JPH08999B2 - Electrolytic surface cleaning method for steel wire for welding - Google Patents
Electrolytic surface cleaning method for steel wire for weldingInfo
- Publication number
- JPH08999B2 JPH08999B2 JP17206387A JP17206387A JPH08999B2 JP H08999 B2 JPH08999 B2 JP H08999B2 JP 17206387 A JP17206387 A JP 17206387A JP 17206387 A JP17206387 A JP 17206387A JP H08999 B2 JPH08999 B2 JP H08999B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- oxide layer
- steel wire
- coil
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Metal Extraction Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶接用ワイヤの製造工程においてバッチ式熱
処理後の鋼ワイヤコイルを電解表面洗浄処理する方法に
関する。Description: TECHNICAL FIELD The present invention relates to a method for electrolytically surface-cleaning a steel wire coil after batch heat treatment in a welding wire manufacturing process.
溶接用鋼ワイヤの製造工程には第4図に示すように荒
引伸線−巻取り、バッチ焼鈍、表面洗浄−メッキ−仕上
伸線−巻取り工程がある。10は供給スタンドで、所望径
に圧延された素線材束を巻戻して伸線工程に供給する。
伸線工程には図示しないがデスケーラ、清浄化槽、乾燥
装置、荒引伸線機などがある。荒引きされた素線材(鋼
ワイヤ)は鋼製のボビン12に巻取られ、このボビンを所
定数積重ね、釣鐘状のインナーカバー、アウターカバー
を被せてバッチ焼鈍し、伸線により生じた歪みを除く。
その後該ボビンより鋼ワイヤを繰り出し、前処理したの
ち該ワイヤに銅メッキを施し、乾燥、仕上伸線後、巻取
る。As shown in FIG. 4, the manufacturing process of the steel wire for welding includes rough drawing wire-winding, batch annealing, surface cleaning-plating-finish drawing wire-winding step. 10 is a supply stand for rewinding a bundle of wire rods rolled to a desired diameter and supplying it to the wire drawing step.
Although not shown, the wire drawing process includes a descaler, a cleaning tank, a drying device, a rough wire drawing machine, and the like. The wire rod (steel wire) that has been roughly drawn is wound on a steel bobbin 12, a predetermined number of these bobbins are stacked, a bell-shaped inner cover and an outer cover are covered, and batch annealing is performed to prevent distortion caused by wire drawing. except.
After that, a steel wire is unwound from the bobbin, subjected to pretreatment, plated with copper, dried, finished drawn, and then wound.
上記のバッチ式焼鈍では、インナーカバー内にボビン
すなわちワイヤコイルを所定数積重ねて設置し、インナ
ーカバー内へ非酸化性雰囲気ガス(例えばN2)を供給
し、インナーカバーの外部から加熱(電熱ヒータ、ラジ
アントチューブ、直火バーナ等)することによりワイヤ
コイルを焼鈍する。ワイヤコイルが循環対流する雰囲気
ガスによる対流伝熱、および輻射伝熱により加熱される
が、位置の違いからワイヤコイルの内周部と外周部とで
焼鈍の度合が異なる。この場合外周部(ワイヤ)の方が
内周部(ワイヤ)よりもよく焼鈍されその結果焼鈍によ
り生ずるワイヤ表面層の酸化層の厚さも外周部の方が内
周部より厚くなる。この酸化層はワイヤ表面に付着、あ
るいは炉内に存在するH2Oから酸素と鋼ワイヤ中のケイ
素、マンガン、チタン等の合金元素とが反応して生じた
Fe2SiO4,FeMnO2,TiO2等の酸化物からなる硬い粒界酸化
層とワイヤ表面の鉄の酸化物(FeO,Fe3O4,Fe2O3等)か
らなる外部酸化層の二重層となっている。このうち外部
酸化層は鋼ワイヤ表面のメッキ密着性を劣化させ、一方
粒界酸化層は溶接用鋼ワイヤとして良好なワイヤ送給性
能をもたらす亀甲溝をワイヤ表面に形成する上で不可欠
であるから、次のメッキ前処理工程の電解表面洗浄処理
工程では外部酸化層を除去するとともに最終の仕上伸線
工程で亀甲溝が良好に形成されるよう粒界酸化層の厚さ
を調整し、しかるのちメッキ、仕上伸線を行なう(特開
昭62-57798号公報)。In the batch type annealing described above, a predetermined number of bobbins, that is, wire coils are installed in the inner cover, a non-oxidizing atmosphere gas (for example, N 2 ) is supplied into the inner cover, and heating is performed from the outside of the inner cover (electrothermal heater). , Radiant tube, open flame burner, etc.) to anneal the wire coil. Although the wire coil is heated by convective heat transfer and radiant heat transfer by the atmospheric gas circulating and convection, the degree of annealing differs between the inner peripheral portion and the outer peripheral portion of the wire coil due to the difference in position. In this case, the outer peripheral portion (wire) is better annealed than the inner peripheral portion (wire), and as a result, the thickness of the oxide layer of the wire surface layer produced by annealing is larger in the outer peripheral portion than in the inner peripheral portion. This oxide layer adhered to the wire surface, or was generated by the reaction of oxygen from H 2 O present in the furnace with the alloying elements such as silicon, manganese, and titanium in the steel wire.
Fe 2 SiO 4, FeMnO 2, iron oxides hard intergranular oxidation layer and the wire surface made of oxide such as TiO 2 of (FeO, Fe 3 O 4, Fe 2 O 3 , etc.) consisting of an external oxide layer two It has multiple layers. Of these, the external oxide layer deteriorates the plating adhesion on the surface of the steel wire, while the grain boundary oxide layer is essential for forming a hexagonal groove on the wire surface that provides good wire feeding performance as a steel wire for welding. In the subsequent electrolytic surface cleaning treatment step of the pre-plating treatment step, the external oxide layer is removed and the thickness of the grain boundary oxide layer is adjusted so that the hexagonal groove can be formed well in the final finish wire drawing step. Plate and finish wire drawing (Japanese Patent Laid-Open No. 62-57798).
ところが上記したように焼鈍後のワイヤコイルの外周
部(ワイヤ)と内周部(ワイヤ)とで酸化層の厚さが異
なるにもかかわらず従来の電解表面洗浄処理工程の処理
条件はワイヤコイルの外周部から内周部に至るまで同一
条件で処理していたため処理後のワイヤ表面の酸化層
(粒界酸化層)の厚さに差がみられ、このため単一コイ
ルより製造される製品ワイヤに品質(ワイヤ送給性能
等)のバラツキが生じていた。However, as described above, despite the difference in the thickness of the oxide layer between the outer peripheral portion (wire) and the inner peripheral portion (wire) of the wire coil after annealing, the processing conditions of the conventional electrolytic surface cleaning treatment step are Since the same condition was applied from the outer circumference to the inner circumference, there was a difference in the thickness of the oxide layer (grain boundary oxidation layer) on the surface of the wire after the treatment. Therefore, the product wire manufactured from a single coil Quality (wire feeding performance, etc.) was uneven.
すなわちワイヤコイルの外周部(ワイヤ)、内周部
(ワイヤ)に対応する製品のワイヤ部分の亀甲溝の形成
状態はそれぞれ大、小で、ワイヤ送給性はそれぞれ良、
不良となる。又ワイヤコイルの外周部ワイヤでは粒界酸
化層(硬く、伸び率小)が深いことから、仕上伸線中に
亀甲溝の生成と並行して表面素地の剥離が生じ易く、製
品ワイヤとしてワイヤ送給中に曲げ等により表面素地の
剥離が生じ易いという欠点がある。That is, the state of formation of the hexagonal groove of the wire portion of the product corresponding to the outer peripheral portion (wire) and the inner peripheral portion (wire) of the wire coil is large and small, respectively, and the wire feedability is good, respectively.
It becomes defective. In addition, since the outer boundary of the wire coil has a deep grain boundary oxide layer (hard and low elongation), peeling of the surface material is likely to occur during the finish wire drawing in parallel with the formation of the hexagonal groove, and the wire is fed as a product wire. There is a drawback that the surface material is easily peeled off by bending during feeding.
本発明はコイルの内、外周部分で酸化層厚の異なる熱
処理後の鋼ワイヤコイルにその表面状態に対応させて処
理度合を変えて電解表面洗浄処理を施し、もって均一な
表面性状の溶接用鋼ワイヤを得ることのできる電解表面
洗浄処理方法を提供しようとするものである。INDUSTRIAL APPLICABILITY According to the present invention, a steel wire coil after heat treatment having a different oxide layer thickness in the outer peripheral portion of the coil is subjected to electrolytic surface cleaning treatment by changing the treatment degree according to the surface state, and thus a welding steel having a uniform surface quality is obtained. It is an object of the present invention to provide an electrolytic surface cleaning method capable of obtaining a wire.
上記目的を達成するための本発明の要旨とするところ
は、非酸化性ガス雰囲気中でバッチ式熱処理した鋼ワイ
ヤコイルを連続的に巻き戻して鋼ワイヤを電解表面洗浄
処理する方法であって、電解処理度合を単一コイルの未
処理ワイヤ残量に対応させ漸次軽減させて処理する溶接
用鋼ワイヤの電解表面洗浄処理方法にある。Where the gist of the present invention to achieve the above object is a method of continuously rewinding a steel wire coil that has been batch-type heat treated in a non-oxidizing gas atmosphere to perform electrolytic surface cleaning treatment on a steel wire, This is a method of electrolytic surface cleaning treatment of a welding steel wire in which the degree of electrolytic treatment is made to correspond to the remaining amount of untreated wire in a single coil and gradually reduced.
〔作用〕 本発明では、コイル(ボビン巻きもしくはボビンレス
巻き)状態でバッチ式熱処理した鋼ワイヤの表面素地に
生じた酸化層特に粒界酸化層の厚さが、ワイヤコイルの
外周部(ワイヤ)から内周部(ワイヤ)にかけて次第に
薄くなることから、電解処理度合もこれに対応させ漸次
軽減させて処理することにより処理後の鋼ワイヤ表面素
地の粒界酸化層の厚さを均一化させ、もって粒界酸化層
の厚さの差異にもとづく製品ワイヤの品質バラツキを解
消した。電解処理度合は処理液の状態(種類、濃度、温
度等)が決まれば電流密度D、処理時間T(T=L/V,L:
処理長,V:ワイヤ速度)によって決まる。すなわち処理
度合とD,T,L,Vとは電解処理度合∞D・T=D・L/Vとい
う関係にあり、D,L,Vのいずれか例えば電流密度Dを変
化させ処理度合を調節する。[Operation] In the present invention, the thickness of the oxide layer, particularly the grain boundary oxide layer, formed on the surface material of the steel wire subjected to the batch type heat treatment in the coil (bobbin winding or bobbinless winding) is determined from the outer peripheral portion (wire) of the wire coil. Since the thickness gradually decreases toward the inner circumference (wire), the degree of electrolytic treatment is also correspondingly reduced and the thickness of the grain boundary oxide layer of the steel wire surface base material after treatment is made uniform, The quality variation of the product wire due to the difference in the thickness of the grain boundary oxide layer was eliminated. As for the degree of electrolytic treatment, if the state of the treatment liquid (type, concentration, temperature, etc.) is determined, the current density D, treatment time T (T = L / V, L:
Processing length, V: wire speed). That is, the degree of treatment and D, T, L, V have a relation of electrolytic degree ∞D · T = D · L / V, and one of D, L, V, for example, the current density D is changed to adjust the degree of treatment. To do.
バッチ式熱処理の雰囲気ガスは鋼ワイヤに粒界酸化層
を良好に生成させ、かつ外部酸化層の生成を抑える必要
から非酸化性ガスを使用する。非酸化性ガスとしてアル
ゴン等の不活性ガスあるいは窒素、CO等の中性、還元性
ガスを使用するランニングコスト、安全性を考慮して窒
素を使用することが望ましい。The atmosphere gas for the batch heat treatment uses a non-oxidizing gas because it is necessary to satisfactorily form a grain boundary oxide layer on the steel wire and suppress the formation of an external oxide layer. It is desirable to use nitrogen in consideration of running cost and safety when using an inert gas such as argon or a neutral or reducing gas such as nitrogen or CO as the non-oxidizing gas.
以下本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below with reference to the drawings.
溶接用鋼ワイヤの製造工程は本発明においても第4図
と同様であるが、電解表面洗浄処理工程で処理度合を漸
次変化させる点で従来と異なる。すなわち、原線径5.5m
mφ、化学成分C:0.08%、Si:0.84%、Mn:0.20%の熱延
鋼線材を原線として、製品径1.2mmφの溶接用鋼ワイヤ
を第1表に示す工程を経て製造した。まず荒引伸線工程
で2.2mmφまで減径した後鋼ワイヤはボビン巻きされ重
量1000kgのコイル体となり、次のバッチ焼鈍工程でイン
ナーカバー内に所定数段積み(例えば3段)設置され、
N2ガス雰囲気中で焼鈍が施される。この熱処理後の鋼ワ
イヤにはその表面層に酸化層が形成されている。前述し
たようにこの酸化層の厚さはコイルの外周部ワイヤと内
周部ワイヤとでは異なり外周部ワイヤほど厚くなる傾向
を有している。The manufacturing process of the steel wire for welding is similar to that of FIG. 4 in the present invention as well, but differs from the conventional one in that the processing degree is gradually changed in the electrolytic surface cleaning process. That is, the original wire diameter is 5.5 m
A hot-rolled steel wire having mφ, chemical components C: 0.08%, Si: 0.84%, and Mn: 0.20% was used as a raw wire to manufacture a welding steel wire with a product diameter of 1.2 mmφ through the steps shown in Table 1. First, after reducing the diameter to 2.2 mmφ in the rough wire drawing process, the steel wire is bobbin wound into a coil body with a weight of 1000 kg, and in the next batch annealing process, a predetermined number of stacks (for example, 3 stacks) are installed inside the inner cover,
Annealing is performed in an N 2 gas atmosphere. An oxide layer is formed on the surface layer of the steel wire after the heat treatment. As described above, the thickness of the oxide layer is different between the outer peripheral wire and the inner peripheral wire of the coil, and tends to be thicker in the outer peripheral wire.
第1図(a),(b),(c)および(d)はコイル
の最内周部からのワイヤ重量(kg)で示したワイヤ位置
(横軸、(1000kg:コイル最外周位置、0kg:コイル最内
周位置))と酸化層厚(左縦軸)および電解表面洗浄処
理電流密度(右縦軸)との関係を示したもので(a)は
焼鈍後、(b),(c)はそれぞれ本発明例、従来例の
電解表面洗浄処理後の図を示す。図中Aは粒界酸化層、
Bは外部酸化層を示し、D1,D2はそれぞれ本発明例、従
来例の電流密度を示す。又(d)は(a),(b),
(c)のワイヤ位置を図示化したものでボビン12に巻か
れたワイヤコイル1cをワイヤ位置(横軸)に対応させて
示している。この第1図(a)により酸化層厚について
説明すると、バッチ焼鈍後のワイヤ表面層には粒界酸化
層が生成しその外表面には外部酸化層が生成する。粒界
酸化層Aはコイル最内周のワイヤで最も薄く5μm程度
で外周になる程厚くなり最外周で最も厚く20μm程度で
ある。外部酸化層Bはワイヤ位置約200kgからみとめら
れ、外周になる程厚くなり最外周で2μm程度生成して
いる。外部酸化層Bはメッキ密着性を劣化させ、粒界酸
化層Aは製品ワイヤ表面に亀甲溝を生成させるのに不可
欠な層である。ただし亀甲溝の生成状態は粒界酸化層の
厚さに略比例することからその厚さを均一化し亀甲溝の
生成状態のバラツキをなくす必要がある。すなわちバッ
チ焼鈍工程に続く電解表面洗浄工程では、電解処理度合
を酸化層厚に対応させて変化させ、外部酸化層を完全除
去するとともに、粒界酸化層の厚さを均一化させる。第
2図は本発明例で使用した電解表面洗浄処理装置を示す
図で、この装置を使用したときの処理条件を第2表に示
す。処理度合の調節は本発明例では電流密度Dを変化さ
せることにより行なった。処理方法は間接給電方式によ
る電解洗浄であり、両端の開放された複数個の管状電極
を極性を変えて直列方向に非接触状態で配列するととも
に、該電極内に存在する電解処理液中を通すように管状
電極内にワイヤを通過させ、該電極とワイヤを非接触状
態に維持しつつ間接給電を行なう方法である。(公知技
術特開昭57-140899号公報、特開昭53-116232号公報)ワ
イヤが陽極のとき、ワイヤの鋼素地が激しく溶解するの
で、表面が平滑となり線材表面が高度に清浄化される。
これに対し、ワイヤが陰極のとき鋼素地の溶解が起こら
ず、化学的な脱脂が中心となって進行するワイヤ表面素
地や酸化層の清浄効果は余り期待できない。よって電極
を陽・陰極交互に配置すれば洗浄効果を最適にでき、適
正な表面肌を得ることが可能である。 1 (a), (b), (c) and (d) are the wire positions (horizontal axis, (1000 kg: coil outermost position, 0 kg : (Innermost circumference position of coil)), oxide layer thickness (left vertical axis), and electrolytic surface cleaning current density (right vertical axis). (A) shows (b), (c) after annealing. ) Shows the figure after the electrolytic surface cleaning process of the present invention example and the conventional example, respectively. In the figure, A is a grain boundary oxide layer,
B indicates an outer oxide layer, and D 1 and D 2 indicate current densities of the present invention example and the conventional example, respectively. Also, (d) is (a), (b),
The wire position of (c) is illustrated, and the wire coil 1c wound around the bobbin 12 is shown corresponding to the wire position (horizontal axis). Explaining the oxide layer thickness with reference to FIG. 1A, a grain boundary oxide layer is formed on the wire surface layer after batch annealing, and an external oxide layer is formed on the outer surface thereof. The grain boundary oxide layer A is the thinnest wire of the coil at the innermost circumference of about 5 μm, and becomes thicker toward the outer circumference and thickest at the outermost circumference of about 20 μm. The outer oxide layer B is seen from the wire position of about 200 kg, becomes thicker toward the outer circumference, and forms about 2 μm at the outermost circumference. The outer oxide layer B deteriorates the adhesion of the plating, and the grain boundary oxide layer A is an essential layer for forming a hexagonal groove on the surface of the product wire. However, since the formation state of the turtle groove is almost proportional to the thickness of the intergranular oxide layer, it is necessary to make the thickness uniform to eliminate the variation in the formation state of the turtle groove. That is, in the electrolytic surface cleaning step following the batch annealing step, the degree of electrolytic treatment is changed in accordance with the thickness of the oxide layer to completely remove the external oxide layer and make the thickness of the grain boundary oxide layer uniform. FIG. 2 is a view showing an electrolytic surface cleaning treatment apparatus used in the example of the present invention, and Table 2 shows treatment conditions when this apparatus is used. The degree of treatment is adjusted by changing the current density D in the present invention. The treatment method is electrolytic cleaning by an indirect power supply method, in which a plurality of tubular electrodes whose both ends are open are arranged in a non-contact state in the series direction by changing their polarities and passed through the electrolytic treatment liquid present in the electrodes. In this way, the wire is passed through the tubular electrode, and indirect power supply is performed while the electrode and the wire are kept in a non-contact state. (Publication of Japanese Laid-Open Patent Publication No. 57-140899 and Japanese Laid-Open Publication No. 53-116232) When the wire is an anode, the steel base of the wire melts violently, so the surface becomes smooth and the wire surface is highly cleaned. .
On the other hand, when the wire is the cathode, the steel base material is not melted, and the cleaning effect of the wire surface base material and the oxide layer, which is promoted mainly by chemical degreasing, cannot be expected very much. Therefore, by arranging the electrodes alternately with the positive and negative electrodes, the cleaning effect can be optimized and an appropriate surface texture can be obtained.
第2図に示すように両端の開放された管状電極5が極
性を変えて直列的にかつ非接触状態で配置されている。
電解処理液の硫酸4は液入口2より流れ内部を充満した
後排気液口3より放出され、順次繰返され還流が行なわ
れている。As shown in FIG. 2, tubular electrodes 5 whose both ends are open are arranged in series and in a non-contact state with different polarities.
Sulfuric acid 4 as the electrolytic treatment liquid flows from the liquid inlet 2 to fill the inside thereof, and then is discharged from the exhaust liquid outlet 3 to be sequentially repeated and refluxed.
被処理ワイヤ1は各電極5の中央部を貫通し、間接給
電により、まず処理され、次いで,,,処理
が順次繰返される。The wire 1 to be processed penetrates through the central portion of each electrode 5 and is first processed by indirect power supply, and then the processing is sequentially repeated.
電極密度を変化させ電解処理度合を調節するが、これ
は電源6の電圧変化させることにより行なう。すなわち
電流密度を800A/dm2から200A/dm2まで処理中ワイヤのコ
イル内位置に対応させて漸次減少させる。本件ではコイ
ル体重量1000kgを5分割し200kg処理ごとに電流密度を1
50A/dm2ずつ減少させる。電流密度の切替えは200kg通過
時間=100分経過時点に行った。もちろん切替え頻度を
もっと多くしてもよいし、回転計量計7を設け処理重量
に直接対応させ無段階に電流密度を減小してもよい。The degree of electrolytic treatment is adjusted by changing the electrode density, which is performed by changing the voltage of the power source 6. That gradually decreasing in correspondence with the coil within the position of the processing in the wire current density from 800A / dm 2 to 200A / dm 2. In this case, the coil body weight of 1000 kg is divided into 5 and the current density is set to 1 for every 200 kg of treatment.
Decrease by 50A / dm 2 . The switching of the current density was performed when 200 kg passage time = 100 minutes had elapsed. Of course, the switching frequency may be increased, or the rotation meter 7 may be provided to directly correspond to the processing weight to continuously reduce the current density.
第1図(b)にこの場合の粒界酸化層(A)の厚さを
示す。粒界酸化層の厚さはほぼ平均化しており5μm程
度の厚さとなる。第1図(c)は比較のために従来例に
よる場合を示したもので、電流密度をコイル外周から内
周まで500A/dm2一定として処理した。このときの粒界酸
化層厚はコイル最内周ワイヤで0μm、最外周ワイヤで
10μmと差が大きく、焼鈍後ワイヤの粒界酸化層の厚さ
(第1図(a))のバラツキ状態をそのまま維持してい
る。FIG. 1 (b) shows the thickness of the grain boundary oxide layer (A) in this case. The thickness of the grain boundary oxide layer is almost averaged and is about 5 μm. FIG. 1 (c) shows a case of a conventional example for comparison, in which the current density was set to 500 A / dm 2 constant from the outer circumference to the inner circumference of the coil. At this time, the grain boundary oxide layer thickness was 0 μm for the innermost coil wire and for the outermost wire.
The difference is as large as 10 μm, and the variation in the thickness of the grain boundary oxide layer of the wire after annealing (FIG. 1 (a)) is maintained as it is.
このようにして本発明ではバッチ焼鈍工程で生成した
ワイヤ表面の粒界酸化層の厚さのバラツキを電解表面洗
浄処理工程で処理度合を変えることにより解消し均一な
厚さとする。そして続くメッキ工程でワイヤに銅メッキ
を施し仕上伸線工程を経て製品ワイヤとしてボビン等に
巻取る。As described above, in the present invention, the variation in the thickness of the grain boundary oxide layer on the wire surface generated in the batch annealing step is eliminated by changing the treatment degree in the electrolytic surface cleaning treatment step to obtain a uniform thickness. Then, in the subsequent plating step, the wire is copper-plated, and after a finish wire drawing step, it is wound as a product wire on a bobbin or the like.
ワイヤ表面の亀甲溝の生成過程を説明すると、メッキ
工程後に外周部に軟かく伸びのあるメッキ層、中間部は
硬い粒界酸化層、内部は軟化焼鈍された伸びのある鋼素
地の3重構造のワイヤ断面を呈する鋼ワイヤが得られ
る。次に鋼ワイヤを仕上伸線工程で伸線すると、伸びの
少ない粒界酸化層に亀裂がワイヤ円周方向に発生し、亀
甲溝が生成する。Explaining the formation process of the hexagonal groove on the wire surface, the triple layer structure of the plated layer with a soft and stretched outer periphery after the plating process, the hard grain boundary oxide layer in the middle part, and the softened and stretched steel base inside A steel wire exhibiting a wire cross section of Next, when the steel wire is drawn in the finish drawing process, cracks are generated in the grain boundary oxide layer having a small elongation in the circumferential direction of the wire, and a hexagonal groove is formed.
溶接用鋼ワイヤ表面にはワイヤ送給性、耐錆性のため
油脂、鉱物油、湿式伸線用潤滑剤等の液状潤滑剤が塗布
されるが、この潤滑剤はワイヤ表面の亀甲溝に保持され
る。ワイヤの表面はミクロ的な含油状態になるのでワイ
ヤ潤滑能が極めて良好となりコンジットライナーとの接
触抵抗が軽減される。この結果送給抵抗そのものも低
く、変動範囲が狭くなり送給性が安定する。ワイヤ送給
性の安定・均一化によりアークは安定し、ビード形状の
不揃、融合不良などの溶接欠陥が生じない。さらに亀甲
溝内に液状潤滑剤が安定した状態で保持されるため液状
潤滑剤は最小限の付着量で安定した送給性が得られ、過
剰な潤滑剤によるピット、ブローホールなどの溶接欠陥
の発生がなく、すぐれた溶接作業性が達成される。A liquid lubricant such as oil, mineral oil, or a lubricant for wet wire drawing is applied to the surface of the welding steel wire for wire feeding and rust resistance, but this lubricant is retained in the hexagonal groove on the wire surface. To be done. Since the surface of the wire is in a microscopic oil-impregnated state, the wire lubricating ability is extremely good and the contact resistance with the conduit liner is reduced. As a result, the feeding resistance itself is low, the fluctuation range is narrowed, and the feeding performance is stable. The arc is stable due to the stable and uniform wire feeding, and welding defects such as uneven bead shape and defective fusion do not occur. Furthermore, since the liquid lubricant is held in a stable state in the hexagonal groove, stable feedability of the liquid lubricant can be obtained with the minimum amount of adhesion, and excess welding causes welding defects such as pits and blowholes. No welding occurs and excellent welding workability is achieved.
第3図(a),(b),(c)は製品ワイヤの亀甲溝
の生成状態を示した図面代用顕微鏡写真(×100)であ
り、(a)は本発明例によるものでコイル体の全ワイヤ
部分に均一かつ良好な亀甲溝が生じており、上記効果が
同一コイル体のすべてのワイヤ部分にわたってバラツキ
なく均等にあらわれる。これに対して(b),(c)は
従来例によるもので(b)はコイル体の内周部、(c)
は外周部のワイヤ部分に生成した亀甲溝を示し、これか
ら明らかなように(b)ではほとんど亀甲溝の生成がみ
られず上記効果が期待できず、(c)では亀甲溝の生成
が著しい。すなわち同一コイル体から得られるワイヤの
長手方向の部分部分で送給性能が異なり品質管理の困難
な溶接用鋼ワイヤとなる。さらに(c)の亀甲溝の生成
が著しい外周部ワイヤでは前記したように表面素地が剥
離しやすく、いずれにしても従来の製造方法によるもの
は欠点が多い。本発明ではこのような不都合が全くな
い。FIGS. 3 (a), (b), and (c) are drawing-substitute micrographs (× 100) showing the generation state of the hexagonal groove of the product wire, and (a) is an example of the present invention showing a coil body. A uniform and good hexagonal groove is formed in all the wire portions, and the above effect is evenly distributed over all the wire portions of the same coil body. On the other hand, (b) and (c) are according to the conventional example, (b) is the inner peripheral portion of the coil body, (c)
Indicates a tortoise shell groove formed in the wire portion on the outer peripheral portion. As is clear from this, the tortoise shell groove is hardly generated in (b) and the above effect cannot be expected, and in (c), the tortoise shell groove is remarkable. In other words, the steel wire for welding has different feeding performance in the longitudinal part of the wire obtained from the same coil body and quality control is difficult. Further, in the outer peripheral wire (c) in which the hexagonal groove is remarkably formed, the surface material is easily peeled off as described above, and in any case, the conventional manufacturing method has many drawbacks. The present invention has no such inconvenience.
本発明は以上のように構成されているので、以下の効
果を奏する。非酸化性ガス雰囲気中でバッチ式熱処理し
た鋼ワイヤコイルはワイヤ素地に粒界酸化層を生ずるが
その厚さはコイルの最内周に巻かれたワイヤが最も薄
く、外周になるにつれて厚くなり最外周で最も厚くなる
傾向にある。一方溶接用鋼ワイヤの具備すべき特性とし
て送給性能があり、該性能がワイヤ表面の亀甲溝の生成
状態の良否で決定される。Since the present invention is configured as described above, it has the following effects. A steel wire coil that has been heat-treated in a batch process in a non-oxidizing gas atmosphere has an intergranular oxide layer on the wire base.The thickness of the wire wound around the innermost circumference of the coil is the thinnest, and the wire becomes thicker toward the outer circumference. It tends to be thickest on the outer circumference. On the other hand, as a characteristic that the welding steel wire should have, there is a feeding performance, and the performance is determined by the quality of the formation state of the hexagonal groove on the wire surface.
上記粒界酸化層の厚さと亀甲溝の生成状態の良否は密
接な関係にあり粒界酸化層の厚いほど亀甲溝の生成は著
しい。従ってバッチ式熱処理後の鋼ワイヤの粒界酸化層
の厚さをコイル体の全ワイヤ部分で均一にしておくこと
が必要であり、本発明では上記電解表面洗浄処理方法を
施すことにより粒界酸化層の厚さの均一化を達成した。
これによりワイヤ表面性状が均一で送給性能のバラツキ
のない品質良好な溶接用鋼ワイヤを得ることができる。There is a close relationship between the thickness of the grain boundary oxide layer and the quality of the formation of the hexagonal groove, and the thicker the grain boundary oxide layer, the more remarkable the formation of the hexagonal groove. Therefore, it is necessary to make the thickness of the grain boundary oxidation layer of the steel wire after the batch type heat treatment uniform in all the wire portions of the coil body. In the present invention, the grain boundary oxidation is performed by applying the above electrolytic surface cleaning treatment method. A uniform layer thickness was achieved.
As a result, it is possible to obtain a good quality welding steel wire having a uniform wire surface property and no variation in feeding performance.
第1図の(a),(b),(c)はコイル内のワイヤ位
置と酸化層厚および電流密度との関係を示した図で、
(a)は焼鈍後、(b),(c)はそれぞれ本発明例、
従来例の電解表面洗浄処理後の図を示す。同図(d)は
ボビン巻きのワイヤコイルを示した図、第2図は電解表
面洗浄処理装置を示す図、第3図(a),(b),
(c)は製品ワイヤの表面の亀甲溝の生成状態を示した
金属組織の顕微鏡写真(×100)で(a)は本発明例に
よるもの。(b),(c)は従来例によるものである。
第4図は溶接用鋼ワイヤの製造工程を示した図である。(A), (b) and (c) of FIG. 1 are diagrams showing the relationship between the wire position in the coil and the oxide layer thickness and current density.
(A) is after annealing, (b) and (c) are examples of the present invention,
The figure after the electrolytic surface cleaning process of a prior art example is shown. FIG. 3D is a diagram showing a wire coil wound around a bobbin, FIG. 2 is a diagram showing an electrolytic surface cleaning treatment device, and FIGS. 3A and 3B.
(C) is a photomicrograph (× 100) of the metal structure showing the formation state of the hexagonal groove on the surface of the product wire, and (a) is according to the example of the present invention. (B) and (c) are based on a conventional example.
FIG. 4 is a diagram showing a manufacturing process of a welding steel wire.
Claims (1)
た鋼ワイヤコイルを連続的に巻き戻して鋼ワイヤを電解
表面洗浄処理する方法であって、電解処理度合を単一コ
イルの未処理ワイヤ残量に対応させ漸次軽減させて処理
することを特徴とする溶接用鋼ワイヤの電解表面洗浄処
理方法。1. A method for continuously rewinding a steel wire coil that has been subjected to a batch heat treatment in a non-oxidizing gas atmosphere to perform electrolytic surface cleaning treatment on the steel wire, wherein the electrolytic treatment degree is a single coil untreated wire. A method for electrolytically cleaning a surface of a steel wire for welding, which is characterized by gradually reducing the amount of the residual steel according to the remaining amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17206387A JPH08999B2 (en) | 1987-07-11 | 1987-07-11 | Electrolytic surface cleaning method for steel wire for welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17206387A JPH08999B2 (en) | 1987-07-11 | 1987-07-11 | Electrolytic surface cleaning method for steel wire for welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6417900A JPS6417900A (en) | 1989-01-20 |
JPH08999B2 true JPH08999B2 (en) | 1996-01-10 |
Family
ID=15934846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17206387A Expired - Lifetime JPH08999B2 (en) | 1987-07-11 | 1987-07-11 | Electrolytic surface cleaning method for steel wire for welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08999B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004052507A1 (en) * | 2003-10-27 | 2006-02-23 | ITT Manufacturing Enterprises, Inc., Wilmington | Accumulator electrodes based on fullerene |
-
1987
- 1987-07-11 JP JP17206387A patent/JPH08999B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6417900A (en) | 1989-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3718617B2 (en) | Porous electrode wire for electrical discharge machining | |
US5808262A (en) | Wire electrode for electro-discharge machining and method of manufacturing same | |
WO2022186357A1 (en) | Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method | |
JP2001225228A (en) | Electrode for electric erosion machining and method of manufacturing for the same | |
JPH08999B2 (en) | Electrolytic surface cleaning method for steel wire for welding | |
JPH04293757A (en) | Manufacturing method of flat plated wire | |
CN112658050A (en) | Processing technology of copper-clad aluminum wire | |
CN115338277B (en) | Iron-chromium-aluminum alloy material with golden bright surface and preparation method thereof | |
JPH05337741A (en) | Manufacture of electrode wire for wire electrodischarge machining | |
JPS6038808B2 (en) | Manufacturing method of copper coated composite wire | |
JP6687919B2 (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
JPH06116653A (en) | Manufacturing method and manufacturing apparatus of low-cost hot-rolled hot-dip galvanized steel strip having excellent plating surface properties and plating adhesion | |
JPS6227559A (en) | Method for manufacturing molten tin-plated copper wire | |
JP2923597B2 (en) | Manufacturing method of fine diameter composite metal plated wire | |
JP3873301B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP3332196B2 (en) | Method of manufacturing electrode wire for electric discharge machining | |
EP0799665B1 (en) | Method of manufacturing a wire electrode for electro-discharge machining | |
JPS5810445B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent core loss | |
JPS5817717B2 (en) | Manufacturing method of copper coated steel wire | |
JPH07254317A (en) | Manufacture of nb3sn superconducting wire | |
JP3319497B2 (en) | Method of manufacturing electrode wire for electric discharge machining | |
JPH062049A (en) | Manufacture of bead wire and apparatus therefor | |
EP0410521A1 (en) | Method and apparatus for manufacturing netting of steel wire | |
JPH10152763A (en) | Production of aluminum foil coil for electrolytic capacitor | |
JPH0573528B2 (en) |