[go: up one dir, main page]

JPH09137716A - Emission control device for internal combustion engine - Google Patents

Emission control device for internal combustion engine

Info

Publication number
JPH09137716A
JPH09137716A JP7296527A JP29652795A JPH09137716A JP H09137716 A JPH09137716 A JP H09137716A JP 7296527 A JP7296527 A JP 7296527A JP 29652795 A JP29652795 A JP 29652795A JP H09137716 A JPH09137716 A JP H09137716A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
exhaust
exhaust gas
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7296527A
Other languages
Japanese (ja)
Other versions
JP3201237B2 (en
Inventor
Takuya Kondo
拓也 近藤
Mikio Murachi
幹夫 村知
Seiji Ogawara
誠治 大河原
Koichi Kojima
康一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29652795A priority Critical patent/JP3201237B2/en
Publication of JPH09137716A publication Critical patent/JPH09137716A/en
Application granted granted Critical
Publication of JP3201237B2 publication Critical patent/JP3201237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise the temperature of a catalyst by heating of an electric heater in a short time without increasing buttery load when the emission temperature is low. SOLUTION: An oxidizing catalyst 5 provided with an electric heater 5a is provided on an exhaust passage 3 of a diesel engine 1, and a bypass passage 6 for connecting the upstream part to the downstream part from the oxidizing catalyst of the exhaust passage is provided. A bypass control valve 8 for opening and closing the bypass passage 6 is provided on the bypass passage 6, and a catalyst temperature sensor 10 for detecting the catalyst floor temperature is provided on the oxidizing catalyst 5. An engine control circuit(ECU) 20 calculates the emission temperature from the engine accelerator opening and the engine speed. When both the exhaust gas temperature and the catalyst temperature are not more than the prescribed value, the bypass control valve 8 is opened, the flow rate of the emissions to flow to the oxidizing catalyst is decreased, and the electric heater 5a is electrified. Therefore, the temperature of the oxidizing catalyst can be raised to the activation temperature without taking heat of the heater by low-temperature exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関する。
The present invention relates to an exhaust gas purification device for an internal combustion engine.

【0002】[0002]

【従来の技術】この種の排気浄化装置の例としては、例
えば特開平6−108826号公報に記載されたものが
ある。同公報には、内燃機関の排気通路にNOX 吸収剤
を配置して排気中のNOX を除去する排気浄化装置が開
示されている。NOX 吸収剤は、流入する排気の空燃比
がリーンのときに排気中のNOX を吸収し、流入する排
気中の酸素濃度が低下したときに吸収したNOX を放出
するNOX の吸放出作用を行う。同公報の排気浄化装置
は、リーン空燃比運転を行う機関の排気中のNO X を上
記NOX 吸収剤を用いて吸収し、その後NOX 吸収剤に
流入する排気の酸素濃度を低下させ、同時に排気中のH
C、CO成分を増加させることにより、NOX 吸収剤か
ら吸収したNOX を放出させるとともに放出されたNO
X をHC、CO成分で還元するようにしている。
2. Description of the Related Art As an example of this type of exhaust gas purification apparatus,
For example, the one described in JP-A-6-108826 is
is there. In this publication, NO is added to the exhaust passage of the internal combustion engine.XAbsorbent
NO in exhaustXExhaust purification device to remove
It is shown. NOXAbsorbent is the air-fuel ratio of the inflowing exhaust gas
NO in the exhaust when is leanXAbsorbs and inflows
NO absorbed when the oxygen concentration in the air decreasedXRelease
NOXPerforms the absorption and release action. Exhaust gas purification device of the same publication
Is the NO in the exhaust gas of the engine performing lean air-fuel ratio operation. XOn
Note NOXAbsorb with absorbent and then NOXFor absorbent
Decrease the oxygen concentration of the inflowing exhaust gas, and at the same time, reduce the H in the exhaust gas.
NO by increasing C and CO componentsXAbsorbent or
NO absorbed fromXAnd released NO
XIs reduced with HC and CO components.

【0003】ところで、上記公報の装置ではHC、CO
成分の供給源として燃料油等の液体炭化水素を使用して
いる。この場合、NOX 吸収剤温度が十分に上昇してい
れば供給された炭化水素はNOX 吸収剤上で燃焼し、多
量の未燃HC、CO成分を生成するためNOX 吸収剤か
らのNOX の放出と還元とが生じる。しかし、機関排気
温度が低く、NOX 吸収剤温度が十分に高くない場合に
液体炭化水素を供給すると、供給された液体炭化水素は
NOX 吸収剤上で燃焼せずNOX 吸収剤表面に付着する
傾向があるため、NOX 吸収剤からのNOX の放出、還
元ができないばかりかNOX 吸収剤のNOX 吸収能力ま
で低下してしまう問題がある。
By the way, in the device of the above publication, HC, CO
Liquid hydrocarbons such as fuel oil are used as a supply source of components. In this case, if the temperature of the NO x absorbent has risen sufficiently, the supplied hydrocarbons burn on the NO x absorbent and produce a large amount of unburned HC and CO components, so NO from the NO x absorbent is generated. Release and reduction of X occurs. However, the engine exhaust temperature is low, deposition of liquid hydrocarbons is supplied to the NO X absorbent surface without burning the supplied liquid hydrocarbons on the NO X absorbent when the NO X absorbent temperature is not high enough because of its tendency to release of the nO X from the nO X absorbent, there is a problem that reduced to nO X absorbing capacity of only either the nO X absorbent can not reduced.

【0004】上記公報の排気浄化装置では、NOX 吸収
剤の上流側部分に酸化触媒を担持させるとともに、この
酸化触媒部分を電気ヒータで加熱するようにして、この
問題の解決を図っている。すなわち、同公報の排気浄化
装置では、機関排気温度が低いときには、炭化水素成分
の供給開始と同時に上流側の触媒の電気ヒータに通電を
行い、ヒータにより触媒を加熱して短時間で触媒温度を
活性化温度に到達させるようにして、供給された炭化水
素成分がNOX 吸収剤上流側に担持した触媒で燃焼する
ようにしている。触媒で炭化水素成分が燃焼すると、排
気中の酸素濃度が低下するとともに、多量の未燃HC、
CO成分が発生する。また、燃焼により排気温度が上昇
するためNOX 吸収剤下流側部分には酸素濃度が低く、
多量の未燃HC、CO成分を含んだ高温の排気が流入す
るようになり、機関排気温度が低い場合でもNOX 吸収
剤からのNOX 放出と還元とが行われるようになる。ま
た、上記公報の装置では、HC、CO供給源として燃料
油等の、分子量の大きいHC成分を多く含む液体炭化水
素を使用した場合も触媒での燃焼により燃料油の高分子
量成分が分解し、低分子量のHC成分が多く発生するよ
うになるため、NOX 吸収剤でのNOXの放出と還元と
が促進される効果がある。
[0004] In the exhaust gas purifying apparatus of the above publication, the oxidation catalyst causes supported on the upstream side portion of the NO X absorbent, so as to heat the oxidation catalyst part in the electric heater, thereby achieving a solution to this problem. That is, in the exhaust emission control device of the publication, when the engine exhaust temperature is low, the electric heater of the catalyst on the upstream side is energized at the same time when the supply of the hydrocarbon component is started, and the catalyst is heated by the heater to raise the catalyst temperature in a short time. The supplied hydrocarbon component is burned by the catalyst carried on the upstream side of the NO x absorbent so as to reach the activation temperature. When the hydrocarbon component burns with the catalyst, the oxygen concentration in the exhaust gas decreases, and a large amount of unburned HC,
CO component is generated. Also, since the exhaust temperature rises due to combustion, the oxygen concentration is low in the downstream side of the NO x absorbent,
Large amount of unburned HC, the hot exhaust containing CO component becomes to flow, so that the reduction and NO X emission from the NO X absorbent even when the engine exhaust temperature is low is performed. Further, in the apparatus of the above publication, even when a liquid hydrocarbon containing a large amount of HC component having a large molecular weight, such as fuel oil, is used as the HC and CO supply source, the high molecular weight component of the fuel oil is decomposed by combustion with the catalyst, since so HC components in the low molecular weight frequently occur, the effect of the reduction and release of the NO X in the NO X absorbent is promoted.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記公報の
装置のように排気温度が低いときに触媒に排気を流通さ
せたままで電気ヒータによる加熱を行うと触媒の昇温が
遅れる問題がある。すなわち、排気温度が低い場合には
電気ヒータにより発生した熱はその一部が排気に奪われ
るため、触媒の温度上昇は遅くなる。このため、電気ヒ
ータへの通電と同時に炭化水素を触媒に供給すると、触
媒が活性化温度に達していないために触媒での炭化水素
の燃焼が発生しない。また、液体炭化水素を供給した場
合には、液体炭化水素の蒸発により電気ヒータの熱が奪
われるため、更に触媒の昇温が遅れることになる。この
ため、触媒が活性化温度に到達するまではNOX 吸収剤
でのNOX の放出、還元が生じず、供給された炭化水素
はNOX 吸収剤で消費することなく大気に放出されるこ
とになり、排気エミッションが悪化する問題が生じる。
However, there is a problem in that the temperature rise of the catalyst is delayed if heating is performed by the electric heater while the exhaust gas is flowing through the catalyst when the exhaust gas temperature is low, as in the device of the above publication. That is, when the exhaust gas temperature is low, a part of the heat generated by the electric heater is taken by the exhaust gas, so that the temperature rise of the catalyst becomes slow. Therefore, if the hydrocarbon is supplied to the catalyst at the same time when the electric heater is energized, the combustion of the hydrocarbon in the catalyst does not occur because the catalyst has not reached the activation temperature. Further, when the liquid hydrocarbon is supplied, the heat of the electric heater is taken away by the evaporation of the liquid hydrocarbon, which further delays the temperature rise of the catalyst. Therefore, catalyst release of the NO X in the NO X absorbent until it reaches the activation temperature, the reduction does not occur, the supplied hydrocarbons be released into the atmosphere without being consumed by the NO X absorbent Therefore, there arises a problem that exhaust emission is deteriorated.

【0006】例えばヒータに供給する電流を大幅に増大
してヒータの発生熱量を増加させればこの問題をある程
度解決することは可能であるが、ヒータ電流の増大によ
りバッテリ負荷が増加する問題が生じてしまう。また、
ヒータにより触媒が加熱され十分に温度が上昇するまで
炭化水素成分の供給を行わないようにすれば、排気エミ
ッションの悪化を防止することは可能だが、この場合も
触媒に排気を流したままでヒータ加熱を行ったのでは、
触媒の昇温に長時間を要するため、機関始動後にNOX
吸収剤からのNOX の放出、還元を開始できるようにな
るのが遅れる問題が生じる。
For example, if the amount of heat generated by the heater is increased by greatly increasing the current supplied to the heater, this problem can be solved to some extent, but the increase in the heater current causes a problem that the battery load increases. Will end up. Also,
If the hydrocarbon component is not supplied until the catalyst is heated by the heater and the temperature rises sufficiently, it is possible to prevent the deterioration of exhaust emission, but in this case as well, the heater is heated with the exhaust flowing to the catalyst. I went to
Since it takes a long time to raise the temperature of the catalyst, NO x is generated after the engine is started.
There is a problem that the release of NO X from the absorbent and the start of reduction can be delayed.

【0007】上記は、NOX 吸収剤に供給するHC、C
O成分を電気ヒータ付触媒で発生させる場合の問題につ
いて説明したが、他の場合にも同様な問題が生じる。例
えばディーゼルエンジンのパティキュレートフィルタ上
流側に電気ヒータ付触媒を配置し、この電気ヒータ付触
媒に燃料を供給して燃焼させることによりパティキュレ
ートフィルタの温度を上昇させて、パティキュレートフ
ィルタに捕集された煤を燃焼させる排気浄化装置の場合
にも排気温度が低い場合には同様な問題が生じ得る。
The above is the HC, C supplied to the NO x absorbent.
The problem in the case of generating the O component in the catalyst with the electric heater has been described, but the similar problem occurs in other cases. For example, a catalyst with an electric heater is arranged on the upstream side of the particulate filter of a diesel engine, and the temperature of the particulate filter is raised by supplying fuel to the catalyst with the electric heater and burning it, and the catalyst is collected by the particulate filter. The same problem may occur in the case of an exhaust gas purification device that burns soot if the exhaust gas temperature is low.

【0008】本発明は、上記問題に鑑み、電気ヒータ付
触媒上で炭化水素成分を燃焼させる構成を有する排気浄
化装置において、ヒータ電流を増加させることなく短時
間で触媒の昇温を行い、炭化水素成分の燃焼を開始させ
ることが可能な内燃機関の排気浄化装置を提供すること
を目的としている。
In view of the above problems, the present invention provides an exhaust gas purification apparatus having a structure for burning a hydrocarbon component on a catalyst with an electric heater, by heating the catalyst in a short time without increasing the heater current, An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can start the combustion of hydrogen components.

【0009】[0009]

【課題を解決するための手段】本発明によれば、内燃機
関の排気通路に配置された触媒と、該触媒を加熱する電
気ヒータと、前記触媒上流側の排気通路に炭化水素成分
を供給するHC供給装置と、前記触媒をバイパスして触
媒上流側の排気通路と下流側の排気通路とを接続するバ
イパス通路と、前記バイパス通路を通る排気流量を制御
するバイパス制御弁と、前記触媒の温度と機関排気温度
とをそれぞれ検出する温度検出手段と、前記触媒温度と
機関排気温度との両方が予め定めた所定温度以下のとき
に、前記バイパス制御弁を開弁し少なくとも機関排気の
一部をバイパス通路に流すとともに前記電気ヒータに電
流を供給する制御手段と、を備えた内燃機関の排気浄化
装置が提供される。
According to the present invention, a catalyst arranged in an exhaust passage of an internal combustion engine, an electric heater for heating the catalyst, and a hydrocarbon component are supplied to the exhaust passage upstream of the catalyst. An HC supply device, a bypass passage that bypasses the catalyst and connects an exhaust passage on the upstream side of the catalyst and an exhaust passage on the downstream side of the catalyst, a bypass control valve that controls an exhaust flow rate through the bypass passage, and a temperature of the catalyst. And temperature detection means for respectively detecting the engine exhaust temperature, when both the catalyst temperature and the engine exhaust temperature are below a predetermined temperature, the bypass control valve is opened to at least a part of the engine exhaust. There is provided an exhaust gas purification device for an internal combustion engine, comprising: a control unit that supplies a current to the electric heater while flowing in a bypass passage.

【0010】本発明の排気浄化装置では、触媒温度と排
気温度との両方が所定温度(例えば触媒の活性化温度)
以下の場合には制御手段は少なくとも機関排気の一部を
バイパス通路に流した状態で電気ヒータへの通電を行
う。このため、触媒に流入する排気が遮断、若しくは低
減された状態で電気ヒータによる加熱が行われ、低温の
排気により触媒から奪われる熱量が低減され触媒が短時
間で昇温する。
In the exhaust gas purification apparatus of the present invention, both the catalyst temperature and the exhaust gas temperature are predetermined temperatures (for example, the catalyst activation temperature).
In the following cases, the control means energizes the electric heater with at least a part of the engine exhaust flowing in the bypass passage. Therefore, heating by the electric heater is performed in a state where the exhaust flowing into the catalyst is blocked or reduced, the amount of heat taken from the catalyst by the low-temperature exhaust is reduced, and the temperature of the catalyst rises in a short time.

【0011】[0011]

【発明の実施の形態】以下添付図面を参照して本発明の
実施形態について説明する。図1は、本発明の排気浄化
装置の構成を示す図である。図1において、1はディー
ゼルエンジン(図には1気筒のみの断面を示す)、2は
エンジン1の吸気通路、3は排気通路、4はエンジン1
の各気筒の燃焼室に燃料を噴射する燃料噴射弁をそれぞ
れ示している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of an exhaust emission control device of the present invention. In FIG. 1, 1 is a diesel engine (only one cylinder is shown in the drawing), 2 is an intake passage of the engine 1, 3 is an exhaust passage, and 4 is an engine 1.
Fuel injection valves for injecting fuel into the combustion chambers of the respective cylinders are shown.

【0012】また、本実施形態では、エンジン1の排気
通路3には上流側から、酸化触媒5、排気中の煤を捕集
するDPF7、排気中のNOX を吸収するNOX 吸収剤
9がそれぞれ配置されている。これらの要素については
後に説明する。また、本実施形態では、酸化触媒5をバ
イパスして酸化触媒5入口側と出口側の排気通路とを接
続するバイパス通路6がを設けられ、バイパス通路6上
にはバイパス通路6を通過する排気流量を制御するバイ
パス制御弁8が設けられている。バイパス制御弁8は、
ステップモータ、負圧アクチュエータ等の適宜な形式の
アクチュエータ8aを備え、後述するエンジン制御回路
20からの制御信号に応じた開度をとり、バイパス通路
6を通過する排気流量を制御する。
Further, in the present embodiment, the exhaust passage 3 of the engine 1 is provided with an oxidation catalyst 5, a DPF 7 for collecting soot in the exhaust gas, and a NO x absorbent 9 for absorbing NO x in the exhaust gas from the upstream side. Each is arranged. These elements will be described later. Further, in the present embodiment, a bypass passage 6 that bypasses the oxidation catalyst 5 and connects the exhaust passage on the inlet side of the oxidation catalyst 5 and the exhaust passage on the outlet side is provided, and the exhaust gas passing through the bypass passage 6 is provided on the bypass passage 6. A bypass control valve 8 that controls the flow rate is provided. The bypass control valve 8 is
An actuator 8a of an appropriate type such as a step motor or a negative pressure actuator is provided, and an opening degree according to a control signal from an engine control circuit 20 which will be described later is taken to control an exhaust flow rate passing through the bypass passage 6.

【0013】図1に20で示すのはエンジン制御回路
(ECU)である。ECU20は、中央処理装置(CP
U)21、ランダムアクセスメモリ(RAM)22、リ
ードオンリメモリ(ROM)23、入力ポート24、出
力ポート25を互いに双方向性バス26で接続した公知
の構成のディジタルコンピュータからなり、エンジン1
の燃料噴射制御などの基本制御を行うほか、本実施形態
ではDPF7で捕集した煤の燃焼(以下「DPFの再生
操作」という)とNOX 吸収剤9からのNOX の放出と
還元(以下「NOX 吸収剤の再生操作」という)とを制
御している。
Reference numeral 20 in FIG. 1 is an engine control circuit (ECU). The ECU 20 is a central processing unit (CP
U) 21, random access memory (RAM) 22, read only memory (ROM) 23, input port 24 and output port 25 are connected to each other by a bidirectional bus 26.
In addition to performing the basic control such as fuel injection control, combustion (hereinafter referred to as "DPF regeneration operation") of soot collected by DPF7 in this embodiment and the reduction and release of the NO X from the NO X absorbent 9 (hereinafter “Regeneration operation of NO x absorbent”) is controlled.

【0014】これらの制御のために、ECU20の入力
ポート24には、エンジン回転数、アクセル開度等の信
号が、それぞれ図示しないセンサから入力されている
他、酸化触媒5の触媒床に設けられた触媒温度センサ1
0から触媒5温度に応じた信号が入力されている。ま
た、ECU20の出力ポート25は図示しない駆動回路
を介して、エンジン1の燃料噴射弁4とバイパス制御弁
8のアクチュエータ8aにそれぞれ接続され、エンジン
の燃料噴射量、噴射時期、及び排気低温時にバイパス通
路6を通る排気流量をそれぞれ制御している。
For these controls, signals such as engine speed and accelerator opening are input to the input port 24 of the ECU 20 from sensors (not shown), respectively, and also provided on the catalyst bed of the oxidation catalyst 5. Catalyst temperature sensor 1
A signal corresponding to the temperature of the catalyst 5 is input from 0. The output port 25 of the ECU 20 is connected to the fuel injection valve 4 of the engine 1 and the actuator 8a of the bypass control valve 8 via a drive circuit (not shown), and bypasses the fuel injection amount of the engine, the injection timing, and the exhaust temperature at low temperature. The exhaust gas flow rate passing through the passage 6 is controlled.

【0015】酸化触媒5は、例えばコージェライト製の
モノリス担体にアルミナの触媒担持層をコーティングに
より形成し、この担持層に白金Pt、パラジウムPd等
の触媒成分を担持させたものが使用される。酸化触媒5
は、排気空燃比が理論空燃比よりリーンのときに排気中
のHC、CO成分を酸化するとともに、排気中に含まれ
るNO成分を酸化してNO2 成分を生成する。なお、本
明細書では排気系のある部分より上流側に供給された空
気量と燃料量との比を、その部分における排気空燃比と
称する。すなわち、排気通路に二次空気や燃料が供給さ
れていない場合には、排気系の各部分における排気空燃
比は機関の燃焼空燃比(燃焼室内の燃焼における空気と
燃料との比)に等しくなる。
As the oxidation catalyst 5, for example, a monolithic carrier made of cordierite is coated with an alumina catalyst supporting layer, and a catalyst component such as platinum Pt or palladium Pd is supported on this supporting layer. Oxidation catalyst 5
Oxidizes the HC and CO components in the exhaust when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and oxidizes the NO component contained in the exhaust to produce the NO 2 component. In this specification, the ratio of the amount of air and the amount of fuel supplied upstream from a certain portion of the exhaust system is referred to as the exhaust air-fuel ratio of that portion. That is, when the secondary air or fuel is not supplied to the exhaust passage, the exhaust air-fuel ratio in each part of the exhaust system becomes equal to the combustion air-fuel ratio of the engine (the ratio of air and fuel in combustion in the combustion chamber). .

【0016】また、本実施形態では、酸化触媒5の上流
側端面には、排気温度が低いエンジン始動直後の状態等
で酸化触媒5を加熱して触媒反応を開始させるための電
気ヒータ5aが設けられている。電気ヒータ5aのリレ
ー5bにはECU20の出力ポート25からの制御信号
が入力されており、ECU20により電気ヒータ5aの
ON、OFFが制御される。後述するように、このヒー
タ5aは排気温度が低いときに触媒5を加熱し、活性化
温度(例えば250℃程度)に昇温する他、DPF7再
生時に排気温度を上昇させるためにも使用される。
Further, in this embodiment, an electric heater 5a for heating the oxidation catalyst 5 to start a catalytic reaction in a state where the exhaust gas temperature is low immediately after the engine is started is provided on the upstream end surface of the oxidation catalyst 5. Has been. A control signal from the output port 25 of the ECU 20 is input to the relay 5b of the electric heater 5a, and the ECU 20 controls ON / OFF of the electric heater 5a. As will be described later, the heater 5a heats the catalyst 5 when the exhaust temperature is low, raises the temperature to an activation temperature (for example, about 250 ° C.), and is also used to raise the exhaust temperature when the DPF 7 is regenerated. .

【0017】なお、本実施形態では、触媒5とヒータ5
aとを別個に形成しているが、例えば担体として金属製
のモノリス担体を使用し、この担体に直接通電して担体
そのものをヒータとして機能させるようにしたヒータ付
触媒を使用しても良い。DPF7は、多数の排気通路が
互いに平行に形成されたコージェライト製のハニカムフ
ィルタが使用される。DPF7内の排気通路は、上流側
端部と下流側端部とが閉鎖されたものが交互に配列され
ており、排気は上流側端部が開放された排気通路内に流
入し、排気通路間を隔てる多孔質の壁面から下流側端部
が開放された排気通路に流入して下流側に流出する。こ
のため、壁面通過時に排気中の煤等の微粒子が排気壁面
に捕集される。また、本実施形態では後述するように捕
集した煤がNO2 により容易に燃焼せしめられるよう
に、DPF7の壁面には白金Ptを担持させたアルミナ
層が形成されている。
In this embodiment, the catalyst 5 and the heater 5
Although a and a are separately formed, for example, a metal monolithic carrier may be used as a carrier, and a catalyst with a heater may be used in which the carrier itself is directly energized to function as a heater. The DPF 7 uses a cordierite honeycomb filter in which a number of exhaust passages are formed in parallel with each other. The exhaust passages in the DPF 7 are alternately arranged with the upstream end portion and the downstream end portion closed, and the exhaust gas flows into the exhaust passage opening at the upstream end portion, From the porous wall that separates the gas into the exhaust passage whose downstream end is open and flows out to the downstream. Therefore, fine particles such as soot in the exhaust gas are collected on the exhaust wall surface when passing through the wall surface. Further, in this embodiment, an alumina layer supporting platinum Pt is formed on the wall surface of the DPF 7 so that the collected soot can be easily burned by NO 2 as described later.

【0018】次に、本発明に使用するNOX 吸収剤9に
ついて説明する。NOX 吸収剤9としては、例えばコー
ジェライト製のモノリス担体にアルミナ等の担持層を形
成し、この担持層上に例えばカリウムK、ナトリウムN
a 、リチウムLi 、セシウムCs のようなアルカリ金
属、バリウムBa , カルシウムCaのようなアルカリ土
類、ランタンLa 、イットリウムYのような希土類から
選ばれた少なくとも一つと、白金Pt のような貴金属と
を担持したものを使用する。NOX 吸収剤9は流入する
排気の空燃比がリーンの場合にはNOX を吸収し、酸素
濃度が低下するとNOX を放出するNOX の吸放出作用
を行う。
Next, the NO x absorbent 9 used in the present invention will be described. As the NO x absorbent 9, for example, a monolith carrier made of cordierite is formed with a carrier layer of alumina or the like, and potassium K, sodium N, etc. are formed on the carrier layer.
At least one selected from a, an alkali metal such as lithium Li and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y, and a noble metal such as platinum Pt. Use the supported one. The NO X absorbent 9 absorbs NO X in the case the air-fuel ratio of the exhaust gas flowing is lean, the oxygen concentration is carried out to absorbing and releasing action of the NO X that releases NO X when lowered.

【0019】例えば、担持層上に白金Pt、バリウムB
aを担持させたものに例をとって説明すると、排気空燃
比がリーンのときには、機関排気中のNOX (窒素酸化
物)の大部分を占めるNOは、白金Pt上に付着したO
2 - またはO2-などにより酸化されて硝酸イオンNO3
- を生成する。次いで、この硝酸イオンNO3 - が酸化
バリウムBaOと結合しながらBaO内に拡散するた
め、排気中のNOは硝酸イオンNO3 - の形でNOX
収剤9内に吸収される。また、排気空燃比が理論空燃比
またはリッチ空燃比になると、流入排気中の酸素濃度が
低下して白金Pt上でのNO2 の生成量が減少する。こ
れにより反応は上記とは逆にNO3 - →NO2 の方向に
進み、BaO内の硝酸イオンNO3 - がNO2 の形で放
出される。すなわち、流入排気中の酸素濃度が低下する
とNOX 吸収剤9からNOX が放出されることになる。
For example, platinum Pt and barium B are formed on the supporting layer.
O To explain by taking an example that by supporting a, the exhaust air-fuel ratio when the lean, NO occupying most of the NO X in the engine exhaust (nitrogen oxides) is deposited on the platinum Pt
2 - or O 2-, etc. are oxidized by nitric acid ions NO 3
- to generate. Next, this nitrate ion NO 3 diffuses into BaO while combining with barium oxide BaO, so that NO in the exhaust gas is absorbed in the NO x absorbent 9 in the form of nitrate ion NO 3 . Further, when the exhaust air-fuel ratio becomes the stoichiometric air-fuel ratio or the rich air-fuel ratio, the oxygen concentration in the inflowing exhaust gas decreases and the amount of NO 2 produced on platinum Pt decreases. As a result, the reaction proceeds in the direction of NO 3 → NO 2 contrary to the above, and the nitrate ion NO 3 − in BaO is released in the form of NO 2 . That is, the oxygen concentration in the inflowing exhaust gas is released NO X from the NO X absorbent 9 when lowered.

【0020】一方、流入排気中に還元剤や未燃HC、C
O等の成分が存在すると、これらの成分は白金Pt 上の
酸素O2 - またはO2-と反応して酸化され、排気中の酸
素を消費して排気中の酸素濃度を低下させる。また、排
気中の酸素濃度低下によりNOX 吸収剤9から放出され
たNO2 はHC、COと反応して還元され、N2 、CO
2 、H2 O等を生成する。従って、HC、CO成分によ
り白金Pt の表面上でNO2 が還元されると、吸収剤か
ら次から次へとNO2 が放出され、排気中のHC、CO
成分と反応するようになる。
On the other hand, the reducing agent and unburned HC, C are contained in the inflowing exhaust gas.
When components such as O are present, these components react with oxygen O 2 or O 2 on the platinum Pt to be oxidized and consume oxygen in the exhaust gas to reduce the oxygen concentration in the exhaust gas. Further, NO 2 released from the NO X absorbent 9 due to the decrease in oxygen concentration in the exhaust gas reacts with HC and CO to be reduced, and N 2 and CO
2 , H 2 O, etc. are generated. Therefore, when NO 2 is reduced on the surface of platinum Pt by the HC and CO components, NO 2 is released one after another from the absorbent, and HC and CO in the exhaust gas are discharged.
It will react with the ingredients.

【0021】すなわち、NOX 吸収剤9はリーン空燃比
時に流入する排気中のNOX を除去し、リッチ空燃比時
には吸収したNOX を放出するとともに、流入する排気
中のHC、CO成分と反応させる作用を行う。つまり、
NOX 吸収剤は排気中のHC、CO成分とNOX 成分と
を同時に浄化することができる。次に、本実施形態の作
用について説明する。
That is, the NO X absorbent 9 removes the NO X in the exhaust gas flowing in at the lean air-fuel ratio, releases the absorbed NO X in the rich air-fuel ratio, and reacts with the HC and CO components in the exhaust gas flowing in. Perform the action of causing. That is,
The NO X absorbent can purify HC and CO components and NO X components in the exhaust gas at the same time. Next, the operation of this embodiment will be described.

【0022】本実施形態では、ディーゼルエンジン1が
使用されるため通常運転中の排気空燃比はかなりリーン
になっている(例えば空燃比で30程度)。また、エン
ジン出口での排気には少量のNOX (主にNO)と比較
的多量の煤が含まれている。この排気は、まず酸化触媒
5を通過し、排気中のNOが酸化され、 2NO+O2 →2NO2 の反応によりNO2 が生成される。
In the present embodiment, since the diesel engine 1 is used, the exhaust air-fuel ratio during normal operation is considerably lean (for example, the air-fuel ratio is about 30). Further, the exhaust in the engine outlet contains relatively large amounts of soot and small amounts of NO X (mainly NO). This exhaust gas first passes through the oxidation catalyst 5, the NO in the exhaust gas is oxidized, and NO 2 is produced by the reaction of 2NO + O 2 → 2NO 2 .

【0023】次いで、この排気はDPFに流入し、排気
中の煤がDPFに捕集される。DPFに捕集された煤
は、一部が上記により生成されたNO2 と反応し、 NO2 +C→NO+CO の反応を生じCOとNOとが発生する。しかし、エンジ
ンで発生するNOの量に較べて煤の量が多いこと、及び
ディーゼルエンジンの通常運転時の排気温度が低く(例
えば200℃程度)、実際には上記反応があまり生じな
いことから、DPF7上には捕集された煤が徐々に蓄積
される。一方、上記反応により生成したNOと、煤と反
応せずにDPF7を通過したNO2 とを含む排気は、次
にNOX 吸収剤9に流入する。通常運転時では、ディー
ゼルエンジン1の排気空燃比はリーンであるため、この
排気中のNO、NO2 はNOX 吸収剤9に吸収され排気
から除去される。これにより、通常運転時には排気は煤
とNOX とをほとんど含まない状態でNOX 吸収剤9か
ら排出される。
Next, this exhaust gas flows into the DPF, and the soot in the exhaust gas is collected in the DPF. Soot collected in the DPF is partially reacted with NO 2 generated by the, NO 2 + C → NO + CO and NO produced reaction of CO is generated. However, since the amount of soot is larger than the amount of NO generated in the engine, and the exhaust temperature during normal operation of the diesel engine is low (for example, about 200 ° C.), the above reaction does not actually occur so much. The collected soot is gradually accumulated on the DPF 7. On the other hand, the exhaust containing NO generated by the above reaction and NO 2 that has passed through the DPF 7 without reacting with soot next flows into the NO x absorbent 9. During normal operation, since the exhaust air-fuel ratio of the diesel engine 1 is lean, NO and NO 2 in this exhaust are absorbed by the NO x absorbent 9 and removed from the exhaust. As a result, during normal operation, the exhaust gas is discharged from the NO X absorbent 9 in a state where it contains almost no soot and NO X.

【0024】上述のように、通常運転時エンジン排気中
の煤はDPF7により、NOX (NO、NO2 )はNO
X 吸収剤9により、それぞれ除去されるが、これにより
DPF7には煤が、また、NOX 吸収剤9にはNOX
徐々に蓄積される。DPF7に蓄積された煤の量が増大
するとDPF7での排気圧損が上昇するため、排気背圧
の増大によりエンジン出力の低下等の問題が生じる。ま
た、NOX 吸収剤9に蓄積されたNOX 量が増大すると
NOX 吸収剤9のNOX 吸収能力は低下し、大気に放出
されるNOX の量が増大する問題が生じる。
As described above, the soot in the engine exhaust during normal operation is due to the DPF 7, and the NO X (NO, NO 2 ) is NO.
The X- absorbent 9 removes the soot, respectively, whereby the DPF 7 gradually accumulates soot, and the NO X absorbent 9 gradually accumulates NO X. When the amount of soot accumulated in the DPF 7 increases, the exhaust pressure loss in the DPF 7 increases, so that an increase in exhaust back pressure causes a problem such as a decrease in engine output. Further, NO X absorbing capacity of the NO X absorbent 9 when the amount of NO X accumulated in the NO X absorbent 9 is increased is reduced, problems amount of the NO X released to the atmosphere increases occurs.

【0025】そこで、本実施形態では以下に説明するら
うに、定期的に前述のNOX 吸収剤の再生操作を行いN
X 吸収剤9から吸収したNOX を放出させ、NOX
収能力を回復させるとともに、定期的にDPFの再生操
作を行い、DPF7に捕集された煤を燃焼させて圧損を
低減させるようにしている。まず、NOX 吸収剤9の再
生操作について説明する。本実施形態では、ECU20
により実行される図示しないルーチンによりNOX 吸収
剤9の再生操作が実行される。NOX 吸収剤9の再生操
作の際には、ECU20は酸化触媒5に短時間炭化水素
成分を供給し、触媒5上で燃焼させることにより排気中
の酸素濃度を低下させるとともに未燃HC、CO成分を
生成してNOX 吸収剤9に供給する。酸化触媒5を通過
した、HC、CO成分を含む酸素濃度の低い排気は、D
PF7を通過してNOX 吸収剤9に到達する。このた
め、前述したようにNOX 吸収剤9からはNOX が放出
され、排気中のHC、CO成分により還元浄化される。
Therefore, in the present embodiment, as will be described below, the above-mentioned NO x absorbent regeneration operation is periodically performed and N
The NO X absorbed from the O X absorbent 9 is released to restore the NO X absorption capacity, and the DPF is periodically regenerated so that the soot collected in the DPF 7 is burned to reduce the pressure loss. ing. First, the operation of regenerating the NO X absorbent 9 will be described. In the present embodiment, the ECU 20
The regeneration operation of the NO X absorbent 9 is executed by a routine (not shown) executed by. During the regeneration operation of the NO x absorbent 9, the ECU 20 supplies a hydrocarbon component to the oxidation catalyst 5 for a short time and burns it on the catalyst 5 to reduce the oxygen concentration in the exhaust gas and unburned HC and CO. The components are produced and supplied to the NO X absorbent 9. The exhaust gas having a low oxygen concentration containing HC and CO components, which has passed through the oxidation catalyst 5, becomes D
It passes through the PF 7 and reaches the NO X absorbent 9. Therefore, as described above, NO X is released from the NO X absorbent 9 and is reduced and purified by the HC and CO components in the exhaust gas.

【0026】本実施形態では、エンジン1の燃焼室に噴
射された燃料を炭化水素供給源として使用する。すなわ
ち、ECU20はNOX 吸収剤9再生時にエンジン1の
燃料噴射弁4から各気筒の1サイクル当たり2回の燃料
噴射を行う。通常運転時、ECU20は機関アクセルペ
ダルの踏み込み量(アクセル開度)と機関回転数とか
ら、予め定めた関係に基づいて燃料噴射量を算出し、算
出した量の燃料を燃料噴射弁4から各気筒の圧縮行程後
期に気筒内に噴射する。通常時には、この燃料噴射によ
り機関空燃比は大幅なリーン(例えば空燃比で30程
度)に維持されている。しかし、酸化触媒5に炭化水素
を供給する場合には、ECU20は上記通常時の圧縮行
程後期燃料噴射のみでなく、各気筒の排気行程にも再度
燃料噴射弁4から燃料噴射を行う。
In this embodiment, the fuel injected into the combustion chamber of the engine 1 is used as a hydrocarbon supply source. That is, the ECU 20 performs the fuel injection from the fuel injection valve 4 of the engine 1 twice per cycle of each cylinder when the NO X absorbent 9 is regenerated. During normal operation, the ECU 20 calculates the fuel injection amount based on a predetermined relationship from the depression amount (accelerator opening) of the engine accelerator pedal and the engine speed, and supplies the calculated amount of fuel from the fuel injection valve 4 to each. The fuel is injected into the cylinder in the latter half of the compression stroke of the cylinder. During normal operation, the fuel injection keeps the engine air-fuel ratio significantly lean (for example, the air-fuel ratio is about 30). However, when supplying hydrocarbons to the oxidation catalyst 5, the ECU 20 re-injects fuel from the fuel injection valve 4 not only in the normal compression stroke late fuel injection but also in the exhaust stroke of each cylinder.

【0027】排気行程中に気筒内に噴射された燃料は、
その一部は気筒内で燃焼するものの機関の出力増大には
寄与しない。また、燃焼しなかった大部分の燃料は気筒
内で気化して排気とともに排気通路に排出され、酸化触
媒5に供給される。酸化触媒5が活性化温度に到達して
いれば、この気化燃料の大部分は酸化触媒により燃焼
し、多量のHC、CO成分を発生する。また、酸化触媒
5で燃焼しなかった残りの燃料も燃焼により高温になっ
た触媒5の通過時に熱分解し、分子量の大きい高沸点炭
化水素成分が分子量の小さい低沸点の未燃HC成分に転
換される。このため、NOX 吸収剤9には酸素濃度が低
く、多量の未燃HC、CO成分を含む排気が流入するこ
とになり、短時間でNOX 吸収剤9の再生が完了する。
The fuel injected into the cylinder during the exhaust stroke is
Although some of them burn in the cylinder, they do not contribute to the increase in output of the engine. Further, most of the fuel that has not burned is vaporized in the cylinder and is discharged to the exhaust passage together with the exhaust gas and supplied to the oxidation catalyst 5. If the oxidation catalyst 5 has reached the activation temperature, most of this vaporized fuel is burned by the oxidation catalyst, and a large amount of HC and CO components are generated. In addition, the remaining fuel that has not been burned in the oxidation catalyst 5 is also thermally decomposed when passing through the catalyst 5 that has become hot due to combustion, and the high-boiling point hydrocarbon component having a large molecular weight is converted to a low-boiling point unburned HC component having a small molecular weight. To be done. Thus, low oxygen concentration in the NO X absorbent 9, a large amount of unburned HC, will be exhausted comprising CO component flows in a short time regeneration of the NO X absorbent 9 is completed.

【0028】次に、DPF7の再生操作について説明す
る。本実施形態では前述したように排気中のNO2 とD
PFに堆積した煤(カーボン)とを反応させて煤を燃焼
させる。また、このときに発生するNO成分をDPF7
下流側のNOX 吸収剤9に吸収させて大気への放出を防
止する必要がある。このため、DPF7の再生時には、
排気空燃比がリーンとなっていることが必要となる。ま
た、NO2 と煤との反応を促進するためには、排気温度
は高い方が好ましい。そこで、本実施形態ではECU2
0は図示しないルーチンにより、排気空燃比がリッチに
ならない範囲で、NOX 吸収剤9の再生時と同様、通常
の圧縮行程後期の噴射に加えて排気行程での燃料噴射を
行い、この燃料を酸化触媒5で燃焼させることにより排
気温度を上昇させる。また、排気温度を上昇させるた
め、DPF7再生時には必要に応じて酸化触媒5の電気
ヒータ5aに通電を行う。電気ヒータ5aにより酸化触
媒5を通過する排気が加熱され、さらに排気行程中に噴
射された燃料が酸化触媒5で燃焼するため、DPF7に
は通常より高い温度(例えば400℃から500℃程
度)の排気が流入することになる。このため、排気中の
NO2 はDPF7に堆積した煤と容易に反応し、煤が燃
焼、除去されてDPF7の圧損が低下する。また、DP
F7を通過する排気は、全体としてまだリーン空燃比で
あるため、NO2と煤との反応により発生したNOは、
下流側のNOX 吸収剤9により吸収され、排気から除去
される。
Next, the reproduction operation of the DPF 7 will be described. In this embodiment, as described above, NO 2 and D in the exhaust gas
The soot (carbon) deposited on the PF is reacted to burn the soot. Further, the NO component generated at this time is changed to DPF7.
It is necessary to absorb the NO x absorbent 9 on the downstream side to prevent the release to the atmosphere. Therefore, when reproducing the DPF 7,
The exhaust air-fuel ratio must be lean. Further, in order to promote the reaction between NO 2 and soot, the exhaust temperature is preferably higher. Therefore, in the present embodiment, the ECU 2
In the range 0 where the exhaust air-fuel ratio does not become rich, as in the case of regeneration of the NO X absorbent 9, fuel is injected in the exhaust stroke in addition to the injection in the latter half of the normal compression stroke by a routine (not shown). Exhaust temperature is raised by burning with the oxidation catalyst 5. In addition, in order to raise the exhaust temperature, the electric heater 5a of the oxidation catalyst 5 is energized as needed during regeneration of the DPF 7. Since the exhaust gas passing through the oxidation catalyst 5 is heated by the electric heater 5a, and the fuel injected during the exhaust stroke is burned by the oxidation catalyst 5, the DPF 7 has a temperature higher than usual (for example, about 400 to 500 ° C.). Exhaust gas will flow in. Therefore, NO 2 in the exhaust gas easily reacts with the soot accumulated on the DPF 7, the soot is burned and removed, and the pressure loss of the DPF 7 is reduced. Also, DP
Since the exhaust gas passing through F7 is still a lean air-fuel ratio as a whole, NO generated by the reaction between NO 2 and soot is
Is absorbed by the NO X absorbent 9 on the downstream side and is removed from the exhaust.

【0029】本実施形態では、DPF7の再生操作は数
十分から数時間の間隔で行い、再生時の空燃比は20程
度のリーン空燃比に維持される。また、このときDPF
7の再生は数分程度で完了する。なお、前述したように
NOX 吸収剤9の再生操作は数十秒から数分の間隔で実
行されるが、本実施形態ではDPF7の再生操作中もN
X 吸収剤9の再生操作のタイミングになった場合に
は、排気行程時の燃料噴射量を更に増大し排気空燃比を
13程度まで低下させる。これにより、DPF7再生操
作中は、通常のNO X 吸収剤9再生操作に加えて、通常
より高い排気温度で再生操作が実行されるようになり、
NOX 吸収剤9の再生がより完全に行われる。
In the present embodiment, the number of DPF 7 regeneration operations is several.
The air-fuel ratio at the time of regeneration is about 20.
Maintained at a lean air-fuel ratio. At this time, the DPF
Playback of 7 is completed in a few minutes. As mentioned above,
NOXThe regeneration operation of the absorbent 9 is performed at intervals of several tens of seconds to several minutes.
However, in the present embodiment, N is set during the regeneration operation of the DPF 7.
OXWhen it is time to regenerate the absorbent 9
Increases the fuel injection amount during the exhaust stroke to increase the exhaust air-fuel ratio.
Reduce to about 13. As a result, the DPF7 regeneration operation
During production, normal NO XIn addition to absorbent 9 regeneration operation, usually
The regeneration operation will be performed at a higher exhaust temperature,
NOXRegeneration of the absorbent 9 is more complete.

【0030】ところが、上記のNOX 吸収剤9とDPF
7の再生操作実行時にはいずれも酸化触媒5で燃料を燃
焼させることが必要となるため、再生操作実行時には酸
化触媒5が触媒の活性化温度(例えば250℃程度)に
なっていることが必要とされる。通常運転中、酸化触媒
5は通過する排気により加熱され排気温度に応じた温度
に昇温されるが、機関冷間始動後のアイドル運転等では
排気温度は触媒の活性化温度よりかなり低くなってい
る。また、一般にディーゼルエンジンの通常運転時の排
気温度はガソリンエンジンに較べて低く、低負荷運転時
等は上記触媒活性化温度より低くなっている場合があ
る。このような状態では、酸化触媒5の温度も活性化温
度以下になっており、この状態でNOX 吸収剤9やDP
F7の再生操作を実行するために、排気行程での燃料噴
射を実行しても酸化触媒5では燃料が燃焼しないため、
前述したように排気エミッションの悪化等の問題が生じ
る。また、この場合には低温の排気が大量に酸化触媒5
を通過することになるため、酸化触媒5を昇温するため
に電気ヒータ5aに通電をおこなっても、電気ヒータ5
aの発生する熱は酸化触媒5を通過する大量の排気に奪
われてしまい、酸化触媒5の温度を迅速に上昇させるこ
とはできない。
However, the above NO x absorbent 9 and DPF
Since it is necessary to burn the fuel with the oxidation catalyst 5 when executing the regeneration operation of No. 7, it is necessary that the oxidation catalyst 5 is at the catalyst activation temperature (for example, about 250 ° C.) when executing the regeneration operation. To be done. During normal operation, the oxidation catalyst 5 is heated by the passing exhaust gas and is heated to a temperature according to the exhaust gas temperature, but the exhaust gas temperature becomes considerably lower than the activation temperature of the catalyst in idle operation after cold start of the engine. There is. Further, generally, the exhaust temperature of a diesel engine during normal operation is lower than that of a gasoline engine, and it may be lower than the catalyst activation temperature during low load operation. In such a state, the temperature of the oxidation catalyst 5 is also below the activation temperature, and in this state, the NO x absorbent 9 and DP
Even if the fuel injection in the exhaust stroke is executed to execute the regeneration operation of F7, the fuel does not burn in the oxidation catalyst 5,
As described above, problems such as deterioration of exhaust emission occur. In this case, a large amount of low-temperature exhaust gas is used as the oxidation catalyst 5.
Therefore, even if the electric heater 5a is energized to raise the temperature of the oxidation catalyst 5, the electric heater 5
The heat generated by a is taken by a large amount of exhaust gas passing through the oxidation catalyst 5, and the temperature of the oxidation catalyst 5 cannot be raised rapidly.

【0031】そこで、本実施形態では、機関排気温度
と、酸化触媒5の温度との両方が所定の温度より低い場
合には、バイパス制御弁8を開弁して大部分の排気を酸
化触媒5をバイパスして流した状態で電気ヒータ5aに
通電を行うようにしている。バイパス制御弁8a開弁時
には、排気の殆どはバイパス通路6を通って流れ、酸化
触媒5には殆ど排気が流入しない。このため、電気ヒー
タ5aの発生した熱を酸化触媒5の加熱のみに使用する
ことができ、短時間で酸化触媒5を活性化温度まで昇温
させることが可能となる。なお、本実施形態では、バイ
パス通路6上にバイパス制御弁8を設けているためバイ
パス制御弁8開弁時にも少量の排気が酸化触媒5を通過
するが、バイパス通路6と排気通路3との接続部に排気
切換弁を設けて、排気温度が低いときには排気の全量を
バイパス通路6に流すようにして酸化触媒5への排気の
流入を完全に遮断すれば、さらに触媒5の昇温をを早め
ることが可能となる。
Therefore, in the present embodiment, when both the engine exhaust temperature and the temperature of the oxidation catalyst 5 are lower than the predetermined temperature, the bypass control valve 8 is opened to remove most of the exhaust gas from the oxidation catalyst 5. The electric heater 5a is energized in a state of bypassing and flowing. When the bypass control valve 8a is opened, most of the exhaust gas flows through the bypass passage 6 and almost no exhaust gas flows into the oxidation catalyst 5. Therefore, the heat generated by the electric heater 5a can be used only for heating the oxidation catalyst 5, and the oxidation catalyst 5 can be heated to the activation temperature in a short time. In this embodiment, since the bypass control valve 8 is provided on the bypass passage 6, a small amount of exhaust gas passes through the oxidation catalyst 5 even when the bypass control valve 8 is opened. If the exhaust switching valve is provided at the connection portion so that the exhaust gas flows into the bypass passage 6 when the exhaust temperature is low to completely block the inflow of the exhaust gas to the oxidation catalyst 5, the temperature of the catalyst 5 is further increased. It is possible to speed up.

【0032】なお、排気温度が低い場合でも、上記によ
り触媒温度が活性化温度に到達すると排気中の未燃H
C、CO成分や、排気行程噴射による気化燃料が触媒5
で燃焼するようになるため触媒5の温度が上昇し触媒5
が高温に維持されるようになる。図2は、上記排気温度
低温時のバイパス制御弁8と電気ヒータ5aを用いた触
媒加熱制御ルーチンを示すフローチャートである。本ル
ーチンは、ECU20により一定時間毎に実行される。
Even when the exhaust gas temperature is low, when the catalyst temperature reaches the activation temperature as described above, unburned H in the exhaust gas is reduced.
The C and CO components and the vaporized fuel by the exhaust stroke injection are catalysts 5.
The temperature of the catalyst 5 rises because it becomes burned in
Will be maintained at a high temperature. FIG. 2 is a flowchart showing a catalyst heating control routine using the bypass control valve 8 and the electric heater 5a when the exhaust temperature is low. This routine is executed by the ECU 20 at regular intervals.

【0033】図2においてルーチンがスタートすると、
ステップ201では、エンジン1のアクセル開度ACC
エンジン回転数NEとがそれぞれ対応するセンサから、
また酸化触媒5温度THCが触媒温度センサ10から読
み込まれる。次いで、ステップ203では、上記により
読み込んだアクセル開度ACCと機関回転数NEとからエ
ンジン排気温度TEXが算出される。本実施形態では、エ
ンジン排気温度は予めアクセル開度と機関回転数の各条
件下で実測して求めてあり、アクセル開度ACCと機関回
転数NEとを用いた数値マップとしてECU20のRO
M23に格納してある。ステップ203では、このマッ
プを用いて、ステップ201で読み込んだACCとNEと
を用いて排気温度TEXが算出される。なお、本実施形態
では、上述のように、アクセル開度ACCと機関回転数N
Eとを用いて間接的にエンジン排気温度を検出している
が、排気通路3の酸化触媒入口部分に排気温度センサを
設けて直接排気温度を検出するようにすることも可能で
ある。
In FIG. 2, when the routine starts,
In step 201, from the sensors corresponding to the accelerator opening A CC of the engine 1 and the engine speed NE,
Further, the temperature THC of the oxidation catalyst 5 is read from the catalyst temperature sensor 10. Next, at step 203, the engine exhaust temperature T EX is calculated from the accelerator opening A CC and the engine speed NE read as described above. In the present embodiment, the engine exhaust temperature is previously obtained by actually measuring under various conditions of the accelerator opening and the engine speed, and the RO of the ECU 20 is a numerical map using the accelerator opening A CC and the engine speed NE.
It is stored in M23. In step 203, using this map, the exhaust temperature T EX is calculated using A CC and NE read in step 201. In the present embodiment, as described above, the accelerator opening A CC and the engine speed N
Although the engine exhaust temperature is indirectly detected by using E and E, it is possible to directly detect the exhaust temperature by providing an exhaust temperature sensor at the oxidation catalyst inlet portion of the exhaust passage 3.

【0034】上記により、排気温度TEX算出後、次いで
ステップ205とステップ207では、この排気温度T
EXとステップ201で読み込んだ酸化触媒5温度THC
が所定値T0 以下か否かがそれぞれ判定される。ここ
で、T0 は酸化触媒の活性化温度またはそれ以上の温度
とされ、例えば本実施形態では酸化触媒5の活性化温度
(250℃)程度の温度に設定される。
Based on the above, after the exhaust gas temperature T EX is calculated, the exhaust gas temperature T EX
EX and oxidation catalyst 5 temperature THC read in step 201
Is determined to be a predetermined value T 0 or less. Here, T 0 is the activation temperature of the oxidation catalyst or a temperature higher than it, and is set to a temperature of about the activation temperature (250 ° C.) of the oxidation catalyst 5 in this embodiment, for example.

【0035】ステップ205と207で、排気温度TEX
と触媒温度THCとの両方が所定温度T0 以下であった
場合、すなわち排気温度が低く、かつ触媒5も活性化温
度に到達していない場合には、早期に触媒を活性化温度
に到達させる必要がある。そこで、この場合ステップ2
09で、電気ヒータ5aのリレー5bがオンにされ、電
気ヒータ5aに通電が行われるとともに、ステップ21
1でバイパス制御弁8が開弁される。これにより、触媒
5への排気流入が制限された状態でヒータ5に通電が行
われることになるため、触媒5が速やかに昇温し活性化
温度に到達する。
In steps 205 and 207, the exhaust temperature T EX
If both the catalyst temperature THC and the catalyst temperature THC are equal to or lower than the predetermined temperature T 0 , that is, if the exhaust gas temperature is low and the catalyst 5 has not reached the activation temperature, the catalyst is brought to the activation temperature early. There is a need. Therefore, in this case, step 2
At 09, the relay 5b of the electric heater 5a is turned on, the electric heater 5a is energized, and step 21
At 1, the bypass control valve 8 is opened. As a result, the heater 5 is energized with the exhaust gas flowing into the catalyst 5 being restricted, so that the temperature of the catalyst 5 quickly rises and reaches the activation temperature.

【0036】一方、ステップ205とステップ207で
排気温度TEXと触媒温度THCとのうちいずれか1つ以
上が所定温度T0 を越えていた場合には、ステップ21
3とステップ215とが実行され、ヒータ5aへの通電
が停止されるとともに、バイパス制御弁8が閉弁され
る。これにより、機関からの排気の全量が触媒5を通過
するようになる。なお、触媒温度THCが所定値T0
下であっても排気温度がT0 以上であった場合にはヒー
タ通電を停止し、排気全量を触媒5に流すようにしたの
は、排気温度がT0 を越えて高温になっているため排気
の全量を触媒5に流すことにより、ヒータ5aで加熱し
なくとも触媒5の温度が速やかに上昇するためである。
On the other hand, if at least one of the exhaust temperature T EX and the catalyst temperature THC exceeds the predetermined temperature T 0 in steps 205 and 207, step 21
3 and step 215 are executed, the power supply to the heater 5a is stopped, and the bypass control valve 8 is closed. As a result, the entire amount of exhaust gas from the engine will pass through the catalyst 5. Even when the catalyst temperature THC is equal to or lower than the predetermined value T 0 , when the exhaust temperature is equal to or higher than T 0 , the heater energization is stopped and the entire amount of exhaust gas is allowed to flow to the catalyst 5 because the exhaust temperature is T 0. This is because the temperature exceeds 0 and is high, so that the temperature of the catalyst 5 rises quickly by flowing the entire amount of exhaust gas to the catalyst 5 without heating with the heater 5a.

【0037】また、前述したように、排気温度TEXがT
0 以下であった場合でも触媒5の温度がT0 以上になっ
ていれば、触媒5に排気を供給することにより触媒5で
排気中のHC、CO成分の酸化反応が生じるため、触媒
5温度は高温に維持されることになる。図2のルーチン
によれば、排気温度と触媒5温度との両方が低い場合に
は、触媒を通過する排気流量が制限された状態で電気ヒ
ータ5aによる加熱が行われ、速やかに触媒5温度が活
性化温度に到達するため、排気温度が低い状態でも供給
された炭化水素成分を燃焼させることが可能となる。ま
た、排気温度または触媒5温度が高温になった場合には
電気ヒータの通電が停止され、同時に排気の全量が触媒
5を通過するようになる。このため、本実施形態によれ
ば電気ヒータ5の通電時間を短縮し、バッテリ負荷を軽
減することが可能となる。
As described above, the exhaust temperature T EX is T
If 0 temperature of the catalyst 5 even at was the following cases becomes T 0 or more, the HC in the exhaust gas at the catalyst 5, an oxidation reaction of CO component caused by supplying the exhausted catalyst 5, catalyst 5 Temperature Will be maintained at a high temperature. According to the routine of FIG. 2, when both the exhaust gas temperature and the catalyst 5 temperature are low, heating is performed by the electric heater 5a with the exhaust flow rate passing through the catalyst being limited, and the catalyst 5 temperature is quickly increased. Since the activation temperature is reached, the supplied hydrocarbon component can be burned even when the exhaust temperature is low. When the exhaust gas temperature or the catalyst 5 temperature becomes high, the electric heater is de-energized, and at the same time, the entire amount of exhaust gas passes through the catalyst 5. Therefore, according to the present embodiment, it is possible to shorten the energization time of the electric heater 5 and reduce the battery load.

【0038】なお、上記実施形態ではHC、CO供給装
置としてエンジンの燃料噴射弁を用いてディーゼルエン
ジンの排気行程に燃料噴射を行っているが、本発明はこ
れに限定されるものではなく、触媒上流側の排気通路に
炭化水素成分(例えば、軽油、ガソリン等)を供給する
HC、CO供給装置を燃料噴射弁とは別に設けても良
い。この場合、例えばポンプ等の加圧炭化水素供給源
と、排気通路に炭化水素を噴射する噴射弁とを設け、こ
れらを接続する配管に流量制御弁を設けてECUからこ
の流量制御弁を開閉制御することにより触媒への炭化水
素成分の供給を制御するようにすれば良い。
In the above embodiment, the fuel injection valve of the engine is used as the HC and CO supply device to perform the fuel injection in the exhaust stroke of the diesel engine, but the present invention is not limited to this, and the catalyst is not limited thereto. An HC and CO supply device for supplying a hydrocarbon component (for example, light oil, gasoline, etc.) to the exhaust passage on the upstream side may be provided separately from the fuel injection valve. In this case, for example, a pressurized hydrocarbon supply source such as a pump and an injection valve for injecting hydrocarbons are provided in the exhaust passage, a flow control valve is provided in a pipe connecting these, and the ECU controls opening / closing of this flow control valve. By doing so, the supply of the hydrocarbon component to the catalyst may be controlled.

【0039】[0039]

【発明の効果】本発明によれば、電気ヒータによる触媒
加熱時に触媒への排気流入を制限するようにしたことに
より、バッテリ負荷を増大することなく短時間で触媒を
活性化温度に到達させることが可能となり、排気温度が
低い状態でも供給された炭化水素成分を早期に燃焼させ
ることが可能となる効果を奏する。
According to the present invention, the exhaust gas flow into the catalyst is restricted when the catalyst is heated by the electric heater, so that the catalyst can reach the activation temperature in a short time without increasing the battery load. This makes it possible to quickly burn the supplied hydrocarbon component even when the exhaust gas temperature is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気浄化装置の一実施形態の概略構成
を説明する図である。
FIG. 1 is a diagram illustrating a schematic configuration of an embodiment of an exhaust emission control device of the present invention.

【図2】本発明の排気浄化方法における、触媒の昇温操
作を説明するフローチャートである。
FIG. 2 is a flowchart illustrating a catalyst temperature raising operation in the exhaust gas purification method of the present invention.

【符号の説明】[Explanation of symbols]

1…ディーゼルエンジン 2…吸気通路 3…排気通路 4…燃料噴射弁 5…酸化触媒 6…バイパス通路 8…バイパス制御弁 7…DPF 9…NOX 吸収剤 20…エンジン制御回路(ECU)1 ... diesel engine 2 ... intake passage 3 ... exhaust passages 4 fuel injection valves 5 ... oxidation catalyst 6 ... bypass passage 8 ... bypass control valve 7 ... DPF 9 ... NO X absorbent 20 ... engine control circuit (ECU)

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/10 ZAB F01N 3/10 ZABA 3/24 3/24 E ZAB ZABL F02D 45/00 310 F02D 45/00 310R (72)発明者 小島 康一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F01N 3/10 ZAB F01N 3/10 ZABA 3/24 3/24 E ZAB ZABL F02D 45/00 310 F02D 45/00 310R (72) Inventor Koichi Kojima 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配置された触媒
と、該触媒を加熱する電気ヒータと、 前記触媒上流側の排気通路に炭化水素成分を供給するH
C供給装置と、 前記触媒をバイパスして触媒上流側の排気通路と下流側
の排気通路とを接続するバイパス通路と、 前記バイパス通路を通る排気流量を制御するバイパス制
御弁と、 前記触媒の温度と機関排気温度とをそれぞれ検出する温
度検出手段と、 前記触媒温度と機関排気温度との両方が予め定めた所定
温度以下のときに、前記バイパス制御弁を開弁し少なく
とも機関排気の一部をバイパス通路に流すとともに前記
電気ヒータに電流を供給する制御手段と、 を備えた内燃機関の排気浄化装置。
1. A catalyst arranged in an exhaust passage of an internal combustion engine, an electric heater for heating the catalyst, and H for supplying a hydrocarbon component to the exhaust passage upstream of the catalyst.
A C supply device, a bypass passage that bypasses the catalyst and connects an exhaust passage on the upstream side of the catalyst and an exhaust passage on the downstream side of the catalyst, a bypass control valve that controls an exhaust flow rate through the bypass passage, and a temperature of the catalyst Temperature detecting means for detecting the engine exhaust temperature and the engine exhaust temperature, respectively, when both the catalyst temperature and the engine exhaust temperature are below a predetermined temperature, the bypass control valve is opened to at least a part of the engine exhaust. An exhaust emission control device for an internal combustion engine, comprising: a control unit that supplies a current to the electric heater while flowing in a bypass passage.
JP29652795A 1995-11-15 1995-11-15 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3201237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29652795A JP3201237B2 (en) 1995-11-15 1995-11-15 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29652795A JP3201237B2 (en) 1995-11-15 1995-11-15 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09137716A true JPH09137716A (en) 1997-05-27
JP3201237B2 JP3201237B2 (en) 2001-08-20

Family

ID=17834691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29652795A Expired - Lifetime JP3201237B2 (en) 1995-11-15 1995-11-15 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3201237B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162563A (en) * 1997-08-25 1999-03-05 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH11324661A (en) * 1998-05-15 1999-11-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000008833A (en) * 1998-06-22 2000-01-11 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2000170523A (en) * 1998-12-09 2000-06-20 Inst Fr Petrole Method and apparatus for removing nitrogen oxides in an exhaust pipe of an internal combustion engine
EP1078149A1 (en) * 1998-05-15 2001-02-28 Arvin Industries, Inc. Exhaust system
JP2002030924A (en) * 2000-07-17 2002-01-31 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
EP1217196A2 (en) 2000-12-19 2002-06-26 Isuzu Motors Limited Device for purifying exhaust gas of diesel engines
JP2002276422A (en) * 2001-03-15 2002-09-25 Isuzu Motors Ltd Exhaust emission control device and its regeneration control method
JP2002339730A (en) * 2001-05-17 2002-11-27 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
US6951098B2 (en) 2002-11-01 2005-10-04 Ford Global Technologies, Llc Method and system for controlling temperature of an internal combustion engine exhaust gas aftertreatment device
JP2005330940A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
US7010910B2 (en) 2002-11-14 2006-03-14 Hitachi, Ltd. Exhaust gas purification apparatus
JP2007023888A (en) * 2005-07-15 2007-02-01 Mitsubishi Motors Corp Control device for internal combustion engine
JP2007505248A (en) * 2003-09-09 2007-03-08 ボルボ ラストバグナー アーベー Piston type internal combustion engine
JP2008138564A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Engine exhaust system provided with dpf device
WO2008081153A1 (en) * 2006-12-28 2008-07-10 Perkins Engines Company Limited Exhaust apparatus
JP2009091909A (en) * 2007-10-04 2009-04-30 Hino Motors Ltd Exhaust emission control device
JP2014500924A (en) * 2010-10-29 2014-01-16 テンネコ・オートモティブ・オペレーティング・カンパニー・インコーポレイテッド Large volume exhaust gas treatment system
JP2014510871A (en) * 2011-03-28 2014-05-01 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー Heating module for exhaust gas cleaning system
JP2016089727A (en) * 2014-11-05 2016-05-23 ヤンマー株式会社 engine
JP2018096279A (en) * 2016-12-13 2018-06-21 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
CN109441597A (en) * 2018-09-03 2019-03-08 潍柴动力股份有限公司 Post-process protection system and post-processing guard method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162563A (en) * 1997-08-25 1999-03-05 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH11324661A (en) * 1998-05-15 1999-11-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
EP1078149A1 (en) * 1998-05-15 2001-02-28 Arvin Industries, Inc. Exhaust system
JP2000008833A (en) * 1998-06-22 2000-01-11 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2000170523A (en) * 1998-12-09 2000-06-20 Inst Fr Petrole Method and apparatus for removing nitrogen oxides in an exhaust pipe of an internal combustion engine
JP2002030924A (en) * 2000-07-17 2002-01-31 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
EP1217196A2 (en) 2000-12-19 2002-06-26 Isuzu Motors Limited Device for purifying exhaust gas of diesel engines
JP2002188432A (en) * 2000-12-19 2002-07-05 Isuzu Motors Ltd Exhaust gas purifying device for diesel engine
JP2002276422A (en) * 2001-03-15 2002-09-25 Isuzu Motors Ltd Exhaust emission control device and its regeneration control method
JP2002339730A (en) * 2001-05-17 2002-11-27 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
US6951098B2 (en) 2002-11-01 2005-10-04 Ford Global Technologies, Llc Method and system for controlling temperature of an internal combustion engine exhaust gas aftertreatment device
US7010910B2 (en) 2002-11-14 2006-03-14 Hitachi, Ltd. Exhaust gas purification apparatus
JP2007505248A (en) * 2003-09-09 2007-03-08 ボルボ ラストバグナー アーベー Piston type internal combustion engine
JP2005330940A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
JP4507697B2 (en) * 2004-05-21 2010-07-21 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2007023888A (en) * 2005-07-15 2007-02-01 Mitsubishi Motors Corp Control device for internal combustion engine
JP2008138564A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Engine exhaust system provided with dpf device
WO2008081153A1 (en) * 2006-12-28 2008-07-10 Perkins Engines Company Limited Exhaust apparatus
JP2009091909A (en) * 2007-10-04 2009-04-30 Hino Motors Ltd Exhaust emission control device
JP2014500924A (en) * 2010-10-29 2014-01-16 テンネコ・オートモティブ・オペレーティング・カンパニー・インコーポレイテッド Large volume exhaust gas treatment system
JP2014510871A (en) * 2011-03-28 2014-05-01 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー Heating module for exhaust gas cleaning system
JP2016089727A (en) * 2014-11-05 2016-05-23 ヤンマー株式会社 engine
JP2018096279A (en) * 2016-12-13 2018-06-21 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
CN109441597A (en) * 2018-09-03 2019-03-08 潍柴动力股份有限公司 Post-process protection system and post-processing guard method

Also Published As

Publication number Publication date
JP3201237B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3201237B2 (en) Exhaust gas purification device for internal combustion engine
JP3899534B2 (en) Exhaust gas purification method for diesel engine
EP1491735B1 (en) Exhaust gas decontamination system and method of controlling the same
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
US20060107649A1 (en) Apparatus and method for clarifying exhaust gas of diesel engine
JPH06159037A (en) Exhaust emission control device of internal combustion engine
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP4168781B2 (en) NOx catalyst regeneration method for NOx purification system and NOx purification system
JP3770148B2 (en) Apparatus and method for exhaust gas purification of internal combustion engine
JPWO2003069137A1 (en) Exhaust gas purification system and exhaust gas purification method
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
KR20060002738A (en) Exhaust purification device and exhaust purification method of internal combustion engine
JP3518348B2 (en) Exhaust gas purification device for internal combustion engine
JP3536713B2 (en) Exhaust gas purification device for internal combustion engine
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP2722988B2 (en) Exhaust gas purification device for internal combustion engine
JPH11343836A (en) Exhaust emission control device for internal combustion engine
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP5070964B2 (en) NOx purification system and control method of NOx purification system
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2002276443A (en) Fuel injection control method and refreshing control method for continuous refreshing diesel particulate filter system
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP3613660B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term