[go: up one dir, main page]

JPH09122401A - Drying and recovering method for solid content in liquid material - Google Patents

Drying and recovering method for solid content in liquid material

Info

Publication number
JPH09122401A
JPH09122401A JP28301495A JP28301495A JPH09122401A JP H09122401 A JPH09122401 A JP H09122401A JP 28301495 A JP28301495 A JP 28301495A JP 28301495 A JP28301495 A JP 28301495A JP H09122401 A JPH09122401 A JP H09122401A
Authority
JP
Japan
Prior art keywords
medium
liquid substance
particles
medium particles
liquid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28301495A
Other languages
Japanese (ja)
Inventor
Yorioki Nara
自起 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to JP28301495A priority Critical patent/JPH09122401A/en
Publication of JPH09122401A publication Critical patent/JPH09122401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover the efficiently of a solid content in a liquid material by making the liquid material to be treated adhere to medium particle surfaces to dry the liquid material, peeling off the solid content of the liquid material remaining and adhering on the medium particle surfaces and recovering the same when a medium particle group is moved while being heated and agitated. SOLUTION: The temperature of a jacket 3 and a hollow rotating body 15 is set to be constant by feeding a heat exchange medium, and then a quantitative feed device 20 is actuated to feed medium particles into a casing 1, and the medium particles are heated up to the constant temperature, and when the height of a medium particle layer reaches up to the upper sections of a hollow rotating body 15 and the jacket 3, a liquid material in a raw material tank 22 is introduced. Then the liquid material adheres successively on the medium particle surfaces, and is heated and dried, and an adhered solid content is peeled off the medium particle surfaces by the peeling action generated by the collision, friction and the like with the surface of the hollow rotating body 15, discharged out of a discharge opening 24, and then separated into the solid content and the medium particles by a separator 25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】各種産業分野で取り扱われて
いる液状,スラリー状の物質を連続的に乾燥して、これ
らの物質に含まれている固形成分を粉体として連続的に
回収する液状物質中の固形成分の乾燥回収方法に関す
る。
TECHNICAL FIELD The present invention relates to a liquid substance, which is used in various industrial fields, for continuously drying liquid or slurry substances, and continuously recovering solid components contained in these substances as powders. The present invention relates to a method for drying and recovering solid components therein.

【0002】[0002]

【従来の技術】前記物質から固形成分を回収する方法と
して、次のようないくつかの方法がある。 すなわち、
噴霧乾燥機(スプレードライヤー)を用い、溶液,微粒
子スラリーを熱風中に噴霧して、乾燥させ、一挙に乾燥
品を得る方法で、20〜500μmの粒子(顆粒)が得
られる。また、接触加熱型円筒乾燥機(ドラムドライヤ
ー)を用い、水蒸気,その他の熱媒体で回転ドラムを加
熱し、この回転ドラムの表面に、液状や泥状の物質を薄
い膜状に付着させ、1回転内で乾燥させて、それをスク
レッパーでかきとる方法で、製品はフレーク状で得られ
る。さらに媒体流動層乾燥機(特開昭63−232801号、実
開平 2−61401 号等)を用いるもので、ガス分散板を備
えた流動化容器の分散板上に多数の媒体粒子を収容し、
これを熱風によって流動化させているところに液状物質
を供給すると、液状物質は個々の媒体粒子の表面に付着
し、熱風によって分散媒、または溶媒が急速に蒸発し、
媒体粒子の表面に残った固形分は媒体粒子同士、媒体粒
子と流動化室内壁との衝突や摩擦によって媒体粒子の表
面から剥離し、粉末粒子の状態で回収する方法で、製品
は極めて微細な粉末(一次粒子)として得られる。
2. Description of the Related Art There are several methods for recovering solid components from the above substances. That is,
Using a spray drier (spray dryer), the solution and fine particle slurry are sprayed in hot air and dried to obtain a dried product all at once, and particles (granules) of 20 to 500 μm are obtained. In addition, a contact heating type cylindrical dryer (drum dryer) is used to heat the rotary drum with steam or other heat medium, and a liquid or mud-like substance is attached to the surface of the rotary drum in a thin film form. The product is obtained in the form of flakes, by drying in a spin and scraping it with a scraper. Further, a medium fluidized bed dryer (Japanese Patent Laid-Open No. 232801/1988, Japanese Utility Model Laid-Open No. 2-61401, etc.) is used.
When a liquid substance is supplied to the place where it is fluidized by hot air, the liquid substance adheres to the surface of each medium particle, and the dispersion medium or solvent is rapidly evaporated by the hot air,
The solid content remaining on the surface of the medium particles is separated from the surface of the medium particles by collision or friction between the medium particles and between the medium particles and the fluidized chamber inner wall, and is collected in the form of powder particles. Obtained as a powder (primary particles).

【0003】[0003]

【発明が解決しようとする課題】前記噴霧乾燥機を用い
る方法は、伝熱容量係数が小さく、装置が大型になり、
イニシャルコスト,ランニングコストが高くなるととも
に、粘度の高い液状物質の場合には噴霧できず、処理が
できないという欠点があるまた、前記円筒乾燥機を用い
る方法は、伝熱加熱であるため熱効率が高く、泥状物質
の処理はできるが製品はフレーク状となるため、粉体と
するために、別途粉砕機,解砕機を必要としている。さ
らに媒体流動層乾燥機を用いる方法においては、得られ
る製品の含水率は、媒体から剥離するときの含水率と排
気温度とによって決まるので制御することが困難で、特
に低含水率の製品は得られない。従って、後工程に別の
乾燥機が必要となる。また、付着性の強い液状物質や粘
性の極めて高い液状物質の場合は、これらの物質が結合
剤となり、媒体粒子相互の凝集や団結現象により安定し
て一定な流動層を形成することが困難である。また、供
給ノズルの先端部分に液状物質が付着成長し、それが乾
燥されて大きな固形分となり、製品として排出されない
という問題点がある。さらに何れの乾燥方法においても
長い滞留時間がとれないため減率乾燥期間まで乾燥する
ことができないという大きな問題がある。本発明は、前
記事情に鑑みてなされたもので、前記問題点を解消した
液状物質中の固形成分の乾燥回収方法を提供することを
目的とする。
In the method using the spray dryer, the heat transfer capacity coefficient is small, the apparatus becomes large, and
The initial cost and running cost are high, and in the case of a liquid substance having a high viscosity, there is a drawback that it cannot be sprayed and cannot be processed. Further, the method using the cylindrical dryer has high heat efficiency because it uses heat transfer heating. The muddy substance can be treated, but the product becomes flakes, so a separate crusher and crusher are required to convert it into powder. Furthermore, in the method using a medium fluidized bed dryer, the water content of the obtained product is difficult to control because it is determined by the water content at the time of peeling from the medium and the exhaust temperature, and a product with a particularly low water content is obtained. I can't. Therefore, another dryer is required for the post process. Further, in the case of a liquid substance having strong adhesion or a liquid substance having an extremely high viscosity, these substances serve as a binder, and it is difficult to form a stable and constant fluidized bed due to agglomeration or unity phenomenon of medium particles. is there. In addition, there is a problem that a liquid substance adheres and grows on the tip portion of the supply nozzle, is dried and becomes a large solid content, and is not discharged as a product. Further, in any of the drying methods, a long residence time cannot be taken, so that there is a big problem that it cannot be dried until the reduced rate drying period. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for drying and recovering a solid component in a liquid substance that solves the above problems.

【0004】[0004]

【課題を解決するための手段】前記目的に添い、本発明
は媒体粒子群を加熱,攪拌しながら一方向に順次移動さ
せ、この媒体粒子群に処理すべき液状物質を供給して媒
体粒子表面に付着した液状物質を順次乾燥させるととも
に、媒体粒子表面に残存付着する液状物質の固形成分を
剥離して回収する液状物質中の固形成分の乾燥回収方法
によって前記課題を解消した。また本発明はケーシング
内に、多数の中空回転体を軸方向に設けた中空回転軸を
備え、この中空回転軸と中空回転体に熱媒体を供給して
なる攪拌・乾燥装置を用い、このケーシングの一端から
他端にかけて媒体粒子群と処理すべき液状物質とを供給
移動させて、液状物質を付着させた媒体粒子群に加熱と
攪拌を与え、媒体粒子表面に付着した液状物質を乾燥さ
せながら、媒体粒子表面に残存付着する液状物質中の固
形成分を剥離せしめて回収する液状物質中の固形成分の
乾燥回収方法によって前記課題を解消した。さらに本発
明は媒体粒子の供給量を制御することによって前記固形
成分の乾燥機内の滞留時間を制御して、固形成分の含水
率を調整する液状物質中の固形成分の乾燥回収方法によ
って前記課題を解消した。
According to the present invention, in accordance with the above object, a medium particle group is sequentially moved in one direction while being heated and stirred, and a liquid substance to be treated is supplied to the medium particle group to form a surface of the medium particle. The above problem was solved by a method for drying and recovering the solid component in the liquid substance in which the solid substance of the liquid substance remaining and adhering to the surface of the medium particles is separated and collected while the liquid substance adhered to the medium is sequentially dried. The present invention also includes a hollow rotating shaft having a large number of hollow rotating bodies provided in the casing in the axial direction, and a stirring / drying device that supplies a heat medium to the hollow rotating shaft and the hollow rotating body. While supplying and moving the medium particle group and the liquid substance to be treated from one end to the other end, heating and stirring are applied to the medium particle group to which the liquid substance is adhered, and the liquid substance adhered to the surface of the medium particle is dried. The above problem is solved by a method for drying and recovering the solid component in the liquid substance by peeling and recovering the solid component in the liquid substance remaining and adhering to the surface of the medium particles. Further, the present invention controls the residence time of the solid component in the dryer by controlling the supply amount of the medium particles, the dry matter recovery method of the solid component in the liquid substance to adjust the water content of the solid component, the above problems. Resolved.

【0005】本発明によって媒体粒子表面と付着した液
状物質が連続的に乾燥され、そこに含まれていた固形成
分が媒体粒子表面に付着して残り、これが攪拌による摩
擦等によって剥離され、媒体粒子とともに粉末として回
収される。また回収される粉末の含水率の調整ができ
る。
According to the present invention, the liquid substance adhered to the surface of the medium particles is continuously dried, and the solid component contained therein remains adhered to the surface of the medium particles and is peeled off by friction by stirring or the like. It is recovered together with the powder. Also, the water content of the recovered powder can be adjusted.

【0006】[0006]

【発明の実施の形態】図1は本発明の方法の実施に用い
る装置の一例で、攪拌機構と加熱機構を備えたジャケッ
ト付の伝導伝熱型の溝型攪拌乾燥機と、その前後の必要
装置を示す。1は比較的横に長い容器からなるケーシン
グで、該ケーシング1は支持台2,2′によって支えら
れており、ケーシング1の底面及び側面には熱交換用の
ジャケット3が設けられている(図2参照)。なお、便
宜的に支持台2側を装置の前部,支持台2′側を装置の
後部とする。4はジャケット3への熱交換媒体の供給
管、5は同じく熱交換媒体の排出管である。ケーシング
1の内部には、2本の中空軸6が並列に貫通し、ケーシ
ング1の前部に設けた軸受7,後部の軸受8によって回
転するように軸支されている。そして各軸の前部にはギ
ヤー9を設けて互いに噛み合わせ、互いに逆方向に回転
するようにしてあり、前記中空軸6の一方にはスプロケ
ット10を設け、このスプロケット10にチェーン(図
示省略)を噛合し、別に設けたモーターに連結してあ
る。そして各軸6の先端は、ロータリージョイント11
を介して熱交換媒体供給管12に、また後端はロータリ
ージョイント13を介して熱交換媒体排出管14に連結
されている。各中空軸6には、多数の熱交換器を一定の
間隔をもって配置してある。この熱交換器は、例えば中
空回転体15からなり、この中空回転体15は回転方向
側が先端側となって狭くなるように楔状に形成し、幅広
い後端部にかき揚げ板16を設けてある。このかき揚げ
板16は後述の媒体粒子を回転方向とかき揚げる作用を
する。なお、中空軸6は2本に限定されることなく、例
えば4本あるいはそれ以上の複数本または単軸であって
もよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus used for carrying out the method of the present invention. A conduction heat transfer type groove type stirring dryer with a jacket equipped with a stirring mechanism and a heating mechanism, and before and after the dryer. Shows the device. Reference numeral 1 denotes a casing composed of a container which is relatively long in the lateral direction. The casing 1 is supported by support bases 2 and 2 ', and a jacket 3 for heat exchange is provided on the bottom surface and the side surface of the casing 1 (Fig. 2). For the sake of convenience, the support base 2 side will be referred to as the front part of the device, and the support base 2'side will be referred to as the rear part of the device. Reference numeral 4 denotes a heat exchange medium supply pipe to the jacket 3, and 5 denotes a heat exchange medium discharge pipe. Two hollow shafts 6 penetrate in parallel inside the casing 1 and are rotatably supported by a bearing 7 provided at a front portion of the casing 1 and a bearing 8 at a rear portion of the casing 1. A gear 9 is provided at the front of each shaft so that they mesh with each other and rotate in opposite directions. A sprocket 10 is provided on one of the hollow shafts 6, and a chain (not shown) is provided on this sprocket 10. , And is connected to a separately provided motor. The tip of each shaft 6 has a rotary joint 11
Is connected to the heat exchange medium supply pipe 12 and the rear end is connected to the heat exchange medium discharge pipe 14 via a rotary joint 13. A large number of heat exchangers are arranged on each hollow shaft 6 at regular intervals. This heat exchanger comprises, for example, a hollow rotating body 15, which is formed in a wedge shape so that the rotation direction side becomes narrower toward the tip side, and a scraping plate 16 is provided at a wide rear end portion. The scooping plate 16 has a function of scooping up the medium particles described later in the rotation direction. The hollow shaft 6 is not limited to two, and may be, for example, a plurality of four or more or a single shaft.

【0007】17はケーシング1の上部を閉塞鎖するカ
バーでこのカバー17の前端部には媒体粒子の供給口1
8を設けてあり、この供給口18は供給管19を介して
媒体粒子の定量供給装置20に連結してある。21は処
理すべき液状,スラリー状,泥状の物質(以下、これら
を液状物質と総称する)の供給口で、原料タンク22に
貯槽している液状物質を、定量供給ポンプ23を用いて
この供給口21から乾燥機内に定量供給する。この供給
口21は供給口18より供給された媒体粒子が加熱,昇
温された後に、液状物質を供給するようにするため供給
口18より後方側に設けてある。なお、この供給口18
を供給口21の後方側,あるいは同位置に設けてもよ
い。ケーシング1の後部の末端部には、ケーシング1内
に一定量の処理物を滞留させるための堰板(図示省略)
を設けてあり、さらに、この堰板を乗り越えた媒体粒子
と、水,その他の分散媒または溶媒が除去された液状物
質中の固形成分(すなわち乾燥品)を排出するための排
出口24が設けてある。この排出口24には、分離機2
5として例えば振動篩等が連結されており、この分離機
25には、媒体粒子の最小粒子径よりも小さな目開きの
網26が張られている。分離機25において、27は乾
燥品の排出口、28は媒体粒子の排出口で、排出口28
から排出された媒体粒子は、再度定量供給装置20に供
給され、再利用される。この分離機25は、単に媒体粒
子と乾燥品とを分離するだけでなく、媒体粒子の表面に
付着残留している固形分を剥離させる機能を有している
ことが好ましい。たとえば上記振動篩の他に、流動式分
離機,各種解砕機と(振動)篩との組合せ等が考えられ
る。29,30はカバー17の前部と後部に設けたガス
の送入口で、この送入口29,30にケーシング1内で
液状物質から蒸発した分散媒または溶媒を外部へ搬送す
るための搬送用ガスを送入し、排出口31から排出す
る。この排出口31は、排気管32,サイクロン等の粉
末分離器33を介して、排気ブロワー34に連接されて
いる。
Reference numeral 17 denotes a cover which closes and closes the upper part of the casing 1. A front end portion of the cover 17 has a medium particle supply port 1
8 is provided, and this supply port 18 is connected to a fixed amount supply device 20 of medium particles via a supply pipe 19. Reference numeral 21 is a supply port for a liquid, slurry, or mud substance to be treated (hereinafter, these are collectively referred to as a liquid substance), and a liquid substance stored in a raw material tank 22 is supplied by a constant supply pump 23. A fixed amount is supplied from the supply port 21 into the dryer. The supply port 21 is provided behind the supply port 18 so as to supply the liquid substance after the medium particles supplied from the supply port 18 are heated and heated. In addition, this supply port 18
May be provided on the rear side of the supply port 21 or at the same position. A weir plate (not shown) for retaining a certain amount of the processed material in the casing 1 at the rear end of the casing 1.
And a discharge port 24 for discharging solid particles (that is, a dried product) in the liquid particles from which the medium particles that have passed over the barrier plate and water and other dispersion mediums or solvents have been removed. There is. This outlet 24 has a separator 2
For example, a vibrating screen or the like is connected as 5, and the separator 25 is provided with a mesh 26 having an opening smaller than the minimum particle size of the medium particles. In the separator 25, 27 is a dry product discharge port, 28 is a medium particle discharge port, and 28 is a discharge port.
The medium particles discharged from are again supplied to the quantitative supply device 20 and reused. It is preferable that the separator 25 not only has a function of separating the medium particles and the dried product but also has a function of peeling off the solid content adhering and remaining on the surface of the medium particles. For example, in addition to the vibrating screen described above, a combination of a flow separator, various disintegrators and a (vibrating) screen, etc. can be considered. Reference numerals 29 and 30 denote gas inlets provided in the front and rear portions of the cover 17, and a carrier gas for delivering the dispersion medium or the solvent evaporated from the liquid substance in the casing 1 to the outside to the inlets 29 and 30. Is discharged and discharged from the discharge port 31. The exhaust port 31 is connected to an exhaust blower 34 via an exhaust pipe 32 and a powder separator 33 such as a cyclone.

【0008】本発明の方法で乾燥処理できる代表的な物
質は、澱粉をはじめとする各種食品,塩化ビニル,ポリ
エチレン,ポリプロピレン等の樹脂,有機薬品等の有機
物のスラリーまたは溶液,二酸化チタン,石灰,炭酸カ
ルシウム,無機薬品等の無機物のスラリー、及び鉄,
鉛,銅等の金属ならびにそれらの酸化物や水酸化物のス
ラリー等であるが、ここに記載した物質に限定されるこ
となく、各種の有機物,無機物,金属の液状物質に適用
することができる。媒体粒子としては、乾燥処理すべき
液状物質の物性,運転操作温度(耐熱性),耐摩耗性,
及び媒体粒子の密度等によってその形状と材質を選定す
る。形状としては通常、その直径が 0.5〜10 mm程
度、好ましくは2〜5mmの範囲にある球形の粒子が最
も好ましいが、長径がこの範囲にある楕円体,円柱体等
少なくとも曲面を有する形状の各種粒子であることが好
ましい。たとえば図4に示すような材寸(3×4mm)
の楕円柱状(ストランドカット−ポリエステル)の粒子
などがよい。また、立方体,直方体等の平面のみから構
成される媒体粒子の場合は、処理物(液状物質)が結合
剤となって媒体粒子相互の凝集や団結現象を生じること
もあるが、中空回転体15による強制的攪拌作用によ
り、これらの現象を解消するので問題がない。なお、媒
体粒子は、以上の各種形状の粒子の混合物であってもよ
い。
Typical substances which can be dried by the method of the present invention include various foods such as starch, resins such as vinyl chloride, polyethylene and polypropylene, slurries or solutions of organic substances such as organic chemicals, titanium dioxide, lime, Calcium carbonate, slurry of inorganic substances such as inorganic chemicals, iron,
Slurries of metals such as lead and copper and oxides and hydroxides thereof, but not limited to the substances described here, can be applied to various organic, inorganic and metal liquid substances. . As the medium particles, physical properties of the liquid substance to be dried, operating temperature (heat resistance), wear resistance,
Also, the shape and the material are selected according to the density of the medium particles. As for the shape, usually, spherical particles having a diameter of about 0.5 to 10 mm, preferably 2 to 5 mm are most preferable, but various shapes having at least a curved surface such as an ellipsoid or a cylinder having a major axis in this range. It is preferably a particle. For example, the material size (3 x 4 mm) shown in Fig. 4
Oval columnar (strand cut-polyester) particles are preferred. Further, in the case of the medium particles composed of only a plane such as a cube or a rectangular parallelepiped, the treated material (liquid substance) may act as a binder to cause the mutual aggregation of the medium particles or the cohesion phenomenon. There is no problem because these phenomena are eliminated by the forced stirring action by. The medium particles may be a mixture of particles having various shapes as described above.

【0009】媒体粒子の材質としてはアルミナ,ジルコ
ニア等の各種セラミックスを含む無機物,ステンレス,
炭素鋼,合金鋼等の金属、及び各種プラスチックを用い
る。なお、熱可塑性樹脂に属する各種のプラスチックが
好ましいが、媒体粒子同士及び媒体粒子と中空回転体,
ケーシングの内面との衝突や摩耗によって壊れない材
質、すなわち充分な耐衝撃強度を有する材質であれば使
用することができる。熱可塑性樹脂の具体的な材料名と
しては、汎用樹脂であるところのポリエチレン,ポリプ
ロピレン,ポリ−4−メチルペンテン−1,アイオノマ
ー,ポリ塩化ビニル,ABS樹脂,ポリスチレン,AS
樹脂,メタクリル樹脂,セルロース系プラスチック等、
またエンジニアリングプラスチックに分類されるポリア
ミド樹脂,ポリアセタール,ポリカーボネイト,変性ポ
リフェニレンエーテル,熱可塑性ポリエステル樹脂等
(以上、汎用エンジニアリングプラスチックス)、及び
ポリテトラフルオロエチレン等のフッ素樹脂,ポリフェ
ニレンサルファイド,ポリサルホン,ポリアリレート,
ポリエーテルイミド,ポリエーテルサルフォン,ポリエ
ーテル(エーテル)ケトン,液晶ポリマー,ポリアミド
イミド,ポリイミド,ポリアミドビスマレイミド,ポリ
ビスアミドトリアゾール等(特殊エンジニアリングプラ
スチックス)である。なお、上記の各種樹脂だけでな
く、2種類以上のポリマーが物理的に混合された複合材
料(ポリマーアロイ)、または上記各種樹脂にガラス繊
維,炭素繊維等を混合して強化した複合材料(繊維強化
樹脂)であってもよい。
The material of the medium particles is an inorganic material containing various ceramics such as alumina and zirconia, stainless steel,
Metals such as carbon steel and alloy steel, and various plastics are used. It should be noted that various plastics belonging to the thermoplastic resin are preferable, but the medium particles and the medium particles and the hollow rotating body,
Any material that does not break due to collision or abrasion with the inner surface of the casing, that is, a material having sufficient impact strength can be used. Specific material names of the thermoplastic resin include polyethylene, polypropylene, poly-4-methylpentene-1, ionomer, polyvinyl chloride, ABS resin, polystyrene, AS which are general-purpose resins.
Resin, methacrylic resin, cellulosic plastic, etc.
Polyamide resins, polyacetals, polycarbonates, modified polyphenylene ethers, thermoplastic polyester resins, etc. classified as engineering plastics (above, general-purpose engineering plastics), and fluororesins such as polytetrafluoroethylene, polyphenylene sulfide, polysulfone, polyarylate,
Polyether imide, polyether sulfone, polyether (ether) ketone, liquid crystal polymer, polyamide imide, polyimide, polyamide bismaleimide, polybisamide triazole, etc. (special engineering plastics). In addition to the above various resins, a composite material (polymer alloy) in which two or more kinds of polymers are physically mixed, or a composite material (fiber in which the above various resins are mixed and reinforced by mixing glass fiber, carbon fiber, etc. Reinforced resin).

【0010】次に、この装置を用いた液状物質の乾燥方
法について説明する。まず、2本の中空軸6を一定の回
転数で回転させる。次にジャケット3及び中空軸6に所
定の温度に加熱した温水,スチーム,熱媒油等の熱交換
媒体を供給する。熱交換媒体がスチームの場合は、ジャ
ケット3を加熱した後、このスチームは凝縮液となって
排出管5から排出される。一方、中空軸6に供給された
スチームは、中空軸6及び中空回転体15を加熱した
後、凝縮液となって排出管14を通して排出される。ジ
ャケット3および中空回転体15の温度が一定になった
後、もしくは熱交換媒体の供給と共に媒体粒子の定量供
給装置20を作動させ、ケーシング1内に媒体粒子を連
続的に供給する。ケーシング1内に供給された多数の媒
体粒子、すなわち媒体粒子群は、中空回転体15の回転
により、ケーシング1と平行な方向の推力を受けて、あ
る程度の充満度を保ちながら、一端から他端へ次第にケ
ーシング1内を排出口24側へと移動していく。この過
程において、媒体粒子は、中空回転体15の回転に伴っ
て攪拌されるので、中空軸6、中空回転体15及びジャ
ケット3からの伝導伝熱により媒体粒は均一に一定温度
に昇温されていく。初期に投入された媒体粒子がケーシ
ング1の終端、即ち末端部に達すると、堰板によって堰
止められ、次第に媒体粒子層の高さが上がってくる。し
かし、この高さは堰板の上端まで達すると(滞留量が一
定になる)、連続的に供給された媒体粒子の量と、堰板
の上端からオーバーフローして排出される媒体粒子の量
とが丁度等しくなってハランスし、媒体粒子層の高さは
これ以上高くなることはない。前記媒体粒子層の高さが
前記オーバーフロー堰板の上端部に達し、ほぼ中空回転
体15及びジャケット3の上部まで上昇したところで、
原料タンク22内の乾燥処理すべき液状物質を、定量供
給ポンプ23を作動して一定量の割合で強制的に送出す
る。液状物質は、供給口21からケーシング1内に押し
出され、中空回転体15の回転に伴ってケーシング1内
を移動している媒体粒子の各々の表面に強制的に分散さ
れながら次々と付着し、連続的に媒体粒子の表面にほぼ
均一に分配・分散される。媒体粒子は一定温度に加熱さ
れているので、液状物質を構成する溶媒または分散媒と
固形分物質(一般に微粒子が多い)とは、この媒体粒子
からの伝導伝熱,中空回転体15(回転軸6)及びジャ
ケット3からの伝導伝熱により、迅速に、かつ効率的に
加熱され、乾燥作用を受ける。このように、ケーシング
1内に供給された液状物質は、中空回転体15の回転に
よって媒体粒子の表面に強制的に分散されながら付着さ
れるので、例えば二流体スプレーノズルを用いて噴霧す
る必要はない。なお、液状物質を媒体粒子の定量供給装
置20に供給し、この装置20内であらかじめ媒体粒子
の表面に液状物質を分配・分散した後、この媒体粒子を
乾燥機内に投入してもよい。
Next, a method of drying a liquid substance using this apparatus will be described. First, the two hollow shafts 6 are rotated at a constant rotation speed. Next, the jacket 3 and the hollow shaft 6 are supplied with heat exchange medium such as hot water heated to a predetermined temperature, steam, and heat transfer oil. When the heat exchange medium is steam, after heating the jacket 3, the steam becomes a condensate and is discharged from the discharge pipe 5. On the other hand, the steam supplied to the hollow shaft 6 heats the hollow shaft 6 and the hollow rotating body 15 and then becomes a condensate and is discharged through the discharge pipe 14. After the temperature of the jacket 3 and the hollow rotator 15 becomes constant, or at the same time as the supply of the heat exchange medium, the constant quantity supply device 20 of the medium particles is operated to continuously supply the medium particles into the casing 1. A large number of medium particles, that is, a group of medium particles, supplied to the casing 1 receives a thrust in a direction parallel to the casing 1 due to the rotation of the hollow rotating body 15 and maintains a certain degree of fullness, and from one end to the other end. The inside of the casing 1 is gradually moved to the discharge port 24 side. In this process, the medium particles are agitated as the hollow rotating body 15 rotates, so that the medium particles are uniformly heated to a constant temperature by conduction heat transfer from the hollow shaft 6, the hollow rotating body 15 and the jacket 3. To go. When the initially charged medium particles reach the terminal end of the casing 1, that is, the terminal end, they are blocked by the barrier plate, and the height of the medium particle layer gradually rises. However, when this height reaches the upper end of the weir plate (the retention amount becomes constant), the amount of the medium particles continuously supplied and the amount of the medium particles overflowed from the upper end of the weir plate and discharged. And the height of the medium particle layer cannot be increased any more. When the height of the medium particle layer reaches the upper end of the overflow dam plate and rises to almost the upper parts of the hollow rotor 15 and the jacket 3,
The liquid material to be dried in the raw material tank 22 is forcibly delivered at a constant rate by operating the constant amount supply pump 23. The liquid substance is extruded from the supply port 21 into the casing 1 and is sequentially adhered while being forcibly dispersed on each surface of the medium particles moving in the casing 1 with the rotation of the hollow rotor 15. The particles are continuously and almost uniformly distributed and dispersed on the surface of the medium particles. Since the medium particles are heated to a constant temperature, the solvent or dispersion medium forming the liquid substance and the solid substance (generally, a large amount of fine particles) are used for the conduction heat transfer from the medium particles, the hollow rotating body 15 (rotating shaft). 6) and the conduction heat transfer from the jacket 3 heats up quickly and efficiently and causes a drying action. As described above, the liquid substance supplied into the casing 1 is forcibly dispersed and adhered to the surface of the medium particles by the rotation of the hollow rotating body 15, so that it is not necessary to spray the liquid substance using a two-fluid spray nozzle, for example. Absent. The liquid substance may be supplied to the medium particle quantitative supply device 20, and the liquid substance may be previously distributed and dispersed on the surface of the medium particle in the device 20, and then the medium particle may be put into the dryer.

【0011】媒体粒子の表面で、乾燥作用を受けて蒸発
した液状物質中の水,またはその他の溶媒,分散媒は、
供給口29,30から供給されてケーシング1内の媒体
粒子上層部を通過する搬送ガスに同伴して、排出口31
から排気管32,粉末分離器33,排気ブロワー34を
介して排気される。搬送ガスとしては、例えば空気,不
活性ガスが使用される。搬送ガスに同伴して排出された
微細な固形分物質は、この粉末分離器33によって搬送
ガスと分離され、回収される。なお、分散媒または溶媒
に各種の有機溶剤を使用する場合は、排気ブロワー34
の出口の配管に溶剤の回収装置(図示省略)を設けて回
収することができ、搬送ガスは再び供給口からケーシン
グ1内に供給される。一方、乾燥されて媒体粒子に付着
している固形分は、媒体粒子同士、及び媒体粒子とケー
シング1の内面,中空回転体15の表面との衝突や摩擦
によって剥離作用を受け、媒体粒子が排出口24から排
出されるまでの間にほぼ媒体粒子の表面から離脱する。
離脱した固形分は、媒体粒子と共に排出口24方向に移
動しながら、さらに中空回転体15,ジャケット3等か
らの伝導伝熱により乾燥される。そして、排出口24か
ら排出された後、分離機25によって固形分と媒体粒子
とに分離され、固形分は製品として回収される。なお、
ケーシング1内で媒体粒子の表面から剥離されず、その
表面に付着したまま排出された固形分も、分離機25の
剥離及び分離作用により媒体粒子の表面から剥離され、
既に剥離されている固形分と共に製品として回収され
る。一方、媒体粒子は、スピンダー等の輸送機により、
定量供給装置20に戻して、再度利用することができ
る。ここで、液状物質に含まれていた固形成分のケーシ
ング1内の滞留時間は、媒体粒子の供給量によって変化
する。すなわち、固形分は媒体粒子の表面に付着してケ
ーシング1内を移動し、剥離した後も媒体粒子に同伴し
て移動する。そして、ケーシング1の容積は一定である
ので、媒体粒子の供給量を多くすれば滞留時間は短くな
り、少なくすれば長くなる。そこで、処理物(固形分)
の物性によっても異なるが、分散媒または溶媒が水の場
合において、製品の含水率はこの滞留時間により制御す
ることができる。また、ケーシング1及び中空回転体1
5に供給する熱交換媒体の持込み熱量により、分散媒ま
たは溶媒の蒸発能力が決まるので、ケーシング1内に送
出することができる液状物質の供給量の上限は、それに
基づいて自ずと定まる。このように、種々の手法により
媒体粒子から固形分が分離できる状態であれば、滞留時
間を制御することにより、任意の含水率の製品(固形
分)を取り出すことができる。すなわち、従来法では不
可能であった長い滞留時間を必要とする減率乾燥期間で
の乾燥が可能となり、低含水率の固形分を得る液状物質
の乾燥方法として特に有効である。また、従来きわめて
困難とされていた粘性の高い液状物質を乾燥する場合に
おいても、ケーシング内で機械的な攪拌作用により媒体
粒子を移動させながらその表面に付着している液状物質
(固形分)を乾燥させるので、容易に安定した運転が可
能となった。なお、本発明の方法の実施に用いる装置
は、前記実施例に示した溝型攪拌乾燥機に限定されるこ
となく、機械的に材料(媒体粒子)を攪拌する機構と加
熱機構とを備えておれば足りる(一般的に材料攪拌型乾
燥機という)。すなわち、攪拌機構としては、攪拌羽根
を備えた軸が回転する型式と円筒容器が回転する型式と
がある。攪拌羽根としては、一般的なバドル羽根,各種
形状の(中空)円盤型等がある。一方、加熱機構として
は、ジャケット,中空回転軸,各種形状の中空円盤,及
び円筒容器の全長にわたって同心円状に1〜3列に取り
付けられた加熱管等の加熱伝面から熱を受ける型式(伝
導伝熱式)と、容器の一方から供給し、他方から排出さ
れる熱風から熱を受ける型式(熱風受熱式)とがある。
以上任意の攪拌機構と加熱機構とを備えた装置(一般的
な名称)としては、熱風式溝型攪拌乾燥機,伝導式溝型
攪拌乾燥機,伝導式円筒型攪拌乾燥機,円盤乾燥機,直
接加熱式回転乾燥機,間接加熱式回転乾燥機,水蒸気加
熱管付回転乾燥機,通気回転乾燥機等である(「乾燥装
置マニュアル」日本粉体工業会編)。
On the surface of the medium particles, water or other solvent or dispersion medium in the liquid substance evaporated by the drying action is
The carrier gas supplied from the supply ports 29 and 30 and passing through the upper layer of the medium particles in the casing 1 is accompanied, and the discharge port 31.
From the exhaust pipe 32, the powder separator 33, and the exhaust blower 34. As the carrier gas, for example, air or an inert gas is used. The fine solid substance discharged along with the carrier gas is separated from the carrier gas by the powder separator 33 and collected. When various organic solvents are used as the dispersion medium or solvent, the exhaust blower 34
A solvent recovery device (not shown) can be provided in the pipe at the outlet of the carrier gas to recover the solvent, and the carrier gas is again supplied from the supply port into the casing 1. On the other hand, the solid content that has been dried and adhered to the medium particles is subjected to a peeling action due to collision or friction between the medium particles and between the medium particles and the inner surface of the casing 1 or the surface of the hollow rotator 15 to remove the medium particles. By the time it is discharged from the outlet 24, it is almost separated from the surface of the medium particles.
The separated solid content is dried by the conduction heat transfer from the hollow rotor 15 and the jacket 3 while moving along with the medium particles toward the discharge port 24. Then, after being discharged from the discharge port 24, the separator 25 separates the solid content and the medium particles, and the solid content is recovered as a product. In addition,
The solid content which is not peeled from the surface of the medium particles in the casing 1 and is discharged while being attached to the surface is also peeled from the surface of the medium particles by the peeling and separating action of the separator 25.
It is recovered as a product together with the solid content that has already been peeled off. On the other hand, medium particles are
It can be returned to the constant quantity supply device 20 and reused. Here, the residence time of the solid component contained in the liquid substance in the casing 1 changes depending on the supply amount of the medium particles. That is, the solid content adheres to the surface of the medium particles and moves in the casing 1, and moves even after being separated along with the medium particles. Since the volume of the casing 1 is constant, the residence time becomes shorter when the supply amount of the medium particles is increased, and becomes longer when the supply amount is reduced. Therefore, treated products (solid content)
The water content of the product can be controlled by the residence time when the dispersion medium or the solvent is water, although it depends on the physical properties of the product. Further, the casing 1 and the hollow rotating body 1
Since the amount of heat carried into the heat exchange medium supplied to 5 determines the evaporation capacity of the dispersion medium or the solvent, the upper limit of the supply amount of the liquid substance that can be delivered into the casing 1 is naturally determined based on this. As described above, if the solid content can be separated from the medium particles by various methods, the product (solid content) having an arbitrary water content can be taken out by controlling the residence time. That is, it is possible to perform drying in a reduced rate drying period that requires a long residence time, which is impossible with the conventional method, and it is particularly effective as a method for drying a liquid substance to obtain a solid content having a low water content. Further, even when drying a highly viscous liquid substance, which has been considered extremely difficult in the past, the liquid substance (solid content) adhering to the surface of the medium substance is moved while moving the medium particles by a mechanical stirring action in the casing. Since it is dried, stable operation is possible easily. The apparatus used for carrying out the method of the present invention is not limited to the groove-type stirring / drying machine shown in the above-mentioned embodiment, and includes a mechanism for mechanically stirring the material (medium particles) and a heating mechanism. It is enough (generally called a material agitation dryer). That is, as the stirring mechanism, there are a type in which a shaft equipped with a stirring blade rotates and a type in which a cylindrical container rotates. As the stirring blade, there are a general paddle blade, various shapes (hollow) disk type, and the like. On the other hand, as a heating mechanism, a type that receives heat from a heating surface such as a jacket, a hollow rotating shaft, hollow discs of various shapes, and heating pipes concentrically attached in 1 to 3 rows over the entire length of a cylindrical container (conduction) Heat transfer type) and a type of receiving heat from hot air supplied from one side of the container and discharged from the other side (hot air receiving type).
As a device (general name) equipped with any of the above stirring mechanism and heating mechanism, there are a hot-air groove-type stirring dryer, a conduction-type groove stirring dryer, a conduction-type cylindrical stirring dryer, a disk dryer, Direct heating rotary dryers, indirect heating rotary dryers, rotary dryers with steam heating tubes, aeration rotary dryers, etc. ("Drying device manual" edited by Japan Powder Industry Association).

【0012】[0012]

【実施例】次に、本発明の方法により各種液状物質の乾
燥処理を行なった具体例について説明する。乾燥装置と
してケーシング内の有効容積77リットル,ジャケット
の有効伝熱面積0.87m2 ,中空回転体の有効伝熱面積
1.83m2 (合計2.7m2 )の溝型攪拌乾燥機((株)
奈良機械製作所製、商品名:パドルドライヤー)を用
い、媒体粒子として長径3mm,短径2mm,長さ4m
mの略楕円柱体(ストランドカット)の結晶化させたポ
リエステルチップを用い、表1に示す条件で液状物質
(スラリー)の乾燥処理を行なった。また、媒体粒子と
固形分との分離機として、円形振動フルイ機((株)徳
寿製作所製、型式:TM−40型)を使用した。上記乾
燥装置は、通常図3に示すように、側面からジャケッ
ト,ケーシングを貫通して装置内に複数の測温抵抗体
(温度計)をTR−1〜TR−5の位置に挿入して、処
理物の温度を測定した。排出口及び各測温抵抗体の挿入
位置とケーシングの一端(媒体粒子の供給口側)からの
距離,伝熱面積の累積及び全伝熱面積に対するその割合
との関係を表2に示した。
EXAMPLES Next, specific examples in which various liquid substances are dried by the method of the present invention will be described. As a drying device, a groove type agitating dryer with an effective volume of 77 liters in the casing, an effective heat transfer area of the jacket 0.87 m 2 , and an effective heat transfer area of the hollow rotor 1.83 m 2 (total 2.7 m 2 ) ((shares )
Made by Nara Machinery Co., Ltd., product name: Paddle Dryer), using media particles as major particles 3 mm, minor axis 2 mm, and length 4 m
A liquid substance (slurry) was dried under the conditions shown in Table 1 by using a crystallized polyester chip of a substantially elliptic cylinder (strand cut) of m. A circular vibrating screener (manufactured by Tokuju Seisakusho Co., Ltd., model: TM-40) was used as a separator for the medium particles and solids. As shown in FIG. 3, the drying device normally penetrates the jacket and the casing from the side and inserts a plurality of resistance temperature detectors (thermometers) into the device at the positions TR-1 to TR-5. The temperature of the processed material was measured. Table 2 shows the relationship between the discharge port and the insertion position of each resistance temperature detector, the distance from one end of the casing (medium particle supply port side), the cumulative heat transfer area, and its ratio to the total heat transfer area.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】先に述べたように、液状物質の供給口21
は媒体粒子の供給口18よりも排出口24側に設けてあ
り、具体的にはTR−1の位置はケーシングの一端から
の伝熱面積の割合が約1割の位置にあり、ここまでの間
に媒体粒子は所定の温度に昇温される。乾燥品のサンプ
ルをTR−3及び排出口の位置で採取し、その含水率を
赤外線水分計((株)ケット科学研究所製)で測定した
結果を表1に示した。含水率の測定結果から、どちらの
処理物も比較的短い時間(TR−3まで)で恒率乾燥が
行なわれ、その後、排出口までの間で減率乾燥が行なわ
れていると考えられる。何れにしても、どちらの処理物
も充分乾燥されていた。なお通常、媒体流動層乾燥機に
よる場合は0.1%W.B.程度、すなわち恒率乾燥が終
了した時点で排出される。炭酸カルシウムのスラリーに
ついて処理した場合の各測定位置と含水率の関係を図5
に示す。TR−3以降の含水率(減率期間)は微少で横
軸内に吸収されてしまうため、便宜的に拡大した位置に
曲線を表示してある。すなわち、図5に示す含水率にお
いて、湿量基準69.5(%W.B.)の表示は、次式に
よる。
As described above, the liquid material supply port 21
Is provided closer to the discharge port 24 side than the medium particle supply port 18, and specifically, the position of TR-1 is such that the ratio of the heat transfer area from one end of the casing is about 10%. In the meantime, the medium particles are heated to a predetermined temperature. A sample of the dried product was sampled at the positions of TR-3 and the outlet, and the water content thereof was measured by an infrared moisture meter (manufactured by Kett Scientific Laboratory Co., Ltd.). The results are shown in Table 1. From the measurement results of the water content, it is considered that both treated products were subjected to constant rate drying in a relatively short time (until TR-3), and then to reduced rate drying until the discharge port. In any case, both treated products were sufficiently dried. Normally, when using a fluidized bed dryer, 0.1% W. B. It is discharged to the extent that constant drying is completed. FIG. 5 shows the relationship between each measurement position and the water content when the calcium carbonate slurry is treated.
Shown in Since the water content (reduction period) after TR-3 is so small that it is absorbed in the horizontal axis, a curve is displayed at an enlarged position for convenience. That is, in the moisture content shown in FIG. 5, the display of the moisture standard 69.5 (% WB) is according to the following formula.

【0016】[0016]

【数1】 (Equation 1)

【0017】よって0.14(%W.B.)、0.02(%
W.B.)も同様で、小さい値となり、実質的には横軸
に吸収されてしまう。以上の実施例に示すように、恒率
(定率)乾燥後の減率期間において、含水率の制御が可
能となっている。また、処理物(液状物質)の回転軸,
中空回転体及びケーシング内壁への付着,処理物が結合
剤となった媒体粒子相互の凝集や団結現象等、運転を阻
害するような付着,閉塞現象は見られず、長時間にわた
って安定した運転ができた。
Therefore, 0.14 (% WB), 0.02 (%
W. B. ) Is also the same, and becomes a small value, and is effectively absorbed on the horizontal axis. As shown in the above examples, the water content can be controlled during the rate reduction period after the constant rate (constant rate) drying. In addition, the rotation axis of the processed material (liquid substance),
Adhesion to the hollow rotor and the inner wall of the casing, no adhesion or blockage phenomenon that hinders operation such as cohesion and cohesion of medium particles with the treated material as a binder, and stable operation over a long period of time did it.

【0018】[0018]

【発明の効果】本発明に係る液状物質中の固形成分の乾
燥回収方法によれば、液状物質中の固形成分を連続的に
乾燥して比較的短時間で粉末として回収することができ
る。また、粉末中の含水率の制御が可能となり、任意の
品質の粉末が得られる。
According to the method of drying and recovering the solid component in the liquid substance according to the present invention, the solid component in the liquid substance can be continuously dried and recovered as a powder in a relatively short time. Further, it becomes possible to control the water content in the powder, and the powder of any quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施に用いた装置と、その前後
の処理装置の説明図である。
FIG. 1 is an explanatory diagram of an apparatus used for carrying out a method of the present invention and processing apparatuses before and after the apparatus.

【図2】図1のA−A線断面説明図である。FIG. 2 is an explanatory sectional view taken along line AA of FIG. 1;

【図3】前記装置における測温抵抗体の挿入位置を示す
説明図である。
FIG. 3 is an explanatory diagram showing an insertion position of a resistance temperature detector in the device.

【図4】本発明に用いる媒体粒子の一態様を示す斜視図
である。
FIG. 4 is a perspective view showing one embodiment of medium particles used in the present invention.

【図5】実施例の含水率と測定位置との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between water content and measurement position in Examples.

【符号の説明】[Explanation of symbols]

1 ケーシング 2,2′ 支持台 3 ジャケット 4 熱交換媒体の供給管 5 熱交換媒体の排出管 6 中空軸 7,8 軸受 9 ギヤー 10 スプロケット 11,13 ロータリージョイント 12 熱交換媒体供給管 14 熱交換媒体排出管 15 中空回転体 16 かき揚げ板 17 カバー 18 媒体粒子の供給口 19 媒体粒子の供給管 20 媒体粒子の定量供給装置 21 液状物質の供給口 22 原料タンク 23 定量供給ポンプ 24 排出口 25 分離機 26 網 27 乾燥品の排出口 28 媒体粒子の排出口 29,30 搬送ガスの送入口 31 搬送ガスの排出口 32 排気管 33 粉末分離器 34 排気ブロワー 1 Casing 2, 2'Supporting stand 3 Jacket 4 Heat exchange medium supply pipe 5 Heat exchange medium discharge pipe 6 Hollow shaft 7, 8 Bearing 9 Gear 10 Sprockets 11, 13 Rotary joint 12 Heat exchange medium supply pipe 14 Heat exchange medium Discharge pipe 15 Hollow rotor 16 Scooping plate 17 Cover 18 Media particle supply port 19 Media particle supply pipe 20 Media particle quantitative supply device 21 Liquid substance supply port 22 Raw material tank 23 Constant supply pump 24 Discharge port 25 Separator 26 Net 27 Dry product outlet 28 Medium particle outlet 29, 30 Carrier gas inlet 31 Carrier gas outlet 32 Exhaust pipe 33 Powder separator 34 Exhaust blower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 媒体粒子群を加熱,攪拌しながら一方向
に順次移動させ、この媒体粒子群に処理すべき液状物質
を供給して媒体粒子表面に付着した液状物質を順次乾燥
させるとともに、媒体粒子表面に残存付着する液状物質
の固形成分を剥離して回収することを特徴とする液状物
質中の固形成分の乾燥回収方法。
1. A medium particle group is sequentially moved in one direction while being heated and stirred, and a liquid substance to be treated is supplied to the medium particle group to sequentially dry the liquid substance adhering to the surface of the medium particle. A method for drying and recovering a solid component in a liquid substance, characterized in that the solid component of the liquid substance remaining on the surface of the particles is separated and collected.
【請求項2】 ケーシング内に、多数の中空回転体を軸
方向に設けた中空回転軸を備え、この中空回転軸と中空
回転体に熱媒体を供給してなる攪拌・乾燥装置を用い、
このケーシングの一端から他端にかけて媒体粒子群と処
理すべき液状物質とを供給移動させて、液状物質を付着
させた媒体粒子群に加熱と攪拌を与え、媒体粒子表面に
付着した液状物質を乾燥させながら、媒体粒子表面に残
存付着する液状物質中の固形成分を剥離せしめて回収す
ることを特徴とする液状物質中の固形成分の乾燥回収方
法。
2. A casing is provided with a hollow rotary shaft in which a large number of hollow rotary bodies are provided in the axial direction, and a stirring / drying device in which a heating medium is supplied to the hollow rotary shaft and the hollow rotary body is used.
The medium particles and the liquid substance to be treated are supplied and moved from one end to the other end of the casing, the medium particles to which the liquid substance is attached are heated and stirred, and the liquid substance attached to the surface of the medium particle is dried. A method for drying and recovering a solid component in a liquid substance, characterized in that the solid component in the liquid substance that remains and adheres to the surfaces of the medium particles is peeled off and recovered.
【請求項3】 媒体粒子の供給量を制御することによっ
て前記固形成分の滞留時間を制御して、固形成分の含水
率を調整することを特徴とする請求項1又は請求項2に
記載の液状物質中の固形成分の乾燥回収方法。
3. The liquid according to claim 1, wherein the water content of the solid component is adjusted by controlling the residence time of the solid component by controlling the supply amount of the medium particles. A method for drying and recovering solid components in a substance.
JP28301495A 1995-10-31 1995-10-31 Drying and recovering method for solid content in liquid material Pending JPH09122401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28301495A JPH09122401A (en) 1995-10-31 1995-10-31 Drying and recovering method for solid content in liquid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28301495A JPH09122401A (en) 1995-10-31 1995-10-31 Drying and recovering method for solid content in liquid material

Publications (1)

Publication Number Publication Date
JPH09122401A true JPH09122401A (en) 1997-05-13

Family

ID=17660115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28301495A Pending JPH09122401A (en) 1995-10-31 1995-10-31 Drying and recovering method for solid content in liquid material

Country Status (1)

Country Link
JP (1) JPH09122401A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524551A (en) * 2004-12-22 2008-07-10 ソルヴェイ(ソシエテ アノニム) Method for drying wet polymer
CN104150736A (en) * 2014-07-25 2014-11-19 中国环境科学研究院 Latent heat transpiration stink treatment device and sludge cake drying and stink treatment method
CN104150735A (en) * 2014-07-25 2014-11-19 中国环境科学研究院 Combined device capable of self-purifying discs and strengthening sludge dewatering by utilizing latent heat and sludge drying method
WO2016002621A1 (en) * 2014-06-30 2016-01-07 株式会社日清製粉グループ本社 Method for concentrating specific component of powder
WO2016174769A1 (en) * 2015-04-30 2016-11-03 株式会社日立製作所 Solvent replacement device and solvent replacement method
JP2019184220A (en) * 2018-03-30 2019-10-24 パンパシフィック・カッパー株式会社 Treated material drying method and drying apparatus
CN115200318A (en) * 2021-04-14 2022-10-18 济南中昌干燥设备有限公司 Drying method for high-humidity material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524551A (en) * 2004-12-22 2008-07-10 ソルヴェイ(ソシエテ アノニム) Method for drying wet polymer
WO2016002621A1 (en) * 2014-06-30 2016-01-07 株式会社日清製粉グループ本社 Method for concentrating specific component of powder
JPWO2016002621A1 (en) * 2014-06-30 2017-05-25 株式会社日清製粉グループ本社 Method for concentrating specific components in powder
TWI654934B (en) * 2014-06-30 2019-04-01 日商日清製粉集團本社股份有限公司 Method for concentrating specific components in a powder
US10390545B2 (en) 2014-06-30 2019-08-27 Nisshin Seifun Group Inc. Method for concentrating particular component in powder
CN104150736A (en) * 2014-07-25 2014-11-19 中国环境科学研究院 Latent heat transpiration stink treatment device and sludge cake drying and stink treatment method
CN104150735A (en) * 2014-07-25 2014-11-19 中国环境科学研究院 Combined device capable of self-purifying discs and strengthening sludge dewatering by utilizing latent heat and sludge drying method
WO2016174769A1 (en) * 2015-04-30 2016-11-03 株式会社日立製作所 Solvent replacement device and solvent replacement method
JP2019184220A (en) * 2018-03-30 2019-10-24 パンパシフィック・カッパー株式会社 Treated material drying method and drying apparatus
CN115200318A (en) * 2021-04-14 2022-10-18 济南中昌干燥设备有限公司 Drying method for high-humidity material
CN115200318B (en) * 2021-04-14 2024-01-26 济南中昌干燥设备有限公司 High-humidity material drying method

Similar Documents

Publication Publication Date Title
CA1278916C (en) Sludge processing
US3425135A (en) Rotary solids processing apparatus and method
JPS6330059B2 (en)
GB2051331A (en) Apparatus for the treatment of wet solids by heating or cooling
JPS6227340B2 (en)
JPH09122401A (en) Drying and recovering method for solid content in liquid material
JP2003154249A (en) Mixing dryer and method for treating slurry-like workpiece
JP2001324269A (en) Heat transfer type vertical drier
JPH11505320A (en) Forced convection drying in Nash type filters / dryers
US3313035A (en) Apparatus for drying particulate material
US4306815A (en) Apparatus for processing materials which are difficult to expand with gas and/or liquid, in an expanded layer
CN221724870U (en) Drying device is used in calcium carbonate production
JPH09192401A (en) Method for continuously evaporating viscous solution and suspension having adhesion tendency and device therefor
JP2002081864A (en) Water-containing solid matter drying device and drying method employing the same
JP3569131B2 (en) Granulation drying equipment
JP2000329467A (en) Dryer
CN109290296B (en) Method for cleaning reaction residues of reaction kettle colloid
US4526958A (en) Particle form evaporation start-up
JP2007533433A5 (en)
SU994880A1 (en) Method of drying dispersed and pasty materials and dryer for performing same
RU2326899C1 (en) Processing of polymer secondary raw materials and processing device
JPS6020074A (en) Method of drying and powdering muddy material
JPS6244311Y2 (en)
NZ193190A (en) Drying and granulating wet fusible and/or pasty materials in cylindrical dryer having chambers
JPH0641602Y2 (en) Medium fluidized bed dryer