JPH09213372A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JPH09213372A JPH09213372A JP8013680A JP1368096A JPH09213372A JP H09213372 A JPH09213372 A JP H09213372A JP 8013680 A JP8013680 A JP 8013680A JP 1368096 A JP1368096 A JP 1368096A JP H09213372 A JPH09213372 A JP H09213372A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- battery
- negative electrode
- lithium
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 リチウムの吸蔵、放出能力およびカーボン粉
末の充填性において、負極材料として優れた性質を有す
る鱗片状黒鉛をリチウムイオンの吸蔵放出の容易な極板
状態とすることにより急速充電においてもリチウム析出
がなく、安全性の優れた非水電解液二次電池を提供する
ことを目的とする。
【解決手段】 集電材に接する負極活物質層には鱗片状
黒鉛を含有し、負極表面の活物質層には球状黒鉛を含有
するものとし、球状黒鉛の割合が重量比で20%以上8
0%以下とする。また、活物質層の少なくともいずれか
一方に繊維状黒鉛を5%以上20%以下添加する。
(57) [Abstract] An object of the present invention is to make scaly graphite, which has excellent properties as a negative electrode material in terms of lithium occlusion and desorption ability and carbon powder filling property, into an electrode plate state that facilitates lithium ion occlusion and emission. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery which is free from lithium deposition even in rapid charging and has excellent safety. SOLUTION: The negative electrode active material layer in contact with the current collector contains flake graphite, and the active material layer on the surface of the negative electrode contains spherical graphite. The proportion of spherical graphite is 20% or more by weight.
It is 0% or less. Moreover, 5% or more and 20% or less of fibrous graphite is added to at least one of the active material layers.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解液二次電
池、特にその負極の改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of its negative electrode.
【0002】[0002]
【従来の技術】電子機器の小型化、軽量化が進むにつ
れ、その電源としての電池に対しても小型、軽量化の要
望が高まっている。中でも負極にリチウム金属を用いる
非水電解液二次電池はその理論エネルギー密度が大なる
ことから大きな期待が寄せられてきた。しかしながら、
負極にリチウム金属を用いた場合、充電時に樹枝状のリ
チウム(デンドライト)が生成し、電池の充放電を繰り
返すうちにこのデンドライトが成長してセパレータを貫
通し、電池の内部短絡を引き起こすという問題がった。2. Description of the Related Art As electronic devices have become smaller and lighter, there has been an increasing demand for smaller and lighter batteries as power sources. Among them, non-aqueous electrolyte secondary batteries using lithium metal for the negative electrode have been greatly expected because of their large theoretical energy density. However,
When lithium metal is used for the negative electrode, dendritic lithium (dendrites) are generated during charging, and during repeated charging and discharging of the battery, this dendrite grows and penetrates the separator, causing an internal short circuit in the battery. It was.
【0003】この問題を解決する手段として、リチウム
金属単独ではなく、アルミニウム、鉛、インジウム、ビ
スマス、カドミウムなどの低融点金属とリチウムの合金
を負極とする試みが種々なされてきたが、この場合も電
池の充放電に伴い、合金内へのリチウムの吸蔵、放出を
繰り返すうちに合金が微細化し、この微細な合金がセパ
レータを貫通してリチウム金属負極と同様、電池が内部
短絡するため解決されたとは言い難い。As a means for solving this problem, various attempts have been made to use not a lithium metal alone but an alloy of a low melting point metal such as aluminum, lead, indium, bismuth and cadmium and a lithium as a negative electrode, but also in this case. With the charge and discharge of the battery, the alloy became finer while repeating the occlusion and release of lithium into the alloy, and this fine alloy penetrated the separator and the battery was internally short-circuited like the lithium metal negative electrode. Is hard to say.
【0004】一方、上記の問題を解決するものとして、
負極にカーボンを用いる電池が提案された。非水電解液
二次電池の負極としてカーボンを用いた電池は1986
年第27回電池討論会要旨集P.97、あるいは198
7年第28回電池討論会要旨集P.201に紹介されて
おり、活物質であるリチウムイオンを負極のカーボン中
へ担持させる方法としては電池系外での電気化学的な手
法によるとされ、正極活物質には五酸化バナジウム、二
酸化マンガン、または酸化クロムを用いている。中で
も、正極に五酸化バナジウム、負極にカーボンを用いた
電池が主としてメモリーバックアップ用途などに用いら
れるコイン形電池として実用化されている。この電池で
は負極へのリチウムの担持方法としては、電池内でリチ
ウム金属とカーボンとを電気的に接触させる方法がとら
れている。On the other hand, as a solution to the above problem,
A battery using carbon for the negative electrode has been proposed. The battery using carbon as the negative electrode of the non-aqueous electrolyte secondary battery was 1986.
27th Battery Symposium Abstracts P. 97 or 198
7th 28th Battery Symposium Abstracts P. 201, it is said that lithium ion as an active material is supported on carbon of the negative electrode by an electrochemical method outside the battery system, and the positive electrode active material is vanadium pentoxide, manganese dioxide, Alternatively, chromium oxide is used. Above all, batteries using vanadium pentoxide for the positive electrode and carbon for the negative electrode have been put to practical use as coin-type batteries mainly used for memory backup applications and the like. In this battery, as a method of supporting lithium on the negative electrode, a method of electrically contacting lithium metal and carbon in the battery is adopted.
【0005】最近に至り、1992年第33回電池討論
会要旨集P.83で電子機器用電源として、正極にLi
CoO2、負極にカーボンを用いた円筒形電池が提案さ
れ、深い深度の充放電において1200サイクル経過後
も初期の70%以上の容量が保持されていたと報告され
ている。現在ではこの電池系が4V級リチウムイオン二
次電池として実用化されている。この電池系の特徴は、
負極の充放電反応が負極のカーボン中へのリチウムイオ
ンの吸蔵、放出反応であり、充電に伴う負極上へのリチ
ウムの析出がおこらず、従ってデンドライトが生じない
ため良好なサイクル特性が得られるという点、またカー
ボンはリチウムイオンの吸蔵、放出反応の繰り返しにお
いてもリチウム合金のような微細化が起こらず、電池の
発火が起こらないと言う点があげられる。同時にこの電
池系のもう一つの特徴は、正極にLiCoO2というリ
チウム含有複合酸化物を用いており、負極活物質である
リチウムイオンは正極から供給されるため、前述のよう
な特別な処方により負極にリチウムイオンを担持させる
必要がないというところにある。Recently, the summary of the 33rd Battery Symposium in 1992, P.S. At 83, the positive electrode is Li
A cylindrical battery using CoO 2 and carbon as the negative electrode has been proposed, and it is reported that the capacity of 70% or more of the initial capacity was maintained even after 1200 cycles in deep charge / discharge. At present, this battery system has been put to practical use as a 4V class lithium ion secondary battery. The characteristics of this battery system are
It is said that the charge / discharge reaction of the negative electrode is a reaction of occluding and releasing lithium ions in the carbon of the negative electrode, so that lithium does not deposit on the negative electrode due to charging, and therefore dendrite does not occur, so that good cycle characteristics can be obtained. Another point is that carbon does not cause miniaturization as in a lithium alloy even when lithium ion storage and release reactions are repeated, so that ignition of the battery does not occur. At the same time, another feature of this battery system is that a lithium-containing composite oxide called LiCoO 2 is used for the positive electrode, and the lithium ions that are the negative electrode active material are supplied from the positive electrode. There is no need to support lithium ions in the.
【0006】4V級リチウムイオン二次電池の正極活物
質としては上記のLiCoO2のみならず、LiNi
O2、LiMn2O4、LiFeO2、あるいはこれらC
o、Ni、Mn、Feを他の金属元素で一部置換したも
のなどがこれまで検討されている。また、負極材料であ
るカーボンとして、当初はコークス、熱分解炭素、ある
いは各種有機物の低温焼成品などの、いわゆる非晶質カ
ーボンを中心に検討されてきたが、活物質であるリチウ
ムイオンの吸蔵、放出能力という観点から最近では高結
晶性のカーボン、いわゆる黒鉛系のカーボンが注目され
ている。As the positive electrode active material of the 4V class lithium ion secondary battery, not only LiCoO 2 but also LiNi
O 2 , LiMn 2 O 4 , LiFeO 2 , or these C
A material in which o, Ni, Mn, and Fe are partially replaced with another metal element has been studied so far. In addition, as the carbon as the negative electrode material, initially, so-called amorphous carbon, such as coke, pyrolytic carbon, or low-temperature calcined products of various organic substances, has been mainly studied, but occlusion of lithium ions as an active material, Recently, highly crystalline carbon, so-called graphite-based carbon, has been attracting attention from the viewpoint of release ability.
【0007】特開平4−115457号公報では負極と
して易黒鉛化性の球状粒子から成る黒鉛質材料が優れた
特性を示すとされている。黒鉛とリチウムイオンの層間
化合物であるC6Liは古くから知られており、電気化
学的にリチウムイオンを吸蔵、放出(インターカレーシ
ョン、デインターカレーション)した場合、理論容量は
カーボン1gに対し372mAhという非常に大きな値
を示す。それにもかかわらず、当初リチウムイオン二次
電池の負極として採用されなかったのは、Journal of E
lectrochemical Society117,No2(1970)p.222で報告され
ているように、現在非水電解液一次電池で電解液の溶媒
成分の一つとして広く用いられているプロピレンカーボ
ネートを用いると、その溶媒分子が黒鉛の表面で分解
し、リチウムイオンの黒鉛中へのインターカレーション
反応がスムースに行われないということにあった。これ
に対し、1992年第59回電気化学大会講演要旨集
P.238では電解液の溶媒成分にエチレンカーボネー
トを主体として用いることにより、この問題が解決され
ると報告されている。以降、天然黒鉛や種々の人造黒鉛
がリチウムイオン二次電池の負極として検討され、現在
ではむしろ黒鉛系の負極が主流となってきている。Japanese Patent Application Laid-Open No. 4-115457 states that a graphitic material composed of easily graphitizable spherical particles as a negative electrode exhibits excellent characteristics. C 6 Li, an intercalation compound of graphite and lithium ions, has been known for a long time. When lithium ions are occluded and released (intercalated, deintercalated) electrochemically, the theoretical capacity is 1 g of carbon. It shows a very large value of 372 mAh. Nevertheless, it was the Journal of E that was not initially adopted as a negative electrode for lithium-ion secondary batteries.
As reported in lectrochemical Society 117, No2 (1970) p.222, when propylene carbonate, which is widely used as one of the solvent components of the electrolytic solution in the non-aqueous electrolytic solution primary battery, is used, the solvent molecule is It was that it decomposed on the surface of graphite and the intercalation reaction of lithium ions into graphite was not carried out smoothly. On the other hand, the abstracts of the 59th Electrochemical Conference of 1992, P.A. In 238, this problem is reported to be solved by using ethylene carbonate as a solvent component of the electrolytic solution as a main component. Since then, natural graphite and various artificial graphites have been studied as negative electrodes of lithium ion secondary batteries, and graphite-based negative electrodes have become the mainstream at present.
【0008】一方、電池の負極として求められる要件と
してカーボン自身のリチウムイオンの吸蔵、放出の能力
と共に、電池という限られた体積の中に如何に多量のカ
ーボンを積み込み得るかという充填性があり、これはカ
ーボンに限らず粉末であればその形状により大きく左右
されるものである。On the other hand, as the requirements for the negative electrode of the battery, there is a filling property of how much carbon can be loaded in a limited volume of the battery, in addition to the ability of carbon itself to absorb and release lithium ions. This largely depends on the shape of the powder, not limited to carbon.
【0009】カーボン粉末の形状を考えた場合、粒状、
塊状、鱗片状、繊維状の4つに大別される。リチウムイ
オン電池では通常、集電体である金属薄膜の両面または
片面にカーボンと結着剤の混合ペーストを塗布し、極板
としたものを乾燥後、適宜圧延して電極を形成するが、
上記4種の形状のうちでは鱗片状のカーボンがもっとも
充填性に優れている。すなわち、他の3種の形状のカー
ボンでは極板を乾燥後圧延しても粒子の形状は変わらず
単に密に充填されるだけであるが、鱗片状カーボンは圧
延により粒子が同一方向に配向するため、より充填性が
大となる。したがって、リチウムイオンの吸蔵、放出の
能力及びカーボン粉末の充填性という観点では、天然あ
るいは人造黒鉛でかつ粉末形状が鱗片状のものがカーボ
ン負極材料としてもっとも優れた材料であると言える。When considering the shape of the carbon powder,
It is roughly divided into four types: lump, scale, and fibrous. In a lithium ion battery, usually, a mixed paste of carbon and a binder is applied to both sides or one side of a metal thin film as a current collector, and after the electrode plate is dried, the electrode is formed by appropriately rolling,
Among the above four shapes, flaky carbon is most excellent in the filling property. In other words, in the other three types of carbon, even if the electrode plate is dried and then rolled, the shape of the particles does not change and the particles are merely densely packed, but in the case of flaky carbon, the particles are oriented in the same direction by rolling. Therefore, the filling property becomes larger. Therefore, from the viewpoint of the ability to occlude and release lithium ions and the filling property of carbon powder, it can be said that natural or artificial graphite having a flaky powder shape is the most excellent material as a carbon negative electrode material.
【0010】しかしながら、天然黒鉛の場合には産出地
の違いによる材料のバラツキ、あるいは大量の不純物を
取り除くための特別な処理などによる材料の改質が必要
であるということを考慮すると、カーボン負極材料とし
ては鱗片状の人造黒鉛が最も優れたものであると言え
る。代表的な鱗片状の人造黒鉛としては石炭ピッチもし
くは石油ピッチを黒鉛化したもので、ロンザ社製、ある
いは日本黒鉛社製の人造黒鉛があげられる。However, in the case of natural graphite, it is necessary to take into account the fact that the material varies due to the difference in the place of production or that the material must be modified by a special treatment to remove a large amount of impurities. It can be said that scaly artificial graphite is the best. Typical scale-like artificial graphite is obtained by graphitizing coal pitch or petroleum pitch, and includes artificial graphite manufactured by Lonza or Nippon Graphite.
【0011】[0011]
【発明が解決しようとする課題】しかし、鱗片状の人造
黒鉛を負極材料として用いる場合、一つの解決しなけれ
ばならない課題がある。確かに鱗片状黒鉛は圧延により
配向し、充填性が上がるが、逆に充填性が上がりすぎて
電極内の空孔部分が制限され、電池の電極を形成したと
き電極内部に電解液が浸透しないことがある。このため
黒鉛中へのリチウムイオンのインターカレート、デイン
ターカレート反応は電極表面でしか行われず、高率充放
電に適さないという課題が生じる。この電池を急速充電
した場合、電極内部へのリチウムイオンの拡散が追いつ
かず、電極表面のリチウムイオンの濃度が高くなり、黒
鉛中にリチウムイオンがインターカレートするよりも負
極板表面に金属リチウムが析出する方が容易に進行する
ようになる。このような充電と放電を繰り返すうち負極
表面でリチウムがデンドライト状に析出する場合もあ
る。このような電池が高温下に置かれると、負極板上に
析出したリチウム金属と電解液とが化学反応する。However, there is a problem to be solved when scale-like artificial graphite is used as a negative electrode material. Certainly, flake graphite is oriented by rolling and the filling property increases, but on the contrary, the filling property increases too much and the pores inside the electrode are limited, and the electrolyte does not penetrate into the electrode when forming the electrode of the battery. Sometimes. For this reason, the intercalation and deintercalation reactions of lithium ions into graphite are performed only on the electrode surface, which causes a problem that it is not suitable for high-rate charging and discharging. When this battery is rapidly charged, the diffusion of lithium ions into the electrode cannot catch up, the concentration of lithium ions on the electrode surface becomes high, and metallic lithium is deposited on the surface of the negative electrode plate rather than intercalating lithium ions in graphite. It becomes easier to precipitate. While such charging and discharging are repeated, lithium may be deposited as dendrites on the surface of the negative electrode. When such a battery is placed at a high temperature, the lithium metal deposited on the negative electrode plate chemically reacts with the electrolytic solution.
【0012】本発明は上記の課題を解決するものであ
り、負極材料として優れた性質を有する黒鉛を用い、高
率放電に適した電極状態とした非水電解液二次電池を提
供することを目的としたものである。The present invention is to solve the above-mentioned problems, and to provide a non-aqueous electrolyte secondary battery using graphite having excellent properties as a negative electrode material in an electrode state suitable for high rate discharge. It is intended.
【0013】[0013]
【課題を解決するための手段】これらの課題を解決する
ために、本発明は集電材に接する負極合剤層には鱗片状
黒鉛を主成分として含有し、負極表面の合剤層には球状
黒鉛を主成分として含有するものとし、特に電池のサイ
クル特性を向上させる場合にはそれら合剤層の少なくと
もいずれか一方に繊維状黒鉛を添加するものである。In order to solve these problems, in the present invention, the negative electrode material mixture layer in contact with the current collector contains scaly graphite as a main component, and the negative electrode material mixture layer has a spherical shape. It contains graphite as a main component, and particularly when improving the cycle characteristics of the battery, fibrous graphite is added to at least one of the mixture layers.
【0014】[0014]
【発明の実施の形態】通常、負極板作製時には圧延工程
を設けて活物質を適切な充填状態にするが、合剤に鱗片
状黒鉛を用いた場合、鱗片状黒鉛は圧延により配向され
やすい性質であるため最適な充填密度、すなわち、極板
内部まで十分に液が浸透し全合剤が反応するための最適
な空孔体積を保持した充填密度に制御することが難し
い。また、圧延によってリチウムイオンが挿入、放出で
きない黒鉛の六角網面が電極表面に平行に配向した状態
となるため、充放電時にリチウムイオンの出入りがしに
くい。BEST MODE FOR CARRYING OUT THE INVENTION Normally, a rolling step is provided during the preparation of a negative electrode plate to bring the active material into an appropriate filled state. However, when flake graphite is used as a mixture, the flake graphite tends to be oriented by rolling. Therefore, it is difficult to control the optimum packing density, that is, the packing density that maintains the optimum pore volume for allowing the liquid to sufficiently penetrate into the electrode plate and reacting the entire mixture. In addition, since the hexagonal mesh plane of graphite, into which lithium ions cannot be inserted and released due to rolling, is oriented parallel to the electrode surface, it is difficult for lithium ions to enter and leave during charging and discharging.
【0015】一方、球状黒鉛はその形状のために比較的
充填されにくいが、黒鉛の六角網面の端部が粒子表面に
存在する構造(ラメラ構造)であるため、充放電に伴う
リチウムイオンの出入りは比較的スムースに行われる。On the other hand, spherical graphite is relatively difficult to be filled due to its shape, but since the end portion of the hexagonal net surface of graphite has a structure (lamella structure) present on the particle surface, lithium ion due to charging and discharging Getting in and out is relatively smooth.
【0016】以上のことから集電体に接する活物質層に
は鱗片状黒鉛を配置して活物質の充填量を増やし、電極
表面の活物質層には球状黒鉛を配置してリチウムイオン
の出入がスムースで急速充電時にもリチウムの析出がな
く、安全性の優れた非水電解液二次電池を構成すること
ができる。From the above, scale-like graphite is arranged in the active material layer in contact with the current collector to increase the filling amount of the active material, and spherical graphite is arranged in the active material layer on the surface of the electrode to allow lithium ions to enter and exit. However, a non-aqueous electrolyte secondary battery that is smooth and does not deposit lithium even during rapid charging and has excellent safety can be configured.
【0017】また、繊維状黒鉛は形状的に球状粒子より
もさらに充填性が低いものであり、単独で用いても良好
な電池特性は得られないが、鱗片状や球状の粒子に少量
添加することによって適量の空孔を確保し、黒鉛表面の
電解液による濡れ性が向上し、電極の反応表面積が増加
するため、高率充放電特性の改良に効果がある。さら
に、適量の空孔を確保することにより、充放電に伴う炭
素粒子の膨張、収縮による体積変化を吸収することがで
き、極板の崩壊を抑制してサイクル特性を向上すること
ができる。Further, the fibrous graphite is lower in filling property than the spherical particles in terms of shape, and good battery characteristics cannot be obtained when used alone, but it is added in a small amount to the scale-like or spherical particles. This ensures an appropriate amount of pores, improves the wettability of the graphite surface with the electrolytic solution, and increases the reaction surface area of the electrode, which is effective in improving the high-rate charge / discharge characteristics. Furthermore, by securing an appropriate amount of holes, it is possible to absorb the volume change due to the expansion and contraction of the carbon particles due to charge and discharge, and it is possible to suppress the collapse of the electrode plate and improve the cycle characteristics.
【0018】[0018]
【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.
【0019】(実施例1)図1に本実施例に用いた円筒
形電池の縦断面図を示す。図において1は正極を示し、
活物質であるLiCoO2に導電材としてカーボンブラ
ックを、結着剤としてポリ四フッ化エチレンの水性ディ
スパージョンを重量比で100:3:10の割合で混合
したものをアルミニウム箔の両面に塗着、乾燥し、圧延
した後、所定の大きさに切断したものである。これに2
のチタン製の正極リード板をスポット溶接している。な
お結着剤のポリ四フッ化エチレンの水性ディスパージョ
ンの混合比率は、その固形分で計算している。3は負極
で、炭素質材料を主材料とし、これとアクリル系結着剤
とを重量比で100:3の割合で混合したものをニッケ
ル箔の両面に塗着、乾燥し、圧延した後所定の大きさに
切断したものである。これに4のニッケル製の負極リー
ド板をスポット溶接している。5はポリエチレン製の微
孔性フィルムからなるセパレータで、正極1と負極3と
の間に介在し、全体が渦巻状に捲回されて極板群を構成
している。この極板群の上下のはしにはそれぞれポリプ
ロピレン性の上部絶縁板6、下部絶縁板7を配して鉄に
ニッケルメッキしたケース8に挿入する。そして正極リ
ード板2をチタン製の封口板10に、負極リード板4を
ケース8の底部にそれぞれスポット溶接した後、所定量
の電解液をケース内に注入し、ガスケット9を介して電
池を封口板10で封口して完成電池とする。この電池の
寸法は直径14mm、高さ50mmである。なお、11
は電池の正極端子であり、負極端子は電池ケース8がこ
れをかねている。Embodiment 1 FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In the figure, 1 indicates a positive electrode,
A mixture of carbon black as a conductive material and an aqueous dispersion of polytetrafluoroethylene as a binder at a weight ratio of 100: 3: 10 was applied to both sides of an aluminum foil, as an active material, LiCoO 2. After being dried, rolled, and then cut into a predetermined size. This is 2
The positive electrode lead plate made of titanium is spot-welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. Reference numeral 3 denotes a negative electrode, which is composed mainly of a carbonaceous material, which is mixed with an acrylic binder in a weight ratio of 100: 3, is applied on both sides of a nickel foil, dried, and rolled to a predetermined size. It is cut to the size of. A nickel negative electrode lead plate 4 was spot-welded to this. Reference numeral 5 denotes a separator made of a polyethylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3 and is wholly wound in a spiral to form an electrode plate group. An upper insulating plate 6 and a lower insulating plate 7, which are made of polypropylene, are arranged on the upper and lower chocks of the electrode plate group, and are inserted into a case 8 made of nickel-plated iron. Then, the positive electrode lead plate 2 is spot-welded to the titanium sealing plate 10 and the negative electrode lead plate 4 is spot-welded to the bottom of the case 8, respectively, and then a predetermined amount of electrolytic solution is injected into the case and the battery is sealed via the gasket 9. The plate 10 is sealed to obtain a completed battery. The dimensions of this battery are 14 mm in diameter and 50 mm in height. Note that 11
Is the positive electrode terminal of the battery, and the negative electrode terminal is also served by the battery case 8.
【0020】電解液はエチレンカーボネートとジエチル
カーボネートを体積比1:1で混合した溶媒に溶質とし
て六フッ化リン酸リチウムを1モル/lの濃度で溶解し
たものを用いた。The electrolyte used was a solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol / l as a solute in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
【0021】負極材料にはロンザ社製人造黒鉛と300
0℃で焼成したメソフェーズ小球体をそれぞれ鱗片状黒
鉛と球状黒鉛として選出し、それらを用いて(表1)に
示す5種類の負極を作製し、上記円筒形電池に組み込み
電池A〜Eとした。負極の黒鉛層を2層にするものはま
ず、1層目を集電体上に塗着し、その上に2層目を塗着
した。As the negative electrode material, artificial graphite manufactured by Lonza and 300
Mesophase spherules fired at 0 ° C. were selected as flaky graphite and spheroidal graphite, respectively, and five kinds of negative electrodes shown in (Table 1) were prepared using them, and the batteries were assembled into the cylindrical batteries as batteries A to E. . In the case of the negative electrode having two graphite layers, first, the first layer was applied onto the current collector, and then the second layer was applied thereon.
【0022】その際、いずれの負極も同じ条件で圧延し
た場合、同じ厚みになるように作製したところ、鱗片状
黒鉛は球状黒鉛に比べ充填性がよいため、極板1枚当た
りの活物質重量は大きくなった。At that time, when each of the negative electrodes was rolled under the same conditions and produced so as to have the same thickness, the flake graphite had a better packing property than the spherical graphite, and therefore the weight of the active material per electrode plate was large. Has grown.
【0023】また、本実施例の目的は負極による特性の
差をみることであるので、負極合剤量に対し正極合剤量
は十分に大きく、下記に示す実験条件では600mAh
程度の容量を出力する構成とした。Since the purpose of this example is to see the difference in characteristics depending on the negative electrode, the amount of the positive electrode mixture is sufficiently larger than the amount of the negative electrode mixture, and 600 mAh under the experimental conditions shown below.
It is configured to output a certain amount of capacity.
【0024】上記に示す5種類の電池を低電流と高電流
で定電流放電し、放電容量を比較した。試験条件は、充
放電電流100mA、充電終止電圧4.2V、放電終止
電圧3.0V、環境温度20℃とし、充放電を5回繰り
返した後、放電電流のみを500mAに変えて充放電を
100回行った。以上電気特性試験終了後、充電状態で
電池を分解し極板表面状態を観察すると共に、負極のX
線回折測定により黒鉛中のリチウムのステージ構造の生
成状態を測定した。The five types of batteries shown above were subjected to constant current discharge at low current and high current, and the discharge capacities were compared. The test conditions were a charge / discharge current of 100 mA, a charge end voltage of 4.2 V, a discharge end voltage of 3.0 V, and an environmental temperature of 20 ° C. After repeating charge / discharge 5 times, only the discharge current was changed to 500 mA, and the charge / discharge was 100%. I went there. After the above electrical characteristic test is completed, the battery is disassembled in a charged state and the surface state of the electrode plate is observed.
The generation state of the stage structure of lithium in graphite was measured by line diffraction measurement.
【0025】低電流での5サイクル目の放電容量、高電
流での放電容量、低電流放電容量に対する高電流放電容
量の割合、高電流で100サイクル中の(数1)で表さ
れるサイクル劣化率および各電池の負極1枚当たりの黒
鉛重量、X線回折測定による1stステージ、2ndス
テージ、3rdステージおよび黒鉛のピーク強度の比を
(表1)に示す。Discharge capacity at 5th cycle at low current, discharge capacity at high current, ratio of high current discharge capacity to low current discharge capacity, cycle deterioration represented by (Equation 1) in 100 cycles at high current The ratio and the ratio of the graphite weight per negative electrode of each battery, the peak intensity of the 1st stage, 2nd stage, 3rd stage and graphite by X-ray diffraction measurement are shown in (Table 1).
【0026】[0026]
【数1】 [Equation 1]
【0027】[0027]
【表1】 [Table 1]
【0028】本実施例の電池は正極容量が十分な構成で
あるので、いずれの電池も正極の充放電に伴う電位変化
は同様に小さく、充電容量は充電末期に負極のリチウム
吸蔵能力が限界に達して負極電位が急激に下がり、正・
負極の電位差が充電終止電圧となった時点で充電が終了
するという現象によって決定される。一方、低電流で放
電した場合の充放電効率はいずれの電池もほぼ100%
であり、充電容量によって放電容量は決定され、また、
高電流で放電した場合の充放電効率は100%以下とな
り、放電時に負極中をリチウムが移動する反応の容易さ
によって放電容量が決定される。Since the battery of this embodiment has a structure having a sufficient positive electrode capacity, the change in potential due to charging and discharging of the positive electrode is similarly small in all batteries, and the charging capacity is limited to the lithium storage capacity of the negative electrode at the end of charging. Reached, and the negative electrode potential dropped sharply.
It is determined by the phenomenon that charging ends when the potential difference of the negative electrode reaches the charging end voltage. On the other hand, the charging and discharging efficiency when discharged at a low current is almost 100% for all batteries.
And the discharge capacity is determined by the charge capacity, and
The charge / discharge efficiency when discharged at a high current is 100% or less, and the discharge capacity is determined by the ease of reaction in which lithium moves in the negative electrode during discharge.
【0029】黒鉛の種類による比較を行ってみると(表
1)より低電流での放電容量は鱗片状黒鉛を用いた電池
Aと球状黒鉛を用いた電池Bはほぼ同じ容量を示した。
本来電池Aは電池Bに比べ黒鉛重量が大きいために放電
容量は大きくなるはずである。実際には電池Dは黒鉛の
充填密度が高く極板内部の空孔体積が小さいために電解
液が十分に浸透せず、反応が十分に起こらないことから
極板の厚み方向で不均一な充電状態となり、結果として
放電容量も小さくなったものと考えられる。また、高電
流での放電容量は電池Aは電池Bのよりも小さい。電池
Aでは強放電時負極中をリチウムが移動する反応が容易
ではないが、電池Bは負極中のリチウムの移動が容易な
ため低電流放電時とほぼ同等な容量が得られると考えら
れる。サイクル劣化率は高電流/低電流容量比率と同様
の傾向が見られた。分解観察によると電池Aは部分的に
金属リチウムの析出が観察された。X線回折ピーク強度
比を見ても、電池Aは2ndステージのピーク強度が強
いが、1st、3rd、黒鉛のピークも観察され、不均
一な充電がなされている。電池Bは1stステージのピ
ークが強く、2ndステージは若干観察されたが、3r
d、黒鉛のピークは全く検出されず、比較的均一な充電
がなされていることがわかる。これらのことから鱗片状
黒鉛は電池内に充填できる重量は多いものの、均一な反
応が起こらず、特に強放電特性が劣ることがわかった。From a comparison of the types of graphite (Table 1), the discharge capacities at low currents showed that battery A using scaly graphite and battery B using spheroidal graphite showed almost the same capacity.
Originally, battery A should have a larger discharge capacity because battery A has a heavier graphite weight than battery B. In actuality, since battery D has a high packing density of graphite and a small pore volume inside the electrode plate, the electrolyte solution does not sufficiently permeate and the reaction does not occur sufficiently. Therefore, charging is uneven in the thickness direction of the electrode plate. It is considered that the discharge capacity was reduced as a result. Further, the discharge capacity at high current is smaller in Battery A than in Battery B. It is considered that in battery A, the reaction in which lithium moves in the negative electrode during strong discharge is not easy, but in battery B, since the lithium in the negative electrode moves easily, a capacity approximately equal to that in low current discharge can be obtained. The cycle deterioration rate showed the same tendency as the high current / low current capacity ratio. According to the decomposition observation, in the battery A, partial deposition of metallic lithium was observed. Looking at the X-ray diffraction peak intensity ratio, Battery A has a strong peak intensity at the 2nd stage, but peaks of 1st, 3rd and graphite are also observed, and uneven charging is performed. Battery B had a strong peak at the 1st stage, but a slight observation at the 2nd stage, but 3r
No peaks of d and graphite were detected, indicating that the charging was relatively uniform. From these facts, it was found that the flake graphite has a large weight that can be filled in the battery, but a uniform reaction does not occur, and particularly the strong discharge characteristics are inferior.
【0030】つぎに、電池C〜Eの混合系を比較すると
低電流での放電容量はあまり顕著な差はみられなかった
が、電池C−D−Eの順となった。これは負極板上の黒
鉛の重量の順序と同様であった。しかし、極板の黒鉛量
の多い鱗片状黒鉛単独の電池Aや、充填性が好ましくな
い球状黒鉛単独の電池Bよりも容量は大であった。Next, when the mixed systems of the batteries C to E were compared, the discharge capacities at low currents did not show a significant difference, but the batteries C to D were in that order. This was similar to the order of weight of graphite on the negative plate. However, the capacity of the electrode plate was larger than the battery A of scaly graphite alone having a large amount of graphite and the battery B of spheroidal graphite alone, which is not preferable for filling.
【0031】一方、高電流での放電容量は電池C−E−
Dの順となり、その差は特に顕著であった。これは、電
池Cは適量な空孔を確保している球状黒鉛が電極表面に
存在し極板内部までの反応をスムースに進行させ、充填
性の良好な鱗片状黒鉛が集電材付近に存在することによ
って、高容量でかつ高電流/低電流容量比率の高い電池
ができた。高電流放電サイクルではほとんど劣化が見ら
れず、電池分解観察でも電池作製時と変化無かった。電
池Dでは空孔が少なく電解液が浸透しにくくリチウムの
反応が起こりにくい鱗片状黒鉛が極板表面に存在し、極
板の内部のリチウムの移動反応があまりスムースに行わ
れなく、高電流での放電容量が少なくなると考えられ
る。X線回折で1st、2nd、3rd、黒鉛の混成ス
テージが検出され均一に充放電されていないことが裏付
けられた。電池分解観察の結果黒鉛上の一部分にリチウ
ムの析出が観察された。電池Eは鱗片状黒鉛が極板の全
体に分布するため、電池CとDの間の反応状態と推察さ
れる。電池分解観察ではサイクルによる極板の変化は認
められなかった。On the other hand, the discharge capacity at a high current is battery CE
The order was D, and the difference was particularly remarkable. In the battery C, the spherical graphite that secures an appropriate amount of pores is present on the electrode surface and the reaction to the inside of the electrode plate proceeds smoothly, and the flake graphite having good filling properties is present near the current collector. As a result, a battery having a high capacity and a high ratio of high current / low current capacity was produced. Almost no deterioration was observed in the high current discharge cycle, and there was no change in the battery disassembly observation from the time of battery preparation. In Battery D, scaly graphite, which has few pores and is difficult for electrolyte to permeate and does not easily react with lithium, exists on the surface of the electrode plate, and the lithium transfer reaction inside the electrode plate does not occur smoothly, and at high current. It is considered that the discharge capacity of is reduced. It was confirmed by X-ray diffraction that the mixed stages of 1st, 2nd, 3rd, and graphite were detected and that they were not uniformly charged and discharged. As a result of disassembling and observing the battery, precipitation of lithium was observed on a part of the graphite. Since the flake graphite is distributed throughout the electrode plate in the battery E, it is presumed that the reaction state between the batteries C and D is present. When the battery was disassembled, no change in the electrode plate due to cycles was observed.
【0032】以上の結果、総合評価として低電流、高電
流のいずれの電流値でも放電容量が大きかったのは本発
明の電池Cであった。From the above results, it was the battery C of the present invention that the discharge capacity was large at both low and high current values as a comprehensive evaluation.
【0033】(実施例2)(実施例1)でもっとも良好
な特性を示した電池Cの負極板の構成で球状黒鉛の最適
混合比率を求めるため(表2)に示す6種類の負極につ
いて前記円筒形電池を試作し評価を行った。評価は(実
施例1)と同様に低電流と高電流での定電流放電容量を
測定した。(Example 2) In order to obtain the optimum mixing ratio of spheroidal graphite in the composition of the negative electrode plate of the battery C showing the best characteristics in (Example 1), the six types of negative electrodes shown in (Table 2) are described above. A cylindrical battery was prototyped and evaluated. For evaluation, constant current discharge capacity at low current and high current was measured in the same manner as in (Example 1).
【0034】(表2)に評価の結果を示す。Table 2 shows the evaluation results.
【0035】[0035]
【表2】 [Table 2]
【0036】(表2)より、負極板1枚当たりの合剤重
量は大きい順に電池F−G−H−I−J−Kとなり、球
状黒鉛の混合比率が多くなるほど小さくなっていること
がわかる。From Table 2, it can be seen that the weight of the mixture per one negative electrode plate becomes the batteries F-G-H-I-J-K in descending order, and becomes smaller as the mixing ratio of the spherical graphite increases. .
【0037】電池特性では低電流での放電容量は大きい
順に電池I−H−G−J−K−Fとなり、電池F、電池
Kの球状黒鉛の混合比率が最小と最大の組成で容量が低
かった。電池Fの容量が小さい理由は、鱗片状黒鉛の比
率が大きく充填密度が上がりすぎ、(実施例1)の電池
Aと同様、極板内部での反応が不十分であったためと考
えられ、一方、電池Kの容量が小さい理由は、球状黒鉛
の比率が大きく電池Fとは反対に充填密度が低いためと
考えられる。In the battery characteristics, batteries I-H-G-J-K-F are in descending order of discharge capacity at low currents, and the capacities of battery F and battery K are low with the minimum and maximum mixing ratios of spherical graphite. It was It is considered that the reason for the small capacity of the battery F is that the ratio of the scaly graphite was large and the packing density was too high, and the reaction inside the electrode plate was insufficient as in the battery A of (Example 1). It is considered that the reason why the capacity of the battery K is small is that the proportion of spheroidal graphite is large and the packing density is low as opposed to the battery F.
【0038】また、高電流での放電容量は大きい順に電
池I−H−J−K−G−Fとなり、電池Fが特に小さか
った。定電流での放電容量に対する高電流での放電容量
の割合は球状黒鉛の混合比率が高いほど大きくなった。
これも(実施例1)でみられた傾向で、球状黒鉛のほう
が粒子の表面にリチウムの吸蔵、放出の出入り口が多く
存在するため、高電流での放電に有利であるためと考え
られる。Further, the discharge capacities at high currents were batteries I-H-J-K-G-F in descending order, and battery F was particularly small. The ratio of the discharge capacity at high current to the discharge capacity at constant current increased as the mixing ratio of spheroidal graphite increased.
This is also the tendency observed in (Example 1), and it is considered that the spherical graphite is more advantageous in discharging at high current because there are more inlets and outlets of lithium on the surface of the particles.
【0039】総合評価としては定電流、高電流いずれの
電流値での放電容量がトータル的にバランスのとれてい
るのは電池G〜Jであり、球状黒鉛の混合比率が20〜
80%(重量比)の範囲であった。As a comprehensive evaluation, it was batteries G to J in which the discharge capacities at constant current and high current were well balanced, and the mixing ratio of spherical graphite was 20 to.
The range was 80% (weight ratio).
【0040】(実施例3)(実施例1)でもっとも良好
な特性を示した電池Cの負極板の構成で繊維状黒鉛の添
加効果を調べるため、(表3)に示す6種類の負極につ
いて上記円筒形電池の試作、評価を行った。評価方法は
実施例1と同様に低電流と高電流での放電容量を測定し
た後、放電電流500mAで充放電を100回繰り返
し、100サイクル中のサイクル劣化率を(数1)によ
り計算した。(Example 3) In order to investigate the effect of adding fibrous graphite in the construction of the negative electrode plate of the battery C showing the best characteristics in (Example 1), the six types of negative electrodes shown in (Table 3) were used. The above cylindrical battery was prototyped and evaluated. As the evaluation method, the discharge capacity at low current and high current was measured in the same manner as in Example 1, charging and discharging were repeated 100 times at a discharge current of 500 mA, and the cycle deterioration rate in 100 cycles was calculated by (Equation 1).
【0041】繊維状黒鉛には昭和電工社製の気相成長炭
素繊維を高温処理したものを用いた。As the fibrous graphite, one obtained by subjecting a vapor-grown carbon fiber manufactured by Showa Denko KK to a high temperature treatment was used.
【0042】(表3)に評価の結果を示す。Table 3 shows the evaluation results.
【0043】[0043]
【表3】 [Table 3]
【0044】(表3)より、繊維状黒鉛は鱗片状黒鉛、
球状黒鉛に比べ嵩が高いため、繊維状黒鉛を添加した極
板1枚当たりの黒鉛重量は添加しない極板に比べ小さ
く、繊維状黒鉛の混合比率が大きくなるほど小さくなっ
ている。From Table 3, the fibrous graphite is flake graphite,
Since it is bulkier than spherical graphite, the weight of graphite per electrode plate to which the fibrous graphite is added is smaller than that of the electrode plate to which the fibrous graphite is not added, and becomes smaller as the mixing ratio of the fibrous graphite increases.
【0045】電池特性では低電流での放電容量は大きい
順に電池L−N−M−O−P−Qとなり、繊維状黒鉛の
混合比率が大きくなるほど小さくなり、Qの繊維状黒鉛
の比率が最大のものが特に容量が小さかった。これは繊
維状黒鉛を多く含有するほど、極板中の空孔体積が増え
て電解液の浸透が十分となり、活物質の反応深度は増大
するが、一方で繊維状黒鉛の嵩が大きいために極板1枚
当たりの活物質重量は小さくなり、放電容量は小さくな
るためと考えられる。In the battery characteristics, the discharge capacities at low currents become larger in the order of battery L-N-M-O-P-Q, which decreases as the mixing ratio of fibrous graphite increases, and the ratio of fibrous graphite of Q is the maximum. The ones had a particularly small capacity. This is because as the content of fibrous graphite increases, the pore volume in the electrode plate increases and the penetration of the electrolytic solution becomes sufficient, and the reaction depth of the active material increases, but on the other hand, the bulk of the fibrous graphite is large. It is considered that this is because the weight of the active material per electrode plate becomes small and the discharge capacity becomes small.
【0046】高電流での放電容量は大きい順に電池L−
M−N−O−P−Qとなったが、低電流での放電容量に
対する高電流での放電容量の割合は繊維状黒鉛の比率が
高いほど大きく、高電流放電特性には繊維状黒鉛の添加
が効果的であることがわかった。繊維状黒鉛は鱗片状黒
鉛に添加した方が極板1枚当たりの重量が減少し、低電
流放電の容量が少なくなるが、高電流放電の容量は大き
くなった。繊維状黒鉛を混合した場合鱗片状黒鉛が充填
しにくくなり、反応がスムースに行われるようになった
ためと考えられる。The battery L-
However, the ratio of the discharge capacity at high current to the discharge capacity at low current is higher as the ratio of the fibrous graphite is higher, and the high current discharge characteristics are higher than those of the fibrous graphite. The addition was found to be effective. When fibrous graphite was added to scaly graphite, the weight per electrode plate decreased, and the capacity for low current discharge decreased, but the capacity for high current discharge increased. It is considered that when the fibrous graphite was mixed, it became difficult to fill the scaly graphite, and the reaction came to be carried out smoothly.
【0047】一方、サイクル劣化率は少ない順に電池Q
−P−O−M−N−Lとなり、繊維状黒鉛の添加によっ
てサイクル寿命は飛躍的に延び、その添加比率が大きい
ほどサイクル寿命が長くなった。これは、繊維状黒鉛が
鱗片状黒鉛や球状黒鉛の粒子間の隙間に存在することに
よって充放電時の粒子の膨脹、収縮による極板の崩れを
防ぎ、粒子間の接触をよくする効果を持つためと推察さ
れる。また、球状黒鉛層に添加した電池Nよりも鱗片状
黒鉛層に添加した電池Mのほうがサイクル劣化が少なか
った。これは、鱗片状黒鉛を球状黒鉛と比較した場合、
鱗片状黒鉛は充填性が良いため極板中の空孔体積が少な
く、充放電に伴う炭素粒子の膨脹、収縮を吸収できな
い。そのため充放電時の極板体積変化が大きく、充放電
サイクルを繰り返すと、徐々に炭素粒子間の結着力が低
下し極板の崩壊を伴う。この鱗片状黒鉛の充填されやす
い性質に対する繊維状黒鉛の添加効果、すなわちサイク
ルに伴う極板の崩壊を抑制する効果が、球状黒鉛への添
加効果よりも大きいためと推察される。On the other hand, the battery Q
-P-O-M-N-L, the cycle life was dramatically extended by the addition of fibrous graphite, and the cycle life became longer as the addition ratio increased. This is because the fibrous graphite is present in the interstices between the particles of the flake graphite or the spherical graphite to prevent the electrode plate from collapsing due to the expansion and contraction of the particles during charge / discharge, and to improve the contact between the particles. It is supposed to be because. Further, the cycle deterioration of the battery M added to the scaly graphite layer was smaller than that of the battery N added to the spherical graphite layer. This is when comparing flake graphite with spheroidal graphite,
Since the flake graphite has a good filling property, the volume of pores in the electrode plate is small, and the expansion and contraction of carbon particles due to charging and discharging cannot be absorbed. Therefore, the volume change of the electrode plate during charging / discharging is large, and when the charging / discharging cycle is repeated, the binding force between the carbon particles gradually decreases and the electrode plate is collapsed. It is presumed that the effect of adding the fibrous graphite to the property of the flake graphite that is easily filled, that is, the effect of suppressing the collapse of the electrode plate due to the cycle is greater than the effect of adding the spherical graphite.
【0048】以上をまとめると、繊維状黒鉛を添加する
ことによって、低電流、高電流での放電容量は多少低下
するが、サイクル寿命特性は飛躍的に向上する。従っ
て、サイクル寿命特性が重視される場合には繊維状黒鉛
を添加した系が適しており、その際の混合比率は全体の
5〜20%(重量比)の範囲がよい。また、その効果は
鱗片状黒鉛層、球状黒鉛層いずれの層に添加した場合で
も得られるが、特に鱗片状黒鉛層に添加した場合に改良
効果が大であった。In summary, the addition of fibrous graphite slightly reduces the discharge capacity at low current and high current, but the cycle life characteristics are dramatically improved. Therefore, when the cycle life characteristics are important, a system to which fibrous graphite is added is suitable, and the mixing ratio at that time is preferably in the range of 5 to 20% (weight ratio) of the whole. Further, the effect can be obtained when added to either the scale-like graphite layer or the spherical graphite layer, but the improvement effect was particularly large when added to the scale-like graphite layer.
【0049】以上の3つの実施例の結果を総合すると、
負極の表面に球状黒鉛層を全体の20〜80%の重量比
率で配し、負極の集電材に接触する面に鱗片状黒鉛層を
配することによって、低電流、高電流、いずれの放電特
性も向上できる。さらに少なくともいずれか一方の黒鉛
層に負極黒鉛全体の重量に対し、5〜20%の繊維状黒
鉛を添加することによって放電容量は多少低下するもの
の、サイクル寿命特性を向上できることがわかった。Summarizing the results of the above three embodiments,
By disposing the spherical graphite layer on the surface of the negative electrode in a weight ratio of 20 to 80% of the whole and by arranging the scaly graphite layer on the surface of the negative electrode in contact with the current collector, discharge characteristics of low current and high current can be obtained. Can be improved. Further, it was found that by adding 5 to 20% of fibrous graphite to at least one of the graphite layers with respect to the total weight of the negative electrode graphite, the discharge capacity is slightly reduced, but the cycle life characteristics can be improved.
【0050】従って、放電容量すなわちエネルギー密度
を重視する用途に対しては、上記負極構成のうち、繊維
状黒鉛を添加しない構成が適し、一方サイクル寿命特性
を重視する用途に対しては繊維状黒鉛を添加した構成が
適している。Therefore, for applications in which the discharge capacity, that is, energy density is important, among the above-mentioned negative electrode configurations, the configuration in which fibrous graphite is not added is suitable, while for applications in which the cycle life characteristics are important, fibrous graphite is used. A configuration in which is added is suitable.
【0051】なお、本実施例では正極活物質にリチウム
とコバルトの複合酸化物を用いたが、他の正極活物質、
たとえば、リチウムとニッケルの複合酸化物、リチウム
とマンガンの複合酸化物、リチウムと鉄の複合酸化物な
どのリチウム含有酸化物、もしくは上記複合酸化物のそ
れぞれコバルト、ニッケル、マンガン、鉄を他の遷移金
属で一部置換したものを用いた場合でもほぼ同様の効果
が得られた。In this embodiment, a composite oxide of lithium and cobalt was used as the positive electrode active material, but other positive electrode active materials,
For example, lithium-containing oxides such as a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, and a composite oxide of lithium and iron, or cobalt, nickel, manganese, and iron of each of the above composite oxides are converted to other transition metals. Almost the same effect was obtained when using a metal partially substituted.
【0052】また、本実施例では電解液の溶質に六フッ
化リン酸リチウムを用いたが、他のリチウム含有塩、例
えばホウフッ化リチウム、過塩素酸リチウム、トリフル
オロメタンスルホン酸リチウム、六フッ化ヒ酸リチウム
などを用いた場合でもほぼ同様の効果が得られた。Although lithium hexafluorophosphate is used as the solute of the electrolytic solution in this embodiment, other lithium-containing salts such as lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and hexafluorofluoride are used. Similar effects were obtained even when lithium arsenate was used.
【0053】[0053]
【発明の効果】以上の説明で明らかなように、本発明に
よれば負極の表面に球状黒鉛層を、好ましくは全体の2
0〜80%の重量比率で配し、負極の集電材に接触する
面に鱗片状黒鉛層を配することによって、低電流、高電
流いずれの放電電流でも放電容量特性に優れ、さらに少
なくともいずれか一方の黒鉛層に負極黒鉛全体の重量に
対し、5〜20%の繊維状黒鉛を添加することによって
高電流での放電とサイクル寿命特性に優れた非水電解液
二次電池を提供することができる。As is apparent from the above description, according to the present invention, a spherical graphite layer is formed on the surface of the negative electrode, preferably 2
By disposing at a weight ratio of 0 to 80% and disposing a scaly graphite layer on the surface of the negative electrode that contacts the current collector, excellent discharge capacity characteristics can be obtained at both low current and high current, and at least either By adding 5 to 20% of fibrous graphite to one graphite layer with respect to the total weight of negative electrode graphite, it is possible to provide a non-aqueous electrolyte secondary battery excellent in discharge at high current and cycle life characteristics. it can.
【図1】本発明の円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery of the present invention.
1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate 11 Positive electrode terminal
Claims (4)
非水電解液二次電池において、 前記負極は、黒鉛を主材料とする活物質層と集電材層と
からなり、活物質層において集電材に接する側の層には
鱗片状黒鉛が主に存在し、表面側の層には球状黒鉛が主
に存在する非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode with a separator interposed therebetween, wherein the negative electrode comprises an active material layer containing graphite as a main material and a current collecting material layer, and the active material layer is a collector. A non-aqueous electrolyte secondary battery in which flake graphite is mainly present in the layer in contact with the electric material, and spherical graphite is mainly present in the surface side layer.
れか一方には繊維状黒鉛が含有される請求項1記載の非
水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one of spherical graphite and flake graphite contains fibrous graphite.
率で20%以上80%以下の範囲である請求項1または
2記載の非水電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the proportion of spherical graphite in the entire graphite is in the range of 20% to 80% by weight.
比率で5%以上20%以下の範囲である請求項2記載の
非水電解液二次電池。4. The non-aqueous electrolyte secondary battery according to claim 2, wherein the proportion of the fibrous graphite in the whole graphite is in the range of 5% or more and 20% or less by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8013680A JPH09213372A (en) | 1996-01-30 | 1996-01-30 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8013680A JPH09213372A (en) | 1996-01-30 | 1996-01-30 | Non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09213372A true JPH09213372A (en) | 1997-08-15 |
Family
ID=11839905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8013680A Pending JPH09213372A (en) | 1996-01-30 | 1996-01-30 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09213372A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102091A (en) * | 1999-07-29 | 2001-04-13 | Toshiba Corp | Non-aqueous electrolyte secondary cell |
WO2004001880A1 (en) * | 2002-06-20 | 2003-12-31 | Sony Corporation | Electrode and cell comprising the same |
US7498101B2 (en) | 1999-09-30 | 2009-03-03 | Sony Corporation | Non-aqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes |
JPWO2014156095A1 (en) * | 2013-03-29 | 2017-02-16 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
-
1996
- 1996-01-30 JP JP8013680A patent/JPH09213372A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102091A (en) * | 1999-07-29 | 2001-04-13 | Toshiba Corp | Non-aqueous electrolyte secondary cell |
US7498101B2 (en) | 1999-09-30 | 2009-03-03 | Sony Corporation | Non-aqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes |
WO2004001880A1 (en) * | 2002-06-20 | 2003-12-31 | Sony Corporation | Electrode and cell comprising the same |
US7229713B2 (en) | 2002-06-20 | 2007-06-12 | Sony Corporation | Electrode and battery using the same |
JPWO2014156095A1 (en) * | 2013-03-29 | 2017-02-16 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5937565B2 (en) | Lithium secondary battery with fast charge / discharge performance | |
JP3556270B2 (en) | Lithium secondary battery | |
KR100377993B1 (en) | Graphite particles and lithium secondary battery using them as negative electrode | |
JP6236197B2 (en) | Positive electrode for lithium battery and lithium battery | |
CN105280880B (en) | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and system thereof | |
JP3499584B2 (en) | Lithium secondary battery | |
JPH103920A (en) | Lithium secondary battery, and manufacture of the same | |
JP4595145B2 (en) | Non-aqueous electrolyte battery | |
KR20130129819A (en) | Lithium ion secondary battery | |
JP3440638B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4798741B2 (en) | Non-aqueous secondary battery | |
JP3140880B2 (en) | Lithium secondary battery | |
JP3840087B2 (en) | Lithium secondary battery and negative electrode material | |
JP3499739B2 (en) | Lithium secondary battery and method of manufacturing lithium secondary battery | |
JP3440705B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP3236400B2 (en) | Non-aqueous secondary battery | |
JP2005056581A (en) | Carbon material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it | |
JP3406843B2 (en) | Lithium secondary battery | |
US20240429389A1 (en) | Negative electrode and secondary battery including the same | |
JPH09213372A (en) | Non-aqueous electrolyte secondary battery | |
JP3236170B2 (en) | Negative electrode for non-aqueous electrolyte secondary batteries | |
JP3329162B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3568247B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH08287952A (en) | Non-aqueous electrolyte secondary battery | |
JP2001185149A (en) | Lithium secondary battery |