JP2727595B2 - Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same - Google Patents
Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the sameInfo
- Publication number
- JP2727595B2 JP2727595B2 JP27043288A JP27043288A JP2727595B2 JP 2727595 B2 JP2727595 B2 JP 2727595B2 JP 27043288 A JP27043288 A JP 27043288A JP 27043288 A JP27043288 A JP 27043288A JP 2727595 B2 JP2727595 B2 JP 2727595B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- plating
- layer
- less
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車や家電機器或は建材等に使用される
Fe−Zn合金めっき鋼板に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used for automobiles, home electric appliances, building materials and the like.
The present invention relates to an Fe—Zn alloy plated steel sheet.
[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料と
して広く使われており、なかでも自動車の内外板には耐
食性に加えて、加工性や塗装性を考慮したものが多量に
使われている。亜鉛めっき鋼板の量産法として一般的に
は電気めっき法と溶融めっき法とがあるが、電気めっき
法では、低温で処理するので熱影響による相変化が無く
めっき皮膜の成分コントロールも容易であるが、めっき
付着量を多くするには処理時間を増さねばならない。こ
れに対して、溶融めっき法では処理時間を増すことなく
簡単に付着量を増すことが出来、めっき後熱処理を施す
ことにより容易にFe−Zn合金を作ることが出来る。しか
し、めっき皮膜組成と生成される相のコントロールに工
夫を要する。近年自動車用の鋼板では、塩害への対処等
もあってより高度の耐食性が要求され、これに呼応し
て、付着量が容易に確保出来、且つ経済的な溶融亜鉛め
っきを主体に、めっき組成や相コントロールを上手に行
い、高い耐食性を確保しながらその上で加工性や塗装性
を合わせ持っためっき鋼板が求められている。[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength. Among them, the inner and outer plates of automobiles are made of a large amount of materials that take into account not only corrosion resistance but also workability and paintability. Have been done. In general, there are electroplating and hot-dip galvanizing methods for mass production of galvanized steel sheets.Electroplating processes at low temperatures, so there is no phase change due to thermal effects and component control of the plating film is easy. In order to increase the amount of plating, the processing time must be increased. On the other hand, in the hot-dip plating method, the amount of adhesion can be easily increased without increasing the processing time, and a Fe—Zn alloy can be easily produced by performing a heat treatment after plating. However, some contrivance is required to control the composition of the plating film and the phase generated. In recent years, steel sheets for automobiles have been required to have a higher level of corrosion resistance due to measures against salt damage, etc., and in response to this, the coating composition can be easily secured and the economical hot-dip galvanizing is mainly used. There is a demand for a plated steel sheet that performs well and phase control and ensures high corrosion resistance while also having good workability and paintability.
加工性で最も問題になるのが耐パウダリング性であ
り、塗装性で問題になるのが耐クレータリング性であ
る。パウダリングとは、プレス成形の際にめっき皮膜が
粉状になって脱落する現象であり、クレータリングと
は、めっき皮膜に化成処理を施した後行う電着塗装処理
において塗膜に目視できる凹凸(クレータ)が発生する
現象である。The most problematic in workability is powdering resistance, and the problem in paintability is cratering resistance. Powdering is a phenomenon in which a plating film becomes powdery and falls off during press molding, and cratering is a phenomenon that can be visually observed on a coating film in an electrodeposition coating process performed after a chemical conversion treatment is performed on the plating film. (Craters).
前者はめっき皮膜中に鉄含有率の高いΓ相(Fe3Zn10,
Fe20〜28wt%)が生成され、これが硬くて脆いために起
こり、後者はめっき皮膜表面の不均一さ(表面形状、酸
化膜、めっき皮膜相構造等)に起因して発生する。The former is a phase with high iron content (Fe 3 Zn 10 ,
Fe20-28 wt%) is generated because it is hard and brittle, and the latter is caused by unevenness of the plating film surface (surface shape, oxide film, plating film phase structure, etc.).
従来、自動車用に使用されている合金化溶融亜鉛めっ
き鋼板は、溶融めっき後全めっき皮膜平均の鉄含有率が
10wt%前後に達するまで合金化処理を施し、めっき表面
までFeを拡散させて耐食性、特に塗装後耐食性を向上さ
せたものである。即ち、鋼板に連続的に前処理(熱処理
を含む)を施して素材を調整した後、亜鉛を溶融しため
っき浴に浸漬してめっきし、後続してこのめっき鋼板を
合金化炉内で500℃から700℃の温度に急速に昇温させ短
時間(10〜30秒)保持して、めっき皮膜の鉄含有率を10
%前後に合金化させたものである。しかし、このように
して作られる合金化溶融亜鉛めっき鋼板は急速な昇温に
よって高温に加熱されるので、めっき皮膜中の鉄含有量
が場所により異なりがちで、めっき皮膜の面方向及び深
さ方向共に合金化が不均一になること、これに加えてめ
っき皮膜内での鉄濃度勾配が大きくなり、表層の鉄含有
量を確保するため鋼素地との界面の鉄含有率が高まりΓ
相の生成が避けられないこと、更に高温処理と急速冷却
によりめっき皮膜に熱応力が発生すること等の問題を抱
えている。Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles have an average iron content of all coating films after hot-dip coating.
Alloying treatment is performed until it reaches about 10 wt%, and Fe is diffused to the plating surface to improve corrosion resistance, especially after coating. That is, the steel sheet is continuously subjected to pretreatment (including heat treatment) to adjust the material, and then immersed in a plating bath in which zinc is melted to perform plating. Subsequently, the plated steel sheet is heated to 500 ° C. in an alloying furnace. To 700 ° C and hold for a short time (10 to 30 seconds) to reduce the iron content of the plating film to 10
% Alloyed. However, the alloyed hot-dip galvanized steel sheet produced in this way is heated to a high temperature by rapid temperature rise, so that the iron content in the plating film tends to vary depending on the location, and the surface direction and depth direction of the plating film In both cases, the alloying becomes non-uniform, and in addition, the iron concentration gradient in the plating film increases, and the iron content at the interface with the steel substrate increases to secure the iron content in the surface layer.
There is a problem that generation of a phase is unavoidable, and that thermal stress is generated in the plating film by high-temperature treatment and rapid cooling.
一方、合金化処理を一次二次の二工程に分けて処理す
る方法が提案されている。例えば、特公昭59−14541号
では、一次加熱において、めっき皮膜の平滑性を得るた
めにZnめっき皮膜を再溶融させる急速昇温高温加熱を行
う。この加熱では鉄含有率を2.2〜5.5wt%の低い範囲に
留まるので、この一次加熱の結果に応じて、二次加熱を
亜鉛の融点以下の低温で時間をかけて行い、鉄含有率を
6〜13wt%の範囲に納めるものである。そしてこの方法
によつて、表面が平滑で外観が優れ、且つ加工の際に剥
離やパウダリングのない合金化溶融亜鉛めっき皮膜が得
られることを開示している。On the other hand, a method has been proposed in which the alloying treatment is divided into two steps, primary and secondary. For example, in Japanese Patent Publication No. 59-14541, in the primary heating, rapid heating and high temperature heating for remelting a Zn plating film is performed in order to obtain smoothness of the plating film. In this heating, the iron content is kept in a low range of 2.2 to 5.5 wt%. Therefore, according to the result of the primary heating, the secondary heating is performed at a low temperature equal to or lower than the melting point of zinc, and the iron content is reduced to 6%. It should be within the range of ~ 13wt%. It discloses that this method provides an alloyed hot-dip galvanized film having a smooth surface, excellent appearance, and no peeling or powdering during processing.
他方、めっき皮膜表層のみの鉄含有率を高めて耐クレ
ータリング性を改善したものも提案されている。例え
ば、特公昭58−15554号の提案は、耐食性金属層を内層
とし、その上に鉄含有率の高いFe−Zn合金被覆層を付し
てカチオン電着塗装性を向上させためっき鋼板である。
この提案では、内層である前記耐食性金属層として溶融
亜鉛めっき後に熱処理によりFe−Zn合金化した合金化溶
融亜鉛めっき層が開示されている。On the other hand, there has also been proposed one in which the iron content of only the surface layer of the plating film is increased to improve the cratering resistance. For example, Japanese Patent Publication No. 58-15554 proposes a plated steel sheet in which a corrosion-resistant metal layer is used as an inner layer, and a Fe-Zn alloy coating layer having a high iron content is applied thereon to improve the cationic electrodeposition coating property. .
In this proposal, an alloyed hot-dip galvanized layer in which an Fe—Zn alloy is formed by heat treatment after hot-dip galvanizing is disclosed as the inner corrosion-resistant metal layer.
[発明が解決しようとする課題] しかしながら上述した特公昭59−14541号では、耐ク
レータリング性を満足するものではない。耐クレータリ
ング性に関しては、表面の鉄含有率は不十分であり、
又、耐パウダリング性に関しても、溶融亜鉛めっき後急
速昇温高温加熱によって合金化処理を行うので合金化反
応が不均一に進むことが避けられず、その結果、加工性
に劣るΓ層が成長してしまう。又、場合によっては、合
金化されない部分と合金化の進んだ部分とが混在してい
わゆる焼けむらの現象を呈したりする。このように、一
次加熱が不均一になり易いので、一次加熱の結果を基に
した二次加熱条件が極めて複雑になり実操業ではその実
施に大きな困難を伴う。[Problem to be Solved by the Invention] However, Japanese Patent Publication No. 59-14541 does not satisfy the cratering resistance. Regarding cratering resistance, the iron content of the surface is insufficient,
Also, regarding the powdering resistance, the alloying treatment is performed by rapid temperature rise and high temperature heating after hot-dip galvanizing, so that the alloying reaction inevitably proceeds in a non-uniform manner, resulting in poor workability. Resulting in. Further, in some cases, a portion that is not alloyed and a portion where alloying has progressed are mixed, and a phenomenon of so-called uneven burning is exhibited. As described above, since the primary heating is likely to be non-uniform, the secondary heating conditions based on the result of the primary heating become extremely complicated, and there are great difficulties in carrying out the actual operation.
特公昭58−15554号では、めっき表面の鉄濃度を飛躍
的に高めたので、耐クレータリング性は改善されるが、
溶融亜鉛めっき後の熱処理によって合金化を完結させて
いるので、特公昭59−14541号と同様に合金化の不均一
さの問題があり、加えてめっき皮膜内での鉄濃度勾配が
大きくなり、鉄濃度の高くなる鋼素地との界面ではΓ相
が成長してしまう。又、急熱急冷による熱応力も耐パウ
ダリング性にとっては好ましくない。In Japanese Patent Publication No. 58-15554, the iron concentration on the plating surface is dramatically increased, so that the cratering resistance is improved.
Since the alloying is completed by heat treatment after hot-dip galvanizing, there is a problem of non-uniformity of alloying as in Japanese Patent Publication No. 59-14541, and in addition, the iron concentration gradient in the plating film increases, The Γ phase grows at the interface with the steel substrate where the iron concentration is high. Further, thermal stress due to rapid thermal quenching is not preferable for powdering resistance.
このように、耐パウダリング性、耐クレータリング性
を満たすべく工夫がなされてきたが、未だ両特性を共に
満足させる溶融亜鉛めっき鋼板は得られていない。As described above, efforts have been made to satisfy the powdering resistance and the cratering resistance, but a hot-dip galvanized steel sheet satisfying both properties has not yet been obtained.
この問題を解決するために、この発明はなされたもの
で、耐食性に加えて耐パウダリング性と耐クレータリン
グ性とを共に満たすめっき鋼板の製造法を提供すること
を目的とするものである。In order to solve this problem, the present invention has been made, and an object of the present invention is to provide a method for producing a plated steel sheet that satisfies both powdering resistance and cratering resistance in addition to corrosion resistance.
[課題を解決するための手段及び作用] この目的を達成するための手段は、鋼板の少なくとも
片面に、溶融亜鉛めっきによる第一層とその上のFe+Mn
めっきによる第二層とを熱処理して形成しためっき皮膜
を有し、該めっき皮膜は、表層が前記第二層のFe+Mnめ
っきであって、内層が厚さ0.5μmの鋼素地との境界層
を除いてδ1相とζ相とからなり、且つ面方向に鉄およ
びマンガン含有率が均一に分布していることを特徴とす
る加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板で
ある。[Means and Actions for Solving the Problems] A means for achieving this object is to provide at least one surface of a steel sheet with a first layer formed by hot-dip galvanizing and a Fe + Mn layer thereon.
A plating layer formed by heat-treating the second layer by plating, the plating layer having a surface layer of Fe + Mn plating of the second layer and an inner layer forming a boundary layer with a 0.5 μm-thick steel substrate. It is an alloyed hot-dip galvanized steel sheet having excellent workability and paintability, characterized by comprising a δ 1 phase and a ζ phase except that the iron and manganese contents are uniformly distributed in the plane direction.
上記合金化溶融亜鉛めっき鋼板の製造する方法として
次のものがある。The following is a method for producing the galvannealed steel sheet.
一つの方法は次のようである。 One method is as follows.
(イ)通常の前処理を施した鋼板をAl0.05wt%以上0.3w
t%以下、且つPb0.2wt%以下を含有する溶融亜鉛めっき
浴に浸漬して30g/m2以上90g/m2以下のめっきを施す工
程。(B) A steel sheet that has been subjected to normal pretreatment is treated with Al
a step of dipping in a hot-dip galvanizing bath containing t% or less and Pb of 0.2 wt% or less to apply a plating of 30 g / m 2 or more and 90 g / m 2 or less.
(ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程。(B) A step of performing spangle refining while the plating film is in a molten state.
(ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程。(C) After the plating film is solidified, a skin pass treatment is performed.
A step of smoothing the surface of the hot-dip galvanized film.
(ニ)この鋼板の片面又は両面に0.5g/m2以上10g/m2以
下のFe−Mnめっきを施す工程。(D) A step of subjecting one or both sides of the steel sheet to Fe-Mn plating of 0.5 g / m 2 or more and 10 g / m 2 or less.
(ホ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の範囲内の温度で1
0分から50時間加熱する工程。(E) In a batch annealing furnace in which the plated steel sheet is kept in a non-oxidizing or reducing atmosphere in an open coil state at a temperature within the range of 320 ° C. or more and the melting point of zinc or less.
A step of heating from 0 minutes to 50 hours.
他の方法は次のようである。 Another method is as follows.
前記(イ)の溶融亜鉛めっき工程の後、めっき皮膜が
溶融状態であるうちに鋼板の片面又は両面にFe−Mnパウ
ダーを吹き付けて0.5g/m2以上10g/m2以下の上層めっき
を施す工程を含み、その後前記(ハ)、(ニ)、(ホ)
の工程を含む合金化溶融亜鉛めっき鋼板を製造する方法
である。After the hot dip galvanizing step of (a), while the plating film is in a molten state, Fe-Mn powder is sprayed on one or both surfaces of the steel sheet to perform upper plating of 0.5 g / m 2 or more and 10 g / m 2 or less. Process, and then (c), (d), (e)
This is a method for producing an alloyed hot-dip galvanized steel sheet including the step of:
以上の手段について、以下にその作用も含め、詳しく
述べる。The above means, including its operation, will be described in detail below.
先ず、めっき用の鋼板は冷延鋼板でも熱延鋼板でもよ
く、通常の前処理として表面調整とともに焼鈍処理を施
してもよい。First, the steel sheet for plating may be a cold-rolled steel sheet or a hot-rolled steel sheet, and may be subjected to an annealing treatment together with a surface adjustment as a normal pretreatment.
めっき皮膜表層をFe−Mn合金とすると、電着塗装時の
クレータ発生が防止される。即ち、合金化溶融亜鉛めっ
き鋼板は、めっき面に燐酸塩処理を施した後カチオン電
着塗装が施されるが、この化成処理によって生成される
燐酸塩結晶に、Feを含むホスホフィライト[Zn2Fe(P
O4)2・4H2O]と称する粒状で緻密な結晶とFeを含まな
いホパイト[Zn3(PO4)2・4H2O]と称する粗大な針状
結晶とがある。これらの燐酸塩結晶生成時に表層にMnが
存在すると、ホパイト中のZnの一部がMnと置き換わり結
晶が緻密になる。またFeの存在はホスホフィライトを形
成し易くする。クレータ発生原因の一つに化成処理皮膜
欠陥部への局所的な電流集中が考えられるが、緻密な結
晶皮膜は欠陥部が少ない。したがって、表層がFe−Mn合
金であるとクレータは生じにくくなる。When the surface layer of the plating film is made of an Fe-Mn alloy, crater generation during electrodeposition coating is prevented. That is, the alloyed hot-dip galvanized steel sheet is subjected to cationic electrodeposition coating after subjecting the plated surface to phosphate treatment. Phosphitelite [Zn] containing Fe is added to phosphate crystals generated by this chemical conversion treatment. 2 Fe (P
O 4) 2 · 4H 2 O ] and referred hopeite free of dense crystals and Fe in the granular [Zn 3 (PO 4) is the 2 · 4H 2 O] and referred coarse needles. If Mn is present in the surface layer during the formation of these phosphate crystals, part of Zn in the whipite is replaced by Mn, and the crystal becomes denser. The presence of Fe also facilitates the formation of phosphophyllite. One of the causes of crater generation is considered to be local current concentration on the chemical conversion coating defect, but a dense crystal coating has few defects. Therefore, if the surface layer is an Fe-Mn alloy, craters are less likely to occur.
合金化溶融亜鉛めっき鋼板の場合、めっき付着量と皮
膜中の鉄およびマンガン含有率によって耐食性の殆どが
決定される。Znめっき皮膜はFe−Mn合金化することによ
って、裸耐食性、塗装後耐食性は共に著しく向上する。In the case of an alloyed hot-dip galvanized steel sheet, most of the corrosion resistance is determined by the coating weight and the iron and manganese contents in the film. By forming the Zn plating film into an Fe-Mn alloy, both the bare corrosion resistance and the corrosion resistance after painting are significantly improved.
本発明では前記した表層と内層の境界層が相互に熱拡
散されて形成した一体構造を有することが重要である。
熱拡散された一体構造によって表層と内層の合金成分濃
度が連続して変化しFe−Mn合金化Znめっき層を形成し、
めっき皮膜は機械的性質や電気化学的性質が隣接した部
分で極端に異なることが無く、加工性及び耐食性におい
て優れたものとなる。In the present invention, it is important that the boundary layer between the surface layer and the inner layer has an integrated structure formed by thermal diffusion to each other.
The alloy component concentration of the surface layer and the inner layer is continuously changed by the heat-diffused integrated structure to form a Fe-Mn alloyed Zn plating layer,
The plating film does not have extremely different mechanical properties and electrochemical properties at adjacent portions, and is excellent in workability and corrosion resistance.
めっき皮膜の大半を占める内層が、厚さ0.5μmの鋼
素地との境界層を除いて、硬くて脆いΓ相を含まない
で、且つ鉄およびマンガンの含有率の分布が面方向に均
一であると加工時のパウダリングを防止することが出来
る。Γ相は内層部と鋼素地との境界に生成し易いが、こ
のΓ相が検出されないめっき皮膜は耐パウダリング性が
良好である。そしてΓ相が0.5μm以上の厚さに成長し
ていないと検出することは困難である。The inner layer that occupies the majority of the plating film does not contain a hard and brittle Γ phase, except for the boundary layer with the 0.5 μm thick steel substrate, and the distribution of the iron and manganese content is uniform in the plane direction. And powdering during processing can be prevented. The Γ phase is easily formed at the boundary between the inner layer and the steel base, but the plating film in which this Γ phase is not detected has good powdering resistance. It is difficult to detect that the Γ phase has not grown to a thickness of 0.5 μm or more.
本発明の合金化溶融亜鉛めっき鋼板は用途によっては
他面にはめっき皮膜がなくても或は他のめっき皮膜を形
成してもよい。The alloyed hot-dip galvanized steel sheet of the present invention may have no plating film on the other surface or may have another plating film depending on the application.
以下に、本発明の製造方法について述べる。溶融亜鉛
めっき浴には通常、Fe−Zn合金反応の抑制やめっき面の
平滑化等のためAlが0.2%前後添加されており、スパン
グル調整のためPbが含まれている。このうちAlは合金化
抑制効果を持つので、0.05wt%以上添加し、溶融亜鉛め
っき浴浸漬後のFe−Zn合金が部分的且つ不均一に生成す
ることを防ぐ。この工程で不均一にFe−Zn合金を生成さ
せないことは重要なことであり、一旦不均一化すると後
の工程で修正することが出来ない。Alの添加量が多過ぎ
て0.3wt%を超えると合金化の抑制効果が過剰となり、
後の合金化処理に時間が掛かり過ぎ工業的には不適切に
なる。Pbは合金化反応には直接関与しないが、多量のPb
は耐パウダリング性を低下させるので、0.2wt%以下に
制限しなければならない。Hereinafter, the production method of the present invention will be described. Usually, about 0.2% of Al is added to the hot-dip galvanizing bath for suppressing the reaction of the Fe-Zn alloy and smoothing the plated surface, and contains Pb for adjusting the spangle. Of these, Al has an alloying suppression effect, so that it is added in an amount of 0.05 wt% or more to prevent the Fe-Zn alloy after immersion in the hot-dip galvanizing bath from being partially and non-uniformly formed. It is important not to generate the Fe-Zn alloy non-uniformly in this step, and once it is made non-uniform, it cannot be corrected in a later step. If the addition amount of Al is too large and exceeds 0.3 wt%, the effect of suppressing alloying becomes excessive,
The subsequent alloying process takes too much time and is industrially unsuitable. Pb does not directly participate in the alloying reaction, but a large amount of Pb
Should be limited to 0.2% by weight or less, since it reduces powdering resistance.
内層は30g/m2から90g/m2の付着量が高耐食化のために
適当であり、この場合表層のように高い鉄含有率は必要
でなく5wt%〜20wt%の範囲が好ましい。なお90g/m2を
超えた場合には過剰品質となるばかりか、後の工程の低
温で行う合金化処理において長時間を要し生産性を低下
させる。又、一般にめっき皮膜が厚くなると加工時に皮
膜の破壊や剥離が起こることがあり、合金化溶融亜鉛め
っき鋼板の場合ではパウダリングが起こり易くなる。The inner layer has a coating weight of 30 g / m 2 to 90 g / m 2 which is suitable for high corrosion resistance. In this case, a high iron content is not required as in the surface layer, and the range of 5 wt% to 20 wt% is preferable. If the amount exceeds 90 g / m 2 , not only the quality becomes excessive, but also the alloying treatment performed at a low temperature in a later step requires a long time, and lowers productivity. In general, when the plating film is thick, the film may be broken or peeled off during processing, and powdering is likely to occur in the case of an alloyed hot-dip galvanized steel sheet.
この溶融亜鉛めっき皮膜が溶融状態であるうちにスパ
ングルを微細化し、更にめっき皮膜が固化した後スキン
パス処理を行うことによって平滑なめっき面が得られ、
この後に施す上層めっきの被覆率が向上する。その結
果、耐クレータリング性を効率的に向上させることがで
きると共に、塗装後の鮮映性を向上させることもでき
る。スキンパスは伸長率0.3%以上で行うとめっき面は
平滑となるが、伸長率が大き過ぎて5%を超えると、一
般的薄板用鋼板では加工性に影響するおそれがある。While this hot-dip galvanized film is in a molten state, the spangles are refined, and a smooth plated surface is obtained by performing skin pass treatment after the plated film is solidified.
The coverage of the upper plating applied thereafter is improved. As a result, the cratering resistance can be efficiently improved, and the sharpness after painting can also be improved. When the skin pass is performed at an elongation of 0.3% or more, the plated surface becomes smooth. However, when the elongation is too large and exceeds 5%, the workability of a general steel sheet for thin sheets may be affected.
Fe−Mn合金めっきは、耐クレータリング性を確保する
と共に、この後の加熱処理において、先に施した溶融亜
鉛めっき層へ鋼素地とは反対面からFeおよびMnを拡散さ
せその結果めっき皮膜内層の鉄濃度勾配を小さく押さえ
ることになる。上記合金めっきの処理方法は、亜鉛の融
点より高い温度で処理する方法でなければ、電気めっ
き、蒸着めっき、溶射等どのような方法でもよい。この
合金めっき処理を合金パウダー吹き付けで行うときは、
先の溶融亜鉛めっき層が溶融状態のうちに行うとスパン
グルの微細化も同時に行われ、工程を一つ省くことが出
来る。The Fe-Mn alloy plating ensures cratering resistance, and in the subsequent heat treatment, diffuses Fe and Mn from the surface opposite to the steel base into the previously applied hot-dip galvanized layer, resulting in the inner layer of the plating film. The iron concentration gradient is kept small. The above-described alloy plating treatment method may be any method such as electroplating, vapor deposition plating, or thermal spraying, as long as the treatment is not performed at a temperature higher than the melting point of zinc. When performing this alloy plating process by spraying alloy powder,
If the above-mentioned hot-dip galvanized layer is performed in a molten state, the spangles are miniaturized at the same time, and one step can be omitted.
表層は付着量が0.5g/m2から10g/m2であることが必要
である。0.5g/m2未満ではめっき面全体にわたって十分
にFeを供給することが出来ない。また10g/m2を超えて付
着した場合にはその効果が飽和し、コスト的に不利にな
るばかりでなく、塗装後耐食性においても赤錆が発生し
易くなる。The surface layer needs to have a coating weight of 0.5 g / m 2 to 10 g / m 2 . If it is less than 0.5 g / m 2 , it is not possible to sufficiently supply Fe over the entire plating surface. In addition, when the amount exceeds 10 g / m 2 , the effect is saturated, and not only is the cost disadvantageous, but also red rust is easily generated in the corrosion resistance after coating.
上記した二度のめっき工程を経ためっき鋼板を加熱処
理するが、非酸化性又は還元性雰囲気で行うのは表面の
酸化を防ぎ,塗装前の化成処理において化成皮膜結晶が
不均一になることを避けるためであり、バッチ式焼鈍炉
内で行うのは低温で時間を掛けて処理するからである。
オープンコイルの状態で加熱するのは、均一に加熱する
ことによって合金化にむらが生ずることを防止すると同
時にめっき面同士が付着して欠陥が発生することを防ぐ
ためである。タイトコイルの状態では、温度分布が不均
一となり、部分的に合金化速度の大きい部分と小さい部
分とができてしまう。特に、鋼板長手方向にこの不均一
が生じ、高品質製品は得られ難い。加熱は低温で行う
が、320℃以上の温度が必要である。320℃未満では塗装
後耐食性を確保するに足る合金化度を得るのに時間が掛
かり過ぎる。温度を亜鉛の融点(419.5℃)よりも高く
すると、合金化が急速に進む箇所が現れ又Γ相の生成も
無視できなくなる。更にオープンコイルの鋼板間に挿入
するスペーサーがめっき面に痕跡を残すおそれも出てく
る。第1図は上記の温度範囲で、パウダリングとクレー
タの両者が共に発生しない条件を調べたもので、横軸は
加熱時間縦軸は加熱温度である。図で、点a,b,c,dを結
ぶ線で囲まれた範囲が、パウダリング及びクレータを発
生させない実操業上好ましい条件範囲で、加熱時間につ
いては、a点の時間座標からc点の時間座標まで、即ち
10分以上50時間以下となる。以上の加熱条件で熱処理を
行うと、Feは鋼素地側と表層めっき側とから拡散し、Mn
は表層から拡散するので、鋼素地側に大きなFe濃度勾配
が出来ずに適正な合金化が達成される。このため、Γ相
は実質的に生成せず加工性の良いめっき皮膜が得られ
る。そして、このめっき皮膜は、急速な高温加熱を避け
ているので、面に沿っても均一となる。又、鉄含有率も
5wt%から20wt%の範囲に収まる。しかし、実操業時に
起こりがちな条件のバラツキ等を考えると特に好ましい
のは、加熱温度が320℃から380℃まで、加熱時間が30分
から10時間までである。この場合めっき皮膜の鉄含有率
は5wt%から14wt%の範囲に収まる。更に、この熱処理
によって、表層と内層はFe−Mnの熱拡散によって一体構
造となる。The coated steel sheet that has undergone the two plating steps described above is subjected to a heat treatment. Performing the treatment in a non-oxidizing or reducing atmosphere prevents the surface from being oxidized and makes the conversion film crystals non-uniform during the chemical conversion treatment before painting. This is done in a batch-type annealing furnace, because it takes a long time at a low temperature.
The reason why the heating is performed in the state of the open coil is to prevent unevenness in the alloying due to the uniform heating and also to prevent the plating surfaces from adhering to each other and generating defects. In the state of the tight coil, the temperature distribution becomes non-uniform, and a part having a high alloying rate and a part having a small alloying rate are partially formed. In particular, this unevenness occurs in the longitudinal direction of the steel sheet, and it is difficult to obtain a high quality product. Heating is performed at a low temperature, but requires a temperature of 320 ° C. or higher. If the temperature is lower than 320 ° C., it takes too much time to obtain a degree of alloying sufficient to secure corrosion resistance after painting. When the temperature is higher than the melting point of zinc (419.5 ° C.), a portion where alloying proceeds rapidly appears and the formation of a Γ phase cannot be ignored. Furthermore, the spacer inserted between the steel plates of the open coil may leave traces on the plating surface. FIG. 1 shows the conditions under which neither powdering nor craters occur in the above temperature range. The horizontal axis represents the heating time and the vertical axis represents the heating temperature. In the figure, a range surrounded by a line connecting points a, b, c, and d is a preferable condition range for practical operation in which powdering and craters do not occur. Up to the time coordinate, ie
It will be 10 minutes or more and 50 hours or less. When heat treatment is performed under the above heating conditions, Fe diffuses from the steel substrate side and the surface plating side, and Mn
Is diffused from the surface layer, so that an appropriate alloying can be achieved without a large Fe concentration gradient on the steel substrate side. Therefore, the Γ phase is not substantially generated, and a plating film having good workability can be obtained. And since this plating film avoids rapid high-temperature heating, it becomes uniform even along the surface. Also, iron content
It is in the range of 5 wt% to 20 wt%. However, in consideration of the variation in conditions that are likely to occur during actual operation, it is particularly preferable that the heating temperature be from 320 ° C. to 380 ° C. and the heating time be from 30 minutes to 10 hours. In this case, the iron content of the plating film falls within the range of 5 wt% to 14 wt%. Further, by this heat treatment, the surface layer and the inner layer have an integrated structure due to the thermal diffusion of Fe-Mn.
[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、上層め
っき条件及び合金化処理条件を変えて処理した17例(実
施例)の合金化溶融亜鉛めっき鋼板について、めっき皮
膜中の鉄含有率を調べ、パウダリング試験及びクレータ
リング試験を行って評価した。なお比較のために、この
発明の範囲外の条件で処理した6例(比較例)および従
来技術による3例(従来例)についても同様に調べた。
条件の詳細は以下の通りである。[Examples] 17 kinds of alloyed hot-dip galvanized steel sheets were processed by using two types of steel sheets and changing the hot-dip galvanizing conditions, upper layer plating conditions, and alloying processing conditions. The content was examined and evaluated by performing a powdering test and a cratering test. For comparison, six cases (comparative example) processed under conditions outside the scope of the present invention and three cases (conventional example) according to the prior art were similarly examined.
Details of the conditions are as follows.
用いた鋼板は板厚0.8mmの冷延鋼板で、汎用されてい
る薄板用低炭素Alキルド(素材A)及び高加工用でパウ
ダリングを起こし易いと言われている超低炭チタン含有
鋼(素材B)とである。各々の成分を第1表に示す。The steel plate used is a cold-rolled steel plate with a thickness of 0.8 mm, which is commonly used for low-carbon Al-killed steel (material A) for thin plates and ultra-low carbon titanium-containing steel (for high processing), which is said to be prone to powdering ( Material B). Each component is shown in Table 1.
溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連
続式めっき設備で行い、めっき浴直後に設けられた気体
絞り装置によって付着量の調整を行い、つづいてミスト
スプレイによりスパングルを微細化し、めっき層が冷却
後伸長率1.5%でスキンパスを行い表面を平滑にした。 Hot-dip galvanizing is performed in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace, the amount of coating is adjusted by a gas throttle device provided immediately after the plating bath, and then spangles are refined by mist spraying. After cooling, the plating layer was skin-passed at an elongation of 1.5% to smooth the surface.
Fe−Mn合金めっきには、電気めっき、プラズマ溶射又
はパウダースプレイの方法を用いたが、各々次の条件で
処理した。Electroplating, plasma spraying, or powder spraying was used for the Fe-Mn alloy plating, and each was processed under the following conditions.
(1)電気めっき MnSO4・H2O:20〜200g/ FeSO4・7H2O:20g/ (NH4)2SO4:200g/ Na2SO4:30g/ pH:3.2, 浴温:15℃ カソード電流密度:3A/dm2 (2)プラズマ溶射 プラズマガス:Ar 溶射入熱:20KW 溶射距離:100mm 平均粉末粒径:約5μm 粉末供給速度:5g/min・dm2 (3)パウダースプレイ 平均粉末粒径:約5μm 粉末供給速度:3g/min・dm2 めっき皮膜表層および内層中の鉄およびマンガン含有
率は、それぞれオージェ電子スペクトロメトリおよびグ
リムグロー放電発光分光分析によって調べた。(1) Electroplating MnSO 4 · H 2 O: 20~200g / FeSO 4 · 7H 2 O: 20g / (NH 4) 2 SO 4: 200g / Na 2 SO 4: 30g / pH: 3.2, bath temperature: 15 ℃ Cathode current density: 3A / dm 2 (2) Plasma spray Plasma gas: Ar Thermal spray input: 20KW Spray distance: 100mm Average powder particle size: about 5μm Powder supply speed: 5g / min ・ dm 2 (3) Powder spray average Powder particle size: about 5 μm Powder supply rate: 3 g / min · dm 2 The iron and manganese contents in the surface layer and the inner layer of the plating film were examined by Auger electron spectrometry and Grim-glow discharge emission spectroscopy, respectively.
耐パウダリング性は、曲率半径2mmで90度に曲げた
後、曲げの内側に粘着テープを貼り付け、これを剥し
て、パウダーがこの粘着テープに付着した状況を目視観
察し、点数付けて評価した。Powdering resistance is evaluated after bending to 90 degrees with a radius of curvature of 2 mm, then sticking an adhesive tape inside the bend, peeling it off, visually observing the situation where powder adhered to this adhesive tape, scoring and evaluating did.
評点の基準は、 1;全く付着無し、2;極くわずかに付着、 3;わずかに付着、4;少し付着、 5;かなり付着、の五段階である。The evaluation criteria are as follows: 1; no adhesion, 2; extremely slight adhesion, 3; slight adhesion, 4; slight adhesion, 5; considerable adhesion.
耐クレータリング性は、めっき面に化成処理を施し、
次いで電着塗装を行い、このとき発生したクレータの数
で評価した。化成処理には市販されている浸漬型の燐酸
塩系処理剤を用いた。電着塗装にはやはり市販されてい
るカチオン電着塗料を用いたが、調合後一週間撹拌し、
極間距離4cmで電着電圧300vを瞬時に印加して電着し
た。Cratering resistance is achieved by subjecting the plated surface to a chemical conversion treatment,
Next, electrodeposition coating was performed, and the number of craters generated at this time was evaluated. For the chemical conversion treatment, a commercially available immersion type phosphate treatment agent was used. For the electrodeposition coating, a commercially available cationic electrodeposition coating was used, but after mixing, stirring was performed for one week.
Electrodeposition was performed by instantaneously applying an electrodeposition voltage of 300 V at a distance between the electrodes of 4 cm.
これらの例の各々の処理条件と調査結果を第2表〜第
4表に示す。Tables 2 to 4 show the processing conditions and investigation results of each of these examples.
実施例では、素材Bでも耐パウダリング性に劣るもの
はなく、限界付着量である実施例No.6及び限界加熱時間
に近い実施例No.17とで、極く僅かにパウダリングが認
められたが、実用上は問題がない。耐クレータリング性
では、表層部のめっき付着量が下の限界である実施例N
o.13で1個乃至2個の小さなクレータが発見されたが、
これも実用上は問題ない。このように、実施例では全て
の合金化溶融亜鉛めっき鋼板が耐パウダリング性と耐ク
レータリング性とを兼ね備えている。又、内層の鉄の含
有率も6.0wt%から13wt%の範囲内にあり、塗装後耐食
性を十分に確保するものである。In the examples, even in the case of the material B, the powdering resistance was not inferior, and in the example No. 6 having the limit adhesion amount and the example No. 17 close to the limit heating time, extremely slight powdering was observed. However, there is no problem in practical use. In the cratering resistance, the coating amount of the surface layer is the lower limit in Example N.
One or two small craters were found in o.13,
This is not a problem in practical use. Thus, in the examples, all the alloyed hot-dip galvanized steel sheets have both powdering resistance and cratering resistance. Further, the iron content of the inner layer is in the range of 6.0 wt% to 13 wt%, which ensures sufficient corrosion resistance after painting.
一方、発明の範囲から外れた条件で処理された比較例
では、浴中Alの無い比較例No.1、加熱時間過剰の比較例
No.2、浴中Pbの多い比較例No.3、付着量の多すぎる比較
例No.4、上層部の無い比較例No.5、加熱温度の高過ぎる
比較例No.6等耐パウダリング性か耐クレータリング性の
何れかに問題がある。 On the other hand, in Comparative Examples treated under conditions outside the scope of the invention, Comparative Example No. 1 without Al in the bath, Comparative Example with excessive heating time
No.2, Comparative example No.3 with much Pb in the bath, Comparative example No.4 with too much adhesion, Comparative example No.5 with no upper layer, Comparative example No.6 with too high heating temperature Powdering resistance etc. There is a problem in either the resistance or cratering resistance.
従来例では、従来例1は急速昇温高速加熱のみにより
合金化したもので両特性に問題があり、従来例2は急速
昇温高速加熱の後低温で合金化調整したもので耐クレー
タリング性が劣り、従来例3は急速昇温高速加熱によっ
て合金化しその上に鉄含有量の高いめっき層を付したも
ので、耐パウダリング性に劣る。このように、両特性が
同時には満足されていない。In the conventional example, the conventional example 1 was alloyed only by rapid heating and high-speed heating, and there was a problem in both characteristics. The conventional example 2 was alloyed and adjusted at low temperature after rapid heating and high-speed heating, and the cratering resistance was low. Conventional Example 3 is alloyed by rapid heating and high-speed heating and is provided with a plating layer having a high iron content thereon, and is inferior in powdering resistance. Thus, both characteristics are not satisfied at the same time.
次に本発明によるめっき皮膜の内層の鉄およびマンガ
ンの含有率分布を調べた。Next, the distribution of iron and manganese contents in the inner layer of the plating film according to the present invention was examined.
ここでは実施例No.12の合金化溶融亜鉛めっきコイル
(幅1800mm)の幅方向について、200mm間隔でめっき内
層の鉄およびマンガンの含有率を調べた。この結果を第
2図に示す。図において横軸はコイル左端からの距離、
縦軸は鉄およびマンガンの含有率であり、○印は実施例
No.12の鉄含有率をプロットしたものであり、△印はマ
ンガンの含有率をプロットしたものである。また●印は
従来例No.2の鉄含有率をプロットしたものである。図か
ら明らかなように実施例No.12の鉄含有率は平均8.0wt%
であり、全ての測定点が7.8wt%から8.2wt%の間に分布
していた。またマンガン含有率は平均0.5wt%であり、
すべての測定点が0.4wt%から0.6%の間に分布してい
る。また従来例No.2の鉄含有率は平均8.3wt%であり、
全ての測定点が8.0wt%から9.0wt%にばらつく。したが
って、本発明においては面方向に鉄およびマンガンのば
らつきが顕著に少ない。更にめっき皮膜の底部にΓ相が
存在しているか否かについて、実施例No.1からNo.17迄
の合金化溶融亜鉛めっき処理を施した試料について、め
っき皮膜の上層約三分の二を取り除きX線回折を行った
結果、何れの試料についてもΓ相は検出されなかった。Here, in the width direction of the alloyed hot-dip galvanized coil (width 1800 mm) of Example No. 12, the iron and manganese content of the plating inner layer was examined at intervals of 200 mm. The result is shown in FIG. In the figure, the horizontal axis is the distance from the left end of the coil,
The vertical axis indicates the content of iron and manganese, and the circles indicate examples.
It is a plot of the iron content of No. 12, and the symbol △ plots the manganese content. In addition, the mark ● plots the iron content of Conventional Example No. 2. As is clear from the figure, the iron content of Example No. 12 was 8.0 wt% on average.
And all the measurement points were distributed between 7.8 wt% and 8.2 wt%. The average manganese content is 0.5wt%,
All measurement points are distributed between 0.4 wt% and 0.6%. The iron content of Conventional Example No. 2 is 8.3 wt% on average,
All measurement points vary from 8.0 wt% to 9.0 wt%. Therefore, in the present invention, variation of iron and manganese in the plane direction is remarkably small. Further, as to whether or not a Γ phase is present at the bottom of the plating film, about two-thirds of the upper layer of the plating film was subjected to the alloyed hot-dip galvanizing treatment of Examples No. 1 to No. 17. As a result of X-ray diffraction after removal, no Γ phase was detected in any of the samples.
[発明の効果] 本発明のめっき鋼板は、めっき皮膜中にΓ相が実質的
に存在せず、鉄含有率が高い表層と内層とが一体構造に
なっており、しかも鉄含有率の分布が面方向に均一な皮
膜を持っているので、十分な耐食性に加えて優れた耐パ
ウダリング性と耐クレータリング性とを共に有してお
り、また本発明の方法は上記めっき鋼板を簡単な工程で
容易に製造出来るので産業上効果の大きい発明である。[Effect of the Invention] The plated steel sheet of the present invention has substantially no Γ phase in the plating film, and the surface layer having a high iron content and the inner layer have an integral structure, and the distribution of the iron content is low. Since it has a uniform film in the plane direction, it has both excellent corrosion resistance and excellent powdering resistance and cratering resistance in addition to sufficient corrosion resistance. It is an invention which has a great industrial effect because it can be easily manufactured.
第1図はこの発明の主要部を説明するための熱処理条件
と特性適正との関係を示す図、第2図は本発明の一実施
例の鉄およびマンガン含有率の分布を示す図である。FIG. 1 is a diagram showing a relationship between heat treatment conditions and proper characteristics for explaining a main part of the present invention, and FIG. 2 is a diagram showing a distribution of iron and manganese contents in one embodiment of the present invention.
フロントページの続き (56)参考文献 特開 平2−88752(JP,A) 特開 平2−73953(JP,A) 特開 昭61−253397(JP,A) 特開 昭60−67690(JP,A) 特開 昭57−79160(JP,A) 特開 昭57−114692(JP,A) 特開 昭58−39792(JP,A) 特開 昭61−119663(JP,A) 特開 昭58−34169(JP,A) 特開 昭56−158864(JP,A) 特公 昭58−15554(JP,B2) 特公 昭59−14541(JP,B2) 鉄と鋼、72[13](1986),(昭61− 9−9)p.S1331Continuation of the front page (56) References JP-A-2-88752 (JP, A) JP-A-2-73953 (JP, A) JP-A-61-253397 (JP, A) JP-A-60-67690 (JP) JP-A-57-79160 (JP, A) JP-A-57-114692 (JP, A) JP-A-58-39792 (JP, A) JP-A-61-119663 (JP, A) 58-34169 (JP, A) JP-A-56-158864 (JP, A) JP-B-58-15554 (JP, B2) JP-B-59-14541 (JP, B2) Iron and steel, 72 [13] ( 1986), (Showa 61-9-9) p. S1331
Claims (3)
による第一層とその上のFe+Mnめっきによる第二層とを
熱処理して形成しためっき皮膜を有し、該めっき皮膜
は、表層が前記第二層のFe+Mnめっきであって、内層が
厚さ0.5μmの鋼素地との境界層を除いてδ1相とζ相
とからなり、且つ面方向に鉄およびマンガン含有率が均
一に分布していることを特徴とする加工性、塗装性に優
れた合金化溶融亜鉛めっき鋼板。A plating film formed by heat-treating a first layer formed by hot-dip galvanizing and a second layer formed thereon by Fe + Mn plating on at least one side of a steel sheet, wherein the plating layer has a surface layer of the first layer. It is a two-layer Fe + Mn plating in which the inner layer is composed of δ 1 phase and 境界 phase except for the boundary layer with a 0.5 μm thick steel substrate, and the iron and manganese content is uniformly distributed in the plane direction. A galvannealed steel sheet with excellent workability and paintability.
性、塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方
法。 (イ)通常の前処理を施した鋼板をAl0.05wt%以上0.3w
t%以下、且つPb0.2wt%以下を含有する溶融亜鉛めっき
浴に浸漬して30g/m2以上90g/m2以下のめっきを施す工
程、 (ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)この鋼板の片面又は両面に0.5g/m2以上10g/m2以
下のFe−Mnめっきを施す工程、 (ホ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の範囲内の温度で1
0分から50時間加熱する工程。2. A method for producing an alloyed hot-dip galvanized steel sheet having excellent workability and paintability, comprising the following steps. (B) A steel sheet that has been subjected to normal pretreatment is treated with Al
a process of immersing in a hot-dip galvanizing bath containing t% or less and Pb 0.2 wt% or less to apply a plating of 30 g / m 2 or more and 90 g / m 2 or less. (b) Spangle while the plating film is in a molten state (C) performing a skin pass treatment after the plating film is solidified,
(D) a step of applying 0.5 g / m 2 or more to 10 g / m 2 or less of Fe-Mn plating on one or both surfaces of the steel sheet; In a batch type annealing furnace where the applied steel sheet is maintained in a non-oxidizing or reducing atmosphere, in an open coil state at a temperature within a range of 320 ° C or higher and a melting point of zinc or lower.
A step of heating from 0 minutes to 50 hours.
塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%以上0.3w
t%以下、且つPb0.2wt%以下を含有する溶融亜鉛めっき
浴に浸漬して30g/m2以上90g/m2以下のめっきを施す工
程、 (ロ)めっき皮膜が溶融状態であるうちに鋼板の片面又
は両面にFe−Mnパウダーを吹き付けて0.5g/m2以上10g/m
2以下の上層めっきを施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い溶
融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)前記工程で平滑化した鋼板を非酸化性又は還元性
雰囲気に維持したバッチ式焼鈍炉内でオープンコイルの
状態で320℃以上亜鉛の融点以下の範囲内の温度で10分
から50時間加熱する工程。3. Workability characterized by including the following steps:
Manufacturing method of galvannealed steel sheet with excellent paintability. (B) A steel sheet that has been subjected to normal pretreatment is treated with Al
a step of immersing in a hot-dip galvanizing bath containing t% or less and Pb 0.2 wt% or less to apply a plating of 30 g / m 2 or more and 90 g / m 2 or less, (b) steel sheet while the plating film is in a molten state Spray Fe-Mn powder on one or both sides of 0.5g / m 2 or more 10g / m
Step of applying an upper layer plating of 2 or less, (c) a step of smoothing the surface of the galvanized coating subjected to skin pass process after the plating film has solidified, (d) a non-oxidizing or reducing the smoothed steel sheet in the step Heating in an open coil state at a temperature within the range of 320 ° C. or more and the melting point of zinc in a batch type annealing furnace maintained in a neutral atmosphere for 10 minutes to 50 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27043288A JP2727595B2 (en) | 1988-10-26 | 1988-10-26 | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27043288A JP2727595B2 (en) | 1988-10-26 | 1988-10-26 | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02118084A JPH02118084A (en) | 1990-05-02 |
JP2727595B2 true JP2727595B2 (en) | 1998-03-11 |
Family
ID=17486199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27043288A Expired - Lifetime JP2727595B2 (en) | 1988-10-26 | 1988-10-26 | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2727595B2 (en) |
-
1988
- 1988-10-26 JP JP27043288A patent/JP2727595B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
鉄と鋼、72[13](1986),(昭61−9−9)p.S1331 |
Also Published As
Publication number | Publication date |
---|---|
JPH02118084A (en) | 1990-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010089910A1 (en) | Galvannealed steel sheet and process for production thereof | |
US5409553A (en) | Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property | |
JPH0753901B2 (en) | Hot dip galvanizing method | |
JPH0645853B2 (en) | Method for producing galvannealed steel sheet | |
JP2727598B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH0355542B2 (en) | ||
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727597B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JPH02118088A (en) | Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property | |
JP2754590B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2525165B2 (en) | Method for manufacturing high strength galvanized steel sheet | |
JPH02138481A (en) | Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability | |
JP3016122B2 (en) | Galvannealed steel sheet with excellent paintability and its manufacturing method | |
JPH02138482A (en) | Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability | |
JPH02145777A (en) | Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating | |
JP2800285B2 (en) | Manufacturing method of galvannealed steel sheet | |
JPH02166261A (en) | Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability | |
JPH02122082A (en) | Production of alloyed hot dip galvanized steel sheet having superior workability and coatability | |
JP2000169948A (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JPH0128098B2 (en) | ||
KR100985345B1 (en) | XI / BA A hot dip plating method with excellent work change efficiency | |
JPH02166264A (en) | Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics | |
JP2574011B2 (en) | Manufacturing method of galvannealed steel sheet |