[go: up one dir, main page]

JPH02118084A - Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof - Google Patents

Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof

Info

Publication number
JPH02118084A
JPH02118084A JP27043288A JP27043288A JPH02118084A JP H02118084 A JPH02118084 A JP H02118084A JP 27043288 A JP27043288 A JP 27043288A JP 27043288 A JP27043288 A JP 27043288A JP H02118084 A JPH02118084 A JP H02118084A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
hot
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27043288A
Other languages
Japanese (ja)
Other versions
JP2727595B2 (en
Inventor
Yasuhisa Tajiri
田尻 泰久
Soichi Shimada
島田 聰一
Michitaka Sakurai
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27043288A priority Critical patent/JP2727595B2/en
Publication of JPH02118084A publication Critical patent/JPH02118084A/en
Application granted granted Critical
Publication of JP2727595B2 publication Critical patent/JP2727595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To easily produce the title steel sheet excellent in corrosion resistance, powdering resistance and cratering resistance by hot-dip galvanizing the steel sheet and smoothening the surface and thereafter performing Fe-Mn alloy plating thereon and then heat-treating this plated steel sheet. CONSTITUTION:A steel sheet on which ordinary pretreatment has been performed is immersed in a hot-dip galvanizing bath contg. 0.05-0.3wt.% Al and <=0.2wt.% Pb to perform galvanizing of 30-90g/m<2>. Spangle is made fine by mist spray while the galvanized film is kept in a molten state. After the film is solidified, the surface of the film is smoothened by skin pass treatment. Fe-Mn alloy plating of 0.5-10g/m<2> is performed on the single face or double faces of this steel sheet by an electroplating method. Then the above-mentioned galvanized steel sheet is produced by heating this steel sheet at the temp. not lower than 320 deg.C and not higher than m.p. of Zn for 10min-50 hours in an open-coil state in a batch type annealing furnace of the nonoxidative or reductive atmosphere. The internal layer is constituted of delta1 phase and zeta phase excepting the boundary layer for the basis material having 0.5mum thickness and furthermore Fe and Mn are uniformly distributed in the facial direction and therefore this galvanized steel sheet is made excellent in workability and coating properties.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、自動車や家電機器或は建材等に使用されるF
eZn合金めっき鋼板に関するものである。
[Detailed description of the invention] "Industrial application field"
This relates to an eZn alloy plated steel sheet.

[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料とし
て広く使われており、なかでも自動車の内外板には耐良
性に加えて、加工性や塗装性を考慮したものが多量に使
われている。亜鉛めっき鋼板の量産法として一般的には
電気めっき法と溶融めっき法とがあるが、電気めっき法
では、低温で処理するので熱影響による相変化が無くめ
つき皮膜の成分コントロールも容易であるが、めっき(
=f着量を多くするには処理時間を増さねばならない。
[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength.In particular, galvanized steel sheets are used in large quantities for the interior and exterior panels of automobiles, taking into consideration workability and paintability in addition to good resistance. It is used. Generally speaking, there are two methods for mass production of galvanized steel sheets: electroplating and hot-dip plating.Since electroplating is processed at low temperatures, there is no phase change due to heat effects, and it is easy to control the composition of the plating film. However, plating (
= f In order to increase the amount of deposit, the processing time must be increased.

これに対して、溶融めっき法では処理時間を増すことな
く簡単に付着量を増すことが出来、めっき後熱処理を施
すことにより容易にFeZn合金を作ることが出来る。
On the other hand, with the hot-dip plating method, the amount of adhesion can be easily increased without increasing the processing time, and an FeZn alloy can be easily produced by performing heat treatment after plating.

しかし、めっき皮膜組成と生成される相のコントロール
に工夫を要する。近年自動車用の鋼板では、塩害への対
処等もあってより高度の耐食性が要求され、これに呼応
して、付着量が容易に確保出来、且つ経済的な溶融亜鉛
めっきを主体に、めっき組成や相コントロールを上手に
行い、高い耐食性を確保しながらその上で加工性や塗装
性を合わせ持っためつき鋼板が求められている。
However, it requires some effort to control the composition of the plating film and the phases produced. In recent years, steel sheets for automobiles have been required to have a higher degree of corrosion resistance in order to deal with salt damage, etc. In response to this, we have developed plating compositions, mainly hot-dip galvanizing, which can easily secure a coating amount and is economical. There is a need for a toughened steel plate that has good processability and phase control, ensures high corrosion resistance, and has both workability and paintability.

加工性で最も問題になるのが耐パウダリング性てあり、
塗装性で問題になるのが耐クレータリング性で2δる。
The most important issue in processability is powdering resistance.
The problem with paintability is cratering resistance, which increases by 2δ.

パウダリングとは、プレス成形の際にめっき皮膜が杓状
になって脱落する現象であり、クレータリングとは、め
っき皮膜に化成処理を施した後行う電着塗装処理におい
て塗膜に目視できる凹凸(クレータ)が発生ずる現象で
ある。
Powdering is a phenomenon in which a plating film becomes ladle-shaped and falls off during press molding, and cratering is a phenomenon in which the plating film becomes visually visible in the electrocoating process that is performed after chemical conversion treatment. This is a phenomenon in which a crater (crater) is generated.

前者はめっき皮膜中に鉄含有率の高い「相(Fe3 Z
n1O+ Fe 20〜28wt%)が生成され、これ
が硬くて脆いために起こり、後者はめつき皮膜表面の不
均一さ(表面形状、酸化膜、めっき皮膜相構造等)に起
因して発生する。
The former has a high iron content phase (Fe3Z) in the plating film.
n1O+ Fe (20 to 28 wt%) is generated, and this occurs because the plated film is hard and brittle, and the latter occurs due to non-uniformity of the plated film surface (surface shape, oxide film, plated film phase structure, etc.).

従来、自動車用に使用されている合金化溶融亜鉛めっき
鋼板は、溶融めっき後金めっき皮膜平均の鉄含有率が1
0wt、%前後に達するまで合金化処理を施し、めっき
表面までFeを拡散させて耐食性、特に塗装後耐食性を
向上させたものである。
Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles have an average iron content of 1 after hot-dipping.
Alloying treatment is performed until it reaches around 0 wt.%, and Fe is diffused to the plating surface to improve corrosion resistance, especially post-painting corrosion resistance.

即ち、鋼板に連続的に前処理(熱処理を含む)を施して
素材を調整した後、亜鉛ご溶融しためっき浴に浸漬して
めっきし、後続してこのめっき鋼板を合金化炉内で50
0℃から700℃の温度に急速に昇温させ短時間(10
〜30秒)保持して、めっき皮膜の鉄含有率を10%前
後に合金化させたものである。しかし、このようにして
作られる合金化溶融亜鉛めっき鋼板は急速な昇温によっ
て高温に加熱されるので、めっき皮膜中の鉄含有量が場
所により異なりがちで、めっき皮膜の面方向及び深さ方
向共に合金化が不均一になること、これに加えてめっき
皮膜内での鉄濃度勾配が大きくなり、表層の鉄含有量を
確保するため鋼素地との界面の鉄含有率が高まり「相の
生成が避けられないこと、更に高温処理と急速冷却によ
りめっき皮膜に熱応力が発生すること等の問題を抱えて
いる。
That is, after pre-treating (including heat treatment) a steel plate continuously to adjust the material, it is immersed in a zinc-molten plating bath for plating, and then this plated steel plate is heated for 50 min in an alloying furnace.
Rapidly raise the temperature from 0℃ to 700℃ for a short period of time (10
~30 seconds) to alloy the plating film with an iron content of around 10%. However, since the alloyed hot-dip galvanized steel sheets produced in this way are heated to high temperatures due to rapid temperature rise, the iron content in the plating film tends to vary depending on the location, and the iron content in the plating film tends to vary in the surface direction and depth direction. In addition to this, the iron concentration gradient within the plating film increases, and in order to secure the iron content in the surface layer, the iron content at the interface with the steel base increases, resulting in the formation of "phases". Furthermore, high temperature treatment and rapid cooling generate thermal stress in the plating film.

一方、合金1ヒ処理を一次二次の二工程に分けて処理す
る方法が提案されている。例えば、特公昭59−145
41号では、−次加熱において、めっき皮膜の平滑性を
得るためにZnめっき皮膜を再溶融させる急速昇温高温
加熱を行う。この加熱では鉄含有率を2.2〜5.5w
t%の低い範囲に留まるので、この−次加熱の結果に応
じて、二次加熱を亜鉛の融点以下の低温で時間をかけて
行い、鉄含有率を6〜13wt%の範囲に納めるもので
ある。そしてこの方法によって、表面が平滑で外観が優
れ、且つ加工の際に剥離やパウダリングのない合金化溶
融亜鉛めっき皮膜が得られることを開示している。
On the other hand, a method has been proposed in which the Alloy 1 treatment is divided into two steps: primary and secondary. For example, Tokuko Sho 59-145
In No. 41, in the secondary heating, rapid temperature rise and high temperature heating is performed to remelt the Zn plating film in order to obtain smoothness of the plating film. In this heating, the iron content is 2.2 to 5.5w.
Since the iron content remains in a low range of t%, depending on the result of this secondary heating, secondary heating is performed over a period of time at a low temperature below the melting point of zinc to keep the iron content within the range of 6 to 13 wt%. be. It is also disclosed that by this method, it is possible to obtain an alloyed hot-dip galvanized film with a smooth surface, excellent appearance, and no peeling or powdering during processing.

他方、めっき皮膜表層のみの鉄含有率を高めてmクレー
タリング性を改善したものも提案されている。例えば、
特公昭58−15554号の提案は、耐食性金属層を内
層とし、その上に鉄含有率の高いFe−Zn合金被覆層
を付してカチオン電着塗装性を向上させためつき鋼板で
ある。この提案では、内層である前記耐食性金属層とし
て溶融亜鈴めっき後に熱処理によりFe−Zn合金化し
た合金化溶融亜鉛めっき層が開示されている。
On the other hand, it has also been proposed to improve the m-cratering property by increasing the iron content only in the surface layer of the plating film. for example,
The proposal of Japanese Patent Publication No. 58-15554 is a tamped steel plate with a corrosion-resistant metal layer as an inner layer and a Fe--Zn alloy coating layer with a high iron content on top of the inner layer to improve cationic electrodeposition coating properties. This proposal discloses an alloyed hot-dip galvanized layer which is made into an Fe--Zn alloy by heat treatment after hot-dip plating as the inner corrosion-resistant metal layer.

[発明が解決しようとする課題] しかしながら上述した特公昭59−14541号では、
耐クレータリング性を満足するものではない、耐クレー
タリング性に関しては、表面の鉄含有率は不十分であり
、又、耐パウダリング性に関しても、溶融亜鉛めっき後
急速昇温高温加熱によって合金化処理を行うので合金化
反応が不均一に進むことが避けられず、その結果、加工
性に劣る「層が成長してしまう、又、場合によっては、
合金化されない部分と合金化の進んだ部分とが混在して
いわゆる焼けむらの現象を呈したりする。
[Problem to be solved by the invention] However, in the above-mentioned Japanese Patent Publication No. 59-14541,
The iron content on the surface is insufficient for cratering resistance, and for powdering resistance, alloying by rapid temperature rise and high temperature heating after hot-dip galvanizing Because of the processing, it is unavoidable that the alloying reaction progresses unevenly, resulting in the growth of a layer with poor workability, and in some cases,
Unalloyed portions and highly alloyed portions coexist, resulting in a so-called uneven burning phenomenon.

このように、−次加熱が不均一になり易いので、−次加
熱の結果を基にした二次加熱条件が極めて複雑になり実
操業ではその実施に大きな困難を伴う。
As described above, secondary heating tends to be non-uniform, so secondary heating conditions based on the results of secondary heating become extremely complicated, and implementation thereof is very difficult in actual operation.

特公昭58−15554号では、めっき表面の鉄濃度を
飛躍的に高めたので、耐クレータリング性は改善される
が、溶融亜鉛めっき後の熱処理によって合金化を完結さ
せているので、特公昭59−14541号と同様に合金
化の不均一さの問題があり、加えてめっき皮膜内での鉄
濃度勾配が大きくなり、鉄濃度の高くなる鋼素地との界
面では「相が成長してしまう、又、急熱急冷による熱応
力も耐パウダリング性にとっては好ましくない このように、附パウダリング性、耐クレータリング性を
満たすべく工夫がなされてきたが、未だ両特性を共に満
足させる溶融亜鉛めっき鋼板は得られていない。
In Japanese Patent Publication No. 58-15554, the iron concentration on the plating surface was dramatically increased, improving the cratering resistance, but since alloying was completed by heat treatment after hot-dip galvanizing, Similar to No. 14541, there is the problem of non-uniform alloying, and in addition, the iron concentration gradient within the plating film becomes large, and at the interface with the steel base where the iron concentration becomes high, "phases grow". In addition, thermal stress caused by rapid heating and cooling is also unfavorable for powdering resistance.Thus, efforts have been made to satisfy powdering resistance and cratering resistance, but there is still no hot-dip galvanizing that satisfies both properties. No steel plates were obtained.

この問題を解決するために、この発明はなされたもので
、耐食性に加えて耐パウダリング性と耐クレータリング
性とを共に満たすめっき鋼板の製造法を提供することを
目的とするものである。
In order to solve this problem, the present invention was made, and an object of the present invention is to provide a method for manufacturing a plated steel sheet that satisfies not only corrosion resistance but also powdering resistance and cratering resistance.

[課題を解決するための手段及び作用]この目的を達成
するための手段は、鋼板の少なくとも片面に、溶融亜鉛
めっきによる第−層とその上のFe+Mnめっきによる
第二層とを熱処理して形成しためっき皮′膜を有し、該
めっき皮膜は、表層が前記第二層のFe+Mnめっきで
あって、内層が厚さ0.5μmの鋼素地との境界層を除
いてδ1相とζ相とからなり、且つ面方向に鉄およびマ
ンガン含有率が均一に分布していることを特徴とする加
工性、塗装性に優れた合金化溶融亜鉛めっき鋼板である
[Means and effects for solving the problem] A means for achieving this object is to heat-treat and form a first layer of hot-dip galvanizing and a second layer of Fe+Mn plating on at least one side of a steel plate. The plating film has a surface layer of the second layer of Fe+Mn plating, and an inner layer of δ1 phase and ζ phase except for the boundary layer with the steel base having a thickness of 0.5 μm. This is an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, characterized by having iron and manganese contents uniformly distributed in the surface direction.

上記合金化溶融亜鉛めっき鋼板の製造する方法として次
のものがある。
The following methods are available for producing the above-mentioned alloyed hot-dip galvanized steel sheet.

一つの方法は次のようである。One method is as follows.

(イ)通常の前処理を施した鋼板をAl1.05wt%
以上0.3wt%以下、且つPb0.2wt%以下、を
含有する溶融亜鉛めっき浴に浸漬して30g/m”以上
90 r7m”以下のめっきを施′す工程。
(b) Al1.05wt% steel plate subjected to normal pretreatment
A step of applying plating of 30 g/m" or more and 90 r7 m" or less by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less.

(ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程。
(b) A process in which the spangles are refined while the plating film is still in a molten state.

(ハ)めっき皮膜が固化した後スキンバス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程。
(c) After the plating film has solidified, perform a skin bath treatment,
A process to smooth the surface of hot-dip galvanized film.

(ニ)この鋼板の片面又は両面に0.5g/ri+”以
上10g/ui”以下のFe−Mnめっきを施す工程。
(d) A step of applying Fe-Mn plating of 0.5 g/ri+" to 10 g/ui" on one or both sides of the steel plate.

(ホ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雲囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の範囲内の温度
で10分から50時間加熱する工程。
(e) The steel plate plated in the above step is heated in an open coil state in a batch type annealing furnace maintained in a non-oxidizing or reducing cloud atmosphere at a temperature of 320°C or higher and lower than the melting point of zinc for 10 minutes to 50 minutes. The process of heating for hours.

他の方法は次のようである。Another method is as follows.

前記(イ)の溶融亜鉛めっき工程の後、めっき皮膜が溶
融状態であるうちに鋼板の片面又は両面にF e  M
 nパウダーを吹き付けて0.5g/m”以上10g/
m2以下の上層めっきを施す工程を含み、その後前記(
ハ)、(ニ)、(ホ)の工程を含む合金化溶融亜鉛めっ
き鋼板を製造する方法である。
After the hot-dip galvanizing step (a) above, F e M is applied to one or both sides of the steel sheet while the plating film is in a molten state.
Spray n powder to 0.5g/m” or more 10g/
It includes a step of applying an upper layer plating of less than m2, and then the above (
This is a method for manufacturing an alloyed hot-dip galvanized steel sheet including the steps c), (d), and (e).

以上の手段について、以下にその作用も含め、詳しく述
べる。
The above means will be described in detail below, including their effects.

先ず、めっき用の鋼板は冷延鋼板でも熱延鋼板でもよく
、通常の前処理として表面調整とともに焼鈍処理を施し
てもよい。
First, the steel plate for plating may be a cold-rolled steel plate or a hot-rolled steel plate, and may be subjected to surface conditioning and annealing treatment as a normal pretreatment.

めっき皮膜表層をF e  M n合金とすると、電着
塗装時のクレータ発生が防止される。即ち2合金化溶融
亜鉛めっき鋼板は、めっき面に燐酸塩処理を施した後カ
チオン電着塗装が施されるが、この化成処理によって生
成される燐酸塩結晶に、Feを含むホスホフィライト [Zn2Fe (PO4)2 4H20]と称する粒状
で緻密な結晶とFeを含まないホバイト[Zn3  (
PO4)2  ・4H20]と称する粗大な針状結晶と
がある。これらの鱗酸塩結晶生成時に表層にMnが存在
すると、ホパイト中のZnの一部がMnと置き換わり結
晶が緻密になる。またFeの存在はホスホフィライトを
形成し易くする。クレータ発生原因の一つに化成処理皮
膜欠陥部への局所的な電流集中が考えられるが、緻密な
結晶皮膜は欠陥部が少ない。したがって、表層がFe−
Mn合金であるとクレータは生じにくくなる。
When the surface layer of the plating film is made of FeMn alloy, the generation of craters during electrodeposition coating is prevented. In other words, 2-alloy hot-dip galvanized steel sheets are subjected to cationic electrodeposition coating after phosphate treatment on the plated surface, but phosphophyllite [Zn2Fe] containing Fe is added to the phosphate crystals produced by this chemical conversion treatment. Granular and dense crystals called (PO4)2 4H20] and Fe-free hovite [Zn3 (
There are coarse needle-like crystals called PO4)2 4H20]. If Mn is present in the surface layer during the formation of these scalate crystals, part of the Zn in hopite is replaced with Mn, and the crystals become dense. The presence of Fe also facilitates the formation of phosphophyllite. One of the causes of crater generation is thought to be localized current concentration in the defective areas of the chemical conversion coating, but dense crystalline coatings have fewer defects. Therefore, the surface layer is Fe-
If it is a Mn alloy, craters are less likely to occur.

合金化溶融亜鉛めっき鋼板の場合、めっきけ着量と皮膜
中の鉄およびマンガン3有率によって耐食性の殆どが決
定される。Znめっき皮膜はFeMn合金化することに
よって、裸耐食性、塗装後耐食性は共に著しく向上する
In the case of alloyed hot-dip galvanized steel sheets, most of the corrosion resistance is determined by the amount of coating and the content of iron and manganese 3 in the coating. By forming the Zn plating film into an FeMn alloy, both bare corrosion resistance and post-painting corrosion resistance are significantly improved.

本発明では前記した表層と内層の境界層が相互に熱拡散
されて形成した一体構造を有することが重要である。熱
拡散された一体構造によって表層と内層の合金成分濃度
が連続して変化しFeM n合金化Znめっき層を形成
し、めっき皮膜は機械的性質や電気化学的性質が隣接し
た部分で外端に異なることが無く、加工性及び耐食性に
おいて優れたものとなる。
In the present invention, it is important that the boundary layer between the surface layer and the inner layer has an integral structure formed by mutual thermal diffusion. Due to the thermally diffused integral structure, the concentration of alloy components in the surface layer and inner layer changes continuously to form a FeM n alloyed Zn plating layer, and the mechanical properties and electrochemical properties of the plating film change at the outer edge in adjacent areas. There is no difference between the two types, and the processability and corrosion resistance are excellent.

めっき皮膜の大半を占める内層が、厚さ05μmの僧素
地との境界層を除いて、硬くて脆い「相を含まないで、
且つ鉄およびマンカンの含有率の分布が面方向に均一で
あると加工時のパウダリングを防止することが出来る。
The inner layer, which makes up the majority of the plating film, is hard and brittle, except for the 05 μm thick boundary layer with the base material.
In addition, if the distribution of iron and mankan content is uniform in the surface direction, powdering during processing can be prevented.

F相は内層部と鋼素地との境界に生成し易いが、このF
相が検出されないめっき皮膜は耐パウダリング性が良好
である。そしてr相が0.5μm以上の厚さに成長して
いないと検出することは困難である。
The F phase is likely to form at the boundary between the inner layer and the steel base, but this F phase
A plating film in which no phase is detected has good powdering resistance. It is difficult to detect the r-phase unless it has grown to a thickness of 0.5 μm or more.

本発明の合金化溶融亜鉛めっき鋼板は用途によっては他
面にはめっき皮膜がなくても或は他のめっき皮膜を形成
してもよい。
Depending on the use, the alloyed hot-dip galvanized steel sheet of the present invention may have no plating film on the other side or may have another plating film formed thereon.

以下に、本発明の製造方法について述べる。The manufacturing method of the present invention will be described below.

溶融亜鉛めっき浴には通常、Fe−Zn合金反応の抑制
やめっき面の平滑化等のためA!2が0.2%前?k 
t3加されており、スパングルgBのためPbが含まれ
ている9このうちAIは合金1ヒ抑制効果を持つので、
0 、05 wt、%以上添加し、溶融亜鉛めっき浴浸
漬後のFe−Zn合金が部分的且つ不均一に生成するこ
とを防ぐ。二の工程で不均一にF e −Z rr @
金を生成させないことは重要なことであり、−旦不均−
化すると後の工程て修正することが出来ない。Aρの添
加量が多過ぎて0.3wt%を超えると合金化の抑制効
果が過剰となり、後の合金化処理に時間が掛かり過ぎ工
業的には不適切になる。pbは合金化反応には直接関与
しないが、多量のpbは耐パウダリング性を低下させる
ので、0.2wt、%以下に制限しなければならない。
A! is usually used in hot-dip galvanizing baths to suppress Fe-Zn alloy reactions and smooth the plated surface. 2 was 0.2% before? k
t3 is added, and Pb is included because of the spangled gB.9 Of these, AI has the effect of suppressing alloy 1, so
Addition of 0.05 wt.% or more prevents Fe-Zn alloy from forming partially and non-uniformly after being immersed in a hot-dip galvanizing bath. In the second step, F e −Z rr @
It is important not to generate gold;
Once this happens, it cannot be corrected in subsequent processes. If the amount of Aρ added is too large, exceeding 0.3 wt%, the effect of suppressing alloying will be excessive, and the subsequent alloying process will take too much time, making it industrially inappropriate. Although PB does not directly participate in the alloying reaction, a large amount of PB reduces powdering resistance, so it must be limited to 0.2 wt.% or less.

内層は30g/m”がら90g/m2の付着量が高耐f
j化のために適当であり、この場き表層のように高い鉄
含有率は必要でなく5wシ%〜20wt%の範囲が好ま
しい。なお90g/m2を超えた場合には過剰品質とな
るばかりか、後の工程の低温で行う合金化処理において
長時間を要し生産性を低下させる、又、一般にめっき皮
膜が厚くなると加工時に皮膜の破壊や剥離が起こること
があり、合金化溶融亜鉛めっき鋼板の場合ではパウダリ
ングが起こり易くなる。
The inner layer has a coating weight of 90g/m2 compared to 30g/m2, making it highly resistant to f.
In this case, a high iron content as in the surface layer is not necessary, and a range of 5 wt % to 20 wt % is preferable. If it exceeds 90 g/m2, not only will it result in excessive quality, but it will also take a long time in the subsequent alloying process at low temperatures, reducing productivity. In the case of alloyed hot-dip galvanized steel sheets, powdering is more likely to occur.

この溶融亜鉛めっき皮膜が溶融状態であるうちにスパン
グルを微細化し、更にめっき皮膜が固化した後スキンパ
ス処理を行うことによって平滑なめっき面が得られ、こ
の後に施す上層めっきの被覆率が向上する。その結果、
耐クレータリング性を効率的に向上させることができる
と共に、塗装後の鮮映性を向上させることもできる。ス
キンパスは伸長率0,3%以上で行うとめつき面は平滑
となるが、伸長率が大き過ぎて5%を超えると、−射的
薄板用鋼板では加工性に影響するおそれがある。
By refining the spangles while the hot-dip galvanized film is in a molten state and further performing a skin pass treatment after the galvanized film has solidified, a smooth plated surface is obtained, and the coverage of the subsequent upper layer plating is improved. the result,
Not only can the cratering resistance be efficiently improved, but also the sharpness after painting can be improved. If the skin pass is performed at an elongation rate of 0.3% or more, the mating surface will be smooth, but if the elongation rate is too large and exceeds 5%, there is a risk that the workability of steel sheets for shooting thin plates will be affected.

Fe−Mn合金めつきは、耐クレータリング性を確保す
ると共に、この陵の加熱処理において、先に施した溶融
亜鉛めっき層へ鋼素地とは反対面からFeおよびMnを
拡散させその結果めっき皮膜内層の鉄濃度勾配を小さく
押さえることになる。上記合金めっきの処理方法は、亜
鉛の融点より高い温度で処理する方法でなければ、電気
めっき、蒸着めっき、溶射等どのような方法でもよい、
この合金めつき処理を合金パウダー吹き付けで行うとき
は、先の溶融亜鉛めっき層が溶融状態のうちに行うとス
パングルの微細化も同時に行われ、工程を一つ省くこと
が出来る。
Fe-Mn alloy plating not only ensures cratering resistance but also diffuses Fe and Mn into the previously applied hot-dip galvanized layer from the side opposite to the steel base during the heat treatment of this rib, resulting in a plating film. This will keep the iron concentration gradient in the inner layer small. The processing method for the alloy plating may be any method such as electroplating, vapor deposition plating, thermal spraying, etc., as long as it is not processed at a temperature higher than the melting point of zinc.
When this alloy plating treatment is performed by alloy powder spraying, if it is performed while the previous hot-dip galvanized layer is in a molten state, the spangles will be made finer at the same time, and one step can be omitted.

表層は付着量が0.5g/m”から10g/m’である
ことが必要である。0.5g/m”未満ではめっき面全
体にわたって十分にFeを供給することが出来ない。ま
た10g/m”を超えて付着した場合にはその効果が飽
和し、コスト的に不利になるばかりでなく、塗装後耐食
性においても赤錆が発生し易くなる。
The surface layer needs to have a coating weight of 0.5 g/m" to 10 g/m'. If it is less than 0.5 g/m", Fe cannot be sufficiently supplied over the entire plated surface. Furthermore, if the amount exceeds 10 g/m'', the effect is saturated and not only is it disadvantageous in terms of cost, but also red rust is likely to occur in terms of corrosion resistance after painting.

上記した二度のめつき工程を経ためつき鋼板を加熱処理
するが、非酸化性又は還元性雰囲気で行うのは表面の酸
化を防ぎ、塗装前の化成処理において化成皮膜結晶が不
均一になることを避けるためであり、バッチ式焼鈍炉内
で行うのは低温で時間を掛けて処理するからである。オ
ープンコイルの状態で加熱するのは、均一に加熱するこ
とによって合金1ヒにむらが生ずることを防止すると同
時にめっき面同士が1寸着して欠陥が発生することを防
ぐためである。タイトコイルの状態では、温度分布が不
均一となり、部分的に合金化速度の大きい部分と小さい
部分とができてしまう。特に、鋼板長手方向にこの不均
一が生じ、高品質製品は得られ難い。加熱は低温で行う
が、320℃以上の温度が必要である。320℃未満で
は塗装後耐食性を確保するに足る合金fヒ度を得るのに
時間が掛かり過ぎる。温度を亜鉛の融点(419,5℃
)よりも高くすると、合金化が急速に進む箇所が現れ又
F相の生成も無視できなくなる。更にオープンコイルの
鋼板間に挿入するスペーサーがめつき面に痕跡を残すお
それも出てくる。第1図は上記の温度範囲で、パウダリ
ングとクレータの両者が共に発生しない条件を調べたも
ので、横軸は加熱時間縦軸は加熱温度である。図で、点
a、b。
The pre-glazed steel sheet that has gone through the above two plating processes is heat treated, but doing so in a non-oxidizing or reducing atmosphere prevents surface oxidation, which may result in non-uniform chemical conversion coating crystals during the chemical conversion treatment before painting. This is to avoid this, and the reason is that the process is carried out in a batch type annealing furnace at a low temperature and over a long period of time. The reason for heating in an open coil state is to uniformly heat the alloy to prevent unevenness from occurring in the alloy, and at the same time to prevent the plating surfaces from coming into contact with each other and causing defects. In a tight coil state, the temperature distribution becomes non-uniform, and there are parts where the alloying rate is high and parts where the alloying rate is low. In particular, this non-uniformity occurs in the longitudinal direction of the steel plate, making it difficult to obtain a high quality product. Heating is performed at a low temperature, but a temperature of 320° C. or higher is required. If it is lower than 320°C, it takes too much time to obtain the alloy f degree sufficient to ensure corrosion resistance after painting. The temperature is set to the melting point of zinc (419,5℃
), there will be places where alloying progresses rapidly and the formation of F phase cannot be ignored. Furthermore, there is a risk that the spacer inserted between the steel plates of the open coil may leave marks on the plating surface. FIG. 1 shows the conditions under which both powdering and cratering do not occur within the above temperature range, where the horizontal axis represents the heating time and the vertical axis represents the heating temperature. In the figure, points a and b.

c、dを結ぶ線で囲まれた範囲が、パウダリング及びク
レータを発生させない実操業上好ましい条件範囲で、加
熱時間については、a点の時間座標からC点の時間座標
まで、即ち10分以上50時間以下となる。以上の加熱
条件で熱処理を行うと、Feは鋼索地側と表層めっき側
とから拡散し、Mnは表層から拡散するので、鋼索地側
に大きなFe濃度勾配が出来ずに適正な合金化が達成さ
れる。このため、「相は実質的に生成せず加工性の良い
めっき皮膜が得られる。そして、このめっき皮膜は、急
速な高温加熱を避けているので、面に沿っても均一とな
る。又、鉄含有率も5wL%から20wt%の範囲に収
まる。しかし、実操業時に起こりがちな条件のバラツキ
等を考えると特に好ましいのは、加熱温度が320℃か
ら380℃まで、加熱時間が30分から10時間までで
ある。この場合めっき皮膜の鉄含有率は5wt%から1
4wt%の範囲に収まる。更に、この熱処理によって、
表層と内層はF e  M nの熱拡散によって一体楕
遣となる。
The range surrounded by the line connecting c and d is the preferred condition range for actual operation that does not cause powdering or cratering, and the heating time is from the time coordinate of point a to the time coordinate of point C, that is, 10 minutes or more. Less than 50 hours. When heat treatment is performed under the above heating conditions, Fe diffuses from the steel cable base side and the surface plating side, and Mn diffuses from the surface layer, so proper alloying is achieved without creating a large Fe concentration gradient on the steel cable base side. be done. For this reason, a plating film with good workability is obtained with virtually no phase formation.And since rapid high-temperature heating is avoided, this plating film is uniform even along the surface.Also, The iron content also falls within the range of 5wL% to 20wt%.However, considering the variations in conditions that tend to occur during actual operation, it is particularly preferable to set the heating temperature to 320℃ to 380℃ and the heating time from 30 to 10℃. In this case, the iron content of the plating film ranges from 5 wt% to 1
It falls within the range of 4wt%. Furthermore, this heat treatment
The surface layer and the inner layer become integrally elliptical due to thermal diffusion of F e M n.

[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、上層めっ
き条件及び合金化処理条件を変えて処理した17例(実
施例)の合金化溶融亜鉛めっき鋼板について、めっき皮
膜中の鉄含有率を調べ、パウダリング試験及びクレータ
リング試験を行って評価した。なお比較のために、この
発明の範囲外の条件で処理した6例(比較例)および従
来技術による3例(従来例)についても同様に調べた。
[Example] Regarding alloyed hot-dip galvanized steel sheets of 17 examples (Examples) in which two types of steel sheets were used and the hot-dip galvanizing conditions, upper layer plating conditions, and alloying treatment conditions were changed, iron in the plating film was The content was investigated and evaluated by performing a powdering test and a cratering test. For comparison, six examples (comparative examples) treated under conditions outside the scope of the present invention and three examples (conventional examples) according to the prior art were also examined in the same manner.

条件の詳細は以下の通りである。Details of the conditions are as follows.

用いた鋼板は板厚0.8市の冷延鋼板で、汎用されてい
る薄板用低炭素A1キルト(素材A)及び高加工用でパ
ウダリングを起こし易いと言われている超低炭チタン含
有jfl(素材B)とである。
The steel plates used were cold-rolled steel plates with a thickness of 0.8 mm, including low-carbon A1 quilt (material A) for thin plates, which is commonly used, and ultra-low carbon titanium, which is said to be prone to powdering due to high processing. jfl (material B).

各々の成分を第1表に示す。Table 1 shows each component.

第1表    (重量%) 溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連続
式めっき設備で行い、めっき浴面後に設けられた気体絞
り装置によって付着量の調整を行い、つづいてミストス
プレィによりスパングルを微細化し、めっき層が冷却後
伸長率1.5%でスキンパスを行い表面を平滑にした。
Table 1 (% by weight) Hot-dip galvanizing is carried out in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace. The spangles were made fine by spraying, and after the plating layer was cooled, a skin pass was performed at an elongation rate of 1.5% to smooth the surface.

Fe−Mn合金めっきには、電気めっき、プラズマ溶射
又はパウダースプレィの方法を用いたが、各7次の条件
で処理した。
Electroplating, plasma spraying, or powder spraying was used for Fe-Mn alloy plating, and each process was performed under the following seven conditions.

(1)電気めっき M n SO4・H2O: 20〜200g/4F e
 SO4・7H20: 20g/1(NH4)2SO4
: 200g/ρ N a 2 S O4: 30 g/ 1pH:3.2
.  浴温:15℃ カソード電流密度: 3 A / d m”(2)プラ
ズマ溶射 プラズマガス;Ar 溶射入pj!、:20KW 溶射路M : 1.0.0正 平均粉末粒径:約5μm 粉末供給速度: 5g/nin −dm”(3)パウダ
ースプレィ 平均粉末粒径:約5μm 粉末供給速度: 3g/mm −dm2めっき皮膜表層
および内層中の鉄およびマンガン含有率は、それぞれオ
ージェ電子スペクトロメトリおよびグリムグロー放電発
光分光分析によって調べた。
(1) Electroplating MnSO4・H2O: 20-200g/4Fe
SO4・7H20: 20g/1(NH4)2SO4
: 200g/ρ Na2SO4: 30g/1pH: 3.2
.. Bath temperature: 15°C Cathode current density: 3 A/d m” (2) Plasma spraying Plasma gas: Ar Spraying input pj!: 20KW Spraying path M: 1.0.0 Positive average powder particle size: Approx. 5μm Powder supply Speed: 5 g/nin-dm” (3) Powder spray average powder particle size: Approximately 5 μm Powder feeding rate: 3 g/mm-dm2 The iron and manganese contents in the surface layer and inner layer of the plating film were determined by Auger electron spectrometry and Grimm, respectively. It was investigated by glow discharge emission spectroscopy.

耐パウダリング性は、曲率半径2關で90度に曲げた後
、曲げの内側に粘着テープを貼り付け、これを411シ
て、パウダーがこの粘着テープに付着した状況を目視観
察し、点数付けて評価した。
Powdering resistance is determined by bending the product 90 degrees with two radii of curvature, pasting adhesive tape on the inside of the bend, rolling it 411 times, visually observing whether powder has adhered to the adhesive tape, and giving a score. It was evaluated.

評点の基準は、 1;全く付着無し、2;極くわずかに付着、3:わずか
に付着、4;少し付着、 5;かなり付着、の五段階である。
The rating criteria is on a five-point scale: 1: no adhesion at all, 2: very little adhesion, 3: slightly adhesion, 4: a little adhesion, and 5: considerable adhesion.

耐クレータリング性は、めっき面に化成処理を施し、次
いで電着塗装を行い、このとき発生したクレータの数で
評価した。化成処理には市販されている浸漬型の燐酸塩
系処理剤を用いた。電着塗装にはやはり市販されている
カチオン電着塗料を用いたが、調合後−週間攪拌し、極
間距離4 cmで電着電圧300vを瞬時に印加して電
着した。
Cratering resistance was evaluated by applying a chemical conversion treatment to the plated surface, followed by electrodeposition coating, and evaluating the number of craters generated at this time. A commercially available dipping type phosphate treatment agent was used for the chemical conversion treatment. A commercially available cationic electrodeposition paint was also used for electrodeposition, and after preparation, it was stirred for a week and electrodeposition was carried out by instantaneously applying an electrodeposition voltage of 300 V with a distance between electrodes of 4 cm.

これらの例の各々の処理条件と調査結果を第2表〜第4
表に示す。
The processing conditions and investigation results for each of these examples are shown in Tables 2 to 4.
Shown in the table.

実施例では、素材Bでも耐パウダリング性に劣るものは
なく、限界付着量である実施例NIL6及び限界加熱時
間に近い実施例N117とで、極く僅かにパウダリング
が認められたが、実用上は問題がない。耐クレータリン
グ性では、表層部のめっき付着量が下の限界である実施
例No、 13で1個乃至2個の小さなりレータが発見
されたが、これも実用上は問題ない。このように、実施
例では全ての合金化溶融亜鉛めっき鋼板が耐パウダリン
グ性と耐クレータリング性とを兼ね備えている。又、内
層の鉄の含有率も6.0w4%がら13wt%の範囲内
にあり、塗装後耐食性を十分に確保するものである。
In the Examples, there was no inferiority in powdering resistance even with Material B, and very slight powdering was observed in Example NIL6, which had the limit adhesion amount, and Example N117, which was close to the limit heating time. There is no problem above. In terms of cratering resistance, one or two small craters were found in Example No. 13, where the amount of plating on the surface layer was at the lower limit, but this also poses no problem in practice. In this way, all the alloyed hot-dip galvanized steel sheets in the examples have both powdering resistance and cratering resistance. Further, the iron content of the inner layer is within the range of 6.0w4% to 13wt%, which ensures sufficient corrosion resistance after painting.

一方、発明の範囲から外れた条件で処理された比較例で
は、浴中A(の無い比較例NO,1、加熱時間過剰の比
較例NO,2、浴中pbの多い比較例N(L3 、付着
量の多すぎる比較例N[L4、上層部の無い比較例Na
 5、加熱温度の高過ぎる比較例N[L 6等耐パウダ
リング性か耐クレータリング性の何れかに問題がある。
On the other hand, in the comparative examples treated under conditions outside the scope of the invention, Comparative Example No. 1 with no A(in the bath), Comparative Example No. 2 with excessive heating time, Comparative Example N with a large amount of PB in the bath (L3, Comparative example N with too much adhesion [L4, comparative example Na without upper layer]
5. Comparative Example N [L 6 etc. where heating temperature is too high. There is a problem in either powdering resistance or cratering resistance.

従来例では、従来例1は急速昇温高速加熱のみにより合
金化したもので両特性に問題があり、従来例2は急速昇
温高速加熱の後低温で合金化調整したもので耐クレータ
リング性が劣り、従来例3は急速昇温高速加熱によって
合金化しその上に鉄含有量の高いめっき層を付したもの
で、耐パウダリング性に劣る。このように、両特性が同
時には満足されていない。
Regarding conventional examples, Conventional Example 1 was alloyed only by rapid heating and rapid heating, and had problems with both properties, while Conventional Example 2 was alloyed at a low temperature after rapid heating and heating, and had poor cratering resistance. Conventional Example 3 is alloyed by rapid heating and a plating layer with a high iron content is applied thereon, resulting in poor powdering resistance. In this way, both characteristics are not satisfied at the same time.

次に本発明によるめっき皮膜の内層の鉄およびマンガン
の含有率分布を調べた。
Next, the content distribution of iron and manganese in the inner layer of the plating film according to the present invention was investigated.

ここでは実施例)J[L 12の合金化溶融亜鉛めっき
コイル(幅1800 mm >の幅方向について、20
0市間隔でめっき内層の鉄およびマンガンの含有率を調
べた。この結果を第2図に示す0図において横軸はコイ
ル左端からの距離、縦軸は鉄およびマンガンの含有率で
あり、○印は実施例Nu、 12の鉄含有率をプロット
したものであり、Δ印はマンガンの含有率をプロットし
たものである。また・印は従来例Na 2の鉄含有率を
プロットしたものである0図から明らかなように実施例
NILL2の鉄含有率は平均8.0wt%であり、全て
の測定点が7.8wt%から8.2wt%の間に分布し
ていた。またマンガン含有率は平均0.5wt%であり
、すべての測定点が0.4wt%から0.6%の間に分
布している。また従来例Nα2の鉄含有率は平均8.3
wt%であり、全ての測定点が8.0wt%から9.0
wt%にばらつく。したがって、本発明においては面方
向に鉄およびマンガンのばらつきが顕著に少ない。更に
めっき皮膜の底部にF相が存在しているか否かについて
、実施例Na 1からN117迄の合金化溶融亜鉛めっ
き処理を施した試料について、めっき皮膜の上層約三分
の二を取り除きX線回折を行った結果、何れの試料につ
いても「相は検出されなかった。
Here, an example) J [L 12 alloyed hot-dip galvanized coil (width 1800 mm > width direction, 20
The content of iron and manganese in the plating inner layer was examined at intervals of 0. This result is shown in Figure 2, where the horizontal axis is the distance from the left end of the coil, the vertical axis is the content of iron and manganese, and the ○ marks are plots of the iron content of Examples Nu and 12. , Δ marks are plots of manganese content. In addition, the mark ・ is a plot of the iron content of conventional example Na 2.0 As is clear from the figure, the iron content of Example NILL 2 is 8.0 wt% on average, and all measurement points are 7.8 wt%. It was distributed between 8.2 wt% and 8.2 wt%. Moreover, the manganese content is 0.5 wt% on average, and all measurement points are distributed between 0.4 wt% and 0.6%. In addition, the average iron content of conventional example Nα2 is 8.3.
wt%, and all measurement points range from 8.0 wt% to 9.0
It varies in wt%. Therefore, in the present invention, there is significantly less variation in iron and manganese in the surface direction. Furthermore, to determine whether or not the F phase exists at the bottom of the plating film, approximately two-thirds of the upper layer of the plating film was removed from the samples subjected to the alloying hot-dip galvanizing treatment from Examples Na 1 to N117, and X-ray As a result of diffraction, no phase was detected for any of the samples.

[発明の効果] 本発明のめっき鋼板は、めっき皮膜中に「相が実ττ的
に存在せず、鉄含有率が高い表層と内層とが一体構造に
なっており、しかも鉄含有率の分布が面方向に均一な皮
膜を持っているので、十分な耐食性に加えて優れた耐パ
ウダリング性と耐クレータリング性とを共に有しており
、また本発明の方法は上記めっき鋼板を簡単な工程で容
易に製造出来るので産業上効果の大きい発明である。
[Effects of the Invention] The plated steel sheet of the present invention has virtually no phase in the plating film, the surface layer and inner layer with a high iron content have an integral structure, and the iron content distribution is has a uniform film in the surface direction, so it has not only sufficient corrosion resistance but also excellent powdering resistance and cratering resistance. This invention has great industrial effects because it can be easily manufactured through a process.

【図面の簡単な説明】[Brief explanation of drawings]

第1171はこの発明の詳細な説明するための熱悲埋条
件と特性適正との関係を示す図、第2図は本発明の一実
施例の鉄およびマンガン含有率の分布を示す図である。
Fig. 1171 is a diagram showing the relationship between thermal burial conditions and suitability of characteristics for detailed explanation of the present invention, and Fig. 2 is a diagram showing the distribution of iron and manganese content in one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)鋼板の少なくとも片面に、溶融亜鉛めつきによる
第一層とその上のFe+Mnめっきによる第二層とを熱
処理して形成しためっき皮膜を有し、該めっき皮膜は、
表層が前記第二層のFe+Mnめっきであって、内層が
厚さ0.5μmの鋼素地との境界層を除いてδ_1相と
ζ相とからなり、且つ面方向に鉄およびマンガン含有率
が均一に分布していることを特徴とする加工性、塗装性
に優れた合金化溶融亜鉛めっき鋼板。
(1) At least one side of the steel sheet has a plating film formed by heat-treating a first layer of hot-dip galvanizing and a second layer of Fe+Mn plating thereon, and the plating film is
The surface layer is the Fe+Mn plating of the second layer, and the inner layer is composed of δ_1 phase and ζ phase except for the boundary layer with the steel substrate with a thickness of 0.5 μm, and the iron and manganese content is uniform in the surface direction. Alloyed hot-dip galvanized steel sheet with excellent workability and paintability.
(2)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g/m^2以上
90g/m^2以下のめっきを施す工程、 (ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)この鋼板の片面又は両面に0.5g/m^2以上
10g/m^2以下のFe−Mnめっきを施す工程、(
ホ)前記工程でめっきを施した鋼板を非酸化性又は還元
性雰囲気に維持したバッチ式焼鈍炉内でオープンコイル
の状態で320℃以上亜鉛の融点以下の範囲内の温度で
10分から50時間加熱する工程。
(2) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
A step of applying plating of 30 g/m^2 to 90 g/m^2 by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less, (b) The plating film is in a molten state. (c) Performing a skin pass treatment after the plating film has solidified,
A step of smoothing the surface of the hot-dip galvanized film, (d) A step of applying Fe-Mn plating of 0.5 g/m^2 to 10 g/m^2 on one or both sides of the steel sheet, (
e) The steel plate plated in the above step is heated in an open coil state in a batch type annealing furnace maintained in a non-oxidizing or reducing atmosphere at a temperature between 320°C and above and below the melting point of zinc for 10 minutes to 50 hours. The process of doing.
(3)次の工程を含むことを特徴とする加工性、塗装性
に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g/m^2以上
90g/m^2以下のめっきを施す工程、 (ロ)めつき皮膜が溶融状態であるうちに鋼板の片面又
は両面にFe−Mnパウダーを吹き付けて0、5g/m
^2以上10g/m^2以下の上層めっきを施す工程、 (ハ)めっき皮膜が固化した後スキンバス処理を行い溶
融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)前記工程で平滑化した鋼板を非酸化性又は還元性
雰囲気に維持したバッチ式焼鈍炉内でオープンコイルの
状態で320℃以上亜鉛の融点以下の範囲内の温度で1
0分から50時間加熱する工程。
(3) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, which includes the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
A step of applying plating of 30 g/m^2 to 90 g/m^2 by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less, (b) The plating film melts. Spray Fe-Mn powder on one or both sides of the steel plate while it is still in the condition to give 0.5g/m
A step of applying an upper layer plating of ^2 or more and 10 g/m^2 or less, (c) A step of smoothing the surface of the hot-dip galvanized film by performing a skin bath treatment after the plating film has solidified, (d) Smoothing in the above step The steel plate was heated in an open coil state in a batch type annealing furnace maintained in a non-oxidizing or reducing atmosphere at a temperature of 320°C or higher and lower than the melting point of zinc.
A process of heating from 0 minutes to 50 hours.
JP27043288A 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same Expired - Lifetime JP2727595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27043288A JP2727595B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27043288A JP2727595B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02118084A true JPH02118084A (en) 1990-05-02
JP2727595B2 JP2727595B2 (en) 1998-03-11

Family

ID=17486199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27043288A Expired - Lifetime JP2727595B2 (en) 1988-10-26 1988-10-26 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2727595B2 (en)

Also Published As

Publication number Publication date
JP2727595B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JP4786769B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPH05331609A (en) Production of galvannealed steel sheet excellent in image clarity after coating
JPH0238549A (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2004124118A (en) Hot-dip galvanized steel sheet excellent in press formability and appearance and method for producing the same
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH02118084A (en) Hot-dip galvanized alloyed steel sheet excellent in workability and coating property and production thereof
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH02138482A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JPH02122082A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JPS62256959A (en) Manufacture of alloying-plated steel sheet
JPH0128098B2 (en)
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02166261A (en) Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability
KR20010018653A (en) A method for manufacturing hot-dip galvanized steel sheets having good coating quality properties
JPH02166264A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH04276055A (en) Manufacture of differential galvannealed steel
JPH02118089A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JPH02166262A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics