JPH09241812A - Galvannealed steel sheet - Google Patents
Galvannealed steel sheetInfo
- Publication number
- JPH09241812A JPH09241812A JP4510896A JP4510896A JPH09241812A JP H09241812 A JPH09241812 A JP H09241812A JP 4510896 A JP4510896 A JP 4510896A JP 4510896 A JP4510896 A JP 4510896A JP H09241812 A JPH09241812 A JP H09241812A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- steel sheet
- plating layer
- layer
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、めっき層の耐剥離
性および摺動特性に優れた合金化溶融亜鉛めっき鋼板に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvannealed steel sheet having excellent peeling resistance and sliding characteristics of a plated layer.
【0002】[0002]
【従来の技術】合金化溶融亜鉛めっき鋼板は塗装後の耐
食性、塗装性、溶接性などに優れるため、自動車や家電
製品などに繁用されている。このめっき鋼板は、通常、
鋼板に溶融亜鉛めっきを施した後、直ちに合金化炉で加
熱処理を行い、鋼板中のFeとめっき層中のZnが拡散
による合金化反応を起こすことによってめっき層全体を
Zn−Feの合金化めっき層とするものである。該合金
めっき層には、Γ相若しくはΓ1 相[以下、Γ相(Fe
3 Zn10)と総称する]、δ1 相(FeZn7 )および
ζ相(FeZn13)の相構造が存在する。このうちΓ相
はFe濃度が最も高く、次いでδ1 であり、ζ相はFe
濃度が最も低い。前述した様に、合金化反応では鋼板側
からFeが供給される為、Fe濃度の最も高いΓ相が鋼
板との界面に生成し、その上にδ1 相が生成し、めっき
層最表面にはζ相が生成するというのが基本的な相構造
である。即ち、めっき層中のFe濃度は鋼板側からめっ
き層表面に向かうにつれ減少傾向をたどることになる。2. Description of the Related Art Alloyed hot-dip galvanized steel sheets are widely used in automobiles, home electric appliances, etc. because of their excellent corrosion resistance, paintability and weldability after painting. This plated steel sheet is usually
Immediately after hot-dip galvanizing the steel sheet, a heat treatment is performed in an alloying furnace, and Fe in the steel sheet and Zn in the plating layer cause an alloying reaction by diffusion to alloy the entire plating layer with Zn-Fe. The plating layer is used. The alloy plating layer has a Γ phase or Γ 1 phase [hereinafter, Γ phase (Fe
3 Zn 10 )], δ 1 phase (FeZn 7 ) and ζ phase (FeZn 13 ). Of these, the Γ phase has the highest Fe concentration, followed by δ 1 , and the ζ phase has Fe
The lowest concentration. As described above, since Fe is supplied from the steel sheet side in the alloying reaction, the Γ phase with the highest Fe concentration is generated at the interface with the steel sheet, and the δ 1 phase is generated on it, forming the δ 1 phase on the outermost surface of the plating layer. The basic phase structure is that the ζ phase is generated. That is, the Fe concentration in the plating layer tends to decrease from the steel sheet side toward the surface of the plating layer.
【0003】ここで、各合金相の硬さとFe濃度の関係
は、Fe濃度が高い程硬くなる傾向がある。即ち、Γ相
はFe濃度が最も高い為硬くて脆い性質を有しており、
その為、合金化溶融亜鉛めっき鋼板にプレス加工を施す
とΓ相の層間若しくはΓ相と鋼板の界面から剥離が起こ
り易くなる。そこで、めっき層の剥離に悪影響を及ぼす
Γ相の生成をできるだけ抑えることを目的として、合金
化の程度を抑制する為に、加熱処理をコントロールする
等の方法が採用されている。Here, the relationship between the hardness of each alloy phase and the Fe concentration tends to become harder as the Fe concentration increases. That is, since the Γ phase has the highest Fe concentration, it has the property of being hard and brittle,
Therefore, when the alloyed hot-dip galvanized steel sheet is pressed, peeling easily occurs from the Γ-phase interlayer or from the interface between the Γ-phase and the steel sheet. Therefore, in order to suppress the generation of the Γ phase that adversely affects the peeling of the plating layer as much as possible, a method such as controlling the heat treatment is adopted in order to suppress the degree of alloying.
【0004】一方、ζ相はFe濃度が最も少なく軟質で
靭性に富むことから、耐剥離性の向上に関しては有利で
あるが、軟質である故にプレス加工時金型との摺動にて
凝着が起こり、摩擦抵抗が増加して金型への材料流入が
阻害され、材料割れを引き起こす。その為、摺動特性に
悪影響を及ぼすζ相の生成を抑制することを目的とし
て、合金化の程度を更に進めてζ相をδ1 相へ変化させ
る為に、加熱処理をコントロールする等の方法が考えら
れる。しかしながら、合金化の程度を進めると、前述し
た様にΓ相が厚く生成してしまい、耐剥離性が劣化する
といった不具合を招く。On the other hand, the ζ phase has the lowest Fe concentration and is soft and rich in toughness, so it is advantageous in terms of improving the peel resistance, but because it is soft, it adheres by sliding with the die during press working. Occurs, the frictional resistance increases and the material flow into the mold is hindered, causing material cracking. Therefore, for the purpose of suppressing the formation of the ζ phase that adversely affects the sliding characteristics, a method such as controlling the heat treatment in order to further advance the degree of alloying and change the ζ phase to the δ 1 phase Can be considered. However, when the degree of alloying is advanced, the Γ phase is thickly formed as described above, which causes a problem that the peeling resistance is deteriorated.
【0005】この様にめっき層の耐剥離性と摺動特性は
相反する関係にある為、これら両特性に優れた鋼板を提
供することは極めて困難であり、めっき条件や合金化条
件を極めて狭い範囲で制御しつつ操業しているのが現状
である。しかしながら、実操業レベルでは、この様に制
御すること自体、極めて困難な為、実際には、成形部品
の形状や金型形状等を考慮して、プレス成形性重視材或
いはめっき剥離性重視材といった一方の特性重視材料に
すり替えられて製造されている。従って、両特性を満足
するZn−Fe合金めっき鋼板の提供が強く要求されて
いる。As described above, since the peeling resistance of the plating layer and the sliding property are contradictory to each other, it is extremely difficult to provide a steel sheet excellent in both these properties, and plating conditions and alloying conditions are extremely narrow. The current situation is to operate while controlling the range. However, at the actual operation level, such control itself is extremely difficult. Therefore, in consideration of the shape of the molded part, the mold shape, etc. It is manufactured by substituting one of the materials with emphasis on characteristics. Therefore, there is a strong demand for the provision of a Zn-Fe alloy plated steel sheet that satisfies both characteristics.
【0006】[0006]
【発明が解決しようとする課題】本発明はこのような事
情に着目してなされたものであり、その目的は、めっき
層の耐剥離性と摺動特性の双方に優れた合金化溶融亜鉛
めっき鋼板を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is hot dip galvannealing which is excellent in both peeling resistance and sliding property of a plating layer. To provide steel sheets.
【0007】[0007]
【課題を解決するための手段】上記課題を解決し得た本
発明の合金化溶融亜鉛めっき鋼板は、以下の要件を満足
するところに要旨を有するものである。 めっき層のFe含有率に着目すると、本発明鋼板は、
めっき層の最表面におけるFe含有率が、めっき層と鋼
板の界面におけるFe含有率に比べて多いものである点
に要旨を有する。好ましくは、鋼板側からめっき層表面
に向かうにつれ、めっき層中のFe含有率は順次増加す
るものである。The alloyed hot-dip galvanized steel sheet of the present invention, which has solved the above-mentioned problems, has the gist of satisfying the following requirements. Focusing on the Fe content of the plating layer, the steel sheet of the present invention is
The gist is that the Fe content in the outermost surface of the plating layer is higher than the Fe content in the interface between the plating layer and the steel sheet. Preferably, the Fe content in the plating layer gradually increases from the steel sheet side toward the plating layer surface.
【0008】めっき層における金属相構造から見る
と、めっき層と鋼板の界面に着目した場合には、本発明
鋼板は、少なくともめっき層と鋼板の界面においてζ相
及び/又はδ1 相が存在する(その際、ζ相及び/又は
δ1 相と鋼板の間に、Feが拡散していないZn相が存
在していても良い)点に要旨を有し、一方、めっき層の
最表面に着目した場合には、本発明鋼板は、Γ相及び/
又はδ1 相が存在する点に要旨を有するものである。具
体的には、鋼板側からめっき層表面に向かって、めっき
層にはζ相、δ1 相、Γ相が順次存在しても良いし、或
いは、Feが拡散していないZn相、ζ相、δ1 相、Γ
相が順次存在しても良い。From the viewpoint of the metal phase structure in the plating layer, when attention is paid to the interface between the plating layer and the steel sheet, the steel sheet of the present invention has a ζ phase and / or a δ 1 phase at least at the interface between the plating layer and the steel sheet. (At that time, a Zn phase in which Fe is not diffused may exist between the ζ phase and / or the δ 1 phase and the steel sheet), while focusing on the outermost surface of the plating layer In this case, the steel sheet of the present invention is
Alternatively, it has a gist in that the δ 1 phase exists. Specifically, a ζ phase, a δ 1 phase, and a Γ phase may sequentially exist in the plating layer from the steel sheet side toward the plating layer surface, or a Zn phase in which Fe is not diffused and a ζ phase , Δ 1 phase, Γ
The phases may be present sequentially.
【0009】めっき層に着目すると、本発明鋼板は、
溶融亜鉛めっき層の上に、FeまたはFe−Zn合金め
っき層(Zn:50重量%以下)が存在するものである
か、或いは、Al−Znめっき層(Al:0.07〜
0.25重量%)の上に、溶融亜鉛めっき層、上記のF
eまたはFe−Zn合金めっき層が順次存在するもので
あるところに要旨を有する。尚、以下の記載では、特記
しない限り、「%」は重量%を意味するものである。Focusing on the plating layer, the steel sheet of the present invention is
An Fe or Fe-Zn alloy plating layer (Zn: 50 wt% or less) is present on the hot-dip galvanized layer, or an Al-Zn plating layer (Al: 0.07-
0.25% by weight) on top of the hot dip galvanized layer, F above
The gist is that e or Fe-Zn alloy plated layers are sequentially present. In the following description, "%" means% by weight unless otherwise specified.
【0010】[0010]
【発明の実施の形態】前述した様に、従来のめっき鋼板
は、鋼板側からFeを拡散供給して製造する為、めっき
層表面におけるFe含有率は、めっき層と鋼板の界面に
おけるFe含有率に比べて少なくならざるを得ず、この
様なFe濃度分布からなるめっき層を有することを前提
として、所望の特性が得られる様に相構造を制御してい
るのが現状である。これに対して、本発明者は、上記課
題を解決すべく鋭意検討した結果、めっき層の耐剥離性
を向上させるには鋼板側のFe濃度をできるだけ低く
し、一方、摺動特性を向上させるにはめっき層表面のF
e濃度をできるだけ高くすることが有効であるという知
見に鑑み、従来のめっき鋼板とはめっき層中のFe濃度
分布が全く異なる新規なFe濃度分布を有する鋼板を提
供し得たのである。BEST MODE FOR CARRYING OUT THE INVENTION As described above, since the conventional plated steel sheet is manufactured by diffusing and supplying Fe from the steel sheet side, the Fe content rate at the surface of the plating layer is the Fe content rate at the interface between the plating layer and the steel sheet. Inevitably, the phase structure is controlled so that desired characteristics can be obtained on the assumption that the plating layer has such a Fe concentration distribution. On the other hand, as a result of intensive studies to solve the above problems, the present inventor reduced the Fe concentration on the steel sheet side as much as possible in order to improve the peeling resistance of the plating layer, while improving the sliding characteristics. On the surface of the plating layer
In view of the finding that it is effective to increase the e concentration as much as possible, it was possible to provide a steel sheet having a novel Fe concentration distribution in which the Fe concentration distribution in the plated layer is completely different from the conventional plated steel sheet.
【0011】この様に本発明鋼板は、めっき層のFe濃
度分布が従来の合金化溶融亜鉛めっき鋼板とは全く異な
るものである。上記鋼板のめっき層を更に詳細に検討す
ると、以下の〜に示す様な特徴を有することが分か
った。As described above, the steel sheet of the present invention is completely different in the Fe concentration distribution of the plated layer from the conventional galvannealed steel sheet. When the plated layer of the steel sheet was examined in more detail, it was found to have the following features.
【0012】めっき層のFe含有率 本発明鋼板は、めっき層の最表面におけるFe含有率
が、めっき層と鋼板の界面におけるFe含有率に比べて
多いものである点で、これとは全く逆の関係にある従来
鋼板と相違する。好ましくは、鋼板側からめっき層表面
に向かうにつれ、めっき層中のFe含有率が順次増加す
るものである。その一例を図1に示す。The Fe content of the plating layer The steel sheet of the present invention is completely opposite to the Fe content of the outermost surface of the plating layer in comparison with the Fe content of the interface between the plating layer and the steel sheet. It is different from the conventional steel plate which has the relationship of. Preferably, the Fe content in the plating layer increases sequentially from the steel sheet side toward the plating layer surface. One example is shown in FIG.
【0013】図中、(a)は本発明鋼板におけるめっき
層断面のFe濃度分布を、(b)は従来のめっき鋼板に
おけるめっき層断面のFe濃度分布の模式図を夫々示
す。図1から明らかな様に、従来の合金化溶融亜鉛めっ
き鋼板は、めっき層表面に向かってFe濃度が減少する
相構成(Γ相、δ1 相、ζ相が順次生成されたもの)を
有するのに対し、本発明では、めっき層表面に向かって
順次増加する相構成(ζ相、δ1 相、Γ相が順次生成さ
れたもの)を有している。尚、図1に示すFe濃度分布
および相構成は本発明の一例であって、要するに、めっ
き層の最表面におけるFe含有率が、めっき層と鋼板の
界面におけるFe含有率に比べて多いという上記の関
係を満足するものであれば他の相構成が得られることは
言うまでもない。この点は、後記するで詳述する。In the figure, (a) shows the Fe concentration distribution in the cross section of the plated layer in the steel sheet of the present invention, and (b) shows a schematic diagram of the Fe concentration distribution in the cross section of the plated layer in the conventional plated steel sheet. As is clear from FIG. 1, the conventional galvannealed steel sheet has a phase structure in which the Fe concentration decreases toward the surface of the plating layer (the Γ phase, the δ 1 phase, and the ζ phase are sequentially generated). On the other hand, the present invention has a phase structure in which the ζ phase, the δ 1 phase, and the Γ phase are sequentially generated toward the plating layer surface. The Fe concentration distribution and phase configuration shown in FIG. 1 are examples of the present invention. In short, the Fe content on the outermost surface of the plating layer is higher than the Fe content on the interface between the plating layer and the steel sheet. It goes without saying that other phase configurations can be obtained as long as they satisfy the above relationship. This point will be described in detail later.
【0014】めっき層における金属相構造 本発明鋼板は、少なくともめっき層と鋼板の界面におい
てζ相及び/又はδ1相が存在する点で、上記界面に主
にΓ相が存在する従来の鋼板とは全く異なる。一方、め
っき層の最表面から見れば、本発明鋼板は、Γ相及び/
又はδ1 相が存在する点で、めっき層最表面に主にζ層
が存在する従来の鋼板とは全く異なる。具体的には、鋼
板側からめっき層表面に向かって、めっき層にはζ相、
δ1 相、Γ相が順次存在するものである。但し、この相
構造は本発明を代表するものであって、めっき層のFe
濃度が上記の関係を満足するものであれば特に限定さ
れない。従って、例えばめっき層の最表面は必ずしもΓ
相である必要はなく、Γ相よりもFe含有率の多い相ま
たは少ない相が生成されていても良い。同様に、鋼板と
めっき層の界面は必ずしもζ相単独からなる必要はな
く、例えばζ相とδ1相の混合相であっても良いし、或
いはδ1 相が直接生成されたものも本発明の範囲内に属
する。更に、めっき層と鋼板の界面鋼板には、上記ζ相
等のFe−Zn合金相が必ずしも直接存在する必要はな
く、Feが拡散していないZn相(以下、単にZn相と
略記する場合がある)が一部残留していても良い。即
ち、Zn相、ζ相、δ1 相、Γ相が順次存在するもので
あっても良い。その際、Zn相の上に存在する合金相
は、必ずしもこの関係である必要はないことは言うまで
もない。Metallic Phase Structure in Plating Layer The steel sheet of the present invention is different from the conventional steel sheet in which the Γ phase mainly exists at the interface in that the ζ phase and / or the δ 1 phase exist at least at the interface between the plating layer and the steel sheet. Is completely different. On the other hand, when viewed from the outermost surface of the plating layer, the steel sheet of the present invention has a Γ phase and / or
Alternatively, the presence of the δ 1 phase is completely different from the conventional steel sheet in which the ζ layer is mainly present on the outermost surface of the plating layer. Specifically, from the steel plate side to the plating layer surface, the plating layer has a ζ phase,
The δ 1 phase and the Γ phase sequentially exist. However, this phase structure is representative of the present invention, and Fe of the plating layer is
The concentration is not particularly limited as long as it satisfies the above relationship. Therefore, for example, the outermost surface of the plating layer is not necessarily Γ
It does not have to be a phase, and a phase having a higher Fe content or a lower Fe content than the Γ phase may be generated. Similarly, the interface between the steel sheet and the plating layer does not necessarily have to consist of the ζ phase alone, and may be, for example, a mixed phase of the ζ phase and the δ 1 phase, or one in which the δ 1 phase is directly generated. Belong to the range of. Further, the Fe—Zn alloy phase such as the ζ phase does not necessarily need to directly exist in the interfacial steel sheet between the plating layer and the steel sheet, and the Zn phase in which Fe has not diffused (hereinafter, may be simply referred to as Zn phase). ) May partially remain. That is, the Zn phase, the ζ phase, the δ 1 phase, and the Γ phase may sequentially exist. In this case, it goes without saying that the alloy phase existing on the Zn phase does not necessarily have this relationship.
【0015】尚、各合金めっき相の平均厚さは後記する
製造方法によっても変化し得るが、所望の特性を得るに
は、例えば、めっき層表面に向かってζ相、δ1 相、Γ
相が順次存在する鋼板の場合、好ましい各相の平均厚さ
はζ相:1〜4μm(より好ましくは2〜3μm)、δ
1 相:2〜8μm(より好ましくは3〜6μm)、Γ
相:1〜4μm(より好ましくは2〜3μm)である。The average thickness of each alloy plating phase may vary depending on the manufacturing method described later, but in order to obtain desired characteristics, for example, the ζ phase, δ 1 phase, Γ phase toward the plating layer surface.
In the case of a steel sheet in which phases are sequentially present, preferable average thickness of each phase is ζ phase: 1 to 4 μm (more preferably 2 to 3 μm), δ
1 phase: 2 to 8 μm (more preferably 3 to 6 μm), Γ
Phase: 1 to 4 μm (more preferably 2 to 3 μm).
【0016】めっき層の層構造 本発明鋼板のめっき層を層構造という観点から見ると、
溶融亜鉛めっき層の上に、FeまたはFe−Zn合金め
っき層(Zn:50%以下、以下、Fe−Zn合金めっ
き層と略記する場合がある)が存在するものである点に
最大の特徴を有する。或いは、上記溶融亜鉛めっき層の
下にはAl−Znめっき層(Al:0.07〜0.25
%、以下、Al−Znめっき層と略記する場合がある)
が存在しても良い(即ち、Al−Znめっき層の上に、
溶融亜鉛めっき層、上記のFeまたはFe−Zn合金め
っき層が順次存在するもの)。Layer Structure of Plating Layer From the viewpoint of the layer structure of the plating layer of the steel sheet of the present invention,
The greatest feature is that an Fe or Fe-Zn alloy plating layer (Zn: 50% or less, hereinafter sometimes abbreviated as Fe-Zn alloy plating layer) is present on the hot-dip galvanized layer. Have. Alternatively, an Al-Zn plating layer (Al: 0.07 to 0.25) is provided under the hot dip galvanizing layer.
%, Hereinafter may be abbreviated as Al-Zn plating layer)
May be present (that is, on the Al-Zn plated layer,
A hot-dip galvanized layer and the above Fe or Fe-Zn alloy plated layer are sequentially present).
【0017】この層構成については、以下に、本発明鋼
板の製造方法を説明する過程で詳細に述べることにす
る。本発明鋼板を製造するには、従来の合金化溶融亜鉛
めっき鋼板の如く、鋼板側から亜鉛めっき層へFeを拡
散的に供給する方法ではなく、逆に、亜鉛めっき層側か
ら鋼板側へFeを供給拡散すれば良い。即ち、まず鋼板
に溶融亜鉛めっきを施して溶融亜鉛めっき層を得る(下
層めっき層)。この下層めっき層が凝固した後、その表
面に、FeまたはFe−Zn合金めっき層を施す(上層
めっき層)。次いで、加熱処理を行うことにより上層め
っき層から下層めっき層へFeが供給拡散され、めっき
層全体をFe−Zn合金層にすると共に、該めっき層中
のFe濃度を、鋼板側からめっき層表面に向かうにつれ
増加傾向を有する様に調整できるのである。以下、各工
程を詳細に説明する。This layer structure will be described in detail below in the process of explaining the method for manufacturing a steel sheet according to the present invention. In order to manufacture the steel sheet of the present invention, it is not a method of diffusing Fe from the steel sheet side to the galvanized layer in a diffused manner as in the conventional galvannealed steel sheet, but conversely, Fe is fed from the galvanized layer side to the steel sheet side. Supply and diffuse. That is, first, a steel sheet is subjected to hot dip galvanizing to obtain a hot dip galvanized layer (lower plating layer). After the lower plating layer is solidified, an Fe or Fe-Zn alloy plating layer is applied to the surface (upper plating layer). Then, Fe is supplied and diffused from the upper plating layer to the lower plating layer by performing heat treatment, and the entire plating layer is formed into a Fe-Zn alloy layer, and the Fe concentration in the plating layer is changed from the steel plate side to the plating layer surface. It can be adjusted to have an increasing tendency toward Hereinafter, each step will be described in detail.
【0018】まず、Alを0.07〜0.25%含有す
る溶融亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっき
を施す(下層めっき層の形成)。この様に鋼板をめっき
浴中に浸漬すると、浴中のAlは鋼板のFeと優先的に
反応する結果、鋼板との界面に、約0.1μm以下の極
めて薄いFe−Al合金層が生成される。この層は、Z
nやFeが拡散する際の障壁となりZn−Fe合金層の
生成を抑制することから、バリヤー層と呼ばれる。通常
の合金化処理では、高温で長時間加熱処理することによ
り該バリヤー層を通して拡散が進行する結果、合金化め
っき層の生成が促進される。これに対して本発明では、
この段階で合金化する為の加熱処理は行わず、下層めっ
き層が凝固した後、次いでFeまたはFe−Zn合金め
っき層を施す(上層めっき層の形成)。この様にして生
成された上層めっき層と下層めっき層の間には、上述し
たバリヤー層は存在しない為、この段階で加熱処理すれ
ば、鋼板との界面に比べてより低温・短時間の加熱処理
にて迅速に合金化が進むことになる。First, the steel sheet is dipped in a hot dip galvanizing bath containing 0.07 to 0.25% Al to carry out hot dip galvanizing (formation of a lower plating layer). When the steel sheet is immersed in the plating bath in this way, Al in the bath preferentially reacts with Fe of the steel sheet, and as a result, an extremely thin Fe-Al alloy layer of about 0.1 μm or less is formed at the interface with the steel sheet. It This layer is Z
It is called a barrier layer because it serves as a barrier when n and Fe diffuse and suppresses the formation of a Zn—Fe alloy layer. In a normal alloying treatment, heat treatment at a high temperature for a long time causes diffusion to proceed through the barrier layer, resulting in promotion of formation of an alloyed plating layer. In contrast, in the present invention,
No heat treatment for alloying is performed at this stage, and after the lower plating layer is solidified, an Fe or Fe—Zn alloy plating layer is subsequently applied (formation of the upper plating layer). Since the barrier layer described above does not exist between the upper plating layer and the lower plating layer generated in this way, if heat treatment is performed at this stage, heating at a lower temperature and for a shorter time than at the interface with the steel sheet will occur. Alloying will proceed rapidly by the treatment.
【0019】尚、上層めっきの形成に先立って行われる
溶融めっきでは、めっき浴中のAl含有率を0.07〜
0.25%に制御する必要がある。Al濃度が0.07
%未満では、上述したFe−Al合金層の形成によるバ
リヤー効果が得られない。即ち、Al濃度が少ないと、
溶融めっきの際に、鋼板とめっき層の界面に多量のZn
−Fe合金層が生成してしまい、更に上層めっき形成後
に施される加熱処理により鋼板とめっき層の界面からも
拡散反応が進行する結果、この界面にてΓ相が生成し、
耐剥離性が低下することになる。この様に、溶融亜鉛め
っき処理および上層めっき後の加熱処理による鋼板/溶
融めっき層界面におけるZn−Feの合金化反応を抑制
する為には、Alを0.07%以上とすることが必要で
ある。好ましくは0.10%以上である。しかしなが
ら、Al濃度が0.25%を超えるとめっき浴中で酸化
反応が激しく起こり、めっき層表面にドロスが多量に付
着する結果、たとえ、上層めっき処理後に加熱しても凹
凸が激しい為プレス時金型との摺動性が低下し、材料の
割れを引き起こす。従って、Al濃度を0.25%以下
とする。好ましくは0.22%以下である。In hot dip plating performed prior to formation of the upper layer plating, the Al content in the plating bath is 0.07 to
It is necessary to control to 0.25%. Al concentration is 0.07
If it is less than%, the above-mentioned barrier effect due to the formation of the Fe-Al alloy layer cannot be obtained. That is, if the Al concentration is low,
During hot dip coating, a large amount of Zn was found at the interface between the steel plate and the plating layer.
-The Fe alloy layer is generated, and further the diffusion reaction proceeds from the interface between the steel plate and the plated layer by the heat treatment performed after the formation of the upper layer plating, and as a result, the Γ phase is generated at this interface,
The peel resistance will be reduced. As described above, in order to suppress the alloying reaction of Zn-Fe at the steel sheet / hot dip coating interface due to the hot dip galvanizing treatment and the heat treatment after the upper layer plating, Al needs to be 0.07% or more. is there. It is preferably 0.10% or more. However, if the Al concentration exceeds 0.25%, the oxidation reaction will occur violently in the plating bath, and a large amount of dross will adhere to the surface of the plating layer. Sliding property with the mold is deteriorated and the material is cracked. Therefore, the Al concentration is 0.25% or less. It is preferably 0.22% or less.
【0020】更に、所望の合金化鋼板を得る為には、上
層めっき層はFeまたはFe−Zn合金めっき層(Z
n:50%以下)であることが必要である。このうち、
Fe−Zn合金めっき層におけるZn濃度が50%を超
える(即ち、上層めっき層中のFe濃度は50%以下)
と、上層めっき層形成後の加熱処理によりめっき層全体
のFe濃度を上記の関係を満足する様に制御する為に
は、上層のめっき付着量を必然的に多くしなければなら
ず、コストの上昇を招く。この様な観点から、Zn:5
0%以下(好ましくは40%以下)とする。Further, in order to obtain a desired alloyed steel sheet, the upper plating layer is an Fe or Fe-Zn alloy plating layer (Z
n: 50% or less). this house,
Zn concentration in the Fe-Zn alloy plating layer exceeds 50% (that is, Fe concentration in the upper plating layer is 50% or less).
In order to control the Fe concentration of the entire plating layer by the heat treatment after the formation of the upper plating layer so as to satisfy the above relationship, it is necessary to increase the plating adhesion amount of the upper layer inevitably. Cause rise. From such a viewpoint, Zn: 5
It is 0% or less (preferably 40% or less).
【0021】尚、上層のめっき付着量は、最終製品にお
ける付着量および下層の溶融亜鉛めっき付着量などに応
じて適宜調整される。また、上層めっきを施すには、通
常、電気めっき法が用いられるが、その他、置換めっき
法等も適宜採用し得る。The coating amount of the upper layer is appropriately adjusted depending on the coating amount of the final product and the molten zinc coating amount of the lower layer. Further, an electroplating method is usually used for performing the upper layer plating, but in addition, a displacement plating method or the like can be appropriately adopted.
【0022】この様に本発明では、鋼板側から下層めっ
き層へのFeの拡散を抑制しつつ、上層めっき層から下
層めっき層へのFeの拡散を促進することができる様、
適切な加熱処理条件(加熱温度、加熱時間など)を適宜
選択することが必要である。このうち、加熱温度は加熱
時間等によっても変化するが、通常、300〜700℃
とすることが好ましい。一般に、加熱温度がZnの融点
(約420℃)より大幅に低くなると、めっき層中のZ
nが溶融せず固体間拡散となる為、Feの拡散が抑制さ
れ、合金化反応の進行程度は制御し易くなる反面、生産
性が低下するという問題がある。従って、その下限値を
少なくとも300℃とすることが好ましい。一方、加熱
温度を高くすると、前記バリヤー層を超えて鋼板側から
Feが拡散する為、その上限を700℃以下とすること
が好ましい。より好ましくは350〜650℃である。
この様に、加熱温度は加熱時間との関係で適宜調整され
るものであり、例えば420℃以下等の低温で加熱する
場合には、加熱時間を長時間(例えば1〜3時間)行
い、且つ加熱処理もめっきライン内に限定せずコイル状
でバッチ加熱すること等が有効である。尚、加熱方法に
ついては特に限定されるものではなく、ガス加熱、高周
波誘導加熱などの通常用いられる方法を適宜採用し得
る。As described above, according to the present invention, it is possible to promote the diffusion of Fe from the upper plating layer to the lower plating layer while suppressing the diffusion of Fe from the steel sheet side to the lower plating layer.
It is necessary to appropriately select appropriate heat treatment conditions (heating temperature, heating time, etc.). Among them, the heating temperature is usually 300 to 700 ° C., though it varies depending on the heating time.
It is preferable that Generally, when the heating temperature becomes much lower than the melting point of Zn (about 420 ° C.), Z in the plating layer
Since n is not melted and diffused between solids, diffusion of Fe is suppressed and the progress of the alloying reaction can be easily controlled, but there is a problem that productivity is reduced. Therefore, it is preferable that the lower limit value is at least 300 ° C. On the other hand, when the heating temperature is increased, Fe diffuses from the steel sheet side beyond the barrier layer, so the upper limit is preferably 700 ° C. or less. More preferably, it is 350 to 650 ° C.
In this way, the heating temperature is appropriately adjusted in relation to the heating time. For example, when heating at a low temperature of 420 ° C. or lower, the heating time is long (for example, 1 to 3 hours), and The heat treatment is not limited to the inside of the plating line, and it is effective to perform batch heating in a coil shape. The heating method is not particularly limited, and a commonly used method such as gas heating or high frequency induction heating may be appropriately adopted.
【0023】尚、本発明に用いられる鋼板は、合金化溶
融亜鉛めっき鋼板として通常用いられる鋼板であれば特
に限定されず、例えば極低炭素鋼にTi等を添加したI
F(Interstitial Free)鋼などが用いられる。通常の
めっき鋼板では活性な鋼板結晶粒界にてZn−Feの合
金化反応(所謂アウトバースト反応)が優先的に起こり
Γ相が発達し易くなるが、IF鋼では、鋼板との反応は
抑制されるのでΓ相は生成し難いという点で有用であ
る。The steel sheet used in the present invention is not particularly limited as long as it is a steel sheet normally used as an alloyed hot-dip galvanized steel sheet.
F (Interstitial Free) steel or the like is used. In a normal plated steel sheet, Zn-Fe alloying reaction (so-called outburst reaction) occurs preferentially at the active steel grain boundaries, and the Γ phase easily develops. However, in IF steel, the reaction with the steel sheet is suppressed. Therefore, it is useful in that the Γ phase is difficult to generate.
【0024】以下実施例に基づいて本発明を詳述する。
ただし、下記実施例は本発明を制限するものではなく、
前・後記の趣旨を逸脱しない範囲で変更実施することは
全て本発明の技術範囲に包含される。The present invention will be described in detail below based on examples.
However, the following examples do not limit the present invention,
All modifications and alterations without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
【0025】[0025]
【実施例】表1に示す種々の条件下にて、主成分として
Cr:0.002%およびTi:0.05%を含有する
鋼板を溶融亜鉛めっきラインにて溶融めっきした後、電
気めっき法によりFeまたはFe−Zn合金を施し、次
いで加熱処理(450℃で5〜60秒間加熱)を行うこ
とによりNo.1〜6の鋼板を作製した。[Examples] Under various conditions shown in Table 1, a steel sheet containing Cr: 0.002% and Ti: 0.05% as main components was hot-dipped in a hot-dip galvanizing line, and then electroplated. Then, Fe or Fe-Zn alloy was applied thereto, and then heat treatment (heating at 450 ° C. for 5 to 60 seconds) was performed to manufacture steel sheets No. 1 to 6.
【0026】更に、この方法とは別に、上記鋼板を溶融
めっきした後、合金化処理を施すことにより従来の合金
化溶融亜鉛めっき鋼板を3種類作製した(No.7〜
9)。このうちNo.7は、プレス成形性(プレス摺動
性)を特に重視した材料であり、めっき層表面はζ相の
生成をできるだけ抑えてδ1 相とし、次いでΓ相が形成
されたものである。またNo.8は、めっき耐剥離性を特
に重視した材料であり、鋼板とめっき層の界面における
Γ相の生成をできるだけ抑制してδ1 相とし、次いでζ
相が形成されたものである。更にNo.9は、プレス成形
性とめっき耐剥離性の両方を具備させるべく製造条件を
厳しく制御したものであり、めっき層全体がδ 1 相から
なるものである。Separately from this method, the above steel sheet is melted.
Conventional alloy by plating and then alloying treatment
Three types of hot-dip galvanized steel sheets were produced (No. 7-
9). Of these, No. 7 is press formability (press sliding
Of the ζ phase on the surface of the plating layer.
Suppress generation as much as possible δ1 Phase and then Γ phase
It was done. In addition, No. 8 has a special plating peeling resistance.
It is a material that emphasizes
Suppress generation of Γ phase as much as possible1 Phase, then ζ
A phase has been formed. Furthermore, No. 9 is press molding
The manufacturing conditions so that it has both plating resistance and plating peeling resistance.
Strictly controlled, the entire plating layer is δ 1 From the phase
It becomes.
【0027】この様にして得られた種々の鋼板を自動車
実プレステストに供試し、めっき剥離状況および材料の
割れの有無を評価した。この実プレステストは、通常の
プレス条件よりも厳しい条件で行った。即ち、通常のプ
レス下における材料の板厚減少率は最大でも約10%で
あるのに対し、本実施例では、この板厚減少率が20%
となる様、金型やしわ押さえ力を一段と厳しく設定し
た。尚、めっき耐剥離性及び材料の割れの評価基準は、
下記の通りである。The various steel plates thus obtained were subjected to an actual press test for automobiles, and the state of plating peeling and the presence or absence of cracks in the material were evaluated. This actual press test was conducted under more severe conditions than usual press conditions. That is, the plate thickness reduction rate of the material under the normal press is about 10% at the maximum, whereas in the present embodiment, the plate thickness reduction rate is 20%.
The mold and wrinkle holding force have been set to be more rigorous. The evaluation criteria for plating peeling resistance and material cracking are:
It is as follows.
【0028】[めっき耐剥離性] ○:剥離ほとんどなし △:剥離がかなり発生 ×:剥離が多量に発生 [材料の割れ] ○:割れなし △:割れがかなり発生 ×:割れが激しく発生 これらの結果を表1に併記する。尚、表中、*1はプレ
ス成形性重視材、*2はめっき耐剥離性重視材、*3は
プレス成形性およびめっき耐剥離性重視材を夫々意味す
る。[Peeling resistance to peeling] ○: Almost no peeling △: Peeling is considerable ×: Peeling is large [Cracks in material] ○: No cracking △: Cracking is considerable ×: Cracking is severe The results are also shown in Table 1. In the table, * 1 means a material with a focus on press moldability, * 2 means a material with a focus on plating peeling resistance, and * 3 means a material with a focus on press moldability and plating peeling resistance.
【0029】[0029]
【表1】 [Table 1]
【0030】表1に示す様に、No.7のプレス成形性重
視材では、めっき層表面に軟質のζ相が存在しない為、
剥離が著しく、まためっき表面はδ1 相であるにもかか
わらず割れがかなり発生していることが分かる。またN
o.8のめっき剥離性重視材では、鋼板とめっき層の界面
にΓ相が生成していない為、剥離はほとんど発生しない
が、めっき表面がζ相である為、割れが激しくなる。更
にNo.9のプレス成形性およびめっき剥離性の両立材で
は、Γ相が生成していないがζ相も存在していない為、
剥離がかなり発生し、まためっき表面はδ1 相であるに
もかかわらず割れも多量に発生している。この様に、従
来の合金化溶融亜鉛めっき鋼板では、プレス成形性とめ
っき耐剥離性の双方を満足させることができないことが
分かる。As shown in Table 1, in the press formability-oriented material of No. 7, since there is no soft ζ phase on the plating layer surface,
It can be seen that the peeling is remarkable and that the plating surface is considerably cracked even though it is in the δ 1 phase. Also N
In the material with emphasis on the strippability of o.8, since the Γ phase is not generated at the interface between the steel plate and the plating layer, the peeling hardly occurs, but the plating surface is in the ζ phase, so that the crack becomes severe. Furthermore, in the No. 9 compatible material of press formability and plating releasability, since the Γ phase is not generated but the ζ phase is not present,
Peeling was considerably generated, and a large amount of cracks were generated on the plated surface even though it was in the δ 1 phase. Thus, it is understood that the conventional galvannealed steel sheet cannot satisfy both press formability and plating peeling resistance.
【0031】これに対して、本発明の要件を満足するN
o.1〜4は、前記図1に示す相構成及びFe濃度分布か
らなるものであり、鋼板とめっき層の界面にΓ相が生成
せずζ相が存在する為、めっき剥離はほとんど起こら
ず、まためっき層表面にはδ1相に比べてFe濃度の高
いΓ相が生成している為、材料の割れも発生しない。従
って、本発明により、めっき層の耐剥離性とプレス成形
性の双方に優れたZn−Fe合金めっき鋼板を得ること
ができる。On the other hand, N satisfying the requirements of the present invention
o.1 to 4 consist of the phase composition and the Fe concentration distribution shown in FIG. 1, and since the Γ phase is not generated and the ζ phase is present at the interface between the steel sheet and the plating layer, the plating peeling hardly occurs. Further, since the Γ phase having a higher Fe concentration than the δ 1 phase is generated on the surface of the plating layer, the material is not cracked. Therefore, according to the present invention, it is possible to obtain a Zn-Fe alloy-plated steel sheet excellent in both the peeling resistance of the plating layer and the press formability.
【0032】一方、No.5はめっき浴中のAl濃度が少
ない比較例であり、めっき層にΓ相が生成し、剥離が多
量に起こる。また、No.6はめっき浴中のAl濃度が多
い比較例であり、ドロスが付着して摺動性が低下し割れ
が激しくなる。これらの結果から、本発明鋼板を用いれ
ば、剥離や割れが発生し易い複雑な形状の部品への適用
が可能となり、用途の拡大が期待できる。On the other hand, No. 5 is a comparative example in which the Al concentration in the plating bath is low, and a Γ phase is generated in the plating layer, causing a large amount of peeling. In addition, No. 6 is a comparative example in which the Al concentration in the plating bath is high, and dross adheres to reduce slidability and cause severe cracking. From these results, the use of the steel sheet of the present invention makes it possible to apply it to parts having a complicated shape in which peeling and cracking easily occur, and it is expected that the application will be expanded.
【0033】[0033]
【発明の効果】本発明鋼板は、上記の様に構成されてい
るので、耐剥離性および摺動特性の双方に高度に優れ、
表面欠陥がない等の点で外観の良好な鋼板を効率良く得
ることができる。Since the steel sheet of the present invention is constituted as described above, it is highly excellent in both peeling resistance and sliding characteristics,
It is possible to efficiently obtain a steel sheet having a good appearance in that it has no surface defects.
【図1】めっき層断面のFe濃度分布を比較した模式図
である。FIG. 1 is a schematic diagram comparing the Fe concentration distributions in cross sections of plated layers.
Claims (9)
めっき層と鋼板の界面におけるFe含有率に比べて多い
ものであることを特徴とする合金化溶融亜鉛めっき鋼
板。1. The Fe content on the outermost surface of the plating layer is
An alloyed hot-dip galvanized steel sheet, characterized in that the Fe content is higher than the Fe content at the interface between the plated layer and the steel sheet.
めっき層表面に向かうにつれて順次増加するものである
請求項1に記載の合金化溶融亜鉛めっき鋼板。2. The alloyed hot-dip galvanized steel sheet according to claim 1, wherein the Fe content in the plated layer gradually increases from the steel sheet side toward the surface of the plated layer.
めっき層と鋼板の界面においてζ相及び/又はδ1 相が
存在するものであることを特徴とする合金化溶融亜鉛め
っき鋼板。3. The galvannealed steel sheet, wherein the metal phase in the plating layer is such that at least an ζ phase and / or a δ 1 phase is present at the interface between the plating layer and the steel sheet.
eが拡散していないZn相が存在するものであることを
特徴とする合金化溶融亜鉛めっき鋼板。4. F between the ζ phase and / or the δ 1 phase and the steel sheet
An alloyed hot-dip galvanized steel sheet, characterized in that there is a Zn phase in which e has not diffused.
相及び/又はδ1 相が存在するものであることを特徴と
する合金化溶融亜鉛めっき鋼板。5. The metal phase on the outermost surface of the plating layer is Γ
A galvannealed steel sheet characterized by the presence of a phase and / or a δ 1 phase.
向かって、ζ相、δ 1 相、Γ相が順次存在するものであ
ることを特徴とする合金化溶融亜鉛めっき鋼板。6. The plating layer is formed on the surface of the plating layer from the steel sheet side.
Toward ζ phase, δ 1 Phase and Γ phase exist sequentially
An alloyed hot-dip galvanized steel sheet characterized by the following.
向かって、Feが拡散していないZn相、ζ相、δ1
相、Γ相が順次存在するものであることを特徴とする合
金化溶融亜鉛めっき鋼板。7. The plating layer comprises a Zn phase, a ζ phase and a δ 1 phase in which Fe is not diffused from the steel sheet side toward the surface of the plating layer.
Hot-dip galvanized steel sheet characterized in that phases and Γ phases sequentially exist.
e−Zn合金めっき層(Zn:50重量%以下)が存在
するものであることを特徴とする合金化溶融亜鉛めっき
鋼板。8. Fe or F on the hot dip galvanized layer
An alloyed hot dip galvanized steel sheet having an e-Zn alloy plating layer (Zn: 50% by weight or less).
0.25重量%)の上に、溶融亜鉛めっき層、Feまた
はFe−Zn合金めっき層(Zn:50重量%以下)が
順次存在するものであることを特徴とする合金化溶融亜
鉛めっき鋼板。9. An Al—Zn plating layer (Al: 0.07 to
0.25% by weight), and a hot dip galvanized layer and an Fe or Fe-Zn alloy plated layer (Zn: 50% by weight or less) are sequentially present on the galvannealed steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4510896A JPH09241812A (en) | 1996-03-01 | 1996-03-01 | Galvannealed steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4510896A JPH09241812A (en) | 1996-03-01 | 1996-03-01 | Galvannealed steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09241812A true JPH09241812A (en) | 1997-09-16 |
Family
ID=12710085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4510896A Pending JPH09241812A (en) | 1996-03-01 | 1996-03-01 | Galvannealed steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09241812A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016072477A1 (en) * | 2014-11-05 | 2016-05-12 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
WO2016072479A1 (en) * | 2014-11-05 | 2016-05-12 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
JP2018083986A (en) * | 2012-11-14 | 2018-05-31 | ムール ウント ベンダー コマンディートゲゼルシャフトMuhr und Bender KG | Process for producing product made from strip material which has undergone flexible rolling |
US10822684B2 (en) | 2014-11-05 | 2020-11-03 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
-
1996
- 1996-03-01 JP JP4510896A patent/JPH09241812A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018083986A (en) * | 2012-11-14 | 2018-05-31 | ムール ウント ベンダー コマンディートゲゼルシャフトMuhr und Bender KG | Process for producing product made from strip material which has undergone flexible rolling |
WO2016072477A1 (en) * | 2014-11-05 | 2016-05-12 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
WO2016072479A1 (en) * | 2014-11-05 | 2016-05-12 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
JPWO2016072477A1 (en) * | 2014-11-05 | 2017-09-07 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
JPWO2016072479A1 (en) * | 2014-11-05 | 2017-09-07 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet |
US10507629B2 (en) | 2014-11-05 | 2019-12-17 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
US10822684B2 (en) | 2014-11-05 | 2020-11-03 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
US10822683B2 (en) | 2014-11-05 | 2020-11-03 | Nippon Steel Corporation | Hot-dip galvanized steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005074464A (en) | Hot press-formed product and method for producing the same | |
JPS5891162A (en) | Manufacture of galvanized steel plate | |
JP6880690B2 (en) | Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet | |
JPH0581662B2 (en) | ||
JPH09241812A (en) | Galvannealed steel sheet | |
KR101674771B1 (en) | Galvannealed steel sheet and method for manufacturing the same having excellent workability | |
JP5533730B2 (en) | Method for producing galvannealed steel sheet | |
JP2005048254A (en) | Zinc-based galvanized steel with excellent film peeling resistance during hot forming | |
JP3187517B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent chipping and powdering resistance | |
JP2525165B2 (en) | Method for manufacturing high strength galvanized steel sheet | |
JPH09165662A (en) | Production of galvannealed steel sheet excellent in press formability and powdering resistance | |
JPH0319297B2 (en) | ||
JPH09202952A (en) | High workability galvanized steel sheet and its production | |
JP3838277B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent powdering resistance | |
JP3119644B2 (en) | Method of manufacturing alloyed hot-dip galvanized steel sheet with excellent chipping resistance and powdering resistance | |
JPH0713284B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent workability | |
JPH04360A (en) | Alloyed hot-dip galvanized steel sheet with excellent workability | |
JPH04235266A (en) | Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance | |
JPH0816261B2 (en) | Method for producing galvannealed steel sheet having excellent press formability and powdering resistance | |
JP2727596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH08269665A (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and manufacturing method | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2658608B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
JP2599535B2 (en) | Hot-dip galvanized steel sheet with smooth and glossy spangle pattern and excellent intergranular corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020129 |