[go: up one dir, main page]

JPH09190920A - Magnetostatic wave device - Google Patents

Magnetostatic wave device

Info

Publication number
JPH09190920A
JPH09190920A JP8022147A JP2214796A JPH09190920A JP H09190920 A JPH09190920 A JP H09190920A JP 8022147 A JP8022147 A JP 8022147A JP 2214796 A JP2214796 A JP 2214796A JP H09190920 A JPH09190920 A JP H09190920A
Authority
JP
Japan
Prior art keywords
crystal film
substrate
wave device
magnetic garnet
magnetostatic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8022147A
Other languages
Japanese (ja)
Other versions
JP2998628B2 (en
Inventor
Masaru Fujino
野 優 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8022147A priority Critical patent/JP2998628B2/en
Priority to KR1019970000378A priority patent/KR100208882B1/en
Priority to US08/781,701 priority patent/US5801604A/en
Priority to EP97100362A priority patent/EP0784380B1/en
Priority to DE69704962T priority patent/DE69704962T2/en
Publication of JPH09190920A publication Critical patent/JPH09190920A/en
Application granted granted Critical
Publication of JP2998628B2 publication Critical patent/JP2998628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the function of a magnetostatic wave device by adding a specified amount of In element to a magnetic garnet single-crystal film containing Fe element, so that saturation phenomenon appears even with very small input electric power. SOLUTION: This magnetostatic wave device 10 contains rectangular parallelopiped-shaped substrate 12, and the substrate 12 is a Gd3 Ga5 O12 substrate. On one main surface of the substrate 12, a rectangular parallelopiped-shaped magnetic garnet single-crystal film 14 is formed. This magnetic garnet single- crystal film 14 is a magneticgarnet single-crystal film containing Fe element. On the main surface on the opposite side to the substrate 12 of the magnetic garnet single-crystal film 14, an input terminal 16 and an output terminal 18 are formed parallel to each other. In addition, the input terminal 16 and the output terminal 18 are earthed by its end respectively. The magnetic garnet single-crystal film 14 containing Fe element is doped with In element by 10-3000 wtppm. By this, the amount of saturation input electric power can be very small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、静磁波デバイス
に関する。
TECHNICAL FIELD The present invention relates to a magnetostatic wave device.

【0002】[0002]

【従来の技術】従来から、静磁波デバイスの磁性ガーネ
ット単結晶膜の材料としては、Y3 Fe5 12(YI
G)単結晶が重要な材料として使用されてきた。特に、
YIGの最も際だった性質は、極端に強磁性半値幅(Δ
H)が小さいことである。静磁波デバイスの磁性ガーネ
ット単結晶膜の材料として用いたとき、この性質が入力
信号と出力信号との差を小さくできることにつながって
いる。さらに、YIGの特徴は、入力信号に対して比較
的小さい電力で飽和現象が現れることである。この性質
を利用したリミッタやノイズフィルタなどの静磁波デバ
イスとして、YIG単結晶膜は広く用いられてきた。さ
らに、YIG単結晶膜も含めて、Fe元素を含むガーネ
ット単結晶膜も、同様に静磁波デバイスに用いられてき
た。
2. Description of the Related Art Conventionally, as a material for a magnetic garnet single crystal film of a magnetostatic wave device, Y 3 Fe 5 O 12 (YI
G) Single crystals have been used as an important material. Especially,
The most prominent property of YIG is the extreme ferromagnetic half-value width (Δ
H) is small. When used as a material for a magnetic garnet single crystal film of a magnetostatic wave device, this property leads to a reduction in the difference between the input signal and the output signal. Further, the feature of YIG is that the saturation phenomenon appears with relatively low power with respect to the input signal. The YIG single crystal film has been widely used as a magnetostatic wave device such as a limiter or a noise filter utilizing this property. Furthermore, garnet single crystal films containing Fe elements, including YIG single crystal films, have also been used in magnetostatic wave devices.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、YIG
の特徴の一つである比較的小さい入力信号で飽和する現
象については、電子機器の低消費電力化に伴って、非常
に小さい入力電力で飽和することが望まれていた。
[Problems to be Solved by the Invention] However, YIG
Regarding the phenomenon of saturation with a relatively small input signal, which is one of the characteristics of the above, it has been desired to saturate with a very small input power as the power consumption of electronic devices is reduced.

【0004】それゆえに、この発明の主たる目的は、非
常に小さい入力電力でも飽和現象が現れ、より高機能の
静磁波デバイスを提供することである。
Therefore, a main object of the present invention is to provide a magnetostatic wave device of higher performance, in which a saturation phenomenon appears even with a very small input power.

【0005】[0005]

【課題を解決するための手段】この発明は、Fe元素を
含む磁性ガーネット単結晶膜によって構成される静磁波
デバイスにおいて、Fe元素を含む磁性ガーネット単結
晶膜に、In元素が10〜3000wtppm添加され
ている、静磁波デバイスである。
According to the present invention, in a magnetostatic wave device composed of a magnetic garnet single crystal film containing Fe element, In element is added to the magnetic garnet single crystal film containing Fe element in an amount of 10 to 3000 wtppm. It is a magnetostatic wave device.

【0006】[0006]

【作用】静磁波デバイスを構成するYIG単結晶膜を始
めとして、Fe元素を含む磁性ガーネット単結晶膜にI
n元素を10〜3000wtppm添加することによっ
て、飽和入力電力量を非常に小さくできる。
The magnetic garnet single crystal film containing Fe element, including the YIG single crystal film that constitutes the magnetostatic wave device,
By adding the n element in an amount of 10 to 3000 wtppm, the saturated input power amount can be made extremely small.

【0007】[0007]

【発明の効果】この発明によれば、非常に小さい入力電
力でもYIGの特徴の一つである飽和現象が現れ、静磁
波デバイスの機能を高めることができる。
According to the present invention, the saturation phenomenon, which is one of the features of YIG, appears even with a very small input power, and the function of the magnetostatic wave device can be enhanced.

【0008】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の発明の実施
の形態および実施例の詳細な説明から一層明らかとなろ
う。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments and examples of the invention with reference to the drawings.

【0009】[0009]

【発明の実施の形態】図1はこの発明の実施の形態の一
例を示す斜視図である。静磁波デバイス10は、直方体
状の基板12を含む。この基板12は、Gd3 Ga5
12基板である。基板12の一方主面には、直方体状の磁
性ガーネット単結晶膜14が形成される。この磁性ガー
ネット単結晶膜14は、Fe元素を含む磁性ガーネット
単結晶膜である。磁性ガーネット単結晶膜14における
基板12と反対側の主面には、入力端子16および出力
端子18が互いに平行に形成される。また、入力端子1
6および出力端子18は、それぞれ、その一端がアース
されている。
FIG. 1 is a perspective view showing an example of an embodiment of the present invention. The magnetostatic wave device 10 includes a rectangular parallelepiped substrate 12. This substrate 12 is made of Gd 3 Ga 5 O
12 boards. A rectangular parallelepiped magnetic garnet single crystal film 14 is formed on one main surface of the substrate 12. The magnetic garnet single crystal film 14 is a magnetic garnet single crystal film containing Fe element. An input terminal 16 and an output terminal 18 are formed in parallel with each other on the main surface of the magnetic garnet single crystal film 14 opposite to the substrate 12. Also, input terminal 1
One end of each of 6 and the output terminal 18 is grounded.

【0010】なお、Fe元素を含む磁性ガーネット単結
晶膜14の磁性ガーネット単結晶には、(Y
3-x1-x2 R′x1R″x2)(Fe5-y1-y2 M′y1M″y2
12において、0≦x1≦3,0≦x2≦3,0≦x1
+x2≦3,0≦y1<5,0≦y2≦3,0≦y1+
y2<5,x2=y2で、R′がSc,La系列,Bi
のうちの1つ以上で、R″がMg,Ca,Sr,Baの
うち1つ以上で、M′がAl,Ga,Inのうち1つ以
上で、M″がSi,Ti,Zr,Hf,Geのうち1つ
以上であるものがある。
The magnetic garnet single crystal of the magnetic garnet single crystal film 14 containing Fe element has (Y
3-x1-x2 R'x1 R " x2 ) (Fe 5-y1-y2 M'y1 M" y2 )
In O 12 , 0 ≦ x1 ≦ 3, 0 ≦ x2 ≦ 3, 0 ≦ x1
+ X2 ≦ 3,0 ≦ y1 <5,0 ≦ y2 ≦ 3,0 ≦ y1 +
y2 <5, x2 = y2, R'is Sc, La series, Bi
R'is one or more of Mg, Ca, Sr, Ba, M'is one or more of Al, Ga, In, and M "is Si, Ti, Zr, Hf. , Ge is one or more.

【0011】[0011]

【実施例】【Example】

(実施例1)Gd3 Ga5 12基板をLPE法でガーネ
ット膜を形成するための基板とした。次に、ガーネット
膜の原料であるFe2 3 およびY2 3 と添加物であ
るInO2 と溶剤であるPbOとB2 3 とを混合し、
縦型電気炉内に保持された白金坩堝に充填し、約120
0℃で均質化を行い融液化した。この融液を約900℃
前後の一定温度に保持して、ガーネットを過飽和状態に
した後、この融液中にGGG基板を浸透し、回転させな
がら所定時間成長を行った。その後、この基板を融液か
ら引き上げ、高速度で回転させてガーネット膜上の付着
融液を遠心力により振り切ることによってガーネット層
を形成した。また、別に上記の条件でInを添加せずに
ガーネット膜を育成し、比較のための試料とした。
Example 1 A Gd 3 Ga 5 O 12 substrate was used as a substrate for forming a garnet film by the LPE method. Then, by mixing the PbO and B 2 O 3 is InO 2 and the solvent is additive and Fe 2 O 3 and Y 2 O 3 as a raw material for the garnet film,
The platinum crucible held in the vertical electric furnace was filled with about 120
Homogenization was performed at 0 ° C. to form a melt. This melt is about 900 ℃
After holding the garnet in a supersaturated state while maintaining a constant temperature before and after, the GGG substrate was permeated into this melt and grown for a predetermined time while rotating. Then, this substrate was pulled up from the melt and rotated at a high speed to shake off the adhered melt on the garnet film by centrifugal force to form a garnet layer. A garnet film was separately grown under the above conditions without adding In, and used as a sample for comparison.

【0012】得られたガーネット膜を用いて、図1に示
す静磁波デバイスを作製し測定周波数2GHzで飽和現
象が現れるまでの入力電力量を測定した。さらに、ガー
ネット膜を化学分析してInの濃度を測定した。その結
果を表1に示す。なお、表1中、*を付したものは、こ
の発明の範囲外のものであり、他のものはこの発明の範
囲内のものである。
A magnetostatic wave device shown in FIG. 1 was produced using the obtained garnet film, and the input electric energy until the saturation phenomenon appeared at a measurement frequency of 2 GHz was measured. Further, the garnet film was chemically analyzed to measure the In concentration. Table 1 shows the results. In Table 1, those marked with * are outside the scope of the present invention, and others are within the scope of the present invention.

【0013】[0013]

【表1】 [Table 1]

【0014】この発明において、Inの濃度を限定した
のは以下の理由である。すなわち、試料番号2のよう
に、Inの濃度が10wtppm未満では、試料番号1
のInを添加していないYIG膜に比べてほとんど飽和
入力電力に変化が生じない。また、試料番号8のよう
に、Inの濃度が3000wtppmを越えると、良質
の単結晶膜が得られなくなる。
The reason for limiting the concentration of In in the present invention is as follows. That is, when the concentration of In is less than 10 wtppm as in sample number 2, sample number 1
As compared with the YIG film in which In is not added, the saturation input power hardly changes. Further, if the concentration of In exceeds 3000 wtppm as in sample No. 8, a good quality single crystal film cannot be obtained.

【0015】(実施例2)Gd3 Ga5 12基板をLP
E法でガーネット膜を形成するための基板とした。次
に、ガーネット膜の原料であるFe2 3 とY2 3
Ga2 3 およびLa2 3 と添加物であるInO2
溶剤であるPbOとB2 3 とを混合し、縦型電気炉内
に保持された白金坩堝に充填し、約1200℃で均質化
を行ない融液化した。この融液を約900℃前後の一定
温度に保持してガーネットを過飽和状態にした後、この
融液中にGGG基板を浸透し、回転させながら所定時間
成長を行った。その後、この基板を融液から引き上げ、
高速度で回転させてガーネット膜上の付着融液を遠心力
により振り切ることによってガーネット膜を形成した。
また、別に上記の条件でInを添加せずにガーネット膜
を育成し、比較のための試料とした。
(Embodiment 2) LP is applied to the Gd 3 Ga 5 O 12 substrate.
The substrate was used for forming a garnet film by the E method. Then mixed Fe 2 O 3 and Y 2 O 3 and Ga 2 O 3 and La 2 O 3 and PbO and B 2 O 3 is InO 2 and the solvent is additive as a raw material of the garnet film, It was filled in a platinum crucible held in a vertical electric furnace and homogenized at about 1200 ° C. to be melted. After holding this melt at a constant temperature of about 900 ° C. to make the garnet supersaturated, the GGG substrate was permeated into this melt and grown for a predetermined time while rotating. After that, pull up this substrate from the melt,
A garnet film was formed by rotating at a high speed and shaking off the deposited melt on the garnet film by centrifugal force.
A garnet film was separately grown under the above conditions without adding In, and used as a sample for comparison.

【0016】得られたガーネット膜を用いて、図1に示
す静磁波デバイスを作製し測定周波数2GHzで飽和現
象が現れるまでの入力電力量を測定した。また、ガーネ
ット膜を化学分析してInの濃度および組成比を測定し
た。その結果を表2に示す。なお、表2中、*を付した
ものは、この発明の範囲外のものであり、他のものはこ
の発明の範囲内のものである。
Using the obtained garnet film, the magnetostatic wave device shown in FIG. 1 was manufactured and the input electric energy until the saturation phenomenon appeared at the measurement frequency of 2 GHz was measured. In addition, the garnet film was chemically analyzed to measure the In concentration and composition ratio. Table 2 shows the results. In Table 2, those marked with * are outside the scope of the present invention, and others are within the scope of the present invention.

【0017】[0017]

【表2】 [Table 2]

【0018】この発明において、Inの濃度を限定した
のは以下の理由である。すなわち、試料番号10のよう
に、Inの濃度が10wtppm未満では、試料番号9
のInを添加していないガーネット膜に比べてほとんど
飽和入力電力に変化が生じない。また、試料番号16の
ように、Inの濃度が3000wtppmを越えると、
良質の単結晶膜が得られなくなる。
The reason for limiting the concentration of In in the present invention is as follows. That is, when the concentration of In is less than 10 wtppm as in sample number 10, sample number 9
In comparison with the garnet film to which In is not added, the saturation input power hardly changes. When the concentration of In exceeds 3000 wtppm as in sample No. 16,
A good quality single crystal film cannot be obtained.

【0019】(実施例3)Gd3 Ga5 12基板をLP
E法でガーネット膜を形成するための基板とした。次
に、ガーネット膜の原料であるFe2 3 とY2 3
Ga2 3 およびBi2 3 と添加物であるInO2
溶剤であるPbOとB2 3 とを混合し、縦型電気炉内
に保持された白金坩堝に充填し、約1200℃で均質化
を行い融液化した。この融液を約900℃前後の一定温
度に保持してガーネットを過飽和状態いにした後、この
融液中にGGG基板を浸透し、回転させながら所定時間
成長を行った。その後、この基板を融液から引き上げ、
高速度で回転させてガーネット膜上の付着融液を遠心力
により振り切ることによってガーネット膜を形成した。
また、別に上記の条件でInを添加せずにガーネット膜
を育成し、比較のための試料とした。
(Embodiment 3) Gd 3 Ga 5 O 12 substrate is LP
The substrate was used for forming a garnet film by the E method. Then mixed Fe 2 O 3 and Y 2 O 3 and Ga 2 O 3 and Bi 2 O 3 and PbO and B 2 O 3 is InO 2 and the solvent is additive as a raw material of the garnet film, It was filled in a platinum crucible held in a vertical electric furnace and homogenized at about 1200 ° C. to melt it. After holding this melt at a constant temperature of about 900 ° C. to make the garnet supersaturated, a GGG substrate was permeated into this melt and allowed to grow for a predetermined time while rotating. After that, pull up this substrate from the melt,
A garnet film was formed by rotating at a high speed and shaking off the deposited melt on the garnet film by centrifugal force.
A garnet film was separately grown under the above conditions without adding In, and used as a sample for comparison.

【0020】得られたガーネット膜を用いて、図1に示
す静磁波デバイスを作製し測定周波数2GHzで飽和現
象が現れるまでの入力電力量を測定した。また、ガーネ
ット膜を化学分析してInの濃度および組成比を測定し
た。その結果を表3に示す。なお、表3中、*を付した
ものは、この発明の範囲外のものであり、他のものはこ
の発明の範囲内のものである。
Using the obtained garnet film, the magnetostatic wave device shown in FIG. 1 was produced and the input electric energy until the saturation phenomenon appeared at the measurement frequency of 2 GHz was measured. In addition, the garnet film was chemically analyzed to measure the In concentration and composition ratio. Table 3 shows the results. In Table 3, those marked with * are outside the scope of the present invention, and others are within the scope of the present invention.

【0021】[0021]

【表3】 [Table 3]

【0022】この発明において、Inの濃度を限定した
のは以下の理由である。すなわち、試料番号18のよう
に、Inの濃度が10wtppm未満では、試料番号1
7のInを添加していないガーネット膜に比べてほとん
ど飽和入力電力に変化が生じない。また、試料番号24
のように、Inの濃度が3000wtppmを越える
と、良質の単結晶膜が得られなくなる。
The reason for limiting the concentration of In in the present invention is as follows. That is, when the In concentration is less than 10 wtppm as in the sample number 18, the sample number 1
Compared to the garnet film in which In is not added, the saturation input power hardly changes. Also, sample number 24
As described above, if the In concentration exceeds 3000 wtppm, a good quality single crystal film cannot be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態の一例を示す斜視図であ
る。
FIG. 1 is a perspective view showing an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 静磁波デバイス 12 基板 14 磁性ガーネット単結晶膜 16 入力端子 18 出力端子 10 Magnetostatic Wave Device 12 Substrate 14 Magnetic Garnet Single Crystal Film 16 Input Terminal 18 Output Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Fe元素を含む磁性ガーネット単結晶膜
によって構成される静磁波デバイスにおいて、 前記Fe元素を含む磁性ガーネット単結晶膜に、In元
素が10〜3000wtppm添加されていることを特
徴とする、静磁波デバイス。
1. A magnetostatic wave device comprising a magnetic garnet single crystal film containing Fe element, wherein In element is added to the magnetic garnet single crystal film containing Fe element in an amount of 10 to 3000 wtppm. , Magnetostatic wave device.
JP8022147A 1996-01-11 1996-01-11 Magnetostatic wave device Expired - Fee Related JP2998628B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8022147A JP2998628B2 (en) 1996-01-11 1996-01-11 Magnetostatic wave device
KR1019970000378A KR100208882B1 (en) 1996-01-11 1997-01-09 Sperm wave device
US08/781,701 US5801604A (en) 1996-01-11 1997-01-10 Magnetostatic wave device with indium/tin in the magnetic garnet
EP97100362A EP0784380B1 (en) 1996-01-11 1997-01-10 Magnetostatic wave device
DE69704962T DE69704962T2 (en) 1996-01-11 1997-01-10 Magnetostatic wave arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8022147A JP2998628B2 (en) 1996-01-11 1996-01-11 Magnetostatic wave device

Publications (2)

Publication Number Publication Date
JPH09190920A true JPH09190920A (en) 1997-07-22
JP2998628B2 JP2998628B2 (en) 2000-01-11

Family

ID=12074759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8022147A Expired - Fee Related JP2998628B2 (en) 1996-01-11 1996-01-11 Magnetostatic wave device

Country Status (1)

Country Link
JP (1) JP2998628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180071A (en) * 2009-02-03 2010-08-19 Fdk Corp Magnetic garnet single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180071A (en) * 2009-02-03 2010-08-19 Fdk Corp Magnetic garnet single crystal

Also Published As

Publication number Publication date
JP2998628B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JPH0513916B2 (en)
US5801604A (en) Magnetostatic wave device with indium/tin in the magnetic garnet
JP2998628B2 (en) Magnetostatic wave device
EP0743660B1 (en) Magnetostatic wave device and material for the same
JPH09190919A (en) Magnetostatic wave device
JPH11340038A (en) Magnetic garnet single crystal film, manufacture thereof, and magnetostatic wave device
JPH05251788A (en) Material for magnetostatic wave device
JP3089741B2 (en) Materials for magnetostatic wave devices
JP3089742B2 (en) Materials for magnetostatic wave devices
JPH11102815A (en) Static and magnetic wave device
JP3539322B2 (en) Magnetostatic wave element
JPH1197242A (en) Magnetostatic wave device
JP2000261207A (en) Magnetostatic wave device
JPH07130539A (en) Surface magnetostatic wave device
US5770101A (en) Magnetostatic-wave device
JPH07335438A (en) Material for static magnetic wave device
JP3123131B2 (en) Materials for magnetostatic wave devices
JPH06260322A (en) Material for static magnetic wave element
JPS62101012A (en) Magnetostatic-wave microwave element
Obokata et al. Bubble domains in Y 3-2x Ca 2x Fe 5-x V x O 12
JP2779058B2 (en) Magnetostatic wave filter
JPH07226313A (en) Material for magnetostatic wave device
JPH1012440A (en) Magnetostatic wave device
JPH0513230A (en) Material for magnetostatic-wave dev ice use
JPH0513225A (en) Material for magnetostatic-wave device use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees