[go: up one dir, main page]

JPH09154239A - Charging of secondary battery - Google Patents

Charging of secondary battery

Info

Publication number
JPH09154239A
JPH09154239A JP7310777A JP31077795A JPH09154239A JP H09154239 A JPH09154239 A JP H09154239A JP 7310777 A JP7310777 A JP 7310777A JP 31077795 A JP31077795 A JP 31077795A JP H09154239 A JPH09154239 A JP H09154239A
Authority
JP
Japan
Prior art keywords
charging
current
current value
secondary battery
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7310777A
Other languages
Japanese (ja)
Inventor
Noriyuki Ito
紀幸 伊藤
Eizo Kishikawa
英三 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7310777A priority Critical patent/JPH09154239A/en
Publication of JPH09154239A publication Critical patent/JPH09154239A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for charging by which quick charging can be done with the increase in temperature of the battery being held as low as possible. SOLUTION: By this method, a secondary battery is charged according to the increase in temperature during charging per unit time of the secondary battery. Quick charging is conducted with charging current of a first current value. When the rate of the increase in temperature reaches a first set value, the charging current is reduced to a second current value which is smaller than the first one and complementary charging is conducted. Then, when the rate of the increase in temperature reaches a second set value, charging is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池を急速充
電するための充電方法に関する。
TECHNICAL FIELD The present invention relates to a charging method for rapidly charging a secondary battery.

【0002】[0002]

【従来の技術】二次電池の急速充電方法は、種々の方式
が提案されている。代表的なものとして−ΔV制御と呼
ばれる方式と、dT/dt制御と呼ばれる方式がある。
図6および図7は、二次電池の定電流充電時における典
型的な電池電圧および電池温度の時間的変化と充電電流
波形を示す図であり、1が電池電圧変化曲線、2が電池
温度変化曲線、3が充電電流波形である。
2. Description of the Related Art Various methods have been proposed for rapid charging of secondary batteries. As a representative one, there is a system called -ΔV control and a system called dT / dt control.
6 and 7 are diagrams showing typical changes in battery voltage and battery temperature over time and charging current waveforms during constant current charging of a secondary battery, where 1 is a battery voltage change curve and 2 is a battery temperature change. Curve 3 is the charging current waveform.

【0003】−ΔV制御方式は、充電末期に電池電圧が
ピークに達して再び下降する現象を利用して、図6に示
されるように電池電圧がピークに達した時点からΔVだ
け低下した時点で充電を停止する方式である。この方式
は、電池電圧がピークを過ぎてから充電を停止するた
め、電池が過充電になるのが欠点である。
The -ΔV control system utilizes the phenomenon that the battery voltage reaches a peak and then drops again at the end of charging, and as shown in FIG. 6, when the battery voltage reaches a peak and drops by ΔV. This is a method of stopping charging. This method has a drawback in that the battery is overcharged because the charging is stopped after the battery voltage reaches its peak.

【0004】一方、dT/dt制御方式は、充電末期に
電池温度が急激に上昇することを利用して、図7に示さ
れるように二次電池の単位時間当たりの温度上昇率dT
/dt(温度微分ともいう)が所定値に達した時点Aを
過ぎたとき充電を停止する方式である。この方式による
と、電池電圧がピークに達するより前の時点で充電が停
止するため、−ΔV制御方式のように過充電が生じるこ
とはない。しかし、充電電流が1Cを越えるような急速
充電を行った場合には、満充電になる前に温度上昇率d
T/dtが設定値になることがあり、充電不足となる。
On the other hand, the dT / dt control method utilizes the fact that the battery temperature rises sharply at the end of charging, and as shown in FIG. 7, the temperature rise rate dT per unit time of the secondary battery is dT / dt.
This is a method of stopping the charging when a time point A when / dt (also referred to as temperature differential) reaches a predetermined value. According to this method, charging is stopped before the battery voltage reaches its peak, so overcharging does not occur unlike in the -ΔV control method. However, in the case of performing the rapid charging such that the charging current exceeds 1C, the temperature rise rate d is reached before the full charging.
T / dt may reach the set value, resulting in insufficient charging.

【0005】これらの欠点を解決する方法として、特開
平6−121468号には電池の温度上昇の傾きの変化
点毎に充電電流の電流値を例えば5C→3C→2C→1
Cと漸次減少させて充電を行う方法が示されている。と
ころが、この方法では充電の進行に伴い電池温度が継続
して上昇するため、充電効率が低く、また電池の寿命を
損なうという問題があり、さらに電池の温度上昇が長時
間続いた場合には電池が温度カットオフ(TCO)に達
して充電不能となることがある。
As a method for solving these drawbacks, Japanese Patent Laid-Open No. 6-1216468 discloses that the current value of the charging current is, for example, 5C.fwdarw.3C.fwdarw.2C.fwdarw.1 at each change point of the slope of battery temperature rise.
A method of charging the battery by gradually reducing it to C is shown. However, in this method, the battery temperature continuously rises as the charging progresses, so there are problems that the charging efficiency is low and the life of the battery is impaired. May reach the temperature cutoff (TCO) and become unchargeable.

【0006】[0006]

【発明が解決しようとする課題】上述したように、電池
の温度上昇の傾きが変化する毎に充電電流値を減少させ
る従来の急速充電方式は、電池温度が継続して上昇する
ために充電効率が低く、電池の温度上昇が長時間続くと
電池が温度カットオフに達して充電不能となる可能性が
ある、という問題点があった。本発明は、このような問
題点を解決し、電池の温度上昇を極力抑えつつ急速充電
を行うことができる二次電池の充電方法を提供すること
を目的とする。
As described above, in the conventional rapid charging method in which the charging current value is reduced each time the slope of the temperature rise of the battery changes, the charging efficiency increases because the battery temperature continuously rises. However, there is a problem in that the battery may reach the temperature cutoff and become unchargeable if the temperature of the battery continues to rise for a long time. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a secondary battery charging method capable of performing rapid charging while suppressing an increase in battery temperature as much as possible.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は二次電池の充電時における単位時間当りの
温度上昇率に従って充電を行う二次電池の充電方法にお
いて、第1の電流値の充電電流で充電を行い、温度上昇
率が第1の設定値に達したとき第1の電流値より小さい
第2の電流値に充電電流を減少させて充電を行い、温度
上昇率が第2の設定値に達したとき、または充電電流を
第2の電流値に減少させてから所定時間経過後に充電を
停止することを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a method for charging a secondary battery, wherein a secondary battery is charged according to a temperature rise rate per unit time during charging of the secondary battery. When the temperature rise rate reaches the first set value, the charge current is reduced to the second current value that is smaller than the first current value and the charge is performed. The charging is stopped when a preset value of 2 is reached or after a predetermined time has elapsed after the charging current is reduced to the second current value.

【0008】また、本発明は第2の電流値の充電電流に
よる充電を開始した後、温度上昇率が第2の設定値に達
した時点および充電電流を第2の電流値に減少させてか
ら所定時間経過後の時点のうち早い方の時点で充電を停
止することを特徴とする。
Further, according to the present invention, after the charging by the charging current having the second current value is started, the temperature rise rate reaches the second set value and the charging current is reduced to the second current value. It is characterized in that charging is stopped at an earlier point in time after a predetermined time has elapsed.

【0009】ここで、第2の電流値は第1の電流値の1
/2以下であることが望ましい。また、前記所定時間
は、第1の電流値による充電レートをC1、第2の電流
値による充電レートをC2、第1の電流値による充電時
間をt1(分)、充電効率をηとしたとき、 t2={(60/C1)−t1}×(C1/C2)×
(2−η) で概略表わされる時間であることが望ましい。
Here, the second current value is 1 of the first current value.
It is desirable that it is / 2 or less. When the charging rate according to the first current value is C1, the charging rate according to the second current value is C2, the charging time according to the first current value is t1 (minutes), and the charging efficiency is η, the predetermined time is , T2 = {(60 / C1) -t1} × (C1 / C2) ×
The time is preferably represented by (2-η).

【0010】本発明によると、第1の電流値の充電電流
による急速充電を温度上昇率が第1の設定値に達するま
で行った後、充電電流を第2の電流値に下げて、温度上
昇率が第2の設定値に達するか、あるいは所定時間経過
後の時点まで補充電を行うことにより、電池温度の上昇
を抑えつつ100%近くの充電量まで効率よく急速充電
が行われる。
According to the present invention, after the rapid charging by the charging current having the first current value is performed until the temperature rising rate reaches the first set value, the charging current is lowered to the second current value to raise the temperature. By performing the auxiliary charging until the rate reaches the second set value or after the elapse of a predetermined time, the rapid charging is efficiently performed up to the charged amount near 100% while suppressing the increase in the battery temperature.

【0011】[0011]

【発明の実施の形態】まず、図1を参照して本実施形態
における充電器の構成を説明する。図1において、充電
器10はAC接続端子11,12と、これらのAC入力
端子11,12に一次側が接続された電源トランス13
と、この電源トランス13の二次側に接続された整流平
滑回路14と、トランジスタからなる電流制御素子15
と、この電流制御素子15を制御する制御回路16と、
温度検出回路17と、充電端子18,19および温度検
出端子20からなる。充電端子18,19には二次電池
21の両端が接続され、温度検出端子20には二次電池
21に接触または近接して配置されたサーミスタのよう
な温度センサ22が接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION First, the configuration of a charger in this embodiment will be described with reference to FIG. In FIG. 1, a charger 10 includes AC connection terminals 11 and 12, and a power transformer 13 whose primary side is connected to these AC input terminals 11 and 12.
A rectifying / smoothing circuit 14 connected to the secondary side of the power transformer 13 and a current control element 15 including a transistor.
And a control circuit 16 for controlling the current control element 15,
It comprises a temperature detection circuit 17, charging terminals 18, 19 and a temperature detection terminal 20. Both ends of a secondary battery 21 are connected to the charging terminals 18 and 19, and a temperature sensor 22 such as a thermistor arranged in contact with or close to the secondary battery 21 is connected to the temperature detecting terminal 20.

【0012】AC接続端子11,12に接続される図示
しない商用交流電源からの交流入力電力は、電源トラン
ス13を経由して整流平滑回路14に伝達され、直流に
変換される。そして、整流平滑回路14の出力から電流
制御素子15を通して二次電池21に充電電流が供給さ
れる。
AC input power from a commercial AC power supply (not shown) connected to the AC connection terminals 11 and 12 is transmitted to the rectifying / smoothing circuit 14 via the power supply transformer 13 and converted into DC. Then, the charging current is supplied from the output of the rectifying / smoothing circuit 14 to the secondary battery 21 through the current control element 15.

【0013】一方、温度センサ22により二次電池21
の温度(以下、電池温度という)が例えばサーミスタの
抵抗値変化として検出され、さらにこの抵抗値変化が温
度検出回路17によって電池温度情報に変換された後、
制御回路16に入力される。制御回路16はマイクロコ
ンピュータを用いて構成され、温度検出回路17からの
電池温度情報をA/D変換器によりディジタル化してか
ら、二次電池21の単位時間当たりの温度上昇率(以
下、単に温度上昇率という)dT/dt、いわゆる温度
微分値を算出し、この温度上昇率dT/dtに基づいて
電流制御素子15の抵抗値制御を行う。
On the other hand, the temperature sensor 22 causes the secondary battery 21
Is detected as a resistance value change of the thermistor, and the resistance value change is converted into battery temperature information by the temperature detection circuit 17,
It is input to the control circuit 16. The control circuit 16 is configured by using a microcomputer. After the battery temperature information from the temperature detection circuit 17 is digitized by the A / D converter, the temperature rise rate of the secondary battery 21 per unit time (hereinafter, simply referred to as temperature A so-called temperature differential value, which is called a rate of increase) dT / dt, is calculated, and the resistance value of the current control element 15 is controlled based on the temperature increase rate dT / dt.

【0014】次に、図2を用いて本実施形態における充
電動作を説明する。図2は、充電時における制御回路1
6の処理手順を示すフローチャートである。まず、制御
回路16は電流制御素子15の抵抗値をある値に制御す
ることによって、二次電池21を第1の電流値I1の充
電電流で急速充電を開始する(ステップS11)。この
急速充電に際し、制御回路16は温度検出回路17から
の電池温度情報に基づき単位時間当たりの温度上昇率d
T/dtを算出し、さらにこの温度上昇率dT/dtが
第1の設定値TH1に達したかどうかを判定する(ステ
ップS12〜S13)。
Next, the charging operation in this embodiment will be described with reference to FIG. FIG. 2 shows the control circuit 1 during charging.
It is a flow chart which shows a processing procedure of No. 6. First, the control circuit 16 controls the resistance value of the current control element 15 to a certain value to start the rapid charging of the secondary battery 21 with the charging current having the first current value I1 (step S11). At the time of this rapid charging, the control circuit 16 determines the temperature increase rate d per unit time based on the battery temperature information from the temperature detection circuit 17.
T / dt is calculated, and it is further determined whether or not the temperature increase rate dT / dt has reached the first set value TH1 (steps S12 to S13).

【0015】ステップS13において温度上昇率dT/
dtが第1の設定値TH1に達すると、制御回路16は
電流制御素子15の抵抗値を所定量増加させることによ
り、二次電池21を第1の電流値I1より小さい第2の
電流値I2の充電電流で充電する(ステップS14)。
すなわち、補充電を行う。この補充電に際しても制御回
路16は温度上昇率dT/dtを算出し、さらにこの温
度上昇率dT/dtが第2の設定値TH2に達したかど
うかを判定する(ステップS15〜S16)。そして、
ステップS16において温度上昇率dT/dtが第2の
設定値TH2に達すると、制御回路16は電流制御素子
15をオフ状態とすることによって、充電を停止する
(ステップS17)。
In step S13, the temperature rise rate dT /
When dt reaches the first set value TH1, the control circuit 16 increases the resistance value of the current control element 15 by a predetermined amount, thereby causing the secondary battery 21 to have the second current value I2 smaller than the first current value I1. It is charged with the charging current of (step S14).
That is, supplementary charging is performed. Also during this supplementary charging, the control circuit 16 calculates the temperature increase rate dT / dt, and further determines whether the temperature increase rate dT / dt has reached the second set value TH2 (steps S15 to S16). And
When the temperature increase rate dT / dt reaches the second set value TH2 in step S16, the control circuit 16 turns off the current control element 15 to stop charging (step S17).

【0016】次に、本実施形態における充電動作を図3
を用いてさらに詳しく説明する。図3は、二次電池21
の充電時の電池電圧および電池温度の時間的変化と充電
電流波形を示す図であり、1が電池電圧変化曲線、2が
電池温度変化曲線、3が充電電流波形である。まず、第
1の電流値I1(例えば1C以上の電流値)の充電電流
で急速充電を行う。充電の進行に伴い、電池温度は上昇
する。電池温度が第1の変曲点Aを通過し、温度上昇率
dT/dtが第1の設定値TH1に達した時点で、充電
電流を第2の電流値I2に切り換えて補充電を行う。第
2の電流値I2は、第1の電流値I1の1/2以下が適
当である。
Next, the charging operation in this embodiment will be described with reference to FIG.
This will be described in more detail with reference to FIG. FIG. 3 shows the secondary battery 21.
FIG. 3 is a diagram showing a temporal change of a battery voltage and a battery temperature at the time of charging and a charging current waveform. 1 is a battery voltage change curve, 2 is a battery temperature change curve, and 3 is a charging current waveform. First, rapid charging is performed with a charging current having a first current value I1 (for example, a current value of 1C or more). The battery temperature rises as the charging progresses. When the battery temperature passes the first inflection point A and the temperature increase rate dT / dt reaches the first set value TH1, the charging current is switched to the second current value I2 to perform supplementary charging. The second current value I2 is suitably 1/2 or less of the first current value I1.

【0017】第2の電流値I2に充電電流を減少させる
と、電池温度は一旦低下した後、少しの時間だけ平坦と
なってから再び上昇に転じ、第2の変曲点Bを通過す
る。この後、温度上昇率dT/dtが第2の設定値TH
2に達した時点で、充電は停止する。
When the charging current is reduced to the second current value I2, the battery temperature temporarily drops, then becomes flat for a short time, then rises again, and passes through the second inflection point B. After that, the temperature increase rate dT / dt is set to the second set value TH.
When it reaches 2, charging stops.

【0018】このような充電方法をとると、まず第1の
電流値I1の充電電流による急速充電を温度上昇率dT
/dtが第1の設定値TH1に達するまで行った後、充
電電流を第2の電流値I2に下げて温度上昇率dT/d
tが第2の設定値TH2に達するまで補充電を行うこと
により、従来のように一定の電流値で充電を行った場合
の破線2aで示すような電池温度の上昇を伴うことな
く、100%近くの充電量まで効率よく充電を行うこと
ができる。
According to such a charging method, first, the rapid charging by the charging current having the first current value I1 is performed at the temperature increase rate dT.
/ Dt reaches the first set value TH1 and then the charging current is reduced to the second current value I2 to increase the temperature increase rate dT / d.
By performing the supplementary charge until t reaches the second set value TH2, 100% can be obtained without the increase of the battery temperature as shown by the broken line 2a in the case of performing the charge with a constant current value as in the conventional case. It is possible to efficiently charge up to a nearby charge level.

【0019】次に、図4に示すフローチャートを用いて
本発明の他の実施形態における充電動作を説明する。図
4において、ステップS21〜S24の処理は図2にお
けるステップS11〜S14の処理と同じである。本実
施形態では、ステップS24において二次電池21を第
2の電流値I2の充電電流で補充電し、所定時間経過後
に充電を停止する。すなわち、補充電を開始すると共に
制御回路16内でタイマカウントを行い、カウント値t
(補充電の経過時間)が上記所定時間に相当するタイマ
設定値t2に達したら、充電を停止する(ステップS2
5〜S27)。
Next, the charging operation in another embodiment of the present invention will be described using the flowchart shown in FIG. 4, the processing of steps S21 to S24 is the same as the processing of steps S11 to S14 in FIG. In this embodiment, in step S24, the secondary battery 21 is supplementarily charged with the charging current having the second current value I2, and the charging is stopped after a predetermined time has elapsed. That is, the auxiliary charge is started and the timer count is performed in the control circuit 16 to obtain the count value t.
When (the elapsed time of supplementary charging) reaches the timer set value t2 corresponding to the above-mentioned predetermined time, the charging is stopped (step S2).
5 to S27).

【0020】このときのタイマ設定値t2は、概略次式
で決定する。 t2={(60/C1)−t1}×(C1/C2)×(2−η)…(1) ここで、C1は第1の電流値I1による充電レート(時
間率)、C2は第2の電流値I2による充電レート(時
間率)、t1は第1の電流値による充電時間(急速充電
時間)、ηは充電効率である。C1はI1が二次電池2
1の公称容量の2倍の電流値のときは2となる。
The timer set value t2 at this time is roughly determined by the following equation. t2 = {(60 / C1) -t1} * (C1 / C2) * (2- [eta]) ... (1) where C1 is the charge rate (time rate) by the first current value I1, and C2 is the second. Is the charging rate (time rate) according to the current value I2, t1 is the charging time according to the first current value (rapid charging time), and η is the charging efficiency. As for C1, I1 is the secondary battery 2
It becomes 2 when the current value is twice the nominal capacity of 1.

【0021】式(1)のt2は、第1の電流値I1の充
電電流による急速充電のみでは充電効率ηが100%に
満たないので、その不足分を第2の電流値I2の充電電
流による補充電で補うための時間である。すなわち、
(60/C1)−t1は第1の電流値I1による急速充
電の不足時間を表わす。また、C1/C2の比はこの不
足時間(60/C1)−t1を第2の電流値I2による
補充電の時間に変換するための変換係数である。さら
に、2−ηは充電効率ηを100%を1.00で表わし
たときの値を用いることにより、前記不足時間(60/
C1)−t1を補うための倍率を示すものとなる。
At t2 of the equation (1), since the charging efficiency η is less than 100% only by the rapid charging by the charging current of the first current value I1, the shortage is caused by the charging current of the second current value I2. It is time to make up by supplementary charging. That is,
(60 / C1) -t1 represents the shortage time of the rapid charging due to the first current value I1. Further, the ratio of C1 / C2 is a conversion coefficient for converting this shortage time (60 / C1) -t1 into the time for supplementary charging by the second current value I2. Further, 2-η is a value obtained when 100% of the charging efficiency η is represented by 1.00, and the shortage time (60/60 /
C1) -t1 indicates a magnification for supplementing.

【0022】本実施形態によっても、第1の電流値I1
の充電電流による急速充電を温度上昇率dT/dtが設
定値TH1に達するまで行った後、充電電流を第2の電
流値I2に下げてタイマカウント値tがタイマ設定値t
2になるまで補充電を行うことによって、二次電池21
の温度上昇を抑えつつ、100%近くの充電量まで効率
よく充電を行うことができる。
Also according to this embodiment, the first current value I1
After the rapid charging by the charging current is performed until the temperature increase rate dT / dt reaches the set value TH1, the charging current is reduced to the second current value I2 and the timer count value t is set to the timer set value t.
By performing supplemental charging until the secondary battery 21
It is possible to efficiently charge up to a charge amount close to 100% while suppressing the temperature rise.

【0023】次に、図5に示すフローチャートを用いて
本発明のさらに別の実施形態における充電動作を説明す
る。本実施形態は、図2と図4の動作を組み合わせたも
のである。
Next, the charging operation in still another embodiment of the present invention will be described using the flowchart shown in FIG. The present embodiment is a combination of the operations of FIG. 2 and FIG.

【0024】図5において、ステップS31〜S36の
処理は図2におけるステップS11〜S26の処理と同
じである。本実施形態では、ステップS34において第
2の電流値I2の充電電流で補充電を行う際、温度上昇
率dT/dtの算出(ステップS35)、dT/dtと
第2の閾値TH2との比較(ステップS36)と並行し
て、タイマカウント(ステップS37)およびカウント
値tとタイマ設定値t2との比較(ステップS38)を
行い、補充電開始後dT/dt=TH2に達した時点お
よびt=t2に達した時点のうち早い方の時点で充電を
停止する(ステップS39)。
In FIG. 5, the processing of steps S31 to S36 is the same as the processing of steps S11 to S26 in FIG. In the present embodiment, when supplementary charging is performed with the charging current having the second current value I2 in step S34, the temperature increase rate dT / dt is calculated (step S35), and dT / dt is compared with the second threshold value TH2 ( In parallel with step S36), the timer count (step S37) and the comparison between the count value t and the timer setting value t2 (step S38) are performed, and the time point at which dT / dt = TH2 is reached after the start of supplementary charging and t = t2. The charging is stopped at an earlier point of time when the temperature reaches (step S39).

【0025】本実施形態によれば、補充電に移行した
後、電池の温度上昇が緩慢で温度上昇率が第2の設定値
TH2に達するまでの時間が長いときは、タイマカウン
ト値tがタイマ設定値t2に達することで充電を停止さ
せることができるので、過充電を防止しながら効率のよ
い充電を行うことが可能となる。
According to this embodiment, when the temperature rise of the battery is slow after the shift to the auxiliary charge and the time until the temperature rise rate reaches the second set value TH2 is long, the timer count value t becomes the timer. Since the charging can be stopped by reaching the set value t2, it is possible to perform efficient charging while preventing overcharging.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば第
1の電流値の充電電流による急速充電を温度上昇率が第
1の設定値に達するまで行った後、充電電流を第2の電
流値に下げて、温度上昇率が第2の設定値に達するか、
あるいは所定時間経過後の時点まで補充電を行うことに
より、電池温度の上昇を抑えつつ効率のよい急速充電を
行うことができる。
As described above, according to the present invention, the rapid charging by the charging current of the first current value is performed until the temperature rise rate reaches the first set value, and then the charging current is changed to the second value. Whether the temperature rise rate reaches the second set value by decreasing to the current value,
Alternatively, by performing supplementary charging until a time point after a lapse of a predetermined time, efficient rapid charging can be performed while suppressing an increase in battery temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る充電器の構成を示す
ブロック図
FIG. 1 is a block diagram showing a configuration of a charger according to an embodiment of the present invention.

【図2】同実施形態における充電動作を説明するための
フローチャート
FIG. 2 is a flowchart for explaining a charging operation in the same embodiment.

【図3】同実施形態における充電動作を説明するための
充電時の電池電圧および電池温度の時間変化と充電電流
波形を示す図
FIG. 3 is a diagram showing a time change of a battery voltage and a battery temperature during charging and a charging current waveform for explaining a charging operation in the embodiment.

【図4】本発明の他の実施形態における充電動作を説明
するためのフローチャート
FIG. 4 is a flowchart illustrating a charging operation according to another embodiment of the present invention.

【図5】本発明のさらに別の実施形態における充電動作
を説明するためのフローチャート
FIG. 5 is a flowchart for explaining a charging operation in still another embodiment of the present invention.

【図6】従来の−ΔV制御方式を説明するための電池電
圧および電池温度の時間変化と充電電流波形を示す図
FIG. 6 is a diagram showing a time variation of a battery voltage and a battery temperature and a charging current waveform for explaining a conventional −ΔV control method.

【図7】従来のdT/dt制御方式を説明するための電
池電圧および電池温度の時間変化と充電電流波形を示す
FIG. 7 is a diagram showing a time change of a battery voltage and a battery temperature and a charging current waveform for explaining a conventional dT / dt control method.

【符号の説明】[Explanation of symbols]

1…電池電圧変化曲線 2…電池温度変化曲線 3…充電電流波形 10…充電器 11,12…AC入力端子 13…電源トランス 14…整流平滑回路 15…電流制御素子 16…制御回路 17…温度検出回路 18,19…充電端子 20…温度検出端子 21…二次電池 22…温度センサ 1 ... Battery voltage change curve 2 ... Battery temperature change curve 3 ... Charging current waveform 10 ... Charger 11, 12 ... AC input terminal 13 ... Power supply transformer 14 ... Rectifying / smoothing circuit 15 ... Current control element 16 ... Control circuit 17 ... Temperature detection Circuits 18 and 19 ... Charging terminal 20 ... Temperature detection terminal 21 ... Secondary battery 22 ... Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】二次電池の充電時における単位時間当りの
温度上昇率に従って充電を行う二次電池の充電方法にお
いて、 第1の電流値の充電電流で充電を行い、前記温度上昇率
が第1の設定値に達したとき第1の電流値より小さい第
2の電流値に充電電流を減少させて充電を行い、前記温
度上昇率が第2の設定値に達したとき充電を停止するこ
とを特徴とする二次電池の充電方法。
1. A method of charging a secondary battery, wherein the secondary battery is charged according to a temperature increase rate per unit time when the secondary battery is charged, wherein charging is performed with a charge current having a first current value, and the temperature increase rate is When the set value of 1 is reached, the charging current is reduced to a second current value smaller than the first current value to perform charging, and when the temperature increase rate reaches the second set value, the charging is stopped. And a method for charging a secondary battery.
【請求項2】二次電池の充電時における単位時間当りの
温度上昇率に従って充電を行う二次電池の充電方法にお
いて、 第1の電流値の充電電流で充電を行い、前記温度上昇率
が設定値に達したとき第1の電流値より小さい第2の電
流値に充電電流を減少させて充電を行い、充電電流を第
2の電流値に減少させてから所定時間経過後に充電を停
止することを特徴とする二次電池の充電方法。
2. A method of charging a secondary battery, wherein the secondary battery is charged in accordance with a temperature increase rate per unit time when the secondary battery is charged, wherein charging is performed with a charge current having a first current value, and the temperature increase rate is set. When the value is reached, the charging current is reduced to a second current value smaller than the first current value to perform charging, and the charging current is reduced to the second current value, and then the charging is stopped after a predetermined time has elapsed. And a method for charging a secondary battery.
【請求項3】二次電池の充電時における単位時間当りの
温度上昇率に従って充電を行う二次電池の充電方法にお
いて、 第1の電流値の充電電流で充電を行い、前記温度上昇率
が第1の設定値に達したとき第1の電流値より小さい第
2の電流値に充電電流を減少させて充電を行い、前記温
度上昇率が第2の設定値に達した時点および充電電流を
第2の電流値に減少させてから所定時間経過後の時点の
うち早い方の時点で充電を停止することを特徴とする二
次電池の充電方法。
3. A method of charging a secondary battery, wherein the secondary battery is charged according to a temperature rise rate per unit time when the secondary battery is charged, wherein charging is performed with a charging current having a first current value, and the temperature rise rate is When the set value of 1 is reached, the charging current is reduced to a second current value smaller than the first current value to perform charging, and the time at which the temperature increase rate reaches the second set value and the charging current are set to A method for charging a secondary battery, comprising: stopping the charging at an earlier time point after a predetermined time has elapsed after the current value is reduced to 2.
【請求項4】第2の電流値を第1の電流値の1/2以下
とすることを特徴とする請求項1乃至3のいずれか1項
に記載の二次電池の充電方法。
4. The method for charging a secondary battery according to claim 1, wherein the second current value is ½ or less of the first current value.
【請求項5】前記所定時間は、第1の電流値による充電
レートをC1、第2の電流値による充電レートをC2、
第1の電流値による充電時間をt1(分)、充電効率を
ηとしたとき、 t2={(60/C1)−t1}×(C1/C2)×
(2−η) で概略表わされることを特徴とする請求項1または3に
記載の二次電池の充電方法。
5. The charging rate according to the first current value is C1, the charging rate according to the second current value is C2, and the predetermined time is C2.
When the charging time by the first current value is t1 (min) and the charging efficiency is η, t2 = {(60 / C1) -t1} × (C1 / C2) ×
The method for charging a secondary battery according to claim 1 or 3, which is represented by (2-η).
JP7310777A 1995-11-29 1995-11-29 Charging of secondary battery Pending JPH09154239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7310777A JPH09154239A (en) 1995-11-29 1995-11-29 Charging of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7310777A JPH09154239A (en) 1995-11-29 1995-11-29 Charging of secondary battery

Publications (1)

Publication Number Publication Date
JPH09154239A true JPH09154239A (en) 1997-06-10

Family

ID=18009353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7310777A Pending JPH09154239A (en) 1995-11-29 1995-11-29 Charging of secondary battery

Country Status (1)

Country Link
JP (1) JPH09154239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380717B2 (en) 2000-03-09 2002-04-30 Matsushita Electric Industrial Co., Ltd. Device and method for controlling charging of secondary battery
JP2008204801A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Charging method of nonaqueous electrolyte secondary battery and electronic equipment using it
WO2021095787A1 (en) * 2019-11-13 2021-05-20 株式会社デンソー Charging control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380717B2 (en) 2000-03-09 2002-04-30 Matsushita Electric Industrial Co., Ltd. Device and method for controlling charging of secondary battery
JP2008204801A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Charging method of nonaqueous electrolyte secondary battery and electronic equipment using it
WO2021095787A1 (en) * 2019-11-13 2021-05-20 株式会社デンソー Charging control device
JP2021078326A (en) * 2019-11-13 2021-05-20 株式会社デンソー Charge control device

Similar Documents

Publication Publication Date Title
JP3213401B2 (en) Charging method for non-aqueous secondary batteries
US7180269B2 (en) Battery charging method
JP3161272B2 (en) Battery charger
JPH0678471A (en) Charging method
JP3660398B2 (en) Rechargeable battery charging method
JPH0956080A (en) Battery charger
JPH09154239A (en) Charging of secondary battery
CN103580105B (en) Charging device
JPH08205418A (en) Charging method for secondary cell
JP3213399B2 (en) Charging method
JP3213432B2 (en) Rechargeable battery charging method
JPH1023683A (en) Charger
JP2793104B2 (en) Rechargeable battery charging method
JP3785671B2 (en) Charging method and charging device
JP3691360B2 (en) Secondary battery charging method and charger
JPH05199674A (en) Method for charging battery
JP3238938B2 (en) Battery charger
JP3369858B2 (en) Rechargeable battery charging method
JPH10201111A (en) Charging control method and charging control device
JPH09154240A (en) Charging method for secondary battery
JPH07312230A (en) Charging device for secondary battery
JP3173288B2 (en) Charging device
JP3394824B2 (en) Rechargeable battery charger
JP3403916B2 (en) Method and device for charging secondary battery
JPH06339234A (en) Charge controller