JP3536713B2 - Exhaust gas purification device for internal combustion engine - Google Patents
Exhaust gas purification device for internal combustion engineInfo
- Publication number
- JP3536713B2 JP3536713B2 JP05844899A JP5844899A JP3536713B2 JP 3536713 B2 JP3536713 B2 JP 3536713B2 JP 05844899 A JP05844899 A JP 05844899A JP 5844899 A JP5844899 A JP 5844899A JP 3536713 B2 JP3536713 B2 JP 3536713B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- reduction catalyst
- catalyst
- storage reduction
- hydrocarbons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、詳細には流入する排気の空燃比がリーン
のときに排気中のNOX を吸収し、流入する排気中の酸
素濃度が低下したときに吸収したNOX を放出するNO
X 吸蔵還元触媒を用いた内燃機関の排気浄化装置に関す
る。BACKGROUND OF THE INVENTION The present invention relates to an exhaust purifying apparatus for an internal combustion engine, the oxygen concentration in the exhaust gas air-fuel ratio of the exhaust gas flowing in detail absorbs NO X in the exhaust gas when the lean, flows NO that releases absorbed NO X when lowered
The present invention relates to an exhaust gas purification device for an internal combustion engine using an X storage reduction catalyst.
【0002】[0002]
【従来の技術】流入する排気空燃比がリーンのときに排
気中のNOX を吸収し、流入する排気中の酸素濃度が低
下したときに吸収したNOX を放出するNOX 吸蔵還元
触媒が知られている。NOX 吸蔵還元触媒はリーン空燃
比雰囲気下で排気中のNOX を吸収するが、吸収したN
OX 量が増大し飽和量に到達するとそれ以上NOX を吸
収できなくなる。BACKGROUND ART exhaust air-fuel ratio of the inflowing absorbs NO X in the exhaust gas when the lean, NO X occluding and reducing catalyst the oxygen concentration in the inflowing exhaust gas to release NO X absorbed when reduced intellectual Have been. The NO X storage reduction catalyst absorbs NO X in the exhaust gas under a lean air-fuel ratio atmosphere, but absorbed N
When O X amount is reaches the saturation amount increases can not be absorbed any more NO X.
【0003】このため、NOX 吸蔵還元触媒を用いた排
気浄化装置では定期的にNOX 吸蔵還元触媒に流入する
排気の酸素濃度を低下させてNOX 吸蔵還元触媒から吸
収したNOX を放出させる必要がある。NOX 吸蔵還元
触媒をガソリン機関の排気浄化装置として使用した場合
には、例えば機関の運転空燃比を低下させると(すなわ
ち機関をリッチ空燃比で運転すると)排気中の酸素濃度
が低下するとともに排気中の未燃HC、CO成分が増大
するため、上記NOX 吸蔵還元触媒からNOXが放出さ
れ、放出されたNOX がNOX 吸蔵還元触媒上でHC、
COにより還元される。[0003] Therefore, the exhaust gas purifying apparatus using the the NO X storage reduction catalyst to release periodically the NO X storage reduction catalyst to reduce the oxygen concentration of the exhaust gas flowing into the by the NO X storage NO X absorbed from the reduction catalyst There is a need. When the NO X storage reduction catalyst is used as an exhaust gas purification device of a gasoline engine, for example, when the operating air-fuel ratio of the engine is reduced (that is, when the engine is operated at a rich air-fuel ratio), the oxygen concentration in the exhaust decreases and the exhaust gas decreases. unburned HC in, for CO components is increased, NO X from the the NO X storage reduction catalyst is released, the released NO X is HC on the NO X storage reduction catalyst,
Reduced by CO.
【0004】ところが、NOX 吸蔵還元触媒をディーゼ
ル機関等のリッチ空燃比運転が困難な内燃機関の排気浄
化装置として使用した場合には、他の手段により排気中
の酸素濃度を低下させることが必要となる。NOX 吸蔵
還元触媒をディーゼル機関等の排気浄化装置として使用
する場合に排気酸素濃度を低下させてNOX 吸蔵還元触
媒から吸収したNOX を放出させる方法の一つとして
は、NOX 吸蔵還元触媒の上流側の排気通路に液体炭化
水素等の還元剤を供給する方法が知られている。NOX
吸蔵還元触媒からNOX を放出すべきときにNOX 吸蔵
還元触媒の上流側の排気通路に還元剤を供給すると、供
給された還元剤が排気中に分散して排気とともにNOX
吸蔵還元触媒に流入する。還元剤はNOX 吸蔵還元触媒
上で排気中の酸素と反応し酸化されるため、NO X 吸蔵
還元触媒の雰囲気酸素濃度は低下し、NOX 吸蔵還元触
媒から吸収したNOX が放出される。また、放出された
NOX はNOX 吸蔵還元触媒上で排気中の還元剤により
還元浄化される。However, NOXDize for storage reduction catalyst
Exhaust purification of internal combustion engines, such as
When used as a gasifier, the exhaust
It is necessary to lower the oxygen concentration of the gas. NOXOcclusion
Uses a reduction catalyst as an exhaust purification device for diesel engines, etc.
The exhaust oxygen concentration to reduceXOcclusion reduction
NO absorbed from the mediumXOne way to release
Is NOXLiquid carbonization in the exhaust passage upstream of the storage reduction catalyst
A method for supplying a reducing agent such as hydrogen is known. NOX
NO from storage reduction catalystXTo release NOXOcclusion
When the reducing agent is supplied to the exhaust passage on the upstream side of the reduction catalyst,
The supplied reducing agent is dispersed in the exhaust gas and isX
It flows into the storage reduction catalyst. NO is the reducing agentXStorage reduction catalyst
Reacts with the oxygen in the exhaust gas to oxidize XOcclusion
Atmospheric oxygen concentration of the reduction catalyst decreases, and NOXOcclusion reduction
NO absorbed from the mediumXIs released. Also released
NOXIs NOXWith the reducing agent in the exhaust on the storage reduction catalyst
It is reduced and purified.
【0005】NOX 吸蔵還元触媒に関するものではない
が、排気通路に配置した還元触媒の上流側の排気通路に
還元剤を供給する装置の例としては特開平7−1903
1号公報に記載されたものがある。同公報の装置は、デ
ィーゼル機関の排気通路に排気空燃比がリーンのときに
触媒上でHC(炭化水素)とNOX とを選択的に反応さ
せることによりNOX を浄化可能な選択還元触媒を配置
した構成とされている。また、同公報の装置は選択還元
触媒上流側の排気通路に炭化水素を噴射するインジェク
タを設け、NOX の還元に必要とされる炭化水素を選択
還元触媒に供給している。[0005] While not related to the NO X storage reduction catalyst, JP-A Examples of the apparatus for supplying the reducing agent to the upstream side of the exhaust passage of the reduction catalyst disposed in an exhaust passage 7-1903
There is one described in Japanese Patent Publication No. The device disclosed in the publication discloses a selective reduction catalyst capable of purifying NO X by selectively reacting HC (hydrocarbon) and NO X on a catalyst in an exhaust passage of a diesel engine when an exhaust air-fuel ratio is lean. It is configured to be arranged. The device of this publication is provided an injector for injecting hydrocarbons in the exhaust passage of the selective reduction catalyst upstream and supplies a hydrocarbon required for reduction of the NO X selective reduction catalyst.
【0006】[0006]
【発明が解決しようとする課題】ところが、NOX 吸蔵
還元触媒の上流側に炭化水素等の還元剤を供給する場合
には選択還元触媒とは異なる問題が生じる場合がある。
例えば、NOX 吸蔵還元触媒からNOX を放出させるた
めにNOX 吸蔵還元触媒上流側の排気通路に炭化水素を
供給する場合には、NOX 吸蔵還元触媒に流入する排気
空燃比を低下させることが必要となり、比較的多量の炭
化水素を短時間で排気通路に噴射する必要が生じる。こ
のように比較的多量の炭化水素が一時にNOX 吸蔵還元
触媒に到達すると、到達した炭化水素のうち一部はNO
X 吸蔵還元触媒でNOX の浄化に使用されないままNO
X 吸蔵還元触媒を通過して下流側に流出する場合が生
じ、排気性状が悪化する問題が生じる。特に、排気温度
(NOX 吸蔵還元触媒温度)が低い場合にはNOX 吸蔵
還元触媒の活性が低下しているため、供給した炭化水素
のうち重質成分(例えば炭素数が11以上の成分)はN
OX 吸蔵還元触媒上で反応せずに下流側に流出する確率
が高くなる。However, when a reducing agent such as a hydrocarbon is supplied to the upstream side of the NO X storage reduction catalyst, a problem different from that of the selective reduction catalyst may occur.
For example, when supplying hydrocarbon into the exhaust passage of the NO X occluding and reducing catalyst upstream to release NO X from the NO X storage reduction catalyst to reduce the air-fuel ratio of the exhaust gas flowing to the NO X occluding and reducing catalyst Therefore, it becomes necessary to inject a relatively large amount of hydrocarbon into the exhaust passage in a short time. When a relatively large amount of hydrocarbons reaches the NO X storage reduction catalyst at one time, a part of the reached hydrocarbons becomes NO.
NO without being used for purification of NO X with X storage reduction catalyst
There is a case where the gas passes through the X storage reduction catalyst and flows downstream, which causes a problem that the exhaust properties deteriorate. In particular, when the exhaust gas temperature (the temperature of the NO X storage reduction catalyst) is low, the activity of the NO X storage reduction catalyst is reduced, so that heavy components (for example, components having 11 or more carbon atoms) in the supplied hydrocarbons Is N
Probability of flowing out to the O X occluding downstream without reacting on the reduction catalyst becomes higher.
【0007】上述した特開平7−19031号公報の装
置では、NOX 吸蔵還元触媒上流側の排気通路にHC吸
着材を配置して、低温時に機関から排出される比較的多
量のHCを一時的に吸着するようにしているが、HC吸
着材下流側で排気通路に噴射された炭化水素が低温時に
触媒を通過してそのまま下流側に流出することを防止す
ることはできない。[0007] In the apparatus of JP-A-7-19031 discloses described above, and the HC adsorbent disposed in an exhaust passage of the NO X occluding and reducing catalyst upstream, relatively transient large amount of HC exhausted from the engine at a low temperature However, it is not possible to prevent hydrocarbons injected into the exhaust passage downstream of the HC adsorbent from passing through the catalyst and flowing directly downstream at low temperatures.
【0008】NOX 吸蔵還元触媒を通過して下流側に流
出する炭化水素を浄化するためには、NOX 吸蔵還元触
媒下流側の排気通路に酸化触媒を配置してNOX 吸蔵還
元触媒から流出した炭化水素を酸化させることが考えら
れる。しかし、実際にはNO X 吸蔵還元触媒下流側への
炭化水素の流出量が多くなる低温時にはNOX 吸蔵還元
触媒のみならず下流側の酸化触媒の温度も低くなってい
る。低温時には酸化触媒の活性も低くなるため、このよ
うな場合にはNOX 吸蔵還元触媒から流出した重質の炭
化水素は酸化触媒では酸化されず、そのまま下流側に流
出してしまう問題が生じる。[0008] NOXFlow downstream after passing through the storage reduction catalyst
In order to purify the emitted hydrocarbons, NOXOcclusion reduction
Oxidation catalyst is placed in the exhaust passage on the downstream side of the medium and NOXOcclusion return
It is conceivable to oxidize hydrocarbons flowing out of the original catalyst
It is. However, actually, NO XTo the downstream side of the storage reduction catalyst
NO at low temperatures when hydrocarbons flow outXOcclusion reduction
Not only the temperature of the oxidation catalyst on the downstream side but also the catalyst is low.
You. At low temperatures, the activity of the oxidation catalyst also decreases.
NO if noXHeavy coal discharged from the storage reduction catalyst
Hydrogen is not oxidized by the oxidation catalyst and flows downstream as it is.
There is a problem of getting out.
【0009】本発明は上記問題に鑑み、特に低温時に発
生しやすいNOX 吸蔵還元触媒からの重質の炭化水素の
流出により、排気性状が悪化することを防止可能な内燃
機関の排気浄化装置を提供することを目的としている。In view of the above problems, the present invention provides an exhaust gas purifying apparatus for an internal combustion engine capable of preventing the deterioration of exhaust properties due to the outflow of heavy hydrocarbons from the NO X storage reduction catalyst which tends to occur particularly at low temperatures. It is intended to provide.
【0010】[0010]
【0011】[0011]
【0012】[0012]
【0013】[0013]
【課題を解決するための手段】本発明によれば、内燃機
関の排気通路に、流入する排気空燃比がリーンのときに
排気中のNOXを吸収し、流入する排気空燃比の酸素濃
度が低下したときに吸収したNOXを放出するNOX吸蔵
還元触媒と、該NOX吸蔵還元触媒からNOXを放出すべ
き時にNOX吸蔵還元触媒に流入する排気に還元剤とし
ての炭化水素を供給する還元剤供給装置と、を配置した
内燃機関の排気浄化装置において、前記NOX吸蔵還元
触媒の上流側の排気通路に配置され、排気中の炭化水素
を吸着し、吸着後温度が上昇すると吸着した炭化水素を
放出するHC吸着材と、機関排気低温時に炭化水素を燃
焼させて燃焼ガスを発生させる燃焼バーナと、該バーナ
の燃焼ガスを、前記排気通路のHC吸着剤上流側部分
と、前記HC吸着材と前記NOX吸蔵還元触媒との間の
部分とに選択的に切り換えて導入可能な切り換え手段
と、を備えた内燃機関の排気浄化装置が提供される。According to Means for Solving the Problems] The present invention, in an exhaust passage of an internal combustion engine, air-fuel ratio of the exhaust gas flowing into absorbs NO X in the exhaust gas when the lean, the oxygen concentration of the exhaust air-fuel ratio flowing into supply and the NO X storage reduction catalyst releases the absorbed NO X when lowered, the hydrocarbon as a reducing agent to exhaust gas flowing to the NO X occluding and reducing catalyst when should be released NO X from the the NO X storage reduction catalyst in the exhaust purification system of an internal combustion engine in which the reducing agent supply device, the place of, the disposed upstream of the exhaust passage of the NO X occluding and reducing catalyst, and a hydrocarbon in the exhaust gas adsorbed after adsorption temperature increases adsorption An HC adsorbent that emits hydrocarbons, a combustion burner that burns hydrocarbons at a low engine exhaust temperature to generate combustion gas, and a combustion gas of the burner, which is an HC adsorbent upstream portion of the exhaust passage. HC adsorbent Wherein the NO X storage reduction catalyst and the exhaust gas purifying apparatus for an internal combustion engine having portion and a selectively switched introducible switching means, the between is provided.
【0014】すなわち、本発明ではNOX吸蔵還元触媒
の上流側にHC吸着材が配置されている。排気低温時に
はバーナからの高温の燃焼ガスが排気通路に導入される
ため、NOX吸蔵還元触媒に流入する排気温度が高くな
る。このため、機関排気低温時にもNOX吸蔵還元触媒
の温度は高く維持されるようになり、供給された還元剤
がNOX吸蔵還元触媒下流側に流出することが防止され
る。That is, in the present invention , the HC adsorbent is disposed upstream of the NO X storage reduction catalyst. When the temperature of the exhaust gas is low, the high temperature combustion gas from the burner is introduced into the exhaust passage, so that the temperature of the exhaust gas flowing into the NO X storage reduction catalyst increases. Therefore, even when the engine exhaust gas is at a low temperature, the temperature of the NO X storage reduction catalyst is kept high, and the supplied reducing agent is prevented from flowing to the downstream side of the NO X storage reduction catalyst.
【0015】また、本発明では、バーナからの燃焼ガス
はHC吸着材上流側の排気通路部分とHC吸着材下流側
の排気通路部分とに選択的に導入可能となっている。こ
のため、例えば、バーナ着火時にはバーナ燃焼ガスをH
C吸着材上流側に導入することによりバーナ着火時に発
生する未燃炭化水素またはバーナ着火不良により発生す
る炭化水素を機関から排出される炭化水素とともにHC
吸着材で吸着することが可能となり、バーナ着火不良等
による炭化水素の大気放出が防止される。また、バーナ
の安定した燃焼が確認された後に燃焼ガスをHC吸着材
下流側の排気通路部分に切り換えることにより、NOX
吸蔵還元触媒が短時間で高温になる。HC吸着材に吸着
された炭化水素は、排気温度が上昇してHC吸着材が高
温になるとHC吸着材から放出されるが、このときには
NOX 吸蔵還元触媒の温度は上昇しているため、放出さ
れた炭化水素はNOX 吸蔵還元触媒上でNOX と反応ま
たは酸化されるようになりNOX 吸蔵還元触媒下流側に
未浄化の炭化水素が放出されることが防止される。Further, in the present invention, the combustion gas from the burner can be selectively introduced into the exhaust passage portion upstream of the HC adsorbent and the exhaust passage portion downstream of the HC adsorbent. Therefore, for example, when the burner is ignited, the burner combustion gas is
By introducing unburned hydrocarbons generated at the time of ignition of the burner or hydrocarbons generated by poor burner ignition by introducing into the upstream side of the C adsorbent together with hydrocarbons discharged from the engine, HC
Adsorption can be performed by the adsorbent, and the emission of hydrocarbons to the atmosphere due to defective burner ignition or the like can be prevented. Further, by changing the combustion gases after stable combustion of the burner was confirmed in the exhaust passage part of the HC adsorbent downstream, NO X
The storage reduction catalyst becomes hot in a short time. Hydrocarbons adsorbed to the HC adsorbent is HC adsorbent exhaust temperature rises and are released from the HC adsorbent becomes a high temperature, the temperature of the NO X occluding and reducing catalyst is increased at this time, release hydrocarbons are prevented from hydrocarbons unpurified the NO X occluding and reducing catalyst downstream now be reacted or oxidized NO X on the NO X storage reduction catalyst is released.
【0016】[0016]
【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。
(1)参考実施形態1
図1は、排気浄化装置を自動車用ディーゼル機関に適用
した場合の、本発明を理解する上での参考としての第1
の実施形態の概略構成を示す図である。Embodiments of the present invention will be described below with reference to the accompanying drawings. (1) Reference Embodiment 1 Figure 1, in the case of applying the exhaust gas purifying apparatus for diesel engine for an automobile, first as a reference for understanding the present invention
FIG. 2 is a diagram illustrating a schematic configuration of the embodiment.
【0017】図1において、1は自動車用ディーゼル機
関を示す。機関1の各気筒排気ポートは排気マニホルド
31を介して共通の排気通路3に接続され、排気通路3
上には排気浄化コンバータ10が配置されている。本実
施形態のコンバータ10は、1つのケーシング内にNO
X 吸蔵還元触媒7、HC吸着材11、酸化触媒13をこ
の順に配置した構成とされている。排気浄化コンバータ
10については後述する。図1に9で示すのはNOX 吸
蔵還元触媒7再生操作時にNOX 吸蔵還元触媒7に還元
剤を供給する還元剤供給装置である。後述するように、
本実施形態では還元剤として機関1の燃料(軽油)が使
用される。還元剤供給装置9は、図示しない機関燃料系
統から供給された燃料を加圧する燃料ポンプ、流量調整
弁等を備えた加圧燃料供給源92を備え、機関1の燃料
を加圧して還元剤噴射弁91から排気通路3内に噴射す
る。In FIG. 1, reference numeral 1 denotes an automobile diesel engine. Each cylinder exhaust port of the engine 1 is connected to a common exhaust passage 3 via an exhaust manifold 31.
Above the exhaust purification converter 10 is arranged. The converter 10 according to the present embodiment has NO
The X storage reduction catalyst 7, the HC adsorbent 11, and the oxidation catalyst 13 are arranged in this order. The exhaust purification converter 10 will be described later. Reference numeral 9 in FIG. 1 denotes a reducing agent supply device that supplies a reducing agent to the NO X storage reduction catalyst 7 during the NO X storage reduction catalyst 7 regeneration operation. As described below,
In the present embodiment, the fuel (light oil) of the engine 1 is used as a reducing agent. The reducing agent supply device 9 includes a fuel pump that pressurizes fuel supplied from an engine fuel system (not shown), a pressurized fuel supply source 92 that includes a flow control valve, and the like. The fuel is injected from the valve 91 into the exhaust passage 3.
【0018】図1に30で示すのは、機関1の電子制御
ユニット(ECU)である。本実施形態では、ECU3
0はRAM、ROM、CPUを備えた公知の構成のマイ
クロコンピュータとして構成され、機関1の燃料噴射
量、燃料噴射時期等の基本制御を行う他、還元剤供給装
置9を制御して後述するNOX 吸蔵還元触媒7からのN
OX の放出及び還元浄化操作(NOX 吸蔵還元触媒の再
生操作)時に還元剤供給装置9を制御して排気通路3に
燃料を噴射する。In FIG. 1, reference numeral 30 denotes an electronic control unit (ECU) of the engine 1. In the present embodiment, the ECU 3
Reference numeral 0 denotes a microcomputer having a known configuration including a RAM, a ROM, and a CPU. The microcomputer 0 performs basic control such as a fuel injection amount and a fuel injection timing of the engine 1 and also controls a reducing agent supply device 9 to be described below. N from X storage reduction catalyst 7
O X release and reduction purification operation (NO X catalyst regeneration operation of the reduction catalyst) of at controlling the reducing agent supply device 9 for injecting fuel into the exhaust passage 3.
【0019】ECU30の出力ポートは、図示しない駆
動回路を介して還元剤供給源92に接続され、噴射弁9
1からの還元剤(燃料)噴射を制御している。前述した
ように、本実施形態の排気浄化コンバータ10は、1つ
のケーシング内に、排気入口側からNOX 吸蔵還元触媒
7、HC吸着材11、酸化触媒13を小さな間隙を介し
てこの順に配置した構成とされている。An output port of the ECU 30 is connected to a reducing agent supply source 92 via a drive circuit (not shown).
1 controls the injection of the reducing agent (fuel). As described above, the exhaust gas purification converter 10 of this embodiment, in a single casing, NO X occluding and reducing catalyst 7, HC adsorbent 11 from the exhaust inlet side, were placed oxidation catalyst 13 in this order through a small gap It is configured.
【0020】本実施形態のNOX 吸蔵還元触媒7は、ア
ルミナ等の担体上に例えばカリウムK、ナトリウムNa
、リチウムLi 、セシウムCs のようなアルカリ金
属、バリウムBa 、カルシウムCa のようなアルカリ土
類、ランタンLa 、セリウムCe、イットリウムYのよ
うな希土類から選ばれた少なくとも一つの成分と、白金
Ptのような貴金属とを担持したものである。NOX 吸
蔵還元触媒は流入する排気ガスの空燃比がリーンのとき
に、排気中のNOX (NO2 、NO)を硝酸イオンNO
3 - の形で吸収し、流入排気ガスの酸素濃度が低下する
と吸収したNOX を放出するNOX の吸放出作用を行
う。The NO X storage-reduction catalyst 7 of the present embodiment comprises, for example, potassium K and sodium Na on a carrier such as alumina.
, Lithium Li, at least one component selected from alkali metals such as cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, cerium Ce and yttrium Y, and platinum Pt. And noble metal. The NO X storage reduction catalyst converts NO X (NO 2 , NO) in the exhaust gas into nitrate ions NO when the air-fuel ratio of the inflowing exhaust gas is lean.
3 - absorbed in the form of, performing absorption and release action of the NO X that releases NO X concentration of oxygen absorbed to decrease the inflow exhaust gas.
【0021】この吸放出のメカニズムについて、以下に
白金PtおよびバリウムBaを使用した場合を例にとっ
て説明するが他の貴金属、アルカリ金属、アルカリ土
類、希土類を用いても同様なメカニズムとなる。流入排
気中の酸素濃度が増大すると(すなわち排気の空燃比が
リーン空燃比になると)、これら酸素は白金Pt上にO
2 - またはO2-の形で付着し、排気中のNOX は白金P
t上のO2 - またはO2-と反応し、これによりNO2 が
生成される。また、流入排気中のNO2 及び上記により
生成したNO2 は白金Pt上で更に酸化されつつ触媒中
に吸収されて、吸収剤として機能する酸化バリウムBa
Oと結合しながら硝酸イオンNO3 - の形で触媒内に拡
散する。このため、リーン雰囲気下では排気中のNOX
がNOX 吸蔵還元触媒内に硝酸塩の形で吸収されるよう
になる。The mechanism of the absorption and release will be described below by taking platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths. When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), these oxygens become
2 - or deposited at O 2- form, NO X in the exhaust gas platinum P
O 2 on t - or react with O 2-, thereby NO 2 is produced. Further, NO 2 and NO 2 produced by the above in the inflowing exhaust gas is absorbed in the catalyst while being further oxidized on platinum Pt, barium oxide acts as an absorbent Ba
O and combined with nitrate ions NO 3 - diffuses into the catalyst in the form of. Therefore, under lean atmosphere, NO X
Is absorbed in the form of nitrate in the NO X storage reduction catalyst.
【0022】また、流入排気中の酸素濃度が低下すると
(すなわち、排気の空燃比が低下すると)、白金Pt上
でのNO2 生成量が減少するため反応が逆方向に進むよ
うになり、触媒内の硝酸イオンNO3 - はNO2 の形で
NOX 吸蔵還元触媒から放出されるようになる。この場
合、排気中にHC、CO等の成分が存在すると白金Pt
上でこれらの成分によりNO2 が還元される。When the oxygen concentration in the inflowing exhaust gas decreases (ie, when the air-fuel ratio of the exhaust gas decreases), the amount of NO 2 generated on the platinum Pt decreases, so that the reaction proceeds in the reverse direction, and the catalyst proceeds in the reverse direction. The nitrate ion NO 3 − in the inside is released from the NO X storage reduction catalyst in the form of NO 2 . In this case, if components such as HC and CO are present in the exhaust gas, platinum Pt
Above, NO 2 is reduced by these components.
【0023】本実施形態では、機関1としてディーゼル
機関が使用されているため機関の排気空燃比はリーンで
あり、通常運転中は排気通路3のNOX 吸蔵還元触媒7
にはリーン空燃比の排気が流入し排気中のNOX がNO
X 吸蔵還元触媒7に吸収される。また、排気浄化コンバ
ータ10上流側の排気通路3に還元剤が供給されるとN
OX 吸蔵還元触媒7には還元剤を含んだ排気が流入し、
還元剤の一部はNOX吸蔵還元触媒7の白金Pt上で酸
素と反応する。これにより、NOX 吸蔵還元触媒7の雰
囲気中の酸素濃度が低下するとともに、還元剤の酸化に
より未燃HC、CO等の成分が発生する。還元剤の酸化
によりNOX 吸蔵還元触媒7の雰囲気酸素濃度が低下す
ると、上述したメカニズムによりNOX 吸蔵還元触媒7
からNO X が放出され排気中のHC、CO成分により還
元される。In this embodiment, the engine 1 is a diesel engine.
Because the engine is used, the exhaust air-fuel ratio of the engine is lean
During normal operation, NO in the exhaust passage 3XStorage reduction catalyst 7
Exhaust gas with a lean air-fuel ratio flows into theXIs NO
XIt is absorbed by the storage reduction catalyst 7. In addition, exhaust purification converter
When the reducing agent is supplied to the exhaust passage 3 on the upstream side of the
OXExhaust gas containing a reducing agent flows into the storage reduction catalyst 7,
Part of the reducing agent is NOXAcid on the platinum Pt of the storage reduction catalyst 7
Reacts with element. Thereby, NOXAtmosphere of storage reduction catalyst 7
As the oxygen concentration in the atmosphere decreases, oxidation of the reducing agent
Components such as unburned HC and CO are generated. Oxidation of reducing agent
NOXThe oxygen concentration in the atmosphere of the storage reduction catalyst 7 decreases.
Then, NO is generated by the mechanism described above.XStorage reduction catalyst 7
From NO XIs released and returned by the HC and CO components in the exhaust
Be exempted.
【0024】上記NOX 吸蔵還元触媒からのNOX の放
出、還元浄化操作(NOX 吸蔵還元触媒の再生操作)に
使用される還元剤としては、排気中でH2 等の還元成分
やHC、CO成分を生成するものが使用され、例えば水
素、一酸化炭素等の気体、プロパン、プロピレン、ブタ
ン等の液体又は気体の炭化水素、ガソリン、軽油、灯油
等の液体燃料等が使用できる。本実施形態では、内燃機
関1としてディーゼル機関が使用されているため、補
給、貯蔵の便を考慮して還元剤として機関1の燃料(軽
油)を使用するようにしている。[0024] The the NO X storage reduction and release of the NO X from the catalyst, the reducing agent used in the reduction purification operation (reproducing operation of the NO X occluding and reducing catalyst), the reducing components and HC such as H 2 in the exhaust, A substance that generates a CO component is used, and for example, a gas such as hydrogen and carbon monoxide, a liquid or gaseous hydrocarbon such as propane, propylene, and butane, and a liquid fuel such as gasoline, light oil, and kerosene can be used. In this embodiment, since a diesel engine is used as the internal combustion engine 1, the fuel (light oil) of the engine 1 is used as a reducing agent in consideration of the convenience of replenishment and storage.
【0025】本実施形態ではECU30は、例えば機関
負荷状態(燃料噴射量と回転数と)に基づいて単位時間
あたりに機関1から排出されるNOX 量を算出する。そ
して、この単位時間あたりの排出量に所定の吸収率を乗
じた量のNOX をNOX 吸蔵還元触媒7の単位時間あた
りのNOX 吸収量として算出する。ECU30は、この
単位時間あたりのNOX 吸収量を積算することによりN
OX 吸蔵還元触媒7に吸蔵されたNOX 量を算出すると
ともに、算出された吸蔵NOX 量が所定値に到達する毎
に還元剤供給装置9から排気浄化コンバータ10上流側
の排気通路に還元剤(燃料)を供給してNOX 吸蔵還元
触媒7の再生操作を行う。これにより、NOX 吸蔵還元
触媒7が吸収したNOX で飽和して、それ以上排気中の
NOX を吸収できなくなることが防止される。[0025] In this embodiment ECU30 calculates the amount of NO X discharged from the engine 1 per unit time based on the example engine load condition (the fuel injection amount and the rotation speed). Then, the amount of NO X obtained by multiplying the emission amount per unit time by a predetermined absorption rate is calculated as the NO X absorption amount of the NO X storage reduction catalyst 7 per unit time. ECU30 is, N by integrating the NO X absorption amount per unit time
The amount of NO X stored in the O X storage reduction catalyst 7 is calculated, and every time the calculated stored NO X amount reaches a predetermined value, the reducing agent is supplied from the reducing agent supply device 9 to the exhaust passage upstream of the exhaust purification converter 10. The regeneration operation of the NO X storage reduction catalyst 7 is performed by supplying an agent (fuel). Thus, it saturated with NO X absorbed the NO X storage reduction catalyst 7 is prevented from becoming unable to absorb the NO X in more exhaust.
【0026】次に、本実施形態のHC吸着材11につい
て説明する。本実施形態のHC吸着材11は、例えばZ
SM5等の多孔質ゼオライトからなり、通常の触媒担体
と同様に排気の通過する多数の小径の通路(セル)を備
えている。HC吸着材11は、機関排気温度が比較的低
い時(例えばNOX 吸蔵還元触媒7や酸化触媒13の活
性化温度以下の温度のとき)に排気中の重質炭化水素を
選択的に吸着し、温度が上昇すると吸着した重質炭化水
素を軽質炭化水素に転換して放出する性質を有する。Next, the HC adsorbent 11 of this embodiment will be described. The HC adsorbent 11 of the present embodiment is, for example, Z
It is made of a porous zeolite such as SM5, and has a large number of small-diameter passages (cells) through which exhaust gas passes, like a normal catalyst carrier. HC adsorbent 11, the heavy hydrocarbon in the exhaust gas selectively adsorbed when the engine exhaust temperature is relatively low (e.g. when the NO X storage and reduction catalyst 7 and the activation temperature below the temperature of the oxidation catalyst 13) It has the property of converting the adsorbed heavy hydrocarbons into light hydrocarbons and releasing them when the temperature rises.
【0027】HC吸着材11はゼオライトから形成され
ているため、吸着材11内部の排気通路(セル)の多孔
質ゼオライト壁面には多数の細孔が形成されている。排
気中の炭化水素分子はセル通過時に壁面の細孔内に入り
込みトラップされる。この場合、細孔にトラップされる
炭化水素の分子量と壁面細孔径とは相関があり、壁面の
細孔径を調整することにより特定の分子量範囲の炭化水
素を選択的に壁面にトラップさせることができる。Since the HC adsorbent 11 is made of zeolite, a large number of pores are formed on the porous zeolite wall surface of the exhaust passage (cell) inside the adsorbent 11. The hydrocarbon molecules in the exhaust gas enter the pores of the wall surface when passing through the cell and are trapped. In this case, there is a correlation between the molecular weight of the hydrocarbon trapped in the pores and the wall pore diameter, and by adjusting the pore diameter of the wall, hydrocarbons in a specific molecular weight range can be selectively trapped on the wall. .
【0028】本実施形態では、予め使用するゼオライト
多孔質の細孔径を変えてトラップされる炭化水素の分子
量との関係を実験的に求め、重質炭化水素(例えば炭素
数C≧11の成分)がトラップされる確率が高くなるよ
うにHC吸着材11のゼオライト細孔径を調整してい
る。これにより、HC吸着材11には排気中の重質炭化
水素が選択的に吸着されるようになる。In the present embodiment, the relationship with the molecular weight of the trapped hydrocarbons is experimentally determined by changing the pore diameter of the zeolite porous used in advance, and the heavy hydrocarbons (for example, the components having carbon number C ≧ 11) are obtained. The zeolite pore diameter of the HC adsorbent 11 is adjusted so that the probability of trapping is increased. As a result, heavy hydrocarbons in the exhaust gas are selectively adsorbed on the HC adsorbent 11.
【0029】図2は、ゼオライトを使用したHC吸着材
の重質炭化水素の選択吸着特性の一例を示す図である。
図2は、HC吸着材温度を100℃程度の低温に維持し
たときの、HC吸着材に流入するガス中の炭化水素成分
量(図2左側)とHC吸着材通過後のガス中の炭化水素
成分量(図2右側)とを計測した結果を炭素数別に示し
ている。図2に示すように、HC吸着材通過後のガス中
の炭化水素の総量は約半分に低下しており、HC吸着材
に約50パーセントの炭化水素が吸着されたことが判
る。また、流入ガスと通過後のガスとに炭化水素成分の
炭素数を比較すると、軽質炭化水素(炭素数C≦10)
の量は殆ど変化がないが、重質炭化水素(C>11)の
量は大幅に減少しており、重質炭化水素が選択的に吸着
されていることが判る。FIG. 2 is a diagram showing an example of the selective adsorption characteristics of heavy hydrocarbons of the HC adsorbent using zeolite.
FIG. 2 shows the amount of hydrocarbon components in the gas flowing into the HC adsorbent when the temperature of the HC adsorbent is maintained at a low temperature of about 100 ° C. (left side in FIG. 2) and the hydrocarbons in the gas after passing through the HC adsorbent. The results of measuring the component amounts (right side in FIG. 2) are shown for each carbon number. As shown in FIG. 2, the total amount of hydrocarbons in the gas after passing through the HC adsorbent has been reduced to about half, and it can be seen that about 50% of the hydrocarbons have been adsorbed on the HC adsorbent. Also, comparing the carbon number of the hydrocarbon component between the inflow gas and the gas after passing, it is found that light hydrocarbons (carbon number C ≦ 10)
Although there is almost no change in the amount of heavy hydrocarbons, the amount of heavy hydrocarbons (C> 11) is greatly reduced, indicating that heavy hydrocarbons are selectively adsorbed.
【0030】本実施形態のHC吸着材11は、上記のよ
うに排気中の重質炭化水素を選択的に吸着するが、吸着
材温度が上昇すると吸着された炭化水素は熱エネルギの
増大のために細孔から脱離する。ところが、ゼオライト
は酸化触媒としての機能も有しているため、吸着された
炭化水素は脱離の際に部分酸化され、軽質炭化水素(C
≦10)に転換されて放出されるようになる。すなわ
ち、本実施形態のHC吸着材11は、低温時に排気中の
重質炭化水素を選択的に吸着し、温度が上昇すると吸着
した重質炭化水素を軽質炭化水素に転換して排気中に放
出する機能を有している。The HC adsorbent 11 of this embodiment selectively adsorbs heavy hydrocarbons in the exhaust gas as described above. However, when the temperature of the adsorbent rises, the adsorbed hydrocarbons increase in heat energy. From the pores. However, since zeolite also has a function as an oxidation catalyst, the adsorbed hydrocarbon is partially oxidized at the time of desorption, and the light hydrocarbon (C
≦ 10). That is, the HC adsorbent 11 of the present embodiment selectively adsorbs heavy hydrocarbons in exhaust gas at low temperatures, and converts the adsorbed heavy hydrocarbons to light hydrocarbons and emits them in exhaust gas when the temperature rises. It has the function to do.
【0031】本実施形態の酸化触媒13は、例えばコー
ジェライト製のモノリス担体にアルミナの触媒担持層を
コーティングにより形成し、この担持層に白金Pt、パ
ラジウムPd等の触媒成分を担持させたものが使用され
る。酸化触媒13は、排気中の炭化水素を酸化してH2
O、CO2 に転換、浄化するが、排気の空燃比が低下す
るほど(酸素濃度が低下するほど)、また、触媒温度が
低くなるほど酸化能力が低下し、特に触媒の活性化温度
(例えば300℃)以下の温度で排気空燃比が理論空燃
比以下の領域では排気中の重質炭化水素成分をほとんど
酸化することができなくなる。The oxidation catalyst 13 of the present embodiment is obtained by forming a catalyst supporting layer of alumina on a monolithic carrier made of cordierite, for example, and supporting a catalyst component such as platinum Pt or palladium Pd on the supporting layer. used. The oxidation catalyst 13 oxidizes hydrocarbons in the exhaust gas to form H 2
O, it converted to CO 2, but purifying, as the air-fuel ratio of the exhaust gas decreases (as the oxygen concentration decreases), also, as the catalyst temperature becomes lower oxidation capacity is reduced, in particular the activation temperature of the catalyst (for example, 300 In a region where the exhaust air-fuel ratio is equal to or lower than the theoretical air-fuel ratio at a temperature equal to or lower than (° C.), the heavy hydrocarbon component in the exhaust gas can hardly be oxidized.
【0032】ところで、本実施形態では内燃機関1とし
てディーゼル機関が使用されているため、機関排気温度
はガソリン機関よりかなり低くなる。特に、機関低負荷
運転時や機関始動時などでは排気温度が低いため、NO
X 吸蔵還元触媒7や酸化触媒13の温度も排気温度に応
じて低くなっており触媒としての活性が低下した状態に
なっている。このような状態でNOX 吸蔵還元触媒7の
再生操作を行うために比較的多量の還元剤(燃料)を短
時間でNOX 吸蔵還元触媒7に供給すると、NOX 吸蔵
還元触媒7では供給された還元剤の全量が消費されず、
特に反応性の低い重質炭化水素が触媒7下流側に流出す
る場合が生じる。In this embodiment, since a diesel engine is used as the internal combustion engine 1, the engine exhaust temperature is considerably lower than that of a gasoline engine. In particular, when the engine is under low load operation or when the engine is started, the exhaust gas temperature is low.
The temperatures of the X storage reduction catalyst 7 and the oxidation catalyst 13 are also lowered in accordance with the exhaust gas temperature, and the activity as a catalyst is in a state of being reduced. Supplying to the NO X occluding and reducing catalyst 7 relatively large amount of reducing agent (fuel) in a short time in order to perform the regenerating operation of the NO X occluding and reducing catalyst 7 in this state, it is supplied in the NO X storage reduction catalyst 7 The entire amount of the reducing agent is not consumed,
Particularly, heavy hydrocarbons with low reactivity may flow out downstream of the catalyst 7.
【0033】この場合には、NOX 吸蔵還元触媒7下流
側に配置された酸化触媒13も温度が低く触媒としての
活性が低下した状態にある。また、NOX 吸蔵還元触媒
7を通過した排気は酸素濃度が低下しているため、活性
が低下した状態の酸化触媒13ではNOX 吸蔵還元触媒
7から流出する重質の炭化水素を浄化することは困難で
ある。また、機関始動時や低負荷運転時等の排気温度が
低い運転状態では、機関1から比較的多量の炭化水素が
排出される場合があるが、この場合もNOX 吸蔵還元触
媒7を通過して下流側に炭化水素が流出する場合が生じ
る。In this case, the temperature of the oxidation catalyst 13 disposed downstream of the NO X storage reduction catalyst 7 is also low and the activity as a catalyst is in a state of being reduced. In addition, since the oxygen concentration of the exhaust gas that has passed through the NO X storage reduction catalyst 7 has been reduced, the oxidation catalyst 13 whose activity has been reduced may purify heavy hydrocarbons flowing out of the NO X storage reduction catalyst 7. It is difficult. Also, in the exhaust gas temperature is low operating conditions, such as at engine startup and low load operation, there is a case where relatively large amount of hydrocarbons discharged from the engine 1, again passes through the NO X storage reduction catalyst 7 In some cases, hydrocarbons may flow downstream.
【0034】本実施形態では、NOX 吸蔵還元触媒7と
酸化触媒13との間にHC吸着材11を配置することに
よりこの問題を解決している。前述したように、本実施
形態のHC吸着材11は排気低温時に排気中の重質炭化
水素を選択的に吸着する性質を有している。このため、
機関低温時にNOX 吸蔵還元触媒7上で反応せずに下流
側に流出した重質炭化水素はHC吸着材11に吸着さ
れ、HC吸着材11下流側には流出しない。この場合、
NOX 吸蔵還元触媒7を通過して下流側に流出する炭化
水素のうち、軽質炭化水素の一部はHC吸着材に吸着さ
れずに下流側に流出するが、軽質炭化水素は反応性が高
いため酸化触媒13が低温であっても酸化触媒13上で
酸化され、未浄化の炭化水素が排気浄化コンバータ10
下流側に流出することはない。In the present embodiment, this problem is solved by disposing the HC adsorbent 11 between the NO X storage reduction catalyst 7 and the oxidation catalyst 13. As described above, the HC adsorbent 11 of the present embodiment has a property of selectively adsorbing heavy hydrocarbons in exhaust gas at a low exhaust gas temperature. For this reason,
The heavy hydrocarbons that have flowed downstream without reacting on the NO X storage reduction catalyst 7 at low engine temperatures are adsorbed by the HC adsorbent 11 and do not flow out downstream of the HC adsorbent 11. in this case,
Of the hydrocarbons that pass through the NO X storage reduction catalyst 7 and flow downstream, some of the light hydrocarbons flow downstream without being adsorbed by the HC adsorbent, but the light hydrocarbons have high reactivity. Therefore, even if the oxidation catalyst 13 is at a low temperature, it is oxidized on the oxidation catalyst 13 and unpurified hydrocarbons are
It does not flow downstream.
【0035】なお、本実施形態では、機関排気温度が上
昇して250℃から300℃程度になるとHC吸着材1
1からは吸着した炭化水素が放出されるようになる。し
かし、この場合には吸着材11下流側の酸化触媒13の
温度も上昇しており活性が高い状態になっている。ま
た、前述したようにHC吸着材11上では脱離の際に炭
化水素が部分酸化されて軽質成分に転換される。このた
め、排気温度が上昇した場合にはHC吸着材11から比
較的多量の炭化水素が放出されるが、これらの炭化水素
は容易に下流側の酸化触媒13で浄化されるようにな
る。In this embodiment, when the exhaust gas temperature of the engine rises from 250 ° C. to about 300 ° C., the HC adsorbent 1
From 1, the adsorbed hydrocarbons are released. However, in this case, the temperature of the oxidation catalyst 13 downstream of the adsorbent 11 has also risen, and the activity is high. As described above, hydrocarbons are partially oxidized and converted to light components on the HC adsorbent 11 during desorption. Therefore, when the exhaust gas temperature rises, a relatively large amount of hydrocarbons is released from the HC adsorbent 11, but these hydrocarbons are easily purified by the downstream oxidation catalyst 13.
【0036】上述のように、本実施形態ではNOX 吸蔵
還元触媒7と酸化触媒13との間に排気中の重質炭化水
素成分を選択的に吸着し、温度が上昇すると吸着した重
質炭化水素を軽質炭化水素に転換して放出するHC吸着
材11を配置したことにより、排気温度が低いときの炭
化水素の大気放出が生じることが防止される。なお、N
OX 吸蔵還元触媒7からのNOX の放出と還元浄化とを
行うためにNOX 吸蔵還元触媒7に燃料を供給する場合
には、NOX 吸蔵還元触媒7の酸素濃度を低下させるた
めに比較的多量の燃料を短時間で供給する必要がある。
特に、NOX 吸蔵還元触媒7に吸収されたNOX の浄化
率を向上させるためには再生操作時の排気中の炭化水素
濃度をできるだけ高くすることが好ましい。このため、
排気温度が高い場合であっても燃料供給時には一時的に
排気中の炭化水素密度が大幅に高くなり、NOX 吸蔵還
元触媒7で反応せずに下流側に流出する重質炭化水素の
量が増大する場合がある。この場合、NOX 吸蔵還元触
媒7通過後の排気はリッチ空燃比になっており、酸素濃
度が低いため下流側の酸化触媒13の酸化能力は低下し
ており、流出した重質炭化水素の全量を浄化できない可
能性がある。しかし、本実施形態では、NOX 吸蔵還元
触媒7と酸化触媒13との間にHC吸着材11が配置さ
れているため、NOX 吸蔵還元触媒7から流出した重質
炭化水素はHC吸着材11に一時的に吸着される。この
場合、HC吸着材11の温度も高くなっているため、吸
着された炭化水素は短時間でHC吸着材を脱離して下流
側に流出する。しかし、NOX 吸蔵還元触媒7からのN
OX の放出と還元浄化とは短時間で終了するため、HC
吸着材11からの炭化水素の脱離が生じるときには還元
剤供給装置9からの燃料の噴射は終了しており、排気空
燃比はリーン空燃比に復帰している。このため、HC吸
着材から脱離した炭化水素は下流側の酸化触媒13上で
全量が浄化される。As described above, in the present embodiment, the heavy hydrocarbon component in the exhaust gas is selectively adsorbed between the NO X storage reduction catalyst 7 and the oxidation catalyst 13, and when the temperature rises, the adsorbed heavy carbon component is removed. By arranging the HC adsorbent 11 for converting hydrogen into light hydrocarbons and releasing the same, it is possible to prevent hydrocarbons from being released into the atmosphere when the exhaust gas temperature is low. Note that N
When fuel is supplied to the NO X storage reduction catalyst 7 in order to release NO X from the O X storage reduction catalyst 7 and perform reduction purification, a comparison is made to reduce the oxygen concentration of the NO X storage reduction catalyst 7. It is necessary to supply an extremely large amount of fuel in a short time.
In particular, it is preferable that in order to improve the purification rate of the absorbed NO X in the NO X occluding and reducing catalyst 7 is as high as possible in the hydrocarbon concentration in the exhaust gas during the regenerating operation. For this reason,
Hydrocarbon density in temporarily evacuated during even the fuel supply even when the exhaust gas temperature is high is much higher, the amount of heavy hydrocarbons flowing downstream without reacting with the NO X storage reduction catalyst 7 May increase. In this case, the exhaust gas after passing through the NO X storage reduction catalyst 7 has a rich air-fuel ratio, and the oxygen concentration is low, so that the oxidation ability of the downstream oxidation catalyst 13 is reduced. May not be purified. However, in the present embodiment, since the HC adsorbent 11 is disposed between the NO X storage reduction catalyst 7 and the oxidation catalyst 13, the heavy hydrocarbons flowing out of the NO X storage reduction catalyst 7 Is temporarily absorbed. In this case, since the temperature of the HC adsorbent 11 is also high, the adsorbed hydrocarbon desorbs the HC adsorbent in a short time and flows out downstream. However, N from the NO X storage reduction catalyst 7
For O X release and reduction purification is completed in a short period of time, HC
When the desorption of hydrocarbons from the adsorbent 11 occurs, the fuel injection from the reducing agent supply device 9 has been completed, and the exhaust air-fuel ratio has returned to the lean air-fuel ratio. For this reason, the entire amount of the hydrocarbon desorbed from the HC adsorbent is purified on the oxidation catalyst 13 on the downstream side.
【0037】(2)参考実施形態2
図3は、本発明の参考としての第2の実施形態の概略構
成を示す図である。図3において、図1と同一の参照符
号は図1と同一の要素を示している。本実施形態では、
排気浄化触媒10の上流側の排気通路3に燃焼式のヒー
タ50が配置されている点のみが第1の実施形態と相違
している。(2) Reference Embodiment 2 FIG. 3 is a diagram showing a schematic configuration of a second embodiment for reference of the present invention . 3, the same reference numerals as those in FIG. 1 indicate the same elements as those in FIG. In the present embodiment,
The only difference from the first embodiment is that a combustion type heater 50 is arranged in the exhaust passage 3 on the upstream side of the exhaust purification catalyst 10.
【0038】ヒータ50は図示しないグロープラグとこ
のグロープラグに機関の燃料を噴射するバーナとを備え
ており、制御回路30からの信号に応じて作動する。燃
焼式ヒータ50は、排気温度が低いときに高温の燃焼ガ
スを排気通路3に噴射して下流側のNOX 吸蔵還元触媒
7を加熱するために用いられる。本実施形態では、ヒー
タ50を使用することにより、排気温度が低いときにも
NOX 吸蔵還元触媒7及びその下流側の酸化触媒13の
温度を高く維持することができるため、排気温度が低い
場合にもNOX 吸蔵還元触媒7を通過して下流側に流出
する炭化水素の量を低減することが可能になるととも
に、下流側に流出した炭化水素を酸化触媒13で完全に
浄化することができる。The heater 50 has a glow plug (not shown) and a burner for injecting the fuel of the engine into the glow plug, and operates according to a signal from the control circuit 30. The combustion heater 50 is used for injecting high-temperature combustion gas into the exhaust passage 3 when the exhaust gas temperature is low to heat the downstream NO X storage reduction catalyst 7. In the present embodiment, by using the heater 50, even when the exhaust gas temperature is low, the temperature of the NO X storage reduction catalyst 7 and the temperature of the oxidation catalyst 13 downstream thereof can be kept high. In addition, it is possible to reduce the amount of hydrocarbons flowing to the downstream side after passing through the NO X storage reduction catalyst 7, and to completely purify the hydrocarbons flowing to the downstream side by the oxidation catalyst 13. .
【0039】ところが、燃焼式ヒータ50を用いた場合
にはバーナの着火時等の燃焼不安定時に比較的多量の炭
化水素が燃焼ガスに含まれる問題がある。また、本実施
形態のようにグロープラグに通電して赤熱させ、この状
態のグロープラグに燃料を噴射することにより着火する
バーナでは、グロープラグの断線や赤熱不充分な状態が
生じるとバーナから噴射された燃料は燃焼せずに排気通
路3に流入するため多量の炭化水素が排気浄化コンバー
タ10に到達してしまう問題がある。この場合には、排
気温度が低いため、NOX 吸蔵還元触媒7や酸化触媒1
3では炭化水素の浄化が不充分となるおそれがあるが、
本実施形態では、NOX 吸蔵還元触媒7と酸化触媒13
との間にHC吸着材11が配置されている。このため、
第1の実施形態と同様バーナの着火不良や着火時に発生
する炭化水素はHC吸着材11により吸着され、排気浄
化コンバータ10下流側に流出することが防止される。However, when the combustion heater 50 is used, there is a problem that a relatively large amount of hydrocarbons is contained in the combustion gas when the combustion is unstable such as when the burner is ignited. Further, in the burner which is energized by energizing the glow plug to make it glow red by injecting fuel into the glow plug in this state as in the present embodiment, if the glow plug is disconnected or the state of insufficient red heat occurs, the burner injects the glow plug. Since the discharged fuel flows into the exhaust passage 3 without burning, there is a problem that a large amount of hydrocarbons reach the exhaust purification converter 10. In this case, since the low exhaust gas temperature, NO X occluding and reducing catalyst 7 and the oxidation catalyst 1
In 3, the purification of hydrocarbons may be insufficient,
In the present embodiment, NO X occluding and reducing catalyst 7 and the oxidation catalyst 13
The HC adsorbent 11 is disposed between the two. For this reason,
As in the first embodiment, the ignition failure of the burner and the hydrocarbons generated at the time of ignition are adsorbed by the HC adsorbent 11 and are prevented from flowing to the downstream side of the exhaust gas purification converter 10.
【0040】(3)本発明の実施形態
図4は、本発明の実施形態の概略構成を説明する図であ
る。図4において、図1、図3と同一の参照符号は、図
1、図3と同一の要素を示している。図4において、2
0は排気通路3に設けられた排気浄化コンバータを示
す。本実施形態のコンバータは、同一ケーシング中に上
流側にNOX吸蔵還元触媒7、下流側に酸化触媒13を
配置した構成とされ、HC吸着材を備えていない。[0040] (3) Embodiment 4 of the present invention is a diagram illustrating a schematic configuration of implementation of the invention. 4, the same reference numerals as those in FIGS. 1 and 3 indicate the same elements as those in FIGS. In FIG. 4, 2
Reference numeral 0 denotes an exhaust gas purification converter provided in the exhaust passage 3. Converter of the present embodiment, NO X occluding and reducing catalyst 7 on the upstream side in the same casing, is configured of arranging the oxidation catalyst 13 on the downstream side does not include the HC adsorbent.
【0041】また、本実施形態では別体のHC吸着材1
1が排気浄化コンバータ20上流側の排気通路に配置さ
れており、燃焼式ヒータ50の燃焼ガスをHC吸着材1
1の上流側と下流側とに切り換えて供給可能な三方弁5
1が設けられている点が第2の実施形態と相違してい
る。本実施形態では、排気低温時にヒータ50を作動さ
せてNOX 吸蔵還元触媒7と酸化触媒13との加熱を行
う点は第2の実施形態と同様であるが、ヒータの作動開
始時(バーナ着火時)にはバーナ燃焼ガスをHC吸着材
11上流側の排気通路に供給し、着火完了後はバーナ燃
焼ガスをHC吸着材11下流側の排気通路に供給する点
が第2の実施形態と相違している。In this embodiment, a separate HC adsorbent 1 is used.
1 is disposed in the exhaust passage on the upstream side of the exhaust purification converter 20, and converts the combustion gas of the combustion type heater 50 into the HC adsorbent 1.
3 three-way valve 5 that can be switched between upstream and downstream
This embodiment is different from the second embodiment in that 1 is provided. In the present embodiment, although the point performed by operating the heater 50 during the exhaust cold and the NO X storage reduction catalyst 7 heating the oxidation catalyst 13 is similar to the second embodiment, operation at the start of the heater (a burner ignition The second embodiment is different from the second embodiment in that the burner combustion gas is supplied to the exhaust passage on the upstream side of the HC adsorbent 11 after the ignition, and the burner combustion gas is supplied to the exhaust passage on the downstream side of the HC adsorbent 11 after ignition is completed. are doing.
【0042】すなわち、制御回路30は排気温度が所定
温度より低いときにはヒータ50を作動させてバーナ着
火を行う。このとき、三方弁51はヒータ燃焼ガスをH
C吸着材11上流側の排気通路に供給する位置にセット
される。これにより、バーナ着火時に発生する比較的多
量の炭化水素はHC吸着材11に吸着されるようにな
る。また、着火不良が生じて多量の炭化水素が発生した
場合にも、炭化水素はHC吸着材11に吸着されるよう
になるため、低温のNOX 吸蔵還元触媒7や酸化触媒1
3に多量の炭化水素が到達することが防止される。That is, when the exhaust gas temperature is lower than the predetermined temperature, the control circuit 30 activates the heater 50 to ignite the burner. At this time, the three-way valve 51 sets the heater combustion gas to H
It is set at a position where it is supplied to the exhaust passage upstream of the C adsorbent 11. Thereby, a relatively large amount of hydrocarbons generated at the time of ignition of the burner is adsorbed by the HC adsorbent 11. In addition, even when a large amount of hydrocarbons are generated due to poor ignition, the hydrocarbons are adsorbed by the HC adsorbent 11, so that the low-temperature NO X storage reduction catalyst 7 and the oxidation catalyst 1
3 is prevented from reaching a large amount of hydrocarbons.
【0043】一方、ヒータ50のバーナ着火が完了して
バーナ燃焼が安定すると制御回路30は三方弁51を切
り換えて、バーナ燃焼ガスをHC吸着材11下流側の排
気通路に供給する位置にセットする。これにより、未燃
炭化水素の少ない高温のバーナ燃焼ガスが直接NOX 吸
蔵還元触媒7と酸化触媒13とに供給されるようにな
り、NOX 吸蔵還元触媒7と酸化触媒13との温度が短
時間で活性化温度まで上昇するようになる。なお、ヒー
タ50のバーナ着火完了の判定は、例えばヒータ出口に
温度センサを設け、バーナ燃焼ガス温度を監視すること
により行うことができる。すなわち、制御回路30はヒ
ータを作動した後、バーナ燃焼ガスが所定の温度に上昇
したか否かを判定し、所定温度に到達している場合には
バーナの燃焼が安定した状態になったと判断して三方弁
51を切り換える。また、予め定めた期間が経過しても
バーナ燃焼ガス温度が上記所定温度に到達しない場合に
は、制御回路30はバーナ着火不良が生じたと判断し、
バーナへの燃料供給を停止する。On the other hand, when the burner ignition of the heater 50 is completed and the burner combustion is stabilized, the control circuit 30 switches the three-way valve 51 to set the burner combustion gas at a position to supply the burner combustion gas to the exhaust passage downstream of the HC adsorbent 11. . Thus, look like small hot burner combustion gas of the unburned hydrocarbons are supplied to the direct the NO X storage reduction catalyst 7 and the oxidation catalyst 13, the temperature of the the NO X storage and reduction catalyst 7 and the oxidation catalyst 13 is short The temperature rises to the activation temperature with time. The determination of the completion of the burner ignition of the heater 50 can be performed by, for example, providing a temperature sensor at the heater outlet and monitoring the burner combustion gas temperature. That is, after operating the heater, the control circuit 30 determines whether or not the burner combustion gas has risen to a predetermined temperature. If the temperature has reached the predetermined temperature, the control circuit 30 determines that the burner combustion has become stable. Then, the three-way valve 51 is switched. If the burner combustion gas temperature does not reach the predetermined temperature even after the predetermined period has elapsed, the control circuit 30 determines that a burner ignition failure has occurred,
Turn off fuel supply to the burner.
【0044】このように、三方弁51を用いてヒータ5
0作動開始時の燃焼ガスをHC吸着材11に導くように
したことにより、ヒータ50作動開始時に発生する炭化
水素や、ヒータ50のバーナ着火不良が生じた場合に多
量に発生する炭化水素が低温のNOX 吸蔵還元触媒7や
酸化触媒13を通過して大気に放出されることが防止さ
れる。As described above, the heater 5 is provided by using the three-way valve 51.
Since the combustion gas at the start of operation 0 is introduced to the HC adsorbent 11, the hydrocarbons generated at the start of operation of the heater 50 and the hydrocarbons generated at a large amount when the burner ignition failure of the heater 50 occurs occur at a low temperature. passes through of the NO X occluding and reducing catalyst 7 and the oxidation catalyst 13 is prevented from being discharged to the atmosphere.
【0045】なお、本実施形態においては、NOX 吸蔵
還元触媒7下流側に酸化触媒13を配置することにより
完全に炭化水素の大気放出を防止している。しかし、本
実施形態では第1、第2の実施形態とは異なりHC吸着
材11温度上昇後に放出される軽質の炭化水素はNOX
吸蔵還元触媒7に流入する。このため、放出された軽質
炭化水素は活性化温度に到達後のNOX 吸蔵還元触媒7
により酸化され、またはNOX の還元に消費され、NO
X 吸蔵還元触媒7下流側にはほとんど流出しない。この
ため、本実施形態ではNOX 吸蔵還元触媒7下流側には
必ずしも酸化触媒13を配置しなくても炭化水素の大気
放出を防止することができる。[0045] In the present embodiment, to prevent a complete air hydrocarbon emissions by arranging the NO X storage reduction catalyst 7 oxidation catalyst 13 on the downstream side. However, in the present embodiment, unlike the first and second embodiments, the light hydrocarbons released after the temperature rise of the HC adsorbent 11 are NO X
It flows into the storage reduction catalyst 7. Therefore, it emitted light hydrocarbons after reaching the activation temperature the NO X storage reduction catalyst 7
It is consumed in the reduction of oxidized, or NO X by, NO
It hardly flows out to the downstream side of the X storage reduction catalyst 7. For this reason, in this embodiment, it is possible to prevent hydrocarbons from being released into the atmosphere without necessarily arranging the oxidation catalyst 13 on the downstream side of the NO X storage reduction catalyst 7.
【0046】[0046]
【発明の効果】本発明によれば、排気低温時等にNOX
吸蔵還元触媒下流側に炭化水素が流出することを防止可
能とする効果を奏する。According to the present invention, NO X in the exhaust at low temperature, etc.
Storage reduction catalyst downstream hydrocarbon achieve the effect you allow prevented from flowing out.
【図1】本発明を理解する上での参考としての実施形態
の概略構成を説明する図である。FIG. 1 is a diagram illustrating a schematic configuration of an embodiment as a reference for understanding the present invention .
【図2】HC吸着材の炭化水素吸着特性を説明する図で
ある。FIG. 2 is a diagram illustrating hydrocarbon adsorption characteristics of an HC adsorbent.
【図3】本発明の参考としての第2の実施形態の概略構
成を説明する図である。FIG. 3 is a diagram illustrating a schematic configuration of a second embodiment as a reference of the present invention .
【図4】本発明の実施形態の概略構成を説明する図であ
る。4 is a diagram illustrating a schematic configuration of implementation of the invention.
1…内燃機関 3…排気通路 7…NOX吸蔵還元触媒 9…還元剤供給装置 11…HC吸着材 13…酸化触媒 50…燃焼式ヒータ1 ... engine 3 ... exhaust passage 7 ... NO X occluding and reducing catalyst 9 ... reducing agent supply device 11 ... HC adsorbent 13 ... oxidizing catalyst 50 ... combustion heater
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/20 F01N 3/20 L 3/28 301D 3/28 301 B01D 53/36 101B (72)発明者 田原 淳 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 小端 喜代志 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 柳原 弘道 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平8−270439(JP,A) 特開 平6−117220(JP,A) 特開 平7−19031(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/28 B01D 53/94 B01J 23/58 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI F01N 3/20 F01N 3/20 L 3/28 301D 3/28 301 B01D 53/36 101B (72) Inventor Atsushi Tahara Toyota, Aichi Prefecture 1 Toyota Motor City, Toyota Motor Corporation (72) Inventor Kiyoshi Kobata 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Hiromichi Yanagihara 1 Toyota Motor Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP-A-8-270439 (JP, A) JP-A-6-117220 (JP, A) JP-A-7-19031 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) F01N 3/08-3/28 B01D 53/94 B01J 23/58
Claims (1)
燃比がリーンのときに排気中のNO X を吸収し、流入す
る排気空燃比の酸素濃度が低下したときに吸収したNO
X を放出するNO X 吸蔵還元触媒と、該NO X 吸蔵還元触
媒からNO X を放出すべき時にNO X 吸蔵還元触媒に流入
する排気に還元剤としての炭化水素を供給する還元剤供
給装置と、を配置した内燃機関の排気浄化装置におい
て、 前記NO X 吸蔵還元触媒の上流側の排気通路に配置さ
れ、排気中の炭化水素を吸着し、吸着後温度が上昇する
と吸着した炭化水素を放出するHC吸着材と、 機関排気低温時に炭化水素を燃焼させて燃焼ガスを発生
させる燃焼バーナと、 該バーナの燃焼ガスを、前記排気通路のHC吸着剤上流
側部分と、前記HC吸着材と前記NO X 吸蔵還元触媒と
の間の部分とに選択的に切り換えて導入可能な切り換え
手段と、を備えた内燃機関の排気浄化装置。 An exhaust air flowing into an exhaust passage of an internal combustion engine.
Ratio absorbs NO X in the exhaust gas when the lean, flows to
Absorbed when the oxygen concentration of the exhaust air-fuel ratio decreases
And the NO X storage reduction catalyst that emits X, the the NO X storage reduction catalyst
Flowing the NO X occluding and reducing catalyst when should be released NO X from medium
Reducing agent that supplies hydrocarbons as reducing agent
And an exhaust purification device for an internal combustion engine, wherein
Te, is disposed on the upstream side of the exhaust passage of the the NO X storage reduction catalyst
Adsorbs hydrocarbons in the exhaust and raises the temperature after adsorption
HC adsorbent that emits hydrocarbons adsorbed to the engine and combustion gas generated by burning hydrocarbons at low engine exhaust temperatures
A combustion burner to be burned and a combustion gas from the burner upstream of the HC adsorbent in the exhaust passage.
Side portion, the HC adsorbent and the NO X storage reduction catalyst
Switching that can be introduced by selectively switching to the part between
Means for purifying exhaust gas of an internal combustion engine, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05844899A JP3536713B2 (en) | 1999-03-05 | 1999-03-05 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05844899A JP3536713B2 (en) | 1999-03-05 | 1999-03-05 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000257417A JP2000257417A (en) | 2000-09-19 |
JP3536713B2 true JP3536713B2 (en) | 2004-06-14 |
Family
ID=13084708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05844899A Expired - Lifetime JP3536713B2 (en) | 1999-03-05 | 1999-03-05 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3536713B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009133771A1 (en) * | 2008-04-30 | 2009-11-05 | いすゞ自動車株式会社 | Exhaust gas purification method and exhaust gas purificaton system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3981915B2 (en) | 2001-04-03 | 2007-09-26 | 日産自動車株式会社 | Exhaust gas purification system |
JP4656071B2 (en) | 2007-03-01 | 2011-03-23 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP4710924B2 (en) | 2007-03-19 | 2011-06-29 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP4420048B2 (en) | 2007-03-20 | 2010-02-24 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP4710866B2 (en) | 2007-04-18 | 2011-06-29 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP5608962B2 (en) * | 2008-07-25 | 2014-10-22 | いすゞ自動車株式会社 | Exhaust gas purification system |
-
1999
- 1999-03-05 JP JP05844899A patent/JP3536713B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009133771A1 (en) * | 2008-04-30 | 2009-11-05 | いすゞ自動車株式会社 | Exhaust gas purification method and exhaust gas purificaton system |
JP2009270446A (en) * | 2008-04-30 | 2009-11-19 | Isuzu Motors Ltd | Exhaust emission control method and exhaust emission control system |
AU2009241065B2 (en) * | 2008-04-30 | 2011-11-17 | Isuzu Motors Limited | Exhaust gas purification method and exhaust gas purification system |
AU2009241065B8 (en) * | 2008-04-30 | 2011-12-08 | Isuzu Motors Limited | Exhaust gas purification method and exhaust gas purification system |
CN102016252B (en) * | 2008-04-30 | 2013-03-13 | 五十铃自动车株式会社 | Exhaust gas purification method and exhaust gas purification system |
Also Published As
Publication number | Publication date |
---|---|
JP2000257417A (en) | 2000-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2722987B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP2387656B1 (en) | Exhaust gas control device of internal combustion engine | |
JP4569690B2 (en) | Exhaust gas purification device for internal combustion engine | |
RU2485333C1 (en) | Ice exhaust cleaning system | |
US8104272B2 (en) | Exhaust purifying system for internal combustion engine | |
EP1313934B1 (en) | Exhaust system for lean-burn engines | |
JP3201237B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH1061426A (en) | Exhaust air purifying method of internal combustion engine and device thereof | |
JP3536713B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2008115866A (en) | Small-volume nox adsorbent | |
JP2845080B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3580180B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2984528B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2722988B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2010043583A (en) | Exhaust emission purifier of internal combustion engine | |
JP4626854B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3514200B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2845071B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2830669B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2842135B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH1193643A (en) | Exhaust emission control device for internal combustion engine | |
JP4019891B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2000080913A (en) | Exhaust gas purification device for internal combustion engine | |
JP3465584B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4178797B2 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040308 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |