圧
縮機の回転数,運転電流,蒸発器温度,蒸発器圧力,圧
縮機の吸入圧力の少なくとも1つと、運転モードとに基
づいて熱交換器のパス数を変更するように構成したた
め、冷媒循環量を直接に計測しなくても冷媒循環量を推
測して、装置の簡略化を図ることができる。According to the structure of claim 4, the refrigerant flow path switching control means of claim 1 is provided with the number of revolutions of the compressor, the operating current, the evaporator temperature, the evaporator pressure, and the compressor installed in the refrigeration cycle. Since the number of passes of the heat exchanger is changed based on at least one of the suction pressure of the heat exchanger and the operation mode, the refrigerant circulation amount can be estimated without directly measuring the refrigerant circulation amount to simplify the device. Can be realized.
【0042】請求項5の構成によると、請求項1の冷媒
流路切換制御手段を、冷房運転中には、空調負荷が定格
出力の場合に室内熱交換器を2パスで運転し、室外熱交
換器を1パスで運転し、空調負荷が小さくなると室内熱
交換器と室外熱交換器をともに1パスで運転し、空調負
荷が大きくなると室内熱交換器と室外熱交換器をともに
2パスで運転するように構成したため、現行のシーズン
エネルギ効率(SEER)の評価基準において冷房SE
ERの向上を図ることができる。According to the fifth aspect of the present invention, the refrigerant flow path switching control means of the first aspect causes the indoor heat exchanger to operate in two passes when the air conditioning load is at the rated output during the cooling operation. If the air conditioning load is small, the indoor heat exchanger and the outdoor heat exchanger are both operated in one pass, and if the air conditioning load is large, the indoor heat exchanger and the outdoor heat exchanger are both in two passes. Since it is configured to operate, cooling SE based on the current evaluation criteria of season energy efficiency (SEER)
ER can be improved.
【0043】請求項6の構成によると、請求項1の冷媒
流路切換制御手段を、暖房運転中には、空調負荷が定格
出力の場合に室内熱交換器を1パスで運転し、室外熱交
換器を2パスで運転し、空調負荷が小さくなると室内熱
交換器と室外熱交換器をともに1パスで運転し、空調負
荷が大きくなると室内熱交換器と室外熱交換器をともに
2パスで運転するように構成したため、現行のシーズン
エネルギ効率(SEER)において、暖房SEERの向
上を図ることができる。According to the sixth aspect of the present invention, the refrigerant flow path switching control means of the first aspect causes the indoor heat exchanger to operate in one pass when the air conditioning load is at the rated output during the heating operation. When the air conditioner load is small, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, and when the air conditioning load is large, both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes. Since it is configured to operate, the heating SEER can be improved in the current season energy efficiency (SEER).
【0044】請求項7の構成によると、請求項1の冷媒
流路切換制御手段を、冷房運転中には冷房運転と暖房運
転の別を表す運転モードならびに空調負荷の大小に応じ
て、空調負荷が定格出力の場合に室内熱交換器を2パス
で運転し、室外熱交換器を1パスで運転し、空調負荷が
小さくなると室内熱交換器と室外熱交換器をともに1パ
スで運転し、空調負荷が大きくなると室内熱交換器と室
外熱交換器をともに2パスで運転し、暖房運転中には冷
房運転と暖房運転の別を表す運転モードならびに空調負
荷の大小に応じて、空調負荷が定格出力の場合に室内熱
交換器を1パスで運転し、室外熱交換器を2パスで運転
し、空調負荷が小さくなると室内熱交換器と室外熱交換
器をともに1パスで運転し、空調負荷が大きくなると室
内熱交換器と室外熱交換器をともに2パスで運転するよ
うに構成したため、現行のシーズンエネルギ効率(SE
ER)において、冷房と暖房のSEERの向上を図るこ
とができる。According to a seventh aspect of the present invention, the refrigerant flow path switching control means of the first aspect is provided with an air conditioning load in accordance with the operation mode indicating the cooling operation and the heating operation during the cooling operation and the magnitude of the air conditioning load. When the rated output is, the indoor heat exchanger is operated in two passes, the outdoor heat exchanger is operated in one pass, and when the air conditioning load decreases, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, When the air conditioning load increases, both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes, and during the heating operation, the air conditioning load changes according to the operation mode that indicates the distinction between cooling operation and heating operation and the air conditioning load. When the rated output is reached, the indoor heat exchanger is operated in one pass, the outdoor heat exchanger is operated in two passes, and when the air conditioning load decreases, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass, and air conditioning is performed. When the load increases, the indoor heat exchanger and the outdoor For configuring the exchanger together to operate in two passes, the current season energy efficiency (SE
ER), the SEER of cooling and heating can be improved.
【図1】本発明の空気調和装置の構成図FIG. 1 is a configuration diagram of an air conditioner of the present invention.
【図2】同実施の形態の制御部のテーブル説明図FIG. 2 is an explanatory diagram of a table of a control unit according to the same embodiment.
【図3】同実施の形態の冷房運転中の制御部のフローチ
ャートFIG. 3 is a flowchart of a control unit during the cooling operation of the same embodiment.
【図4】同実施の形態の暖房運転中の制御部のフローチ
ャートFIG. 4 is a flowchart of a control unit during the heating operation according to the same embodiment.
【図5】同実施の形態の冷房運転中のパス数切り換え状
態の冷媒経路の説明図FIG. 5 is an explanatory diagram of a refrigerant path in the number of paths switching state during cooling operation of the embodiment.
【図6】冷媒流量と管内熱伝達率ならびに圧力損失の関
係図FIG. 6 is a relational diagram of the refrigerant flow rate, the heat transfer coefficient in the pipe, and the pressure loss.
【図7】従来の空気調和装置の構成図FIG. 7 is a configuration diagram of a conventional air conditioner.
1 圧縮機 2 四方弁 3 室外熱交換器 4 減圧器 5 室内熱交換器 6a,6b 三方弁 7a,7b 三方弁 8 制御部 A テーブル 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 pressure reducer 5 indoor heat exchanger 6a, 6b three-way valve 7a, 7b three-way valve 8 control unit A table
フロントページの続き (72)発明者 薬丸 雄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤高 章 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡邊 幸男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continued (72) Inventor Yuichi Yakumaru 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Akira Fujitaka 1006 Kadoma, Kadoma City, Osaka (72) Invention Yukio Watanabe 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 1006 Kadoma, Oita-shi Matsushita Electric Industrial Co., Ltd.
Claims (7)
冷凍サイクルを形成した空気調和機であって、前記室内
熱交換器と室外熱交換器のうちの少なくとも一方の熱交
換器のパス数を、空調負荷の大小に応じて変更する冷媒
流路切換制御手段を設けた空気調和機。1. An air conditioner in which a refrigeration cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, wherein at least one of the indoor heat exchanger and the outdoor heat exchanger is a heat exchanger. An air conditioner provided with a refrigerant flow path switching control means for changing the number of passes according to the magnitude of the air conditioning load.
冷凍サイクルを形成した空気調和機であって、冷房運転
と暖房運転の別を表す運転モードに応じて前記室内熱交
換器と室外熱交換器のパス数を変更する冷媒流路切換制
御手段を設けた空気調和機。2. An air conditioner in which a refrigeration cycle is formed by interposing an indoor heat exchanger and an outdoor heat exchanger, wherein the indoor heat exchanger is selected according to an operation mode indicating distinction between cooling operation and heating operation. And an air conditioner provided with a refrigerant flow path switching control means for changing the number of passes of the outdoor heat exchanger.
房運転の別を表す運転モードならびに冷媒循環量に基づ
いて熱交換器のパス数を変更する請求項1記載の空気調
和機。3. The air conditioner according to claim 1, wherein the refrigerant flow path switching control means changes the number of paths of the heat exchanger based on an operation mode representing a distinction between cooling operation and heating operation and a refrigerant circulation amount.
クルに介装されている圧縮機の回転数,運転電流値,蒸
発器温度,蒸発器圧力,圧縮機の吸入圧力のうちの少な
くとも1つと、冷房運転と暖房運転の別を表す運転モー
ドとに基づいて熱交換器のパス数を変更する請求項1記
載の空気調和機。4. The refrigerant flow path switching control means is at least one of the number of revolutions of a compressor installed in the refrigeration cycle, an operating current value, an evaporator temperature, an evaporator pressure, and a suction pressure of the compressor. The air conditioner according to claim 1, wherein the number of paths of the heat exchanger is changed based on one of the operation mode indicating the cooling operation and the operation mode indicating the heating operation.
空調負荷が定格出力の場合に室内熱交換器を2パスで運
転し、室外熱交換器を1パスで運転し、空調負荷が小さ
くなると室内熱交換器と室外熱交換器をともに1パスで
運転し、空調負荷が大きくなると室内熱交換器と室外熱
交換器をともに2パスで運転する請求項1記載の空気調
和機。5. The refrigerant flow path switching control means during the cooling operation,
When the air conditioning load is the rated output, the indoor heat exchanger is operated in two passes, the outdoor heat exchanger is operated in one pass, and when the air conditioning load decreases, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass. The air conditioner according to claim 1, wherein both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes when the air conditioning load increases.
空調負荷が定格出力の場合に室内熱交換器を1パスで運
転し、室外熱交換器を2パスで運転し、空調負荷が小さ
くなると室内熱交換器と室外熱交換器をともに1パスで
運転し、空調負荷が大きくなると室内熱交換器と室外熱
交換器をともに2パスで運転する請求項1記載の空気調
和機。6. The refrigerant flow path switching control means during the heating operation,
When the air conditioning load is the rated output, the indoor heat exchanger is operated in one pass, the outdoor heat exchanger is operated in two passes, and when the air conditioning load is small, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass. The air conditioner according to claim 1, wherein both the indoor heat exchanger and the outdoor heat exchanger are operated in two passes when the air conditioning load increases.
は冷房運転と暖房運転の別を表す運転モードならびに空
調負荷の大小に応じて、空調負荷が定格出力の場合に室
内熱交換器を2パスで運転し、室外熱交換器を1パスで
運転し、空調負荷が小さくなると室内熱交換器と室外熱
交換器をともに1パスで運転し、空調負荷が大きくなる
と室内熱交換器と室外熱交換器をともに2パスで運転
し、暖房運転中には冷房運転と暖房運転の別を表す運転
モードならびに空調負荷の大小に応じて、空調負荷が定
格出力の場合に室内熱交換器を1パスで運転し、室外熱
交換器を2パスで運転し、空調負荷が小さくなると室内
熱交換器と室外熱交換器をともに1パスで運転し、空調
負荷が大きくなると室内熱交換器と室外熱交換器をとも
に2パスで運転する請求項1記載の空気調和機。7. The refrigerant flow path switching control means, when the air conditioning load is at the rated output, in accordance with the operation mode representing the distinction between the cooling operation and the heating operation during the cooling operation and the magnitude of the air conditioning load, the indoor heat exchanger. Is operated in two passes, the outdoor heat exchanger is operated in one pass, both the indoor heat exchanger and the outdoor heat exchanger are operated in one pass when the air conditioning load decreases, and the indoor heat exchanger operates when the air conditioning load increases. Both the outdoor heat exchanger is operated in two passes, and during heating operation, the indoor heat exchanger is operated when the air conditioning load is at the rated output according to the operation mode that indicates the distinction between cooling operation and heating operation and the air conditioning load. Operate in 1 pass, operate outdoor heat exchanger in 2 passes, operate both indoor heat exchanger and outdoor heat exchanger in 1 pass when air conditioning load is small, and operate indoor heat exchanger and outdoor when air conditioning load is large. Contract to operate both heat exchangers in two passes The air conditioner according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07548496A JP3489932B2 (en) | 1996-03-29 | 1996-03-29 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07548496A JP3489932B2 (en) | 1996-03-29 | 1996-03-29 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09264614A true JPH09264614A (en) | 1997-10-07 |
JP3489932B2 JP3489932B2 (en) | 2004-01-26 |
Family
ID=13577622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07548496A Expired - Fee Related JP3489932B2 (en) | 1996-03-29 | 1996-03-29 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3489932B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261536A (en) * | 2007-04-11 | 2008-10-30 | Takasago Thermal Eng Co Ltd | Air conditioning system and control method of air conditioning system |
WO2012014306A1 (en) * | 2010-07-29 | 2012-02-02 | 株式会社 日立製作所 | Air conditioning and hot-water supply system |
WO2013160929A1 (en) * | 2012-04-23 | 2013-10-31 | 三菱電機株式会社 | Refrigeration cycle system |
KR20160013800A (en) | 2014-07-28 | 2016-02-05 | 키무라코우키 가부시키가이샤 | Heat Pump Air Conditioner |
CN106288466A (en) * | 2015-06-11 | 2017-01-04 | 深圳市立冰节能科技有限公司 | A kind of heat pump |
WO2018078809A1 (en) * | 2016-10-28 | 2018-05-03 | 三菱電機株式会社 | Refrigeration cycle device |
WO2018193518A1 (en) * | 2017-04-18 | 2018-10-25 | 三菱電機株式会社 | Air conditioner |
JPWO2018055739A1 (en) * | 2016-09-23 | 2019-04-25 | 三菱電機株式会社 | Air conditioner |
-
1996
- 1996-03-29 JP JP07548496A patent/JP3489932B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261536A (en) * | 2007-04-11 | 2008-10-30 | Takasago Thermal Eng Co Ltd | Air conditioning system and control method of air conditioning system |
WO2012014306A1 (en) * | 2010-07-29 | 2012-02-02 | 株式会社 日立製作所 | Air conditioning and hot-water supply system |
CN103026150A (en) * | 2010-07-29 | 2013-04-03 | 株式会社日立制作所 | Air conditioning and hot-water supply system |
JP5572711B2 (en) * | 2010-07-29 | 2014-08-13 | 株式会社日立製作所 | Air conditioning and hot water supply system |
WO2013160929A1 (en) * | 2012-04-23 | 2013-10-31 | 三菱電機株式会社 | Refrigeration cycle system |
KR20160013800A (en) | 2014-07-28 | 2016-02-05 | 키무라코우키 가부시키가이샤 | Heat Pump Air Conditioner |
CN106288466A (en) * | 2015-06-11 | 2017-01-04 | 深圳市立冰节能科技有限公司 | A kind of heat pump |
JPWO2018055739A1 (en) * | 2016-09-23 | 2019-04-25 | 三菱電機株式会社 | Air conditioner |
WO2018078809A1 (en) * | 2016-10-28 | 2018-05-03 | 三菱電機株式会社 | Refrigeration cycle device |
CN109844422A (en) * | 2016-10-28 | 2019-06-04 | 三菱电机株式会社 | Refrigerating circulatory device |
JPWO2018078809A1 (en) * | 2016-10-28 | 2019-07-11 | 三菱電機株式会社 | Refrigeration cycle device |
CN109844422B (en) * | 2016-10-28 | 2021-03-12 | 三菱电机株式会社 | Refrigeration cycle device |
US11175080B2 (en) | 2016-10-28 | 2021-11-16 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection |
WO2018193518A1 (en) * | 2017-04-18 | 2018-10-25 | 三菱電機株式会社 | Air conditioner |
JPWO2018193518A1 (en) * | 2017-04-18 | 2019-11-21 | 三菱電機株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP3489932B2 (en) | 2004-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3816860B2 (en) | Heat pump air conditioner | |
CN111076446A (en) | Heat pump air conditioning system and control method thereof | |
CN204593992U (en) | Air-conditioning equipment and defrost control system thereof | |
JPH10220846A (en) | Multi-chamber type air conditioning apparatus | |
CN210374155U (en) | Reheating and dehumidifying integrated refrigerating system | |
JPH0762569B2 (en) | Operation control device for air conditioner | |
CN103968503A (en) | Air conditioner outdoor unit, and defrosting method and device for air conditioner | |
JP2001248937A (en) | Heat pump hot water supply air conditioner | |
JP3489932B2 (en) | Air conditioner | |
EP4119866A1 (en) | A partition controlled multi - line system and its self - identification control method | |
JP2001201143A (en) | Air conditioner | |
JP2009041829A (en) | Air conditioner | |
JP2005016881A (en) | Air conditioner | |
CN214039030U (en) | Air conditioning system | |
JPH09264627A (en) | Air conditioner | |
CN211876411U (en) | Air conditioning unit capable of continuously heating | |
JPH02169968A (en) | Heat pump type room cooler/heater hot water supply apparatus | |
JPS63213765A (en) | Refrigeration equipment | |
JP2003254590A (en) | Air conditioner | |
CN220624375U (en) | Heat exchange system and air conditioning equipment | |
JPH11294834A (en) | Multi-room air conditioner provided with air cleaner | |
CN212720192U (en) | Air conditioner | |
JPH0886533A (en) | Air conditioner | |
JP3670731B2 (en) | Air conditioning system | |
JP2000234784A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20071107 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20091107 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20111107 |
|
LAPS | Cancellation because of no payment of annual fees |