[go: up one dir, main page]

JPH09253458A - Method for packing ion exchange material - Google Patents

Method for packing ion exchange material

Info

Publication number
JPH09253458A
JPH09253458A JP6478396A JP6478396A JPH09253458A JP H09253458 A JPH09253458 A JP H09253458A JP 6478396 A JP6478396 A JP 6478396A JP 6478396 A JP6478396 A JP 6478396A JP H09253458 A JPH09253458 A JP H09253458A
Authority
JP
Japan
Prior art keywords
filler
ion exchanger
container
filling
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6478396A
Other languages
Japanese (ja)
Other versions
JP3760501B2 (en
Inventor
Hiroshi Toda
洋 戸田
Toru Hoshi
徹 星
Junjiro Iwamoto
純治郎 岩元
Takeshi Komatsu
健 小松
Ichiro Terada
一郎 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06478396A priority Critical patent/JP3760501B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to KR1019970708217A priority patent/KR100441461B1/en
Priority to CN97190214A priority patent/CN1080594C/en
Priority to DE69716852T priority patent/DE69716852T2/en
Priority to TW086103470A priority patent/TW426644B/en
Priority to AU19433/97A priority patent/AU1943397A/en
Priority to PCT/JP1997/000896 priority patent/WO1997034696A1/en
Priority to AT97907381T priority patent/ATE227162T1/en
Priority to CA002221709A priority patent/CA2221709C/en
Priority to US08/952,218 priority patent/US5961805A/en
Priority to EP97907381A priority patent/EP0837729B1/en
Priority to MYPI97001177A priority patent/MY125056A/en
Priority to IN500CA1997 priority patent/IN182200B/en
Priority to ARP970101149A priority patent/AR006347A1/en
Publication of JPH09253458A publication Critical patent/JPH09253458A/en
Priority to US09/338,570 priority patent/US6228240B1/en
Application granted granted Critical
Publication of JP3760501B2 publication Critical patent/JP3760501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of spaces which can make a short cut from the inlet to the outlet of a container and to enable high packing density of an ion exchange material by mechanically restricting the dimensional variation associated with the volume expansion of a filler in service environment by a container wall. SOLUTION: A dried filler 13 is placed in a rectangular parallelpiped metal container 11, a metal plate 12 is put on the container 11, and the position of a load cell 14 is set up so that the tip of the load cell 14 contacts the metal plate 12 when the filler 13 expands to have a thickness of 8mm. In other words, when the filler 13 is dried, the sum of the gap (a) between the tip of the load cell 14 and the metal plate 12 and the thickness (b) of the filler 13 is 8mm. Next, water is injected from water inlet 5, and when the shrinkage of water come to equilibrium, the pressure between the filler 13 and the metal plate 12 is obtained from the load on the load cell 14. Next, a volume ratio of a service state to a free state is obtained. From the results, an appropriate pressure in the container is selected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換体の充
填方法に関する。特に、電気透析槽の脱塩室にイオン交
換体を配置して連続的に脱イオンを行う装置またはイオ
ン交換塔などにイオン交換体を充填するための方法に関
する。
TECHNICAL FIELD The present invention relates to a method for filling an ion exchanger. In particular, the present invention relates to a method for arranging an ion exchanger in a desalting chamber of an electrodialysis tank to continuously perform deionization, or a method for filling the ion exchange column with the ion exchanger.

【0002】[0002]

【従来の技術】従来、超純水製造用の装置として、希釈
室内にイオン交換体を有することを特徴とする電気透析
槽が、特公平4−72567号公報、米国特許4632
745号明細書などにより提案されている。これら充填
されたイオン交換体は、各部屋に均一に充填され、かつ
液の流れがショートパスする空間を生ずることのないこ
とが求められる。しかし、電気透析槽中の複数の希釈室
内に、イオン交換体を均一かつ隙間なく充填すること
は、一般的に難しい。
2. Description of the Related Art Conventionally, as an apparatus for producing ultrapure water, an electrodialysis tank characterized by having an ion exchanger in a diluting chamber has been disclosed in Japanese Examined Patent Publication No. 4-72567 and US Pat.
No. 745 and the like. These filled ion exchangers are required to be uniformly filled in each room and to not create a space where the liquid flow short-passes. However, it is generally difficult to uniformly and uniformly fill the plurality of dilution chambers in the electrodialysis tank with the ion exchanger.

【0003】たとえば、超純水製造用電気透析槽(ED
I)に用いられるビーズ状イオン交換体の各希釈室への
充填法として、電槽組立前または組立時に各対毎に充填
する方法、組立後に液供給のための共通ダクトやイオン
交換体の充填専用ノズルなどから充填する方法が一般的
に知られている。
For example, an electrodialysis tank for producing ultrapure water (ED
As a method for filling the bead-shaped ion exchanger used in I) into each dilution chamber, a method of filling each pair before or during assembly of the battery case, and a common duct for supplying liquid after assembly or filling of the ion exchanger A method of filling from a dedicated nozzle or the like is generally known.

【0004】しかし、各対毎に充填する方法では、ユニ
ット化のために室枠の構造が複雑になったり、電槽の対
数が多くなると組立に時間がかかるなどの問題がある。
一方、共通ダクトやイオン交換体の充填専用ノズルなど
から充填する方法では、各部屋への供給時間は短縮され
るが、室枠の構造が複雑になるだけでなく、各部屋への
イオン交換体の充填度を制御するのが難しく、かつ充填
量の確認が難しいという問題がある。
However, in the method of filling each pair, there are problems that the structure of the chamber frame is complicated due to unitization and that it takes time to assemble when the number of pairs of battery cases is large.
On the other hand, in the method of filling from a common duct or a dedicated nozzle for filling the ion exchanger, the supply time to each room is shortened, but not only the structure of the chamber frame becomes complicated, but also the ion exchanger to each room is filled. There is a problem that it is difficult to control the filling degree and the confirmation of the filling amount is difficult.

【0005】さらに充填できるイオン交換体量の上限
も、高々通常の最密充填(空間率=0.636)程度ま
たはそれ以下にしかならないため、液のショートパスを
防ぐためには、下降流を選択せざるを得ない。このた
め、希釈室系内のガス抜き対策や、停止時の液保有対策
が必要となってくる。
Furthermore, since the upper limit of the amount of ion exchanger that can be filled is no more than the usual close packing (porosity = 0.636) or less, a downward flow is selected in order to prevent a short path of liquid. I have to do it. For this reason, it is necessary to take measures to remove gas in the dilution chamber system and to take measures to retain the liquid when the system is stopped.

【0006】[0006]

【発明が解決しようとする課題】本発明は、容器の入口
から出口へのショートパスする可能性のある空間の発生
を防ぎ、複数の中空部にも同時に均一量のイオン交換体
を確実に収納することを可能にし、イオン交換体の充填
密度を高く充填することを目的とする。
DISCLOSURE OF THE INVENTION The present invention prevents the generation of a space that may cause a short path from the inlet to the outlet of a container, and reliably stores a uniform amount of ion exchangers in a plurality of hollow portions at the same time. The purpose of the present invention is to achieve high packing density of the ion exchanger.

【0007】[0007]

【課題を解決するための手段】本発明は、イオン交換体
を含む充填材を、その使用状態よりもみかけの体積が収
縮した状態で容器内に収納し、使用環境における充填材
の体積膨張に伴う寸法変化を容器壁によって機械的に制
限することによって充填材と容器壁の間に発生する圧力
を増大させるイオン交換体の充填方法を提供する。
DISCLOSURE OF THE INVENTION According to the present invention, a packing material containing an ion exchanger is housed in a container in a state in which the apparent volume of the packing material is smaller than that in the usage state, and the packing material is expanded in volume in a usage environment. Provided is a method for filling an ion exchanger which increases the pressure generated between the filling material and the container wall by mechanically limiting the accompanying dimensional change by the container wall.

【0008】充填材とは、容器中に配置されて容器中の
液体とのイオン交換作用を発現する材料である。充填材
は、イオン交換体のみからなるものだけでなく、イオン
交換体以外の材料を含むこともできる。充填材は、互い
に分離した材料の集積体であっても成形体であってもよ
い。互いに分離した材料の集積体というのは、たとえば
イオン交換樹脂の粒子の集積体を指し、それぞれの材料
は粒状物だけでなく繊維状や比較的大きなブロック状の
ものも含む。成形体とは、連続した材料からなるものを
いう。
The filler is a material which is placed in a container and exhibits an ion exchange action with the liquid in the container. The filler is not limited to the ion exchanger alone, and may include materials other than the ion exchanger. The filler may be an aggregate of materials separated from each other or a molded body. The aggregate of materials separated from each other refers to, for example, an aggregate of particles of the ion exchange resin, and each material includes not only granular materials but also fibrous or relatively large block-shaped materials. The molded body refers to one formed of a continuous material.

【0009】本発明では、充填材はその状態を変化させ
容器中に充填される。以下、本明細書においては充填材
の状態を次のような用語で説明することにする。「使用
状態」とは、充填材を容器中で実際に使用しているとき
の状態であり、使用時の環境と平衡になった状態をい
う。「収縮状態」とは、何らかの方法で充填材のみかけ
の体積を収縮させた状態をいう。「自由状態」とは、使
用する環境と平衡な状態であるが、容器壁による拘束の
ない状態をいう。
In the present invention, the filling material changes its state and is filled in the container. Hereinafter, in this specification, the state of the filler will be described with the following terms. The "usage state" is a state when the filler is actually used in the container, and is a state in which it is in equilibrium with the environment at the time of use. The "shrinking state" is a state in which the apparent volume of the filler is shrunk by some method. "Free state" means a state in which the environment of use is in equilibrium, but there is no constraint by the container wall.

【0010】[0010]

【発明の実施の形態】充填材が集積体である場合、個々
の材料の形状としては特に限定されないが、球状、ペレ
ット状、繊維状、プレート状、シート状などの形状が採
用できる。これらの形状は、1種単独でもよく、2種以
上を組み合わせて用いてもよい。大きさについても特に
制限はなく、種々の大きさのものを採用できる。
BEST MODE FOR CARRYING OUT THE INVENTION When the filler is an aggregate, the shape of each material is not particularly limited, but a spherical shape, a pellet shape, a fiber shape, a plate shape, a sheet shape, or the like can be adopted. These shapes may be used alone or in combination of two or more. The size is also not particularly limited, and various sizes can be adopted.

【0011】充填材が成形体である場合、液体の液流れ
方向に関するショートパス形成の防止だけでなく、装置
組立手段の簡便化にも寄与できるので好ましい。成形体
は、イオン交換体粒子をバインダを用いて多孔質状に結
合成形したものが好ましい。イオン交換体粒子としては
充填材が集積体である場合と同様なものを使用でき、特
に球状またはペレット状のイオン交換体が好ましい。
When the filling material is a molded body, it can contribute not only to the prevention of short path formation in the liquid flow direction of the liquid but also to the simplification of the apparatus assembling means, which is preferable. It is preferable that the molded body be formed by binding and molding the ion-exchanger particles into a porous state using a binder. As the ion exchanger particles, the same ones as when the filler is an aggregate can be used, and the spherical or pelletized ion exchanger is particularly preferable.

【0012】バインダの使用量は、イオン交換体の0.
1〜20重量%、特に1〜5重量%とすることが、加工
性や取り扱い性の向上の理由により望ましい。バインダ
としては、種々の有機高分子化合物を好適に使用でき
る。特に、ポリオレフィン系、好ましくはポリエチレン
系またはポリプロピレン系を使用することが、イオン交
換体との混練の際の温度を150℃以下とすることがで
き、かつ機械的強度上の理由から好ましい。
The amount of the binder used is 0.
It is desirable that the amount is 1 to 20% by weight, and particularly 1 to 5% by weight, for the reason of improving processability and handleability. As the binder, various organic polymer compounds can be preferably used. In particular, it is preferable to use a polyolefin type, preferably a polyethylene type or a polypropylene type, because the temperature at the time of kneading with the ion exchanger can be set to 150 ° C. or lower and the mechanical strength is improved.

【0013】イオン交換体としては、各種の有機イオン
交換体または無機イオン交換体をそれぞれ単独でまたは
2種以上混合して使用できる。有機イオン交換体とし
て、スチレン−ジビニルベンゼン共重合体、アクリレー
ト系重合体などの有機高分子にイオン交換基を導入した
イオン交換樹脂が挙げられる。無機イオン交換体とし
て、ゼオライトが挙げられる。
As the ion exchanger, various organic ion exchangers or inorganic ion exchangers can be used alone or in admixture of two or more. Examples of the organic ion exchanger include ion exchange resins obtained by introducing an ion exchange group into an organic polymer such as a styrene-divinylbenzene copolymer and an acrylate polymer. Zeolite is mentioned as an inorganic ion exchanger.

【0014】充填材を「収縮状態」にする方法は、充填
材の特性に応じて選択する必要があるが、イオン交換体
として通常のイオン交換樹脂を用いる場合、イオン交換
樹脂は含水率が大きくなるにしたがい体積が増大するの
で、含水率を減少させることによって「収縮状態」にす
るのが好ましい。充填材の含水率として、1重量%以
上、特には10重量%以上低減させることで、体積を収
縮させるのが好ましい。あらかじめ「使用状態」または
「自由状態」に近いものから脱水して「収縮状態」にす
る場合だけでなく、製造の際に「使用状態」より少ない
含水率のものとして得られる場合も含む。体積の変化す
るものであれば含水率以外の物性、たとえば温度などを
制御することにより「収縮状態」にすることもできる。
The method of bringing the filler into the "shrinking state" must be selected according to the characteristics of the filler. When a normal ion exchange resin is used as the ion exchanger, the ion exchange resin has a large water content. Since the volume increases accordingly, it is preferable to bring the "contracted state" by reducing the water content. It is preferable to reduce the volume by shrinking the water content of the filler by 1% by weight or more, particularly 10% by weight or more. This includes not only the case of dehydration from the "use state" or "free state" in advance to the "shrink state", but also the case of obtaining a water content lower than that of the "use state" during the production. If the volume changes, the physical properties other than the water content, such as temperature, can be controlled to bring the material into a "contracted state".

【0015】含水率を低下させる、すなわち乾燥させる
手段としては、加熱乾燥が好ましい。イオン交換体とし
てイオン交換樹脂を用いる場合は、劣化を防ぐため、温
度120℃以下、特には95℃以下、さらには30〜6
0℃の範囲で加熱乾燥するのが好ましい。さらに時間を
短縮または含水率変化を大きくする理由のため、大気圧
以下の圧力下で減圧乾燥する方法が利用できる。また、
同様にイオン交換体の含水率を低減させる方法として、
充填材のまわりの液の濃度、組成、種類を変える方法
や、イオン交換体の対イオンを変化させる方法も利用で
きる。
As a means for reducing the water content, that is, for drying, heat drying is preferable. When an ion exchange resin is used as the ion exchanger, a temperature of 120 ° C. or lower, particularly 95 ° C. or lower, and further 30 to 6 to prevent deterioration.
It is preferable to heat-dry in the range of 0 ° C. For the reason that the time is further shortened or the change in water content is increased, a method of drying under reduced pressure under atmospheric pressure can be used. Also,
Similarly, as a method of reducing the water content of the ion exchanger,
A method of changing the concentration, composition, and type of the liquid around the packing material and a method of changing the counter ion of the ion exchanger can also be used.

【0016】充填材は容器内に収納された後、たとえば
液体に浸漬されると徐々に膨張し「使用状態」になる。
本発明においては、充填材は容器壁によって膨張が制限
されるため「使用状態」は「自由状態」より体積が小さ
くなる。これにより、充填材と容器壁の間に圧力が発生
する。
After the filling material is stored in the container, it is gradually expanded when it is immersed in a liquid, for example, to be in a "used state".
In the present invention, since the expansion of the filler is limited by the container wall, the volume of the “use state” is smaller than that of the “free state”. This creates pressure between the filler and the container wall.

【0017】充填材と容器壁との間に発生する圧力は、
0.1kgw/cm2 以上が好ましい。圧力が0.1k
gw/cm2 未満の場合は、本発明の効果が充分に発現
せず、充填材と容器壁の隙間にショートパスが形成さ
れ、そこを被処理流体が流れてしまい充填材のイオン交
換能が有効に発現しないおそれがあり、好ましくない。
圧力が0.5kgw/cm2 以上である場合は特に好ま
しい。圧力が大きくなるほど、ショートパスを抑制する
効果は大きいが、容器の強度や充填材自体の強度の関係
から実際上20kgw/cm2 以下、特に10kgw/
cm2 以下が好ましい。容器壁がイオン交換膜のように
比較的強度の低いものの場合は、イオン交換膜の破損を
防ぐ理由で0.1〜3kgw/cm2 程度が好ましい。
The pressure generated between the filler and the container wall is
It is preferably 0.1 kgw / cm 2 or more. Pressure is 0.1k
When it is less than gw / cm 2 , the effect of the present invention is not sufficiently exhibited, a short path is formed in the gap between the filler and the container wall, and the fluid to be treated flows therethrough, and the ion exchange capacity of the filler is reduced. It is not preferable because it may not be effectively expressed.
It is particularly preferable when the pressure is 0.5 kgw / cm 2 or more. The greater the pressure, the greater the effect of suppressing the short pass, but in practice due to the strength of the container and the strength of the filler itself, it is 20 kgw / cm 2 or less, especially 10 kgw /
cm 2 or less is preferred. When the container wall has a relatively low strength such as an ion exchange membrane, it is preferably about 0.1 to 3 kgw / cm 2 in order to prevent damage to the ion exchange membrane.

【0018】充填材と容器壁との間に発生する圧力は、
「自由状態」と「使用状態」での充填材の大きさの差異
および充填材の弾性的性質によって決定される。イオン
交換体としてイオン交換樹脂を用いる場合には、「自由
状態」の体積を基準としたときの「使用状態」の体積は
30〜97%であることが好ましい。特に好ましい範囲
は50〜95%である。
The pressure generated between the filler and the container wall is
It is determined by the difference in the size of the filler in the “free state” and the “used state” and the elastic property of the filler. When an ion exchange resin is used as the ion exchanger, the volume in the “used state” is preferably 30 to 97% based on the volume in the “free state”. A particularly preferred range is 50 to 95%.

【0019】「収縮状態」の充填材の体積が「使用状
態」の体積を基準として30〜99%である場合は、体
積の膨張した時点で発生する容器内の圧力を、ある程度
の精度で制御できるという点で望ましい。より好ましい
範囲は50〜95%である。
When the volume of the filler in the "contracted state" is 30 to 99% based on the volume in the "used state", the pressure in the container generated when the volume is expanded is controlled with a certain degree of accuracy. It is desirable because it can be done. A more preferable range is 50 to 95%.

【0020】「収縮状態」の充填材の体積は、「自由状
態」の体積を基準として20〜95%であることが好ま
しい。より好ましい範囲は40〜90%である。「収縮
状態」から「自由状態」に膨張する際に等方的に膨張す
る場合、「収縮状態」の充填材の寸法は、「自由状態」
の寸法を基準として50〜98%が好ましい。より好ま
しい範囲は70〜97%である。
The volume of the filler in the "contracted state" is preferably 20 to 95% based on the volume in the "free state". A more preferable range is 40 to 90%. When expanding from "contracted state" to "free state" isotropically, the size of the filler in "contracted state" is "free state"
50 to 98% is preferable based on the dimension of. A more preferable range is 70 to 97%.

【0021】充填材は、容器内に格納した状態で透水性
である必要がある。好ましくは、水透過性が100kg
・cm・kgw-1・h-1以上であることが好ましい。1
00kg・cm・kgw-1・h-1より小さいと、流路中
に充填材を配置して用いる場合の流路抵抗が大きくな
り、処理量が減少するか、または運転に高い圧力が必要
となるので好ましくない。水透過性が500kg・cm
・kgw-1・h-1以上である場合は特に好ましい。
The filling material must be water permeable when stored in the container. Water permeability is preferably 100 kg
It is preferably at least cm · kgw −1 · h −1 . 1
If it is smaller than 00 kg · cm · kgw −1 · h −1 , the flow passage resistance when the filler is placed in the flow passage becomes large and the treatment amount decreases, or a high pressure is required for operation. Therefore, it is not preferable. Water permeability is 500 kg / cm
-It is particularly preferable if it is not less than kgw -1 · h -1 .

【0022】水透過性は、互いに平行な2つの底面を有
する柱状体(たとえば角柱または円柱)の試料を作製
し、側面から水が漏れ出ないようにして一方の底面から
P(kgw/cm2 )の圧力で水を導入し、他方の底面
から流出する水の質量を測定して求める。このとき底面
の面積をA(cm2 )、柱状体の高さ、すなわち底面間
の間隔をL(cm)、1時間あたりの水の透過量をW
(kg/h)としたとき、水透過性はWL/PA(kg
・cm・kgw-1・h-1)で表される。A、L、Pは任
意に定めうるが、Aは1〜1000cm2 程度、Lは1
〜100cm程度、Pは0.1〜1kgw/cm2 程度
が好ましい。
For the water permeability, a sample of a columnar body (for example, a prism or a cylinder) having two bottom surfaces parallel to each other is prepared, and water is prevented from leaking from the side surface, and P (kgw / cm 2) is applied from one bottom surface. Water is introduced at a pressure of), and the mass of water flowing out from the other bottom surface is measured and obtained. At this time, the area of the bottom surface is A (cm 2 ), the height of the columnar body, that is, the distance between the bottom surfaces is L (cm), and the amount of permeated water per hour is W
(Kg / h), the water permeability is WL / PA (kg
-Cm * kgw- 1 * h- 1 ). A, L, and P can be set arbitrarily, but A is about 1 to 1000 cm 2 and L is 1
˜100 cm, and P is preferably 0.1 to 1 kgw / cm 2 .

【0023】「使用状態」の充填材の空隙率は1〜40
容量%が好ましく、容器内での液流れ方向に対するショ
ートパスを回避して効率的なイオン交換を行い、かつ容
器内の圧力損失を低くするためには、5〜30容量%が
好ましい。
The porosity of the "used" filler is 1-40.
Volume% is preferable, and in order to avoid a short path in the liquid flow direction in the container for efficient ion exchange and to reduce the pressure loss in the container, 5 to 30% by volume is preferable.

【0024】イオン交換体としてイオン交換樹脂を使用
する場合、容器内での充填密度は0.2〜2.0g乾燥
樹脂/cm3 であると、容器内での液流れ方向に対する
ショートパスを回避して効率的なイオン交換を行い、か
つ容器内の圧力損失を低くすることができるので好まし
い。イオン交換樹脂の充填密度が0.5〜1.5g乾燥
樹脂/cm3 である場合はさらに好ましい。
When an ion exchange resin is used as the ion exchanger, if the packing density in the container is 0.2 to 2.0 g dry resin / cm 3 , short paths in the liquid flow direction in the container are avoided. Therefore, it is possible to efficiently perform ion exchange and to reduce the pressure loss in the container, which is preferable. It is further preferable that the packing density of the ion exchange resin is 0.5 to 1.5 g dry resin / cm 3 .

【0025】充填材が成形体である場合、その形状は容
器の形状に対応して、塔型、管型、円盤型、平板型、箱
型、球型などの種々の形状が利用できる。充填材の形状
が、容器の形状と相似形またはそれに近い形状である場
合は、充填材と容器壁の各部との間に発生する圧力を均
一にできる。たとえば直方体状の容器には、イオン交換
体も直方体であってかつ各辺の長さも直方体状容器の各
辺の長さの比と同じか、それに近い形状であれば各面で
発生する圧力が等しくなり、充填材の変形も等方的にな
る。形状が容器と大きく異なる場合は、イオン交換体内
部の歪が大きくなって、各部に発生する圧力に不均一が
生じるなとの不都合がある。ただし、容器の強度なや、
容器壁で発生させる圧力を制御するために、意図的に異
形のものを使用することもできる。イオン交換体自体の
膨張に異方性のある場合も同様である。
When the filler is a molded product, various shapes such as a tower type, a tube type, a disc type, a flat plate type, a box type and a spherical type can be used depending on the shape of the container. When the shape of the filler is similar to or close to the shape of the container, the pressure generated between the filler and each part of the container wall can be made uniform. For example, in a rectangular parallelepiped-shaped container, the ion exchanger is also a rectangular parallelepiped, and the length of each side is the same as the ratio of the length of each side of the rectangular parallelepiped-shaped container. They are equal, and the deformation of the filler is also isotropic. If the shape is significantly different from that of the container, there is a disadvantage that the strain inside the ion exchanger becomes large and the pressure generated at each part is not uniform. However, the strength of the container
It is also possible to intentionally use variants to control the pressure generated at the container wall. The same applies when the expansion of the ion exchanger itself is anisotropic.

【0026】充填材が成形体である場合、容器内に1つ
の連続した充填材を配置することは、ショートパスを防
ぐ意味で好ましいが、適宜分割して配置してもよい。ま
た、全体が均一な充填材である必要はなく、たとえば、
イオン交換体として陰イオン交換体のみを含む部分と、
イオン交換体として陽イオン交換体のみを含む部分が、
モザイク状に配置されているものでもよい。陰イオン交
換基のみを含む多孔質体と、陽イオン交換基のみを含む
充填材を適宜分割して配置してもよい。
When the filler is a molded product, it is preferable to dispose one continuous filler in the container in order to prevent short pass, but it may be appropriately divided and disposed. Also, it is not necessary for the filler to be uniform throughout, for example,
A portion containing only an anion exchanger as an ion exchanger,
The portion containing only the cation exchanger as the ion exchanger,
It may be arranged in a mosaic pattern. A porous body containing only anion exchange groups and a filler containing only cation exchange groups may be appropriately divided and arranged.

【0027】容器の形状は、たとえば塔、管、円盤、
箱、球など種々のものが採用できる。これらの容器は、
単独でもよく、連通管または共通ダクトによってその一
部を共有している形式でもよい。容器壁がイオン交換膜
のような、選択性のある隔膜であってもよい。
The shape of the container is, for example, a tower, a tube, a disk,
Various things such as boxes and balls can be adopted. These containers are
It may be a single type, or a part of which may be shared by a communicating pipe or a common duct. The container wall may be a selective diaphragm such as an ion exchange membrane.

【0028】本発明で用いる容器は、液体を流通させそ
の中のイオンを脱離する装置、すなわち脱塩装置が好適
である。容器として、イオン交換膜を用いた電気透析装
置の希釈室を採用できる。電気透析装置として具体的に
は、陽極を備える陽極室と、陰極を備える陰極室との間
に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互
に配列して構成した電気透析槽内に、陽極側が陰イオン
交換膜で区画され、陰極側が陽イオン交換膜で区画され
た希釈室と、陰極側が陰イオン交換膜で区画され、陽極
側が陽イオン交換膜で区画された濃縮室を交互に形成し
た形式を例示できる。
The container used in the present invention is preferably a device that allows a liquid to flow therethrough and desorbs ions therein, that is, a desalting device. A diluting chamber of an electrodialysis device using an ion exchange membrane can be adopted as the container. Specifically, as an electrodialysis device, an electrodialysis tank configured by alternately arranging a plurality of cation exchange membranes and anion exchange membranes between an anode chamber having an anode and a cathode chamber having a cathode. Inside, there is a dilution chamber in which the anode side is partitioned by an anion exchange membrane, the cathode side is partitioned by a cation exchange membrane, and a concentration chamber in which the cathode side is partitioned by an anion exchange membrane and the anode side is partitioned by a cation exchange membrane. The form formed alternately can be illustrated.

【0029】容器は、充填材の膨張を抑制して圧力を発
生させるために容易に変形しないものである必要があ
る。容器壁がイオン交換膜のような場合、それ自体に充
分な剛性および強度を付与するのが困難であるので、た
とえば充填材を希釈室に配置する場合、濃縮室側から充
分な圧力を発生させるために、濃縮室内にも実質的に変
形しない透水性の材料を充填するなどの手段をとる必要
がある。
The container must not be easily deformed in order to suppress the expansion of the filler and generate a pressure. When the container wall is made of an ion exchange membrane, it is difficult to give sufficient rigidity and strength to itself. Therefore, for example, when the packing material is placed in the dilution chamber, sufficient pressure is generated from the concentration chamber side. Therefore, it is necessary to take measures such as filling the concentrating chamber with a water-permeable material that does not substantially deform.

【0030】[0030]

【実施例】【Example】

[充填材の製造]平均直径500μmの球状陽イオン交
換樹脂(三菱化学製、商品名ダイヤイオンSK1B)お
よび平均直径500μmの球状陰イオン交換樹脂(三菱
化学製、商品名ダイヤイオンSA10A)を体積比50
/50で混合し、50℃にて乾燥した。乾燥により、も
との重量の55重量%まで減量した。これにバインダと
して直径2〜6mm、長さ4〜9mmのペレット状のポ
リオレフィン系樹脂(ポリオレフィンプラストマー)
を、バインダとイオン交換樹脂の合計量に対してバイン
ダ量が表1に示す量になるように加え、ニーダーにて1
40℃で40分混練した。この混練物を、開口面が25
0mm×150mmの直方体の金属製の型に入れ、12
0℃×25kgw/cm2 の条件にてプレスすることに
よって直方体の多孔質成形体を得た。
[Manufacture of Filler] A spherical cation exchange resin having an average diameter of 500 μm (manufactured by Mitsubishi Chemical, trade name Diaion SK1B) and a spherical anion exchange resin having an average diameter of 500 μm (manufactured by Mitsubishi Chemical, trade name Diaion SA10A) are used in a volume ratio. Fifty
The mixture was mixed at / 50 and dried at 50 ° C. The weight was reduced to 55% by weight of the original weight by drying. Pelletized polyolefin resin (polyolefin plastomer) with a diameter of 2 to 6 mm and a length of 4 to 9 mm as a binder
To the total amount of the binder and the ion exchange resin so that the amount of the binder is the amount shown in Table 1 and 1 with a kneader.
Kneading was carried out at 40 ° C. for 40 minutes. This kneaded product has an opening surface of 25
Place in a 0 mm x 150 mm rectangular parallelepiped metal mold, and
A rectangular parallelepiped porous molded body was obtained by pressing at 0 ° C. × 25 kgw / cm 2 .

【0031】このとき金型に充填する量を変えることに
より、各混合比の混練物から表1に示すように、それぞ
れ厚さ6.7mm、7mm、7.5mmの成形体を得
た。成形体の幅と長さを、長さ:幅:厚さの比が14
0:100:8になるように、厚さに応じて切断して、
充填材1〜9を得た。これらの充填材は、室温中純水に
8時間浸漬すると、長さ・幅・厚み方向にほぼ同じ割合
で膨張し、平衡に達した。元の長さに対する長さの増加
量を膨張率として表1に示す。
At this time, by changing the amount filled in the mold, molded products having thicknesses of 6.7 mm, 7 mm and 7.5 mm, respectively, were obtained from the kneaded products of each mixing ratio, as shown in Table 1. The width and the length of the molded body are such that the ratio of length: width: thickness is 14
Cut according to the thickness so that it becomes 0: 100: 8,
Fillers 1-9 were obtained. When these fillers were immersed in pure water for 8 hours at room temperature, they expanded in the length, width, and thickness directions at almost the same rate, and reached equilibrium. The amount of increase in length with respect to the original length is shown in Table 1 as a coefficient of expansion.

【0032】[0032]

【表1】 [Table 1]

【0033】[膨張圧力の測定]図1に示すような直方
体の金属容器11(底面幅100mm、底面長さ140
mmの)中に、乾燥状態にある充填材13(この13は
図1中の符号である)を入れ、金属板12をその上に置
いて、充填材13が膨張して厚さが8mmになったとき
にロードセル14の先端が金属板12に接するようにロ
ードセルの位置を設定する。すなわち、充填材13が乾
燥状態のとき、ロードセル14の先端と金属板12の間
隙aと充填材13の厚さbの和が8mmになるよう設定
する。次に、水注入口5から水を注入し、水の吸収が平
衡となったときにロードセル14にかかる荷重から、充
填材13と金属板12の間の圧力を求めた。次に、自由
状態に対する使用状態の体積比=(使用状態体積/自由
状態体積)×100%を求めた。これらの結果を表2に
示す。この結果を用いれば、長さ・幅・厚み方向のサイ
ズを調整することで、適当な容器内圧力を選択できる。
[Measurement of Expansion Pressure] A rectangular parallelepiped metal container 11 (bottom width 100 mm, bottom length 140) as shown in FIG.
mm), and put the filler 13 in the dry state (this 13 is the symbol in FIG. 1), put the metal plate 12 on it, and let the filler 13 expand to a thickness of 8 mm. The position of the load cell is set so that the tip of the load cell 14 comes into contact with the metal plate 12 when it reaches the limit. That is, when the filler 13 is in a dry state, the sum of the gap a between the tip of the load cell 14 and the metal plate 12 and the thickness b of the filler 13 is set to 8 mm. Next, water was injected from the water injection port 5, and the pressure between the filler 13 and the metal plate 12 was obtained from the load applied to the load cell 14 when the water absorption was in equilibrium. Next, the volume ratio of the used state to the free state = (used state volume / free state volume) × 100% was obtained. Table 2 shows the results. Using this result, it is possible to select an appropriate in-container pressure by adjusting the size in the length, width, and thickness directions.

【0034】[0034]

【表2】 [Table 2]

【0035】[電気透析による評価]充填材1〜9を、
図2に示す構成の電気透析槽の希釈室27に入れ、規定
寸法まで締め付けた。希釈室27の形状は直方体で、水
流方向の長さが140mm、幅が100mm、陰陽イオ
ン交換膜の間隔は8mmである。2つの濃縮室26に
は、それぞれポリプロピレン製のスペーサーネットを充
填して、希釈室27内の充填材が膨張した場合にも陰陽
イオン交換膜の間隔が実質的に変化しないようにした。
したがって、この希釈室内においても各充填材は表2に
示したのと同じ圧力を発生する。また、比較のため充填
材10として、充填材1〜9と同様に作成したバインダ
量が2重量%で、111mm×79.4mm×6.3m
mの成形体を、水を充分吸収させて希釈室27と同一の
寸法にしたものを充填した。
[Evaluation by electrodialysis] Fillers 1 to 9 were
It was put in the diluting chamber 27 of the electrodialysis tank having the configuration shown in FIG. 2 and tightened to a specified size. The shape of the diluting chamber 27 is a rectangular parallelepiped, the length in the water flow direction is 140 mm, the width is 100 mm, and the space between the anion and cation exchange membranes is 8 mm. Each of the two concentrating chambers 26 was filled with a polypropylene spacer net so that the spacing between the anion and cation exchange membranes did not substantially change even when the filler in the diluting chamber 27 expanded.
Therefore, even in this dilution chamber, the respective fillers generate the same pressure as shown in Table 2. In addition, as a filler 10 for comparison, the amount of the binder prepared in the same manner as the fillers 1 to 9 is 2% by weight, and 111 mm × 79.4 mm × 6.3 m.
The molded body of m was filled with water having a size the same as that of the dilution chamber 27 by sufficiently absorbing water.

【0036】その後、希釈室に導電率が約10μS/c
mの純水を0.18リットル/h、濃縮室に導電率が約
1mS/cmの水を20リットル/h、陽極室および陰
極室に導電率が約200μS/cmの水を1リットル/
hずつ1時間流通させながら、同条件にて1.0Aの電
流を通電した。40時間連続して運転し、安定したとこ
ろで、希釈室の流速を28.8リットル/hとし、電気
透析槽の希釈室上端部および下端部における圧力損失、
希釈室から排出される脱イオン水の電気電導度、希釈室
の比抵抗を測定した。結果を表3に示す。
Then, the conductivity of the dilution chamber is about 10 μS / c.
m of pure water is 0.18 liter / h, water of which conductivity is about 1 mS / cm is 20 liter / h in the concentrating chamber, and water of which conductivity is about 200 μS / cm is 1 liter / h in the anode chamber and the cathode chamber.
A current of 1.0 A was applied under the same conditions while flowing each h for 1 hour. When it was operated continuously for 40 hours and became stable, the flow rate in the diluting chamber was set to 28.8 liter / h, and the pressure loss at the upper and lower ends of the diluting chamber of the electrodialysis tank,
The electric conductivity of the deionized water discharged from the dilution chamber and the specific resistance of the dilution chamber were measured. The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】充填材1〜9では高純度の脱イオン水を安
定して得ることができ、かつ電気抵抗も低かった。ま
た、図2に示した圧力の高い充填材ほど特性が良好とな
る傾向がみられる。これに対し、充填材10では、希釈
水の純度は高くなかった。圧力損失の測定から、希釈室
の入口から出口に向かって、イオン交換体と室枠間ある
いはイオン交換体とイオン交換膜間に、隙間が生じたこ
とが原因と思われる。
With the fillers 1 to 9, high-purity deionized water could be stably obtained, and the electric resistance was low. Further, as shown in FIG. 2, the higher the pressure of the filler, the better the characteristics tend to be. On the other hand, in the filler 10, the purity of the dilution water was not high. From the measurement of the pressure loss, it is considered that a gap was generated between the ion exchanger and the chamber frame or between the ion exchanger and the ion exchange membrane from the inlet to the outlet of the dilution chamber.

【0039】充填材1〜9では、ショートパスが実質的
に生じていないと考えられるので、上記の圧力損失から
充填材の水透過性を計算する表4のとおりとなる。充填
材10は、同様に水透過性を計算すると著しく高い値と
なるが、これはショートパスを通じて多量の水が流れて
いるためで、充填材の水透過性の値ではない。
Since it is considered that the fillers 1 to 9 have substantially no short path, the water permeability of the filler is calculated from the above pressure loss as shown in Table 4. Similarly, when the water permeability of the filler 10 is calculated, the value is remarkably high, but this is not the value of the water permeability of the filler because a large amount of water is flowing through the short path.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明の充填方法により、容器の入口か
ら出口への供給水がショートパスする可能性のある空間
の発生を防ぎ、複数の中空部に同時に均一量のイオン交
換体を確実に収納し、イオン交換体の充填密度を高く
し、かつ、イオン交換体を短時間で充填できる。
According to the filling method of the present invention, it is possible to prevent the generation of a space in which the water supplied from the inlet to the outlet of the container may short-pass, and to ensure a uniform amount of ion exchangers in a plurality of hollow portions at the same time. It can be stored, the packing density of the ion exchanger can be increased, and the ion exchanger can be packed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】充填材と容器壁の間の圧力の測定方法を示す説
明図
FIG. 1 is an explanatory view showing a method for measuring a pressure between a filler and a container wall.

【図2】実施例で用いた電気透析槽の構成を示す説明図FIG. 2 is an explanatory diagram showing the configuration of the electrodialysis tank used in the examples.

【符号の説明】[Explanation of symbols]

11:金属容器 12:金属板 13:充填材 14:ロードセル 15:水注入口 21:陰極 22:陽極 23:陰極室 24:陽極室 25:陽イオン交換膜 26:濃縮室 27:希釈室 28:陰イオン交換膜 11: Metal container 12: Metal plate 13: Filler 14: Load cell 15: Water inlet 21: Cathode 22: Anode 23: Cathode chamber 24: Anode chamber 25: Cation exchange membrane 26: Concentration chamber 27: Dilution chamber 28: Anion exchange membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 寺田 一郎 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Komatsu, 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Central Research Institute, Asahi Glass Co., Ltd. (72) Inventor Ichiro Terada, 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Asahi Glass Co., Ltd Central Research Center

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】イオン交換体を含む充填材を、その使用状
態よりもみかけの体積が収縮した状態で容器内に収納
し、使用環境における充填材の体積膨張に伴う寸法変化
を容器壁によって機械的に制限することによって充填材
と容器壁の間に発生する圧力を増大させるイオン交換体
の充填方法。
1. A packing material containing an ion exchanger is housed in a container in a state in which the apparent volume of the packing material is contracted from that in the usage state, and a dimensional change caused by volume expansion of the packing material in a usage environment is mechanically controlled by a container wall. Method for filling an ion exchanger in which the pressure generated between the packing material and the container wall is increased by restricting it mechanically.
【請求項2】イオン交換体を含む充填材が、互いに分離
した材料の集積体である請求項1のイオン交換体の充填
方法。
2. The method for packing an ion exchanger according to claim 1, wherein the packing material containing the ion exchanger is an aggregate of materials separated from each other.
【請求項3】イオン交換体を含む充填材が、成形体であ
る請求項1のイオン交換体の充填方法。
3. The method for filling an ion exchanger according to claim 1, wherein the filler containing the ion exchanger is a molded body.
【請求項4】成形体が、樹脂バインダーによりイオン交
換体粒子を多孔質状に成形したものである請求項3のイ
オン交換体の充填方法。
4. The method for filling an ion exchanger according to claim 3, wherein the molded body is obtained by molding the ion exchanger particles into a porous form with a resin binder.
【請求項5】容器が、脱塩装置である請求項1〜4いず
れか1のイオン交換体の充填方法。
5. The method for filling an ion exchanger according to claim 1, wherein the container is a desalting device.
【請求項6】容器が、陽極と陰極との間に配置された、
陽極側が陰イオン交換膜で区画され、陰極側が陽イオン
交換膜で区画された容器である請求項5のイオン交換体
の充填方法。
6. A container is disposed between the anode and the cathode,
The method for filling an ion exchanger according to claim 5, wherein the container is defined by an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side.
【請求項7】体積収縮の手段が、乾燥である請求項1〜
6いずれか1のイオン交換体の充填方法。
7. The method of volume contraction is drying.
6 Any one of the methods for filling an ion exchanger.
【請求項8】充填材と容器壁の間に発生する圧力が、
0.1〜20kgw/cm2 である請求項1〜7いずれ
か1のイオン交換体の充填方法。
8. The pressure generated between the filler and the container wall is
It is 0.1-20 kgw / cm < 2 >, The filling method of the ion exchanger of any one of Claims 1-7.
【請求項9】使用時の充填材の体積が、自由に体積膨張
させた場合の体積の30〜97%である請求項1〜8い
ずれか1のイオン交換体の充填方法。
9. The method for filling an ion exchanger according to claim 1, wherein the volume of the filler at the time of use is 30 to 97% of the volume when the volume is freely expanded.
【請求項10】体積膨張させた状態における充填材の空
隙率が、1〜40容量%である請求項1〜9いずれか1
のイオン交換体の充填方法。
10. The porosity of the filler in a volume expanded state is 1 to 40% by volume.
The method for filling the ion exchanger of.
JP06478396A 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger Expired - Lifetime JP3760501B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP06478396A JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger
EP97907381A EP0837729B1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
DE69716852T DE69716852T2 (en) 1996-03-21 1997-03-19 METHOD AND DEVICE FOR PRODUCING DEIONIZED WATER
TW086103470A TW426644B (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
AU19433/97A AU1943397A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
PCT/JP1997/000896 WO1997034696A1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
AT97907381T ATE227162T1 (en) 1996-03-21 1997-03-19 METHOD AND APPARATUS FOR PRODUCING DEIONIZED WATER
CA002221709A CA2221709C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
KR1019970708217A KR100441461B1 (en) 1996-03-21 1997-03-19 Method and Apparatus for Producing Deionized Water
CN97190214A CN1080594C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
US08/952,218 US5961805A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
MYPI97001177A MY125056A (en) 1996-03-21 1997-03-20 Method and apparatus for producing deionized water
IN500CA1997 IN182200B (en) 1996-03-21 1997-03-20
ARP970101149A AR006347A1 (en) 1996-03-21 1997-03-21 METHOD AND APPARATUS FOR PRODUCING DEIONIZED WATER
US09/338,570 US6228240B1 (en) 1996-03-21 1999-06-23 Method and apparatus for producing deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06478396A JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger

Publications (2)

Publication Number Publication Date
JPH09253458A true JPH09253458A (en) 1997-09-30
JP3760501B2 JP3760501B2 (en) 2006-03-29

Family

ID=13268175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06478396A Expired - Lifetime JP3760501B2 (en) 1996-03-21 1996-03-21 Method for filling a filler containing an ion exchanger

Country Status (2)

Country Link
JP (1) JP3760501B2 (en)
AR (1) AR006347A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019483A (en) * 2001-07-10 2003-01-21 Asahi Glass Co Ltd Packing method of packing material including ion exchanger
JP2010227730A (en) * 2009-03-25 2010-10-14 Japan Organo Co Ltd Manufacturing method for electric deionized water production apparatus
JP2011056376A (en) * 2009-09-09 2011-03-24 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019483A (en) * 2001-07-10 2003-01-21 Asahi Glass Co Ltd Packing method of packing material including ion exchanger
JP2010227730A (en) * 2009-03-25 2010-10-14 Japan Organo Co Ltd Manufacturing method for electric deionized water production apparatus
JP2011056376A (en) * 2009-09-09 2011-03-24 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus

Also Published As

Publication number Publication date
AR006347A1 (en) 1999-08-25
JP3760501B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US6228240B1 (en) Method and apparatus for producing deionized water
US5759373A (en) Porous ion exchanger and method for producing deionized water
JP2751090B2 (en) Pure water production equipment
US6117297A (en) Electrodialysis apparatus
JPH10277557A (en) Deionized water making apparatus
EP1386938B1 (en) Electrodeionization water purification device
US20110247495A1 (en) Gas Adsorber For Use In Gas Storager
JP3947829B2 (en) Deionized water production equipment
JP2006322009A (en) Method for manufacturing composite porous ion-exchanger
JPH08252579A (en) Porous ion exchanger and production of deionized water
JP2001079553A (en) Method for filling ion exchanger in electrodeionization apparatus and electrodeionization apparatus
JP2008055388A (en) Electric deionized water making apparatus and its operation method
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP3644182B2 (en) Deionized water production equipment
TW200414922A (en) Electrodeionization apparatus
JPH09253458A (en) Method for packing ion exchange material
JP4049170B2 (en) Method for producing deionized water production apparatus
JP5233798B2 (en) Electric regenerative pure water production equipment
JP5738505B2 (en) Method for filling a filler containing an ion exchanger
Volfkovich et al. Capacitive deionization of water involving mosaic membranes based on fibrous polymer matrices
JP5246116B2 (en) Ion exchange resin filling method and electric regenerative pure water production apparatus
JP5110020B2 (en) Ion exchange resin filling method and electric regenerative pure water production apparatus
JP3800706B2 (en) Deionized water production equipment
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JP3906540B2 (en) Method for producing deionized water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term