JPS62101012A - Magnetostatic-wave microwave element - Google Patents
Magnetostatic-wave microwave elementInfo
- Publication number
- JPS62101012A JPS62101012A JP23858685A JP23858685A JPS62101012A JP S62101012 A JPS62101012 A JP S62101012A JP 23858685 A JP23858685 A JP 23858685A JP 23858685 A JP23858685 A JP 23858685A JP S62101012 A JPS62101012 A JP S62101012A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- film
- crystal film
- substrate
- yig
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000002223 garnet Substances 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 6
- 230000004907 flux Effects 0.000 claims abstract description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 3
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 3
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 3
- 230000012010 growth Effects 0.000 claims description 10
- 230000005291 magnetic effect Effects 0.000 claims description 6
- 239000010408 film Substances 0.000 abstract description 34
- 239000010409 thin film Substances 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000005350 ferromagnetic resonance Effects 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 229910052745 lead Inorganic materials 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IOMKFXWXDFZXQH-UHFFFAOYSA-N (6-oxo-7,8,9,10-tetrahydrobenzo[c]chromen-3-yl) 3-chloro-4-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoyloxy]benzoate Chemical compound C1=C(Cl)C(OC(=O)CCNC(=O)OC(C)(C)C)=CC=C1C(=O)OC1=CC=C(C2=C(CCCC2)C(=O)O2)C2=C1 IOMKFXWXDFZXQH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009643 growth defect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Thin Magnetic Films (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
木光明は、マイクロ波にa3ける損失の小さいYIG単
結晶薄膜を用いた静磁波マイクロ波素子に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The field of industrial application is a magnetostatic microwave device using a YIG single-crystal thin film that has a small loss in microwaves.
従来の技術
種々のマイクロ波磁性素子用として、酸化物磁性材料で
あるイットリウム・鉄・ガーネット(YIG;Y3 F
e s Ov )は、重要な物質である。Conventional technology Yttrium-iron-garnet (YIG; Y3F), which is an oxide magnetic material, is used for various microwave magnetic elements.
e s Ov ) is an important substance.
その最も際立った性質は、極端に強磁性共鳴半値幅ΔH
が狭いことである。一般に、YIGはtill lfさ
れたlJi結晶球の形で、これ等のマイクロ波磁性素子
に供せられる。仙の形状としては、単結晶薄膜がある。Its most striking property is the extremely high ferromagnetic resonance half-width ΔH
is narrow. Generally, YIG is provided to these microwave magnetic devices in the form of tilled lJi crystal spheres. The shape of the crystal is a single crystal thin film.
これは、製作が容易でかつ平面型の電子回路に適合可能
である。当然、これをマイクロ波磁性素子に用いようと
する場合、単結晶薄膜にも球と同程度に線幅が狭いこと
が要求される。This is easy to manufacture and adaptable to planar electronic circuits. Naturally, if this is to be used in a microwave magnetic element, the single crystal thin film is required to have a line width as narrow as that of a sphere.
初期のYIG単結晶iiI FJに関する研究は、ガド
リニウム・ガリウム・ガーネット(GGG ; GGd
3Ga50I2)板上に、CV D (Chemica
lV apcr D cpostion)法によりエ
ピタキシャル成長したものである。それはΔl−1が極
めて狭いということを示した(文献、)、 F、 1v
lee etal、 I EEE、 1−ran
、 Mac、 MAG−5<1969) P。Early research on YIG single crystal III FJ was based on gadolinium gallium garnet (GGG; GGd
3Ga50I2) on the CV D (Chemica
It was epitaxially grown using the lV apcr D cposition method. It showed that Δl−1 is extremely narrow (ref.), F, 1v
lee etal, I EEE, 1-ran
, Mac, MAG-5<1969) P.
717参照)が、Δ[−1は球状の試料はど狭くはない
。717), but Δ[-1 is not narrow for a spherical sample.
さらに最近、I P E (L 1quid phas
e E p−1taxial )法が、磁気バブルド
メイン素子の発達に伴い、そのプロセス技術が高いレベ
ルに到達した。More recently, I P E (L 1quid phas
With the development of magnetic bubble domain devices, the process technology of the e E p-1 taxial method has reached a high level.
このLPE法を用いて、非常に高品質のYIG単結晶薄
膜を育成でさるようになった。この方法により育成され
たYIG単結晶薄膜のΔ]」は0. 1500で球状試
料の@良値とほぼ等しく(文献1−(、l−、Glas
s etal、 J、 or Crystal
Gr−owth34 (1976)P、285参照)、
これはYIG結晶が有する木質的な低Δl」の限界に相
当すると思われる。しかし、これらの膜のΔHはそれほ
ど再現性のよいものではなく、LPEプロセス中に不純
物として混入するpbとptの頂に強く依存すると言わ
れている。Using this LPE method, it has become possible to grow very high quality YIG single crystal thin films. The YIG single crystal thin film grown by this method has a value of 0. 1500, which is almost equal to the @good value of the spherical sample (Reference 1-(, l-, Glas
s etal, J, or Crystal
Gro-owth34 (1976) P, 285),
This seems to correspond to the limit of the "woody low Δl" that YIG crystals have. However, the ΔH of these films is not very reproducible and is said to be strongly dependent on the peaks of pb and pt mixed as impurities during the LPE process.
発明が解決しJ:うとりる問題点
該YIGtti結晶itl l!l!を静磁波マイクロ
波素子に利用しようとする実用的な見地に立った場合、
単に低ΔHのみで最適製造条件を論することはできない
。この他に、静磁波マイクロ波素子では、安定に厚i儲
を作製できる必要があり、この条件を併せて考えるとガ
ラス(Q 1ass)とエリオツド(Elliott)
の最適製造条件とは必ずしも一致しないことが研究の結
果分かった。The invention solves the problem: YIGtti crystal itl l! l! From a practical standpoint when trying to use magnetostatic microwave devices,
Optimum manufacturing conditions cannot be discussed simply based on low ΔH. In addition, in magnetostatic microwave devices, it is necessary to be able to stably produce a thick film, and considering this condition, glass (Q1ass) and Elliott (Elliott)
As a result of the research, it was found that the optimum manufacturing conditions are not necessarily the same.
強磁性共鳴半値幅Δ1」は、極めて構造敏感な物理量で
ある。これは、低周波帯で用いられる軟磁性材料の透磁
率μと対比してみると
μoc4πMs/ΔH−(i)
と定式化しで表すことができる。μちまた極めて構造敏
感な量である。The ferromagnetic resonance half-width Δ1 is a physical quantity that is extremely structure sensitive. When compared with the magnetic permeability μ of soft magnetic materials used in the low frequency band, this can be formulated as μoc4πMs/ΔH−(i). μ is also an extremely structure-sensitive quantity.
LPE法により作製されたYIG単結単結晶nへHを前
述の理論的下限値よりも劣化させていると考えられる要
因は幾つかある。There are several factors that are thought to cause the H content in the YIG single crystal n produced by the LPE method to be lower than the above-mentioned theoretical lower limit.
(1)単結晶薄膜内の内部応力によって生ずる不均一な
異方性によるΔHの増加が考えられる。(1) It is considered that ΔH increases due to non-uniform anisotropy caused by internal stress within the single crystal thin film.
また、この内部応力の原因としては、基板と生成単結晶
薄膜との間の格子定数の不整合やL P E育成時間と
ともに発生ずるYとFe等の元素濃度のゆらぎがある。Further, causes of this internal stress include mismatching of lattice constants between the substrate and the produced single crystal thin film and fluctuations in the concentration of elements such as Y and Fe that occur with the LPE growth time.
(2)強ta性共鳴の緩和効果の大きい不純物元素の混
入が珂えられる。これに伴うFe原子の!l!li電状
態の変化も影響を与える。例えば、不純物としてPb”
”、Pt4千が混入した場合2 F e34 →P l
) 2+十FQ 442 Fe 14−+Pt 4++
pe 2→のようにF63+の1illi電状態が変
化して、損失の原因となる。(2) The inclusion of impurity elements that have a large effect of alleviating strong ta resonance is observed. Along with this, Fe atoms! l! Changes in lithium charge status also have an effect. For example, Pb” as an impurity
”, if 4,000 Pt is mixed, 2 F e34 → P l
) 2+10FQ 442 Fe 14-+Pt 4++
The illielectric state of F63+ changes as pe 2→, causing loss.
(3)LPE時の雰囲気の変化により、酸素Oの過不足
が発生し、これが強磁性共鳴の緩和機構となる可能性が
ある。(3) Due to changes in the atmosphere during LPE, excess or deficiency of oxygen O may occur, and this may become a mechanism for relaxing ferromagnetic resonance.
〈4)マクロ的な膜欠陥、例えば、転位の集合、ビット
やステップ状の成長欠陥、表面粗さのようなものもΔ1
」を大きくすることに影響を与えていると考えられる。〈4) Macroscopic film defects, such as aggregation of dislocations, bit or step-like growth defects, and surface roughness, also have Δ1
It is thought that this has an influence on increasing the size of ``.
次の問題として、割のない良質なL P E厚膜を作a
するためには、厚膜作製時に発生する内部応力を弾性限
界内に抑える必要がある。The next problem is to create a reasonably high-quality LPE thick film.
In order to achieve this, it is necessary to suppress the internal stress generated during thick film fabrication to within the elastic limit.
特に、これはGGG基扱と生成膜との格子定数の不整合
が重要な因子となる。In particular, the mismatch in lattice constant between the GGG base treatment and the produced film is an important factor.
本発明の目的は、Pbの置換効果を利用して、厚膜化と
低ΔHを同時に両立するためのpbを含んだYIG単結
晶簿膜を用いた静磁波マイクロ波素子を提供することで
ある。An object of the present invention is to provide a magnetostatic microwave device using a YIG single-crystalline film containing Pb in order to achieve both thick film thickness and low ΔH at the same time by utilizing the Pb substitution effect. .
問題点を解決するための手段
上記問題点を解決するために本発明は、ガドリニウム・
ガリウム・ガーネットの!11結晶基板を用い、該基板
の上に液相エピタキシャル法により、イットリウム・鉄
・ガーネットを主成分とするill結晶膜を成長させる
とともに、PbO−[3203を主成分とづ−るフラッ
クス中に含まれるf) I)を単結晶膜に混入せしめ、
Pbの含イ1出が1wt%〜2゜25wt%の範囲にあ
り、M板の格子定数が生成単結晶膜の格子定数より大き
く、かつそれらの差が9 X 10−3 A以下にある
り、 P E単結晶膜を用いた静磁波マイクロ波素子C
ある。Means for Solving the Problems In order to solve the above problems, the present invention uses gadolinium.
Gallium Garnet! Using a 11-crystalline substrate, an ill crystal film containing yttrium, iron, and garnet as main components was grown on the substrate by a liquid phase epitaxial method, and an ill crystal film containing PbO-[3203 as a main component was grown on the substrate. f) mixing I) into a single crystal film;
The Pb content is in the range of 1 wt% to 2.25 wt%, the lattice constant of the M plate is larger than the lattice constant of the produced single crystal film, and the difference between them is 9 x 10-3 A or less. , Magnetostatic microwave device C using PE single crystal film
be.
また、前記L P Eの育成温度が850〜950℃の
範囲にあるLPE単結晶膜を用いたものである。Further, an LPE single crystal film whose growth temperature of the LPE is in the range of 850 to 950° C. is used.
実施例
第1表は本発明の第1の実施例に用いた各種のLPE用
の溶液の組成を示す。Examples Table 1 shows the compositions of various LPE solutions used in the first example of the present invention.
第1表
但し、R4は次式で表され、溶液の全体のモル数に対す
る溶質のモル比である。Table 1. However, R4 is represented by the following formula and is the molar ratio of the solute to the total number of moles of the solution.
2([FQ203]+[Y2O3])
R4”−−一一一一一−−−−−−−−−−−−−−2
(↓F0203]+[Y2O3]+[13203])+
[Pb01本溶液を用いてL P Eを行った。但し、
J’7膜の成長速度は、はぼ6μm /minになるよ
うに第1表に示すにうな育成温度Tgを選んだ。R4が
大きくなるに吊れて、育成温度Tgb高くなる。第1図
は、本実施例の実験v1果を示す。Δaは、GGG基板
と生成されたY[G薄膜の格子定数の差であり、X線回
折装置で測定されたしのである。2 ([FQ203] + [Y2O3]) R4”--1111---------2
(↓F0203]+[Y2O3]+[13203])+
[LPE was performed using Pb01 solution. however,
The growth temperature Tg shown in Table 1 was selected so that the growth rate of the J'7 film was approximately 6 μm/min. As R4 increases, the growth temperature Tgb increases. FIG. 1 shows the results of experiment v1 of this example. Δa is the difference in lattice constant between the GGG substrate and the produced Y[G thin film, and was measured with an X-ray diffraction device.
GGG基板が大きい場合を正とし、YIGM膜が大きい
ときは負としている。はぼ、R,+=0.145即ち育
成温度865℃で作製されたLPE漣膜薄膜はぼ、Δa
+Oとなる。これより育成温度が高い方でΔaは正、低
い方で負となる。When the GGG substrate is large, it is positive, and when the YIGM film is large, it is negative. R, + = 0.145, that is, the LPE film thin film produced at a growth temperature of 865°C is R, + = 0.145, Δa
It becomes +O. When the growth temperature is higher than this, Δa is positive, and when it is lower, it is negative.
静磁波マイクロ波素子に要求される強磁性半値幅Δ1」
はできるだけ低い方が望ましい。Ferromagnetic half-width Δ1 required for magnetostatic microwave devices
It is desirable that it be as low as possible.
ΔHはΔa−0より正の側で小さくなり、はぼ育成温度
850〜b
ΔHは9.03GH7で測定されたものである。ΔH becomes smaller on the positive side than Δa−0, and ΔH was measured at a plant growth temperature of 850 to 9.03GH7.
これよりも育成温度が高くても低くてもへHは増加する
ので、低へHのための最適育成温度は850〜950℃
ということができる。Since HeH increases regardless of whether the growth temperature is higher or lower than this, the optimal growth temperature for low HeH is 850 to 950°C.
It can be said that.
次に、本実施例により育成されたYIGI膜の不純物と
しTPbをEPM△(E Icctron p rob
eM 1cro A nalyzer )で分析した
。但し、分析値は純Pb金属を100wt%とじで校正
した。Next, TPb was used as an impurity in the YIGI film grown in this example by EPM△ (E Icctron prob
It was analyzed using an eM 1cro Analyzer). However, the analytical values were calibrated using 100 wt% pure Pb metal.
第2図かられかるように、格子定数の不整合Δaの減少
は、YIG薄膜へのPbの混入によることが分かる。P
bの混入量が零になるように外挿しで求めたΔaは、
約0.019A′cあり、これが不純物を含まない場合
のQGG基板とYIG薄膜の格子定数の差と見ることが
できる。As can be seen from FIG. 2, the decrease in the lattice constant mismatch Δa is due to the incorporation of Pb into the YIG thin film. P
Δa, which is obtained by extrapolation so that the amount of b mixed in is zero, is
There is approximately 0.019 A'c, which can be seen as the difference in lattice constant between the QGG substrate and the YIG thin film when no impurities are included.
この図から分かるように格子定数の不整合Δaが約O〜
0.009Aの範囲でほぼΔHは最低値を示で。このこ
とはpbの1度とも密接に関係しており、1〜2.25
wt%でΔ1−1が最低値を示すことと同じである。こ
の値は、G 1assf9が先に報告した文献値Q、5
wt%に比較すると約2〜4倍以上もあり、本発明の特
徴が明らかである。Pb以外の不純物はPtであるが、
これはiwt%以下であり、本実施例ではj)すΔ1−
1の低減とは木質的な関係がないと考えられる。As can be seen from this figure, the lattice constant mismatch Δa is about O~
ΔH almost shows the lowest value in the range of 0.009A. This is closely related to the degree of pb, 1 to 2.25
This is the same as Δ1-1 showing the lowest value in wt%. This value is similar to the literature value Q,5 previously reported by G1assf9.
It is about 2 to 4 times more than wt%, which clearly shows the characteristics of the present invention. The impurity other than Pb is Pt,
This is less than iwt%, and in this example, j)suΔ1-
It is thought that there is no woody relationship with the reduction of 1.
第3図は本発明の実施例を示ず。第1表に示す種々の組
成の溶液から、種々の膜厚のYIG薄膜を作製し、その
薄膜がある程度厚くなると膜1.11れが起こるという
点に着目して、横軸を膜厚に縦軸を格子定数の不整合Δ
aにとって整理したものである。O印は、膜が割れなか
った場合、X印は膜が割れた場合である。この図から分
かるようにΔaが小さくなると膜厚が厚くなってもなか
なか割れにくくなることが分かる。ΔaI)<0.01
A以上のものは、10μm以上の厚膜では必ず割れた。FIG. 3 does not show an embodiment of the invention. YIG thin films of various thicknesses were prepared from solutions with various compositions shown in Table 1, and the horizontal axis was plotted vertically with respect to the film thickness, focusing on the fact that film cracking occurs when the thin film becomes thick to a certain extent. axis to lattice constant mismatch Δ
This is something organized for a. An O mark indicates a case where the film did not crack, and an X mark indicates a case where the film cracked. As can be seen from this figure, when Δa becomes smaller, it becomes difficult to break even when the film thickness becomes thicker. ΔaI)<0.01
For those of A or higher, films with a thickness of 10 μm or more always cracked.
このことから、静磁波マイクロ波素子としては20μm
近傍かそれ以上のものが多く用いられているので、この
貞からもΔa <0.009Δが最適格子定数の不整合
の状態と言える。このことは、Δ(−1の最適値から要
求されるΔaの範囲と矛盾しない。From this, it can be seen that a magnetostatic microwave element with a thickness of 20 μm
Since lattice constants in the vicinity or higher are often used, it can be said from this fact that Δa <0.009Δ is a state of optimal lattice constant mismatch. This is consistent with the range of Δa required from the optimal value of Δ(−1).
発明の効果
木R明ニJ: nば、Fe、Y、Pb、B以外に積極的
に第5番目の添加元素を用いなくとも、フラックス中の
Pbの混入を積極的に利用して、低Δト1を右づ゛るY
IGの厚膜作製が可能であり、これを用いて低損失な静
磁波マイクロ波素子を作製することができる。Effects of the invention Tree R Akini J: n. Even without actively using a fifth additive element other than Fe, Y, Pb, and B, it is possible to actively utilize the inclusion of Pb in the flux to achieve low ΔTo1 rightward Y
It is possible to fabricate a thick film of IG, and using this, a magnetostatic microwave device with low loss can be fabricated.
第1図9第2図は本Jl明の実施例を示す低Δ]]を(
qるための特性図、第3図は本発明の他の実施例を示す
膜^11れの特性図である。Figure 1 9 Figure 2 shows an example of the present Jl Light
FIG. 3 is a characteristic diagram of a film showing another embodiment of the present invention.
Claims (2)
板を用い、該基板の上に液相エピタキシャル法により、
イットリウム・鉄・ガーネットを主成分とする単結晶膜
を成長させるとともに、PbO−B_2O_3を主成分
とするフラックス中に含まれるPbを単結晶膜に混入せ
しめ、Pbの含有量が1wt%〜2.25wt%の範囲
にあり、基板の格子定数が生成単結晶膜の格子定数より
大きく、かつそれらの差が9×10^−^3A以下にあ
るLPE単結晶膜を用いたことを特徴とする静磁波マイ
クロ波素子。(1) Using a single crystal substrate of gadolinium, gallium, and garnet, a liquid phase epitaxial method is applied on the substrate.
A single-crystal film containing yttrium, iron, and garnet as main components is grown, and Pb contained in a flux containing PbO-B_2O_3 as a main component is mixed into the single-crystal film so that the content of Pb is 1 wt% to 2. 25 wt%, the lattice constant of the substrate is larger than the lattice constant of the produced single crystal film, and the difference between them is 9×10^-^3A or less. Magnetic microwave element.
成温度が850〜950℃の範囲にあるLPE単結晶膜
を用いた静磁波マイクロ波素子。(2) A magnetostatic microwave device according to claim 1, which uses an LPE single crystal film in which the LPE growth temperature is in the range of 850 to 950°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23858685A JPS62101012A (en) | 1985-10-26 | 1985-10-26 | Magnetostatic-wave microwave element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23858685A JPS62101012A (en) | 1985-10-26 | 1985-10-26 | Magnetostatic-wave microwave element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62101012A true JPS62101012A (en) | 1987-05-11 |
Family
ID=17032402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23858685A Pending JPS62101012A (en) | 1985-10-26 | 1985-10-26 | Magnetostatic-wave microwave element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62101012A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02168606A (en) * | 1988-09-30 | 1990-06-28 | Shin Etsu Chem Co Ltd | Oxide garnet single crystal and microwave element |
EP0531914A2 (en) * | 1991-09-10 | 1993-03-17 | Murata Manufacturing Co., Ltd. | Magnetic thin film for magnetostatic-wave devices |
EP0785618A1 (en) * | 1996-01-22 | 1997-07-23 | Murata Manufacturing Co., Ltd. | Magnetostatic wave device |
KR100444101B1 (en) * | 1999-12-09 | 2004-08-09 | 가부시키가이샤 무라타 세이사쿠쇼 | Magnetostatic Wave Element and Manufacturing Method Therefor |
-
1985
- 1985-10-26 JP JP23858685A patent/JPS62101012A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02168606A (en) * | 1988-09-30 | 1990-06-28 | Shin Etsu Chem Co Ltd | Oxide garnet single crystal and microwave element |
EP0531914A2 (en) * | 1991-09-10 | 1993-03-17 | Murata Manufacturing Co., Ltd. | Magnetic thin film for magnetostatic-wave devices |
EP0785618A1 (en) * | 1996-01-22 | 1997-07-23 | Murata Manufacturing Co., Ltd. | Magnetostatic wave device |
KR100444101B1 (en) * | 1999-12-09 | 2004-08-09 | 가부시키가이샤 무라타 세이사쿠쇼 | Magnetostatic Wave Element and Manufacturing Method Therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Glass et al. | Attainment of the intrinsic FMR linewidth in yttrium iron garnet films grown by liquid phase epitaxy | |
US4263374A (en) | Temperature-stabilized low-loss ferrite films | |
Giess et al. | Rare earth-yttrium iron-gallium garnet epitaxial films for magnetic bubble domain applications | |
Giess et al. | Europium‐yttrium iron‐gallium garnet films grown by liquid phase epitaxy on gadolinium gallium garnet | |
JPS62101012A (en) | Magnetostatic-wave microwave element | |
US4323618A (en) | Single crystal of calcium-gallium germanium garnet and substrate manufactured from such a single crystal and having an epitaxially grown bubble domain film | |
US4269651A (en) | Process for preparing temperature-stabilized low-loss ferrite films | |
WO2005056887A1 (en) | Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby | |
JPH0570290B2 (en) | ||
JPH09202697A (en) | Production of bismuth-substituted type garnet | |
US4337521A (en) | Advantageous garnet based devices | |
JPH06236814A (en) | Single crystal of garnet magnetic oxide for magnetostatic-wave element, manufacture thereof and the magnetostatic-wave element | |
Syvorotka et al. | Growth peculiarities and magnetic properties of (LuBi) 3Fe5O12 films by LPE method | |
US4468438A (en) | Garnet epitaxial films with high Curie temperatures | |
US4354254A (en) | Devices depending on garnet materials | |
JP7246340B2 (en) | Bismuth-substituted rare earth iron garnet single crystal, Faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal | |
JPH0354454B2 (en) | ||
JP3387341B2 (en) | Surface magnetostatic wave device | |
JP3089741B2 (en) | Materials for magnetostatic wave devices | |
JP3089742B2 (en) | Materials for magnetostatic wave devices | |
JPH101398A (en) | Faraday element and method of manufacturing Faraday element | |
JP3059332B2 (en) | Microwave device material | |
White et al. | Bubble materials—composition, growth and evaluation | |
US20090053558A1 (en) | Article comprising a thick garnet film with negative growth-induced anisotropy | |
Honda et al. | DyBi garnet films with improved temperature dependence of Faraday rotation |