JP5738505B2 - Method for filling a filler containing an ion exchanger - Google Patents
Method for filling a filler containing an ion exchanger Download PDFInfo
- Publication number
- JP5738505B2 JP5738505B2 JP2001209213A JP2001209213A JP5738505B2 JP 5738505 B2 JP5738505 B2 JP 5738505B2 JP 2001209213 A JP2001209213 A JP 2001209213A JP 2001209213 A JP2001209213 A JP 2001209213A JP 5738505 B2 JP5738505 B2 JP 5738505B2
- Authority
- JP
- Japan
- Prior art keywords
- filler
- chamber
- filling
- state
- desalting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000945 filler Substances 0.000 title claims 7
- 238000000034 method Methods 0.000 title claims 6
- 239000000463 material Substances 0.000 claims 7
- 238000010612 desalination reaction Methods 0.000 claims 2
- 238000012856 packing Methods 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 1
- 230000001172 regenerating effect Effects 0.000 claims 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、イオン交換体を含む充填材の電気再生式脱塩装置への充填方法に関する。特に、電気再生式脱塩装置の脱塩室や濃縮室に、イオン交換体等のイオン交換性能を有する充填材を充填するための方法に関する。 The present invention relates to a method for filling an electric regenerative desalination apparatus with a filler containing an ion exchanger. In particular, the present invention relates to a method for filling a desalting chamber or a concentration chamber of an electric regeneration type desalting apparatus with a filler having ion exchange performance such as an ion exchanger.
従来、超純水製造用の装置として、脱塩室や濃縮室内にイオン交換体を充填することを特徴とする電気再生式脱塩装置が、特公平4−72567号公報、米国特許4632745号明細書、米国特許3330750号明細書(IONICS社の濃縮室充填)などにより提案されている。これらの装置には、これら充填されたイオン交換体は、各室内に均一に充填され、かつ液の流れがショートパスする空間を生ずることのないことが求められる。 Conventionally, as an apparatus for producing ultrapure water, an electroregenerative desalination apparatus characterized by filling an ion exchanger into a desalination chamber or a concentration chamber is disclosed in Japanese Patent Publication No. 4-72567 and US Pat. No. 4,632,745. And U.S. Pat. No. 3,330,750 (concentration chamber filling by IONICS). These apparatuses are required that the filled ion exchangers are uniformly filled in the respective chambers and that there is no space in which the flow of the liquid is short-passed.
しかしながら、電気再生式脱塩装置の複数の脱塩室や濃縮室内に、イオン交換体を均一かつ隙間なく充填することは一般的に難しい。その電気再生式脱塩(以下EDIとする)装置に充填されるビーズ状イオン交換体の各脱塩室への供給方法としては、その脱塩装置用の電気透析槽組立前または組立時に各対毎に充填する方法、組立後に液供給のための共通ダクトやイオン交換体の充填専用ノズルなどから充填する方法が一般的に知られている。 However, it is generally difficult to charge the ion exchanger uniformly and without gaps in a plurality of desalting chambers and concentration chambers of an electric regeneration type desalting apparatus. As a method for supplying the bead-shaped ion exchanger filled in the electric regenerative desalting (hereinafter referred to as EDI) device to each desalting chamber, there are various methods before or during assembly of the electrodialysis tank for the desalting device. A method of filling every time and a method of filling from a common duct for supplying a liquid after assembling or a nozzle dedicated to filling of an ion exchanger are generally known.
しかしながら、各対毎に充填する方法では、ユニット化のために室枠の構造が複雑になったり、電気透析槽の対数が多くなると組立に時間がかかるなどの問題がある。他方、共通ダクトやイオン交換体の充填専用ノズルなどから充填する方法では、脱塩室等の各室への供給時間は短縮されるが、室枠の構造が複雑になるだけでなく、各室へのイオン交換体の充填度を制御するのが難しく、かつ充填量の確認が難しいという問題がある。 However, in the method of filling each pair, there is a problem that the structure of the chamber frame becomes complicated due to unitization, and the assembly takes time when the number of pairs of electrodialysis tanks increases. On the other hand, in the method of filling from a common duct or a nozzle dedicated to filling of the ion exchanger, the supply time to each chamber such as a desalting chamber is shortened, but not only the structure of the chamber frame is complicated, but each chamber There is a problem that it is difficult to control the filling degree of the ion exchanger in and the confirmation of the filling amount is difficult.
さらに、充填できるイオン交換体量の上限も、高々通常の最密充填(空間率=0.636)程度またはそれ以下にしかならないため、液のショートパスを防ぐためには、脱塩室等における液の移動方向は下降流を選択せざるを得ない。このため、脱塩室系内のガス抜き対策や、停止時の液保有対策が別途必要となるという問題がある。 Furthermore, the upper limit of the amount of ion exchanger that can be filled is at most about the normal close-packed packing (space ratio = 0.636) or less, so in order to prevent a short path of the liquid, The direction of movement must be downflow. For this reason, there exists a problem that the countermeasure against degassing in a desalination chamber system and the liquid retention countermeasure at the time of a stop are needed separately.
一方で脱塩室内のショートパスを防ぐことを特徴とした特開平9−253458号公報に提示の技術のように、イオン交換樹脂を含む充填材を乾燥その他の手段によって体積収縮させた後に充填し、電気透析槽組立後通水して充填材を膨潤させ、該透析槽の脱塩室に隙間なく充填する方法が考えられるが、この方法では、膨潤前後での充填体の体積変化が大きすぎると、充填体の膨潤時に脱塩室を隔てるイオン交換膜が充填体によって引きずられて損傷を起こす可能性があった。 On the other hand, as shown in Japanese Patent Laid-Open No. 9-253458, which is characterized by preventing a short path in the desalination chamber, the filler containing the ion exchange resin is volume-contracted by drying or other means and then packed. It is possible to swell the filling material after assembling the electrodialysis tank and swell the filler, and to fill the desalting chamber of the dialysis tank without gaps. However, in this method, the volume change of the packed body before and after swelling is too large. Then, there is a possibility that the ion exchange membrane separating the desalting chamber during the swelling of the packing body is dragged by the packing body to cause damage.
したがって、本発明は前述のような問題の発生を回避できるイオン交換体等のイオン交換性能を有する充填材の充填技術を提供することを目的とするものである。すなわち、本発明は、充填材が充填されている脱塩室等の室内に液体を通過させる際に、液流が入口から出口にショートパスする可能性のある空間の発生を防ぎ、複数の室内に同時に均一量の充填材を確実に収納することを可能にし、さらに充填材の膨潤時に脱塩室等の室壁を構成するイオン交換膜を損傷することなく、高密度で充填材を充填することを目的とする。 Accordingly, an object of the present invention is to provide a filling technique of a filler having ion exchange performance such as an ion exchanger that can avoid the occurrence of the above-described problems. That is, the present invention prevents the generation of a space in which a liquid flow may short-pass from the inlet to the outlet when a liquid is passed through a chamber such as a desalination chamber filled with a filler, and a plurality of chambers. At the same time, it is possible to reliably store a uniform amount of filler, and at the same time, the filler is filled at a high density without damaging the ion exchange membrane constituting the wall of the desalination chamber or the like when the filler swells. For the purpose.
本発明は、イオン交換体を含む充填材を、その使用状態よりもみかけの体積が収縮した状態で電気再生式脱塩装置の脱塩室内又は濃縮室内に収納し、使用環境における充填材の体積膨張に伴う寸法変化を室壁により機械的に制限することによって充填材と室内壁の間に発生する圧力を増大させる充填材の充填方法において、該充填材の飽和状態での重量含水率に対する該充填材の収縮状態の重量含水率の比率を0.3〜0.7とすることを特徴とする充填材の充填方法を提供する。 In the present invention, a filler containing an ion exchanger is accommodated in a desalination chamber or a concentration chamber of an electric regeneration type desalination apparatus in a state in which an apparent volume is contracted from its use state, and the volume of the filler in the use environment is stored. In a filling method of a filler that increases the pressure generated between the filler and the chamber wall by mechanically limiting the dimensional change due to expansion by the chamber wall, the weight moisture content in the saturated state of the filler is A filler filling method is provided, wherein a ratio of weight moisture content in a contracted state of the filler is 0.3 to 0.7.
前記充填材とは、脱塩室又は濃縮室内中に配置されてその室内中の液体とのイオン交換作用を発現する材料である。充填材は、イオン交換体のみからなるものだけでなく、バインダー等イオン交換体以外の材料を含んでいてもよい。充填材は、互いに分離した材料の集積体からなるものであっても成形体からなるものであってもよい。互いに分離した材料の集積体というのは、たとえばイオン交換樹脂の粒子の集積体を指し、粒状物だけでなく繊維状や比較的大きなブロック状のものも含む。成形体とは、熱や圧力を加えたり、バインダーを用いる等してイオン交換樹脂粒子を一体化したものをいう。 The filler is a material that is arranged in a desalting chamber or a concentration chamber and exhibits an ion exchange action with a liquid in the chamber. The filler may contain not only an ion exchanger but also a material other than the ion exchanger such as a binder. The filler may be composed of an aggregate of separated materials or a molded body. The aggregate of materials separated from each other refers to, for example, an aggregate of ion-exchange resin particles, and includes not only particles but also fibers and relatively large blocks. The molded product refers to a product in which ion exchange resin particles are integrated by applying heat or pressure or using a binder.
本発明では、充填材の状態を変化させ脱塩室等の室内に充填する。以下、本明細書においては充填材の状態を次のような用語で説明することにする。この明細書において、「飽和状態」とはイオン交換体等の充填材が非拘束状態で最大に含水した状態である。また、「使用状態」とは使用時の環境と平衡になった状態である。「飽和状態」と「使用状態」はほぼ同様の含水状態である。 In the present invention, the state of the filler is changed to fill a room such as a desalting chamber. Hereinafter, in this specification, the state of the filler will be described using the following terms. In this specification, the “saturated state” is a state in which a filler such as an ion exchanger is hydrated to the maximum in an unconstrained state. In addition, the “use state” is a state that is balanced with the environment during use. “Saturated state” and “used state” are almost the same water-containing state.
しかしながら、使用状態は充填材を脱塩室内等で実際に使用しているときの状態を指すことから、室壁による拘束を受けている場合もあり、その場合には、飽和状態の体積より多少小さくなることもある。それに対し「収縮状態」とは、何らかの方法で充填材のみかけの体積を積極的に収縮させた状態をいい、特に断りがない限り含水率を低下させた充填時の状態をいう。 However, since the state of use refers to the state when the filler is actually used in a demineralization chamber or the like, it may be restricted by the chamber wall, and in that case, it may be slightly more than the saturated volume. Sometimes it gets smaller. On the other hand, the “shrinked state” refers to a state in which the apparent volume of the filler is actively shrunk by some method, and refers to a state at the time of filling in which the moisture content is reduced unless otherwise specified.
充填材が集積体である場合、個々の材料の形状としては特に限定されないが、球状、ペレット状、繊維状、プレート状、シート状などの形状が採用できる。これらの形状は、1種単独でもよく、2種以上を組み合わせて用いてもよい。大きさについても特に制限はなく、種々の大きさのものを採用できる。 When the filler is an aggregate, the shape of each material is not particularly limited, but shapes such as a spherical shape, a pellet shape, a fiber shape, a plate shape, and a sheet shape can be employed. These shapes may be used alone or in combination of two or more. There is no restriction | limiting in particular also about a magnitude | size, The thing of various magnitude | sizes is employable.
充填材が成形体である場合、液体の流れ方向に関するショートパス形成の防止だけでなく、装置組立手段の簡便化にも寄与できるので好ましい。成形体としては、イオン交換体粒子をバインダを用いて多孔質状に結合成形したものが好ましい。イオン交換体粒子としては充填材が集積体である場合と同様なものを使用でき、特に球状またはペレット状のイオン交換体が好ましい。 When the filler is a molded body, it is preferable because it can contribute not only to prevention of short path formation in the liquid flow direction but also to simplification of the device assembly means. The molded body is preferably one in which ion exchanger particles are bonded and molded into a porous shape using a binder. As the ion exchanger particles, particles similar to those used when the filler is an aggregate can be used, and spherical or pellet ion exchangers are particularly preferable.
イオン交換体としては、各種の有機イオン交換体を単独でまたは2種以上混合して使用できる。有機イオン交換体として、スチレン−ジビニルベンゼン共重合体、アクリレート系重合体などの重合体にイオン交換基を導入したイオン交換樹脂が挙げられる。 As the ion exchanger, various organic ion exchangers can be used alone or in admixture of two or more. Examples of the organic ion exchanger include an ion exchange resin in which an ion exchange group is introduced into a polymer such as a styrene-divinylbenzene copolymer and an acrylate polymer.
充填材を「収縮状態」にする方法は、充填材の特性に応じて選択する必要があるが、充填材としてイオン交換樹脂を用いる場合、イオン交換樹脂は含水率が大きくなるにしたがい体積が増大するので、含水率を減少させることによって「収縮状態」にするのが好ましい。あらかじめ「使用状態」または「飽和状態」に近いものから脱水して「収縮状態」にする場合だけでなく、イオン交換樹脂、またはその成形体を製造する際に「使用状態」より少ない含水率のものとして得られる場合も含む。 The method for bringing the filler into a “shrinked state” needs to be selected according to the characteristics of the filler, but when an ion exchange resin is used as the filler, the volume of the ion exchange resin increases as the moisture content increases. Therefore, it is preferable to reduce the moisture content so that the “contracted state” is achieved. Not only when it is dehydrated from the “nearly used” or “saturated” state in advance to the “shrinked state”, but when the ion exchange resin or its molded product is produced, the moisture content is less than the “used state”. This includes cases obtained as products.
しかしながら、特に、飽和状態で43〜47%の含水率をもつ一般的なイオン交換樹脂の場合、収縮状態の含水率を数%以下にすると、収縮状態と使用状態(飽和状態)の体積の差が極めて大きくなり、収縮状態の充填材を脱塩室等の室内に所定の位置に正しく設置しても、収縮状態から使用状態への膨潤過程において、縦、横、厚みまたは奥行きに関し特定の方向に過大な力または変位が生じ、脱塩装置の脱塩室を構成する室壁に損傷を加える可能性がある。 However, in particular, in the case of a general ion exchange resin having a moisture content of 43 to 47% in a saturated state, if the moisture content in the contracted state is set to several percent or less, the difference in volume between the contracted state and the used state (saturated state). In a swelling process from a contracted state to a used state in a specific direction with respect to length, width, thickness or depth even if the contracted filler is correctly placed at a predetermined position in a room such as a desalination chamber An excessive force or displacement may occur in the chamber, which may cause damage to the chamber walls constituting the desalination chamber of the desalination apparatus.
特に、電気再生式脱塩装置を構成する電気透析槽の脱塩室の室壁を構成するイオン交換膜の場合、充填材の伸びに伴って膜が引きずられ、皺が寄ったり膜破れを起こしたりする可能性がある。
この様な膜の損傷を防ぐためには、できるだけ充填材の変位を少なくすることが好ましい。この様な観点に立って検討した結果、充填材の飽和状態での含水率に対する、充填材の収縮状態での含水率の比率を0.3〜0.7とすれば、該充填材の膨潤時の変位によって、脱塩室壁を構成するイオン交換膜に損傷を与えないことが判明した。In particular, in the case of an ion exchange membrane constituting the chamber wall of the desalination chamber of the electrodialysis tank constituting the electroregenerative desalination apparatus, the membrane is dragged along with the elongation of the filler, causing wrinkles or membrane breakage. There is a possibility.
In order to prevent such film damage, it is preferable to reduce the displacement of the filler as much as possible. As a result of examination from such a viewpoint, if the ratio of the moisture content in the contracted state of the filler to the moisture content in the saturated state of the filler is 0.3 to 0.7, the swelling of the filler It was found that the ion exchange membrane constituting the desalting chamber wall was not damaged by the displacement of time.
さらに、ショートパスの防止と高密度充填のためには、充填材の飽和状態の体積は、脱塩室等の容積に較べて少なくとも等しいか大きいことが好ましい。この場合、上記比率が1に近づくと、充填材の充填時に収縮状態の体積の方が容器の体積よりも大きくなって充填に困難を伴う。このような点からも、充填材の上記比率を0.3〜0.7とすることが必要である。 Furthermore, in order to prevent a short pass and high density filling, it is preferable that the saturated volume of the filler is at least equal to or larger than the volume of the desalting chamber or the like. In this case, when the ratio is close to 1, the volume in the contracted state is larger than the volume of the container when filling the filler, and filling is difficult. Also from such a point, it is necessary to make the said ratio of a filler into 0.3-0.7.
充填材の含水率を低下させる手段としては、加熱乾燥が好ましい。充填材としてイオン交換樹脂を用いる場合は、劣化を防ぐため、温度120℃以下、特には95℃以下、さらには30〜60℃の範囲で加熱乾燥するのが好ましい。さらに、時間を短縮または含水率変化を大きくする理由のため、大気圧以下の圧力下で減圧乾燥する方法が利用できる。また、同様に充填材の含水率を低減させる方法として、充填材のまわりの液の濃度、組成、種類、温度を変える方法や、充填材に含まれるイオン交換体の対イオンを変化させる方法も利用できる。 Heat drying is preferable as a means for reducing the moisture content of the filler. When an ion exchange resin is used as the filler, it is preferable to heat and dry at a temperature of 120 ° C. or lower, particularly 95 ° C. or lower, and more preferably 30 to 60 ° C. in order to prevent deterioration. Furthermore, for the reason of shortening the time or increasing the moisture content change, a method of drying under reduced pressure under a pressure below atmospheric pressure can be used. Similarly, as a method of reducing the moisture content of the filler, there are a method of changing the concentration, composition, type and temperature of the liquid around the filler, and a method of changing the counter ion of the ion exchanger contained in the filler. Available.
充填材は脱塩室等に収納された後、例えば液体に浸漬されると徐々に膨張し「使用状態」になる。本発明においては、充填材は室壁によって膨張が制限されるため「使用状態」は「飽和状態」より体積が小さくなる。これにより、充填材と室壁の間に圧力が発生する。充填材が成形体である場合、その形状は室内空間形状に対応して、平板型あるいは円筒型などの形状が利用できる。充填材の形状が、室内空間の形状と相似形またはそれに近い形状である場合は、充填材と室壁の各部との間に発生する圧力を均一にできるので好ましい。 After the filler is stored in a desalting chamber or the like, for example, when immersed in a liquid, the filler gradually expands to a “use state”. In the present invention, since the expansion of the filler is restricted by the chamber wall, the volume of the “use state” is smaller than the “saturation state”. Thereby, pressure is generated between the filler and the chamber wall. When the filler is a molded body, the shape can be a flat plate shape or a cylindrical shape corresponding to the shape of the indoor space. When the shape of the filler is similar to or close to the shape of the indoor space, it is preferable because the pressure generated between the filler and each part of the chamber wall can be made uniform.
充填材が成形体である場合、脱塩室等の室内に1つの連続した充填材を配置することは、ショートパスを防ぐ意味で好ましいが、適宜分割して配置してもよい。また、全体が均質な充填材である必要はなく、例えば、イオン交換体として陰イオン交換体のみを含む部分と、イオン交換体として陽イオン交換体のみを含む部分とが、モザイク状に配置されているものでもよい。陰イオン交換基のみを含む充填材と、陽イオン交換基のみを含む充填材を適宜分割して配置してもよい。 When the filler is a molded body, it is preferable to dispose one continuous filler in a room such as a desalting chamber in order to prevent a short pass, but it may be divided as appropriate. Further, it is not necessary that the whole is a homogeneous filler. For example, a portion including only an anion exchanger as an ion exchanger and a portion including only a cation exchanger as an ion exchanger are arranged in a mosaic pattern. It may be what you have. The filler containing only the anion exchange group and the filler containing only the cation exchange group may be appropriately divided and arranged.
本発明の充填材の充填方法を適用する電気再生式脱塩装置としては、イオン交換膜を用いた脱塩室及び濃縮室を有する電気透析槽と、被処理水前処理装置、濃縮水循環装置などの付帯設備を備えるものが好ましく、その電気透析槽は、具体的には陽極を備える陽極室と、陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列して構成したものに、陽極側が陰イオン交換膜で区画され、陰極側が陽イオン交換膜で区画された脱塩室と、陰極側が陰イオン交換膜で区画され、陽極側が陽イオン交換膜で区画された濃縮室を交互に形成した構造のものが好ましい。 As an electric regeneration type desalination apparatus to which the filling method of the present invention is applied, an electrodialysis tank having a desalination chamber and a concentration chamber using an ion exchange membrane, a pretreatment apparatus for water to be treated, a concentrated water circulation apparatus, etc. Preferably, the electrodialysis tank has a plurality of cation exchange membranes and anion exchange membranes between an anode chamber having an anode and a cathode chamber having a cathode. In an alternating arrangement, the anode side is partitioned by an anion exchange membrane, the cathode side is partitioned by a cation exchange membrane, the cathode side is partitioned by an anion exchange membrane, and the anode side is cation exchange. A structure in which concentration chambers partitioned by a membrane are alternately formed is preferable.
この脱塩装置における脱塩室及び濃縮室は、充填材の膨張を抑制して圧力を発生させるために容易に変形しないものであることが好ましいが、室壁のイオン交換膜自体に充分な剛性および強度を付与するのが困難である場合で、例えば充填材を脱塩室に配置する場合、濃縮室側から充分な圧力を発生させるために、濃縮室内にも実質的に変形しない透水性の材料を充填するのが好ましい。 It is preferable that the desalting chamber and the concentration chamber in this desalination apparatus are not easily deformed in order to suppress the expansion of the filler and generate pressure, but the ion exchange membrane itself on the chamber wall has sufficient rigidity. In the case where it is difficult to impart strength and strength, for example, when a filler is disposed in the desalting chamber, in order to generate a sufficient pressure from the concentration chamber side, the water permeability is not substantially deformed in the concentration chamber. It is preferred to fill the material.
以下において、本発明の充填方法及び比較充填方法に使用する充填材の調製等に関し実施例及び比較例に基づいて、更に詳述するが、本発明はその実施例によって何ら限定されるものではなく、特許請求の範囲の記載に基づいて特定されるものであることはいうまでもない。 Hereinafter, the preparation of the filler used in the filling method and the comparative filling method of the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited by the Examples. Needless to say, it is specified based on the description of the scope of claims.
[実施例1]
平均直径500μmの球状陽イオン交換樹脂(三菱化学製、商品名ダイヤイオンSK1B、重量含水率43〜50質量%)および平均直径500μmの球状陰イオン交換樹脂(三菱化学製、商品名ダイヤイオンSA10A、重量含水率43〜47質量%)を体積比50/50で混合し、50℃にて乾燥した。乾燥により、重量含水率3%未満まで減量した。これにバインダとして直径2〜6mm、長さ4〜9mmのペレット状のポリオレフィン系樹脂(ポリオレフィンプラストマー)を、バインダとイオン交換樹脂の合計量に対してバインダを2%になるように加え、ニーダーにて140℃で40分混練した。[Example 1]
Spherical cation exchange resin (Made by Mitsubishi Chemical, trade name Diaion SK1B, weight moisture content 43-50 mass%) and spherical anion exchange resin (Mitsubishi Chemical, trade name Diaion SA10A, average diameter 500 μm) having an average diameter of 500 μm, Weight water content (43 to 47 mass%) was mixed at a volume ratio of 50/50 and dried at 50 ° C. The weight was reduced to less than 3% by weight by drying. To this, a pellet-shaped polyolefin resin (polyolefin plastomer) having a diameter of 2 to 6 mm and a length of 4 to 9 mm was added as a binder so that the binder was 2% with respect to the total amount of the binder and the ion exchange resin. And kneading at 140 ° C. for 40 minutes.
この混練物を、開口面が250mm×150mmの直方体の金属製の型に入れ、120℃で2.5MPaの条件にてプレスすることによって厚み7.7mmの直方体多孔質成形体を得た。これを温度25℃、湿度85%以上に保った容器内で16時間放置して調湿した。この時の厚みは7.9mmであった。得られた成形体の重量含水率は20.3%であり、これを電気再生式脱塩装置の脱塩室充填用に使用した。なお、この成形体の飽和状態での重量含水率は46%であった。 The kneaded product was put into a rectangular metal mold having an opening surface of 250 mm × 150 mm and pressed at 120 ° C. under the condition of 2.5 MPa to obtain a cuboid porous molded body having a thickness of 7.7 mm. This was allowed to stand for 16 hours in a container kept at a temperature of 25 ° C. and a humidity of 85% or more to adjust the humidity. The thickness at this time was 7.9 mm. The obtained molded body had a weight moisture content of 20.3%, and was used for filling a desalting chamber of an electric regeneration type desalting apparatus. In addition, the weight moisture content in the saturated state of this molded object was 46%.
[比較例1]
成形体を調湿しなかった以外は実施例1と同様にして、多孔質成形体を作成した。得られた成形体の重量含水率は4%であった。これを電気再生式脱塩装置の脱塩室充填用に使用した。[Comparative Example 1]
A porous molded body was prepared in the same manner as in Example 1 except that the molded body was not conditioned. The obtained molded body had a weight moisture content of 4%. This was used for filling a desalting chamber of an electric regeneration type desalting apparatus.
[実施例2]
実施例1で使用した陽イオン交換樹脂と陰イオン交換樹脂を、50℃にて乾燥し、各々重量含水率を3%未満まで減量した。これらを重量比で陽イオン交換樹脂/陰イオン交換樹脂=54/46として計量し、蓋付きの容器内に入れ、さらにこのイオン交換樹脂混合物の重量含水率がおよそ27%になる量の水を加えて1分間よく振とうしたところ、重量含水率はおよそ27%であった。この混合物をメスシリンダ−に100ml採ったところ、重量は76.6gであり、この混合物を実施例1と同様に電気再生式脱塩装置の脱塩室充填用に使用した。なお、前記混合物の飽和状態での重量含水率は46%であった。[Example 2]
The cation exchange resin and anion exchange resin used in Example 1 were dried at 50 ° C., and the weight water content was reduced to less than 3%. These were weighed by weight ratio as cation exchange resin / anion exchange resin = 54/46, placed in a container with a lid, and water in such an amount that the water content by weight of this ion exchange resin mixture was about 27%. In addition, when well shaken for 1 minute, the water content by weight was approximately 27%. When 100 ml of this mixture was taken in a graduated cylinder, the weight was 76.6 g, and this mixture was used for filling the desalting chamber of the electric regenerative desalting apparatus as in Example 1. In addition, the weight moisture content in the saturated state of the said mixture was 46%.
[比較例2]
振とう後の重量含水率を9.0%とする以外は実施例2と同様にして、イオン交換樹脂混合物を得た。この混合物をメスシリンダーに100mlを採ったところ、重量は85.4gであった。この混合物を実施例2と同様に電気再生式脱塩装置の脱塩室充填用に使用した。[Comparative Example 2]
An ion exchange resin mixture was obtained in the same manner as in Example 2 except that the weight moisture content after shaking was 9.0%. When 100 ml of this mixture was taken in a graduated cylinder, the weight was 85.4 g. This mixture was used for filling the desalting chamber of the electric regenerative desalting apparatus in the same manner as in Example 2.
[比較例3]
実施例2と同様にして得たイオン交換樹脂混合物100gに水を約60g加えてよく混合した。得られた混合物の付着水を除去した後メスシリンダーで測り採ったところ体積は249mlで、重量含水率は37%であった。この混合物を実施例2と同様に電気再生式脱塩装置の脱塩室充填用に使用した。[Comparative Example 3]
About 100 g of water was added to 100 g of the ion exchange resin mixture obtained in the same manner as in Example 2 and mixed well. After removing adhering water from the obtained mixture and measuring with a graduated cylinder, the volume was 249 ml and the weight water content was 37%. This mixture was used for filling the desalting chamber of the electric regenerative desalting apparatus in the same manner as in Example 2.
[充填材の充填及びEDI用電気透析槽の組立]
実施例1〜2と比較例1〜3で調製した充填材を、重量含水率0%としたときのイオン交換樹脂の重量66gとなるように採取した。ただし、実施例1と比較例1は、成形体の縦/横の比が1.4/1.0となるようにした。
これら充填材を3室の脱塩室と4室の濃縮室をもつ電気再生式脱塩装置を構成する電気透析槽の脱塩室に入れ、規定寸法まで締め付けた。[Filling of filler and assembly of electrodialysis tank for EDI]
The fillers prepared in Examples 1 and 2 and Comparative Examples 1 to 3 were collected so that the weight of the ion exchange resin was 66 g when the weight moisture content was 0%. However, in Example 1 and Comparative Example 1, the vertical / horizontal ratio of the molded body was set to 1.4 / 1.0.
These fillers were put into a desalting chamber of an electrodialysis tank constituting an electric regenerative desalination apparatus having three desalting chambers and four concentrating chambers, and tightened to a specified size.
脱塩室の形状は直方体で、水流方向の長さが140mm、幅が100mm、陰陽イオン交換膜の間隔は8mmである。濃縮室には、それぞれポリプロピレン製のスペーサーネットを充填して、脱塩室内の充填材が膨張した場合にも陰陽イオン交換膜の間隔が実質的に変化しないようにした。なお、比較例3のイオン交換樹脂混合物の体積は、脱塩室のそれより大きかったため電気透析槽を実質上組み立てることができなかったので、比較例3の体積を32%減らして脱塩室のそれと同等にして組み立て、該樹脂混合物を充填し、これを比較例4とした。 The shape of the desalting chamber is a rectangular parallelepiped, the length in the water flow direction is 140 mm, the width is 100 mm, and the interval between the anion and cation exchange membranes is 8 mm. Each of the concentration chambers was filled with a polypropylene spacer net so that the space between the anion and cation exchange membranes was not substantially changed even when the filler in the desalting chamber expanded. In addition, since the volume of the ion exchange resin mixture of Comparative Example 3 was larger than that of the desalting chamber, the electrodialysis tank could not be substantially assembled. Therefore, the volume of Comparative Example 3 was reduced by 32% to reduce the volume of the desalting chamber. It was assembled in the same manner and filled with the resin mixture, which was referred to as Comparative Example 4.
以上のようにして組み立てられ、充填された電気透析槽内に存在する充填材の充填時、すなわち収縮状態での重量含水率、充填材の充填時体積、充填材の絶乾樹脂重量、及び該充填材の飽和状態の重量含水率に対する、充填材の収縮状態での重量含水率の比率(重量含水率比)を表1にまとめて示した。 When the filler existing in the electrodialysis tank assembled and filled as described above is filled, that is, the weight moisture content in the contracted state, the filler filling volume, the dry dry resin weight of the filler, and the Table 1 summarizes the ratio of the weight moisture content in the contracted state of the filler (weight moisture ratio) to the weight moisture content in the saturated state of the filler.
[EDI脱塩処理による評価]
前記のようにして組み立てた電気透析槽の脱塩室に導電率が約10μS/cmの純水を21.6リットル/h、濃縮室に導電率が約100μS/cmの水を40リットル/h、陽極室及び陰極室に導電率が約100μS/cmの水を1リットル/hずつ流通させながら、1.0Aの電流を通電した。40時間連続して運転し、安定したところで、脱塩室の流速を43.2リットル/hとした。さらに200時間連続運転し、電気透析槽の脱塩室の圧力損失、電気透析槽の電圧および脱塩室から排出される比抵抗を測定した。その測定結果を表2に示す。[Evaluation by EDI desalination]
The desalting chamber of the electrodialysis tank assembled as described above has 21.6 liter / h of pure water having a conductivity of about 10 μS / cm, and 40 liter / h of water having a conductivity of about 100 μS / cm in the concentration chamber. A current of 1.0 A was applied while flowing water having a conductivity of about 100 μS / cm through the anode chamber and the cathode chamber at a rate of 1 liter / h. When it was operated continuously for 40 hours and stabilized, the flow rate of the desalting chamber was set to 43.2 liter / h. Further, the operation was continued for 200 hours, and the pressure loss in the desalting chamber of the electrodialysis tank, the voltage of the electrodialysis tank, and the specific resistance discharged from the desalting chamber were measured. The measurement results are shown in Table 2.
電気透析槽の組立が不可能だった比較例3を除き、EDI法による脱塩処理を実施したところ、比較例2と比較例4以外では高純度の脱イオン水を安定して得ることができた。実施例1、2及び比較例1では電圧も低かったことから考えると、希釈室におけるショートパスは生じていないと考えられる。 Except for Comparative Example 3 where assembly of the electrodialysis tank was impossible, when desalting treatment was performed by the EDI method, high purity deionized water could be stably obtained except for Comparative Example 2 and Comparative Example 4. It was. Considering that the voltages in Examples 1 and 2 and Comparative Example 1 were also low, it is considered that no short path occurred in the dilution chamber.
そこで、電気透析槽を解体して膜の状態を観察した。その結果、実施例1と実施例2及び比較例4では脱塩室を構成するイオン交換膜に目立った損傷は見られなかったが、比較例1と比較例2では充填材の膨潤の際に、充填材によって膜が引きづられたと思われるような横皺が脱塩水の流れに対して垂直方向に発生していた。比較例1では目に見える膜の損傷は見つからなかったが、濾紙を用いたピンホ−ル試験では、皺の近傍で滲み漏れが散見され、さらに長期の運転においては、ピンホ−ルに至る可能性がある。 Therefore, the electrodialysis tank was disassembled and the state of the membrane was observed. As a result, in Example 1, Example 2 and Comparative Example 4, no remarkable damage was observed in the ion exchange membrane constituting the desalination chamber, but in Comparative Example 1 and Comparative Example 2, the filler was swollen. A recumbent that seemed to be pulled by the filler was generated in a direction perpendicular to the flow of the demineralized water. In Comparative Example 1, no visible membrane damage was found, but in the pinhole test using filter paper, bleeding leaks were found in the vicinity of the wrinkles, and in the long-term operation, there was a possibility of reaching the pinhole. There is.
他方、比較例2の中央部分には膜破れが見られた。圧損が高くしかも電圧が低かったにも拘わらず高純度の脱塩水が得られなかったのは、ショートパスが原因ではなく、膜破れによるものと考えられる。さらに、膜破れがなかったものの比較例4の脱塩水純度が低いのは、圧力損失の測定の結果から、脱塩室の入口から出口に向かって充填材と室枠間あるいは充填材とイオン交換膜間に隙間が生じたことが原因と思われる。 On the other hand, film tearing was observed in the central portion of Comparative Example 2. The reason why high-purity demineralized water could not be obtained despite the high pressure loss and low voltage is considered not to be caused by a short path but by membrane breakage. Furthermore, although the membrane was not broken, the purity of the desalted water in Comparative Example 4 was low because of the result of the measurement of the pressure loss, from the inlet to the outlet of the desalting chamber or between the filler and the chamber frame, or the ion exchange with the filler. The cause seems to be a gap between the membranes.
本発明の充填材の充填方法により、電気再生式脱塩装置の脱塩室内における供給水のショートパスを防ぐことができる。さらに複数の脱塩室又は濃縮室内に同時に均一量の充填材を確実に収納し、充填材の充填密度を高くし、該室を構成するイオン交換膜に損傷を与えることなく、かつイオン交換性能を有する充填材を短時間で充填できる。 By the filling method of the filler of the present invention, it is possible to prevent a short path of the supply water in the desalination chamber of the electric regeneration type desalination apparatus. In addition, a uniform amount of packing material can be reliably stored in multiple desalting chambers or concentrating chambers at the same time, the packing density of the packing material can be increased, and the ion exchange membrane constituting the chamber can be damaged without being damaged. Can be filled in a short time.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001209213A JP5738505B2 (en) | 2001-07-10 | 2001-07-10 | Method for filling a filler containing an ion exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001209213A JP5738505B2 (en) | 2001-07-10 | 2001-07-10 | Method for filling a filler containing an ion exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003019483A JP2003019483A (en) | 2003-01-21 |
JP5738505B2 true JP5738505B2 (en) | 2015-06-24 |
Family
ID=19044900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001209213A Expired - Lifetime JP5738505B2 (en) | 2001-07-10 | 2001-07-10 | Method for filling a filler containing an ion exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5738505B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5110020B2 (en) * | 2009-03-31 | 2012-12-26 | 日本錬水株式会社 | Ion exchange resin filling method and electric regenerative pure water production apparatus |
JP5233798B2 (en) * | 2009-03-31 | 2013-07-10 | 日本錬水株式会社 | Electric regenerative pure water production equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3760501B2 (en) * | 1996-03-21 | 2006-03-29 | 旭硝子株式会社 | Method for filling a filler containing an ion exchanger |
JP3800706B2 (en) * | 1997-02-07 | 2006-07-26 | 旭硝子株式会社 | Deionized water production equipment |
JP3508647B2 (en) * | 1999-10-07 | 2004-03-22 | 栗田工業株式会社 | Electrodeionization equipment |
-
2001
- 2001-07-10 JP JP2001209213A patent/JP5738505B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003019483A (en) | 2003-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW388747B (en) | Porous ion exchanger and method for producing deionized water | |
US6228240B1 (en) | Method and apparatus for producing deionized water | |
JP2751090B2 (en) | Pure water production equipment | |
JP3389889B2 (en) | Electric deionizer | |
JP2001104960A (en) | Electrodeionization equipment | |
JP7224994B2 (en) | Electrodeionized water production device and deionized water production method | |
JP3947829B2 (en) | Deionized water production equipment | |
JP3644182B2 (en) | Deionized water production equipment | |
JP5015990B2 (en) | Electric deionized water production equipment | |
JP5738505B2 (en) | Method for filling a filler containing an ion exchanger | |
JPH08150393A (en) | Production of deionized water by electrolytic deionization method | |
CN115103819A (en) | Ion exchange device | |
JP5233798B2 (en) | Electric regenerative pure water production equipment | |
JP3760501B2 (en) | Method for filling a filler containing an ion exchanger | |
JP4049170B2 (en) | Method for producing deionized water production apparatus | |
JP5110020B2 (en) | Ion exchange resin filling method and electric regenerative pure water production apparatus | |
JP5246116B2 (en) | Ion exchange resin filling method and electric regenerative pure water production apparatus | |
JP2001314866A (en) | Method and device for preparing deionized water | |
JP3800706B2 (en) | Deionized water production equipment | |
JP7374400B1 (en) | Electrodeionized water production equipment and pure water production method | |
JPH10244169A (en) | Porous ion exchanger and production of demineralized water | |
JP3906540B2 (en) | Method for producing deionized water | |
JP7077172B2 (en) | Electric deionized water production equipment | |
JPH10192717A (en) | Porous ion exchanger and production of demineralized water | |
WO2023228606A1 (en) | Apparatus for producing electrodeionized water, and method for producing pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090413 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20101129 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20101207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110614 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110914 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120911 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121210 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140508 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140624 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5738505 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |