JPH09230296A - Light control element - Google Patents
Light control elementInfo
- Publication number
- JPH09230296A JPH09230296A JP3674496A JP3674496A JPH09230296A JP H09230296 A JPH09230296 A JP H09230296A JP 3674496 A JP3674496 A JP 3674496A JP 3674496 A JP3674496 A JP 3674496A JP H09230296 A JPH09230296 A JP H09230296A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- light
- control electrode
- waveguide
- control element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000002344 surface layer Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Abstract
(57)【要約】
【課題】 光制御素子の電極構造を複雑にすることな
く、低駆動電圧化を実現する。
【解決手段】 光学基板の表面層に少なくとも1本の導
波路1を有し、該導波路1上又は近傍の光学基板上に制
御電極(2及び3)が配置され、該制御電極(2及び
3)に電気信号を印加するための給電電極を有し、制御
電極(2及び3)と給電電極との接続点8の両側に位置
する制御電極の光の入力側2と出力側3の長さが非対称
である光制御素子により上記課題を解決する。
(57) Abstract: A low drive voltage is realized without complicating the electrode structure of a light control element. SOLUTION: At least one waveguide 1 is provided on a surface layer of an optical substrate, and control electrodes (2 and 3) are arranged on the optical substrate at or near the waveguide 1, and the control electrodes (2 and 3) are provided. 3) has a feeding electrode for applying an electric signal, and the length of the light input side 2 and the output side 3 of the control electrode located on both sides of the connection point 8 between the control electrode (2 and 3) and the feeding electrode. The above problem is solved by a light control element having an asymmetric shape.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光制御素子に関す
る。更に詳しくは、本発明は、駆動電圧をより低減する
ことが可能な光制御素子に関する。本発明の光制御素子
は、光通信装置における光スイッチ、光変調器等に好適
に使用できる。TECHNICAL FIELD The present invention relates to a light control element. More specifically, the present invention relates to a light control element capable of further reducing a drive voltage. The light control element of the present invention can be suitably used for an optical switch, an optical modulator, etc. in an optical communication device.
【0002】[0002]
【従来の技術】近年、光通信等の分野において、一定の
周波数かつ高速で光スイッチ及び光変調しうる光制御素
子の研究が活発に行われている。光制御素子は、一般
に、光学基板の表面層に光を通過さす導波路と、光の通
過を制御する電気回路とからなっている。ここで、電気
回路は、集中定数波、進行波形又は定在波形の電気信号
を印加しうる構成を有している。この内、高能率化及び
広帯域化を図る観点から、進行波形を印加しうる電気回
路の構成を有する光制御素子が報告されている(特開平
3−253814号公報)。2. Description of the Related Art In recent years, in the field of optical communication and the like, research on an optical control element capable of performing optical modulation and optical switching at a constant frequency and at high speed has been actively conducted. The light control element generally includes a waveguide that allows light to pass through the surface layer of the optical substrate, and an electric circuit that controls the passage of light. Here, the electric circuit has a configuration capable of applying an electric signal of a lumped constant wave, a traveling waveform, or a standing waveform. Among these, an optical control element having a configuration of an electric circuit capable of applying a traveling waveform has been reported from the viewpoint of achieving high efficiency and wide band (Japanese Patent Laid-Open No. 3-253814).
【0003】しかしながら、光通信の分野では、電気機
器の小型化が進み、それに伴って光制御電極の低駆動電
圧化が望まれている。また、この分野では、広帯域の周
波数に対応さす必要はなく、所望の周波数を含む狭帯域
で十分であるので、効率よく電気信号を共振させること
により光を変調することができれば、低駆動電圧化が可
能である。However, in the field of optical communication, miniaturization of electrical equipment has progressed, and along with this, there has been a demand for a lower drive voltage of the light control electrodes. Further, in this field, it is not necessary to support a wide frequency band, and a narrow band including a desired frequency is sufficient. Therefore, if light can be efficiently modulated by resonating an electric signal, a low driving voltage can be achieved. Is possible.
【0004】例えば、村上等、「定在波形電極を用いた
導波形光変調素子」〔電子情報通信学会技術報告OQE
86−126第71〜78頁(1986)〕には、定在
波形の電気信号を印加しうる構成の電気回路を用いれ
ば、駆動電圧を低減することができることを報告してい
る。上記文献の光制御素子は、光学基板の表面層に導波
路11を有し、導波路11の近傍の光学基板上に形成さ
れた制御電極(光を変調さす機能を有する)12と、整
合電極13と、該制御電極12の中心に接続されている
電気信号を印加するための給電電極14とからなる電気
回路を有し、給電電極14は給電部15と接続されてい
る(図5参照)。For example, Murakami et al., "Waveguide optical modulator using standing waveform electrode" [Technical Report OQE of the Institute of Electronics, Information and Communication Engineers]
86-126, pp. 71-78 (1986)], it is reported that the driving voltage can be reduced by using an electric circuit having a structure capable of applying an electric signal having a standing waveform. The light control element of the above document has a waveguide 11 in a surface layer of an optical substrate, a control electrode (having a function of modulating light) 12 formed on the optical substrate in the vicinity of the waveguide 11, and a matching electrode. 13 and a power supply electrode 14 connected to the center of the control electrode 12 for applying an electric signal. The power supply electrode 14 is connected to the power supply unit 15 (see FIG. 5). .
【0005】[0005]
【発明が解決しようとする課題】しかし、上記文献に記
載されている光制御素子でも、動作周波数が高くなる
と、共振周波数も高くなり、それに応じて制御電極の長
さも短くなる。そのため、駆動電圧が上昇することとな
る。また、制御電極の長さを長くして、高調波共振を生
じさせても、制御電極での導体損失によりその低駆動電
圧化に限界がある。そのため、更なる低駆動電圧化が望
まれていた。ここで、高調波共振とは、共振周波数の中
で最も低い周波数の電気信号による共振(基本波共振)
を基準とし、この共振の整数倍に近い周波数の電気信号
を共振させることを意味する。However, even in the light control element described in the above document, when the operating frequency becomes higher, the resonance frequency also becomes higher, and the length of the control electrode becomes shorter accordingly. Therefore, the drive voltage increases. Further, even if the length of the control electrode is increased to cause harmonic resonance, there is a limit to the reduction of the driving voltage due to the conductor loss in the control electrode. Therefore, further reduction in driving voltage has been desired. Here, the harmonic resonance is the resonance due to the electric signal of the lowest frequency among the resonance frequencies (fundamental wave resonance).
It means that an electric signal having a frequency close to an integral multiple of this resonance is resonated.
【0006】[0006]
【課題を解決するための手段】かくして本発明によれ
ば、光学基板の表面層に少なくとも1本以上の導波路を
有し、該導波路上又は近傍の光学基板上に制御電極が配
置され、該制御電極に電気信号を印加するための給電電
極を有し、制御電極と給電電極との接続点の両側に位置
する制御電極の光の入力側と出力側の長さが非対称であ
ることを特徴とする光制御素子が提供される。Thus, according to the present invention, at least one or more waveguides are provided in the surface layer of the optical substrate, and the control electrode is arranged on or near the waveguide, It has a power feeding electrode for applying an electric signal to the control electrode, and the lengths of the light input side and the light output side of the control electrode located on both sides of the connection point between the control electrode and the power feeding electrode are asymmetrical. A featured light control element is provided.
【0007】図1を用いて、本発明の原理を説明する。
図1中、1は導波路、2は入力側制御電極、3は出力側
制御電極、4は整合回路を示している。ここで整合回路
4は、マイクロ波給電線とのインピーダンス整合を行う
ために設けられている。まず、整合回路4から印加され
た所望の周波数のマイクロ波は、入力側制御電極2及び
出力側制御電極3で共振することにより、従来の進行波
用の電極に比べて大きい電界成分を持たせることができ
る。このように生じた共振したマイクロ波は電極内で減
衰(導体損失)するため、入力側制御電極2及び出力側
制御電極3の長さを非対称にすれば、減衰を抑制でき、
導波路1を伝播する光を効率よく変調することが可能と
なる。The principle of the present invention will be described with reference to FIG.
In FIG. 1, 1 is a waveguide, 2 is an input side control electrode, 3 is an output side control electrode, and 4 is a matching circuit. Here, the matching circuit 4 is provided to perform impedance matching with the microwave feed line. First, the microwave of a desired frequency applied from the matching circuit 4 resonates at the input side control electrode 2 and the output side control electrode 3 so as to have a larger electric field component than the conventional traveling wave electrode. be able to. Since the resonated microwave thus generated is attenuated (conductor loss) in the electrode, attenuation can be suppressed by making the lengths of the input side control electrode 2 and the output side control electrode 3 asymmetrical.
It is possible to efficiently modulate the light propagating through the waveguide 1.
【0008】[0008]
【発明の実施の形態】本発明に使用できる光学基板は、
当該分野で公知のものをいずれも使用することができ
る。例えば、厚さ方向にZ軸がくるようにカットされた
LiNbO3 (以下z−cutLiNbO3 と称する)
等が挙げられる。この光学基板の表面層には少なくとも
1本以上の導波路が形成されている。導波路は、Ti等
を熱拡散等の方法により光学基板に拡散させることによ
り形成することができる。なお、導波路は、制御電極よ
り長いことが好ましい。より好ましい導波路は、直線導
波路又はマッハツェンダ形導波路である。ここで、マッ
ハツェンダ形導波路は、2本の導波路を有し、光の入力
側と出力側において2本の導波路が合流した構成を有し
ている。BEST MODE FOR CARRYING OUT THE INVENTION An optical substrate that can be used in the present invention is
Any of those known in the art can be used. For example, LiNbO 3 (hereinafter referred to as z-cutLiNbO 3 ) cut so that the Z axis is in the thickness direction.
And the like. At least one waveguide is formed on the surface layer of the optical substrate. The waveguide can be formed by diffusing Ti or the like into the optical substrate by a method such as thermal diffusion. The waveguide is preferably longer than the control electrode. A more preferable waveguide is a linear waveguide or a Mach-Zehnder type waveguide. Here, the Mach-Zehnder type waveguide has two waveguides, and has a configuration in which the two waveguides merge on the light input side and the light output side.
【0009】次に、少なくとも1本の導波路近傍の光学
基板上には制御電極が配置される。なお、マッハツェン
ダ形導波路に対しては、2本の内少なくとも1本の導波
路側に制御電極が形成されていればよい。制御電極の材
質は、当該分野で公知のものをいずれも使用することが
できる。例えば、Al、Au等が挙げられる。更に、制
御電極は、その端部が、短絡又は開放されていてもよ
い。また、制御電極は、光の入力側から出力側への長さ
方向で、導波路と少なくとも一部が重なっていることが
好ましい。また、制御電極は、電気信号を印加するため
の給電電極と接続されている。更に、給電電極は、給電
部と接続されている。Next, a control electrode is arranged on the optical substrate near at least one waveguide. For the Mach-Zehnder waveguide, the control electrode may be formed on at least one of the two waveguides. As the material of the control electrode, any material known in the art can be used. Examples thereof include Al and Au. Furthermore, the control electrode may be short-circuited or open at its end. Further, it is preferable that the control electrode at least partially overlap the waveguide in the length direction from the light input side to the light output side. Further, the control electrode is connected to a power feeding electrode for applying an electric signal. Further, the power feeding electrode is connected to the power feeding unit.
【0010】更に、制御電極は、給電電極との接続点の
両側に位置する制御電極の光の入力側と出力側の長さが
非対称であることも本発明の特徴の1つである。なお、
本発明者は、入力側及び出力側の制御電極のどちらが長
い場合も、長さが等しい場合と比較して、低駆動電圧化
を実現できることを見いだしている。ここで、制御電極
の長さは、マイクロ波の減衰定数、実効屈折率等により
適宜決定される。更に、入力側を短くすれば、光の変調
に大きく寄与する光と同じ進行方向の電気信号の減衰を
小さくすることができ、効率よく光を変調さすことがで
きるので、より低駆動電圧化が実現できる。なお、特に
好ましい制御電極は、入力側と出力側との比が、1:
1.1〜1:25の関係を有する制御電極である。Further, it is one of the features of the present invention that the control electrodes located on both sides of the connection point with the power supply electrode have asymmetric lengths on the light input side and the light output side. In addition,
The present inventor has found that when the control electrodes on the input side and the output side are both long, the drive voltage can be reduced as compared with the case where the lengths are equal. Here, the length of the control electrode is appropriately determined by the attenuation constant of the microwave, the effective refractive index, and the like. Further, if the input side is shortened, it is possible to reduce the attenuation of the electric signal in the same traveling direction as the light that greatly contributes to the modulation of the light, and the light can be efficiently modulated, so that the driving voltage can be further reduced. realizable. A particularly preferable control electrode has an input side and output side ratio of 1:
It is a control electrode having a relationship of 1.1 to 1:25.
【0011】より具体的な形状としては、図2及び図3
に示す如き形状が挙げられる。図2において、1は導波
路、2は入力側制御電極、3は出力側制御電極、5は整
合電極、6は給電電極、7は給電部、8は接続点をそれ
ぞれ示している。図2及び図3において、接続点8の近
傍の給電電極6を同電位に保つためのブリッジを設けて
もよい。このブリッジは、電極と同様の材料が使用で
き、制御電極と導通しないように、絶縁膜(例えば、ポ
リイミド膜)を介して設けることが好ましい。More concrete shapes are shown in FIGS.
The shape as shown in FIG. In FIG. 2, 1 is a waveguide, 2 is an input side control electrode, 3 is an output side control electrode, 5 is a matching electrode, 6 is a feeding electrode, 7 is a feeding portion, and 8 is a connection point. 2 and 3, a bridge may be provided to keep the power supply electrode 6 near the connection point 8 at the same potential. The bridge can be made of the same material as the electrode and is preferably provided via an insulating film (for example, a polyimide film) so as not to be electrically connected to the control electrode.
【0012】なお、導波路の形成後の光学基板上には、
光の制御電極への吸収を防ぐため、光学基板全面にバッ
ファ層を形成してもよい。バッファ層は、例えば化学気
相成長法により形成された0.3〜0.4μmの厚さの
二酸化シリコンが挙げられる。On the optical substrate after the waveguide is formed,
A buffer layer may be formed on the entire surface of the optical substrate in order to prevent light from being absorbed by the control electrode. The buffer layer may be, for example, silicon dioxide having a thickness of 0.3 to 0.4 μm formed by a chemical vapor deposition method.
【0013】[0013]
実施例1 z−cutLiNbO3 光学基板上に、厚さ100nm
の所望のパターンのTi膜を形成した。次いで、105
0℃の酸素雰囲気中で10時間熱拡散することにより直
線の導波路1を形成した。この後、光学基板全面に厚さ
500nmの二酸化シリコンからなるバッファ層を形成
した。更に、バッファ層上に、電極材料を蒸着し、図2
に示す如きパターンの制御電極(2及び3)、整合電極
5及び給電電極6をフォトリソグラフィ工程を経て形成
し、位相変調器構造の光制御素子を得た。なお、制御電
極の全長は約20mmとした。Example 1 On a z-cutLiNbO 3 optical substrate, a thickness of 100 nm
A Ti film having a desired pattern was formed. Then 105
A linear waveguide 1 was formed by thermal diffusion for 10 hours in an oxygen atmosphere at 0 ° C. After that, a buffer layer made of silicon dioxide having a thickness of 500 nm was formed on the entire surface of the optical substrate. Further, an electrode material is vapor-deposited on the buffer layer, and
The control electrodes (2 and 3), the matching electrode 5 and the feeding electrode 6 having the pattern as shown in (1) were formed through a photolithography process to obtain a light control element having a phase modulator structure. The total length of the control electrode was about 20 mm.
【0014】上記のように形成された光制御素子を、入
力側制御電極2と出力側制御電極3の長さの比を異なら
せて、共振周波数を20GHzとした場合の、長さの比
に対する駆動電圧の関係を計算した結果を図4に示し
た。図4中、ΔLは制御電極の中心から接続点8までの
距離を示し、入力側制御電極2と出力側制御電極3の長
さの差の半分に対応する。この図から明らかなように、
例えばΔL=10mmの場合、対称の場合(ΔL=0)
と比べて、電圧を35%低減できることが判った。In the light control element formed as described above, the ratio of the lengths of the input side control electrode 2 and the output side control electrode 3 is made different, and the resonance frequency is 20 GHz. The result of calculating the relationship of the driving voltage is shown in FIG. In FIG. 4, ΔL represents the distance from the center of the control electrode to the connection point 8 and corresponds to half the difference in length between the input side control electrode 2 and the output side control electrode 3. As is clear from this figure,
For example, in the case of ΔL = 10 mm, in the case of symmetry (ΔL = 0)
It was found that the voltage can be reduced by 35% as compared with.
【0015】実施例2 制御電極の両端を開放すること以外は、実施例1と同様
にして光制御素子を形成した。実施例2の光制御素子で
も上記実施例1と同様の結果が得られた。 実施例3 図2の導波路を、図3のマッハツェンダ型導波路に変え
ること以外は、実施例1と同様にして強度変調器構造の
光制御素子を形成した。図3の光制御素子でも上記実施
例1と同様の結果が得られた。Example 2 A light control element was formed in the same manner as in Example 1 except that both ends of the control electrode were opened. With the light control element of Example 2, the same results as in Example 1 were obtained. Example 3 An optical control element having an intensity modulator structure was formed in the same manner as in Example 1 except that the waveguide of FIG. 2 was changed to the Mach-Zehnder type waveguide of FIG. With the light control element of FIG. 3, the same results as in Example 1 were obtained.
【0016】[0016]
【発明の効果】本発明の光制御素子は、光学基板の表面
層に少なくとも1本の導波路を有し、該導波路上又は近
傍の光学基板上に制御電極が配置され、該制御電極に電
気信号を印加するための給電電極を有し、制御電極と給
電電極との接続点の両側に位置する制御電極の光の入力
側と出力側の長さが非対称であることを特徴とする。従
って、電極構造を複雑にすることなく、低駆動電圧化を
実現することができる。The light control element of the present invention has at least one waveguide in the surface layer of the optical substrate, the control electrode is arranged on the waveguide or on the optical substrate in the vicinity thereof, and the control electrode is provided on the control electrode. It has a power feeding electrode for applying an electric signal, and is characterized in that the control electrode located on both sides of the connection point between the control electrode and the power feeding electrode has asymmetric lengths on the light input side and the light output side. Therefore, low driving voltage can be realized without complicating the electrode structure.
【0017】また、制御電極が、その両端を短絡させた
構造であることにより、電気信号の減衰を抑えることが
できる。更に、入力側の制御電極が、出力側より短いこ
とにより、更には、入力側の制御電極と出力側の制御電
極との比が、1:1.1〜1:25であることにより、
光の変調に大きく寄与する光と同じ進行方向の電気信号
の減衰を小さくすることができ、効率よく光を変調さす
ことができるので、より低駆動電圧化が実現できる。Further, since the control electrode has a structure in which both ends thereof are short-circuited, the attenuation of the electric signal can be suppressed. Furthermore, since the input side control electrode is shorter than the output side, and further, the ratio between the input side control electrode and the output side control electrode is 1: 1.1 to 1:25,
Attenuation of an electric signal in the same traveling direction as that of light, which greatly contributes to light modulation, can be reduced, and light can be efficiently modulated, so that a lower driving voltage can be realized.
【0018】また、導波路が2本であり、入力側と出力
側において導波路が合流した構成からなり、少なくとも
一方の導波路近傍の光学基板上に制御電極が配置されて
なることにより、マッハツェンダ型の導波路を有する光
制御素子にも、本発明を適用することができる。Further, the Mach-Zehnder has two waveguides, and the waveguides are merged on the input side and the output side, and the control electrode is arranged on the optical substrate near at least one of the waveguides. The present invention can also be applied to a light control element having a waveguide of a type.
【図1】本発明の光制御素子の原理説明図である。FIG. 1 is a diagram illustrating the principle of a light control element of the present invention.
【図2】実施例1の光制御素子の概略平面図である。2 is a schematic plan view of a light control element of Example 1. FIG.
【図3】実施例3の光制御素子の概略平面図である。FIG. 3 is a schematic plan view of a light control element of Example 3.
【図4】実施例1の光制御素子の非対称性と駆動電圧の
関係を示すグラフである。FIG. 4 is a graph showing the relationship between the asymmetry and the drive voltage of the light control element of Example 1.
【図5】従来の光制御素子の概略平面図である。FIG. 5 is a schematic plan view of a conventional light control element.
1、11 導波路 2 入力側制御電極 3 出力側制御電極 4 整合回路 5、13 整合電極 6、14 給電電極 7、15 給電部 8 接続点 12 制御電極 1, 11 Waveguide 2 Input side control electrode 3 Output side control electrode 4 Matching circuit 5, 13 Matching electrode 6, 14 Feeding electrode 7, 15 Feeding part 8 Connection point 12 Control electrode
Claims (3)
波路を有し、該導波路上又は近傍の光学基板上に制御電
極が配置され、該制御電極に電気信号を印加するための
給電電極を有し、制御電極と給電電極との接続点の両側
に位置する制御電極の光の入力側と出力側の長さが非対
称であることを特徴とする光制御素子。1. A power supply having at least one waveguide in a surface layer of an optical substrate, a control electrode being arranged on the optical substrate or in the vicinity of the waveguide, and applying an electric signal to the control electrode. A light control element having an electrode, wherein the light input side and the light output side of the control electrode located on both sides of the connection point between the control electrode and the power feeding electrode are asymmetric.
である請求項1記載の光制御素子。2. The light control element according to claim 1, wherein the control electrode has a structure in which both ends thereof are short-circuited.
求項1又は2記載の光制御素子。3. The light control element according to claim 1, wherein the control electrode on the input side is shorter than that on the output side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03674496A JP3654992B2 (en) | 1996-02-23 | 1996-02-23 | Light control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03674496A JP3654992B2 (en) | 1996-02-23 | 1996-02-23 | Light control element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09230296A true JPH09230296A (en) | 1997-09-05 |
JP3654992B2 JP3654992B2 (en) | 2005-06-02 |
Family
ID=12478243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03674496A Expired - Lifetime JP3654992B2 (en) | 1996-02-23 | 1996-02-23 | Light control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3654992B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065550A1 (en) * | 1999-07-02 | 2001-01-03 | Optical Technologies Italia S.p.A. | Electro-optic modulators with integrated impedance matching |
JP2002072158A (en) * | 2000-08-29 | 2002-03-12 | Communication Research Laboratory | Method of light modulation of resonance-type light modulator and resonance-type light modulator |
US6791733B2 (en) | 2001-03-09 | 2004-09-14 | National Institute Of Information And Communications Technology | Resonance type optical modulator using symmetric or asymmetric electrode |
WO2005124437A1 (en) * | 2004-06-18 | 2005-12-29 | Mitsubishi Denki Kabushiki Kaisha | Resonance type optical modulator |
JP2015519547A (en) * | 2012-04-16 | 2015-07-09 | ライカ・ジオシステムズ・アクチェンゲゼルシャフトLeica Geosystems Ag | Electro-optic distance measuring device |
-
1996
- 1996-02-23 JP JP03674496A patent/JP3654992B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065550A1 (en) * | 1999-07-02 | 2001-01-03 | Optical Technologies Italia S.p.A. | Electro-optic modulators with integrated impedance matching |
JP2002072158A (en) * | 2000-08-29 | 2002-03-12 | Communication Research Laboratory | Method of light modulation of resonance-type light modulator and resonance-type light modulator |
JP4666425B2 (en) * | 2000-08-29 | 2011-04-06 | 独立行政法人情報通信研究機構 | Optical modulation method for resonant optical modulator and resonant optical modulator |
US6791733B2 (en) | 2001-03-09 | 2004-09-14 | National Institute Of Information And Communications Technology | Resonance type optical modulator using symmetric or asymmetric electrode |
WO2005124437A1 (en) * | 2004-06-18 | 2005-12-29 | Mitsubishi Denki Kabushiki Kaisha | Resonance type optical modulator |
JPWO2005124437A1 (en) * | 2004-06-18 | 2008-04-17 | 三菱電機株式会社 | Resonant optical modulator |
JP4566990B2 (en) * | 2004-06-18 | 2010-10-20 | 三菱電機株式会社 | Resonant optical modulator |
JP2015519547A (en) * | 2012-04-16 | 2015-07-09 | ライカ・ジオシステムズ・アクチェンゲゼルシャフトLeica Geosystems Ag | Electro-optic distance measuring device |
US9405007B2 (en) | 2012-04-16 | 2016-08-02 | Leica Geosystems Ag | Electro-optic distance-measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP3654992B2 (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2133733B1 (en) | Optical Modulator based on the electro-optic effect | |
US7912326B2 (en) | Optical control device | |
KR950000406B1 (en) | All-optical modulator and optical signal modulation method | |
US6304685B1 (en) | Low drive voltage LiNbO3 intensity modulator with reduced electrode loss | |
US6504640B2 (en) | Resonant optical modulators with zero chirp | |
JP2009205154A (en) | Light modulating device | |
CN1313961A (en) | External optical modulation using non-co-linear compensation networks | |
JP2728150B2 (en) | Light modulation element | |
JPH1090638A (en) | Light control element | |
JPH06110023A (en) | Optical modulating element and its driving method | |
JP3570735B2 (en) | Optical waveguide device | |
JP3654992B2 (en) | Light control element | |
US5459800A (en) | Optical modulation device and method of driving the same | |
US6885780B2 (en) | Suppression of high frequency resonance in an electro-optical modulator | |
JP2000267056A (en) | Waveguide type optical device | |
JP3559170B2 (en) | Waveguide type optical device | |
JP3362105B2 (en) | Waveguide type optical modulator | |
JPH08166566A (en) | Optical control device | |
JPH0588124A (en) | Optical modulator | |
JPH0593892A (en) | Two-layered type optical modulator | |
JP5117082B2 (en) | Light modulator | |
JP2000122016A (en) | Waveguide type optical modulator | |
JPH06308437A (en) | Optical control element | |
JP2758540B2 (en) | Light modulation element and light modulation device using the same | |
JPWO2004086126A1 (en) | Waveguide type optical modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040210 |
|
A521 | Written amendment |
Effective date: 20040408 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20041102 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050222 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20050302 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20090311 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20100311 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |